WO2021124673A1 - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
WO2021124673A1
WO2021124673A1 PCT/JP2020/039480 JP2020039480W WO2021124673A1 WO 2021124673 A1 WO2021124673 A1 WO 2021124673A1 JP 2020039480 W JP2020039480 W JP 2020039480W WO 2021124673 A1 WO2021124673 A1 WO 2021124673A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
control unit
pulse
operating device
pressing direction
Prior art date
Application number
PCT/JP2020/039480
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 正広
和輝 伊藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021124673A1 publication Critical patent/WO2021124673A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"

Definitions

  • the present disclosure relates to an operation device that generates a vibrating tactile sensation for a finger when an operator's finger inputs an operation to the operation panel.
  • Patent Document 1 As an operating device, for example, the one described in Patent Document 1 is known.
  • the operating device (device that produces a tactile effect) of Patent Document 1 includes an actuator having a coil, a central object (for example, metal), and a spring, and gives tactile feedback by vibration to the operator's finger on the touch-sensitive panel. Is designed to be generated.
  • the operating device drives the actuator by the input pulse, and generates tactile feedback by the suction force by the coil and the return reaction force by the spring. Then, after removing the input pulse, a brake pulse is generated so as to reduce the damping effect of the tactile feedback generated by the actuator.
  • the brake pulse comprises a descending slope having a slew rate from about 0.2 V / ms to 0.3 V / ms.
  • the brake pulse output after the input pulse is provided with a section in which the force in the same direction as the input pulse is continued, and in this section, it is related to the vibration phase of the moving portion.
  • the force is given as a constant value. Therefore, the initial return reaction force by the spring, which is usually effective for obtaining the vibration tactile sensation, is reduced, and the vibration tactile sensation given to the operator's finger is reduced.
  • an object of the present disclosure is to provide an operating device capable of ensuring an effective tactile sensation by the initial return of the spring and giving a sharp tactile sensation by the braking effect.
  • the operating device includes a movable portion that can be moved in the pressing direction by a finger operation of the operator.
  • An actuator that generates suction force in the pressing direction with respect to the moving part when energized, When the suction force is released, a reaction force is applied to the movable part in the direction opposite to the pressing direction, and the spring part vibrates.
  • It is equipped with a control unit that controls the on / off of energization of the actuator.
  • It is an operation device that gives a vibrating tactile sensation to the operator's finger via the movable part by the suction force of the actuator and the reaction force of the spring part when there is a finger operation.
  • the control unit is used to provide vibration and tactile sensation.
  • An acceleration pulse is added to the actuator by turning on the power for a predetermined time and then turning it off. After adding the acceleration pulse to the actuator, the spring part returns the movable part in the opposite direction, further reverses in the pressing direction, then further reverses from the maximum position in the pressing direction, and reverses the maximum position in the opposite direction. While returning to, a brake pulse for energizing the actuator is applied again so that a peak value of the attractive force is generated.
  • the operation device 100 of the first embodiment is shown in FIGS. 1 to 5.
  • the operation device 100 of the present embodiment is applied to, for example, a switch unit for input operation (press operation) by a finger F of an operator (user) in a vehicle air conditioner.
  • the switch unit of the vehicle air conditioner includes, for example, an air conditioner on switch, an auto (automatic control) switch, a fan air volume setting switch, and an outlet selection switch.
  • the operation device 100 includes a fixing unit 110, an operation panel 120, an actuator 130, a spring unit 140, a gap distance sensor 150, a control unit 160, and the like.
  • the fixing portion 110 is a member for fixing the actuator 130, the spring portion 140, the gap distance sensor 150, and the like, and is shown here as a member corresponding to the bottom portion of the housing.
  • the fixing portion 110 is formed of, for example, a resin material.
  • the operation panel 120 is a member (switch unit) that can be moved in the pressing direction by the operator's finger operation, and is arranged on the operator side of the fixing unit 110.
  • the operation panel 120 corresponds to the movable portion of the present disclosure.
  • the operation panel 120 is made of, for example, a resin material.
  • a plate member made of a magnetic metal material is fixed to the surface of the operation panel 120 on the fixing portion 110 side so as to face the actuator 130.
  • the actuator 130 has, for example, a drive circuit 131 and a winding coil 132.
  • the winding coil 132 is a coil wound around a core member of a magnetic metal material.
  • the drive circuit 131 energizes the winding coil 132 to function as an electromagnet.
  • the actuator 130 is a suction type actuator that generates a suction force in the pressing direction with respect to the operation panel 120 (a plate member made of a magnetic metal material).
  • the actuator 130 is not limited to the suction type actuator described above, but is also a bidirectional actuator that is an electromagnet type and uses a permanent magnet, or a repulsive type that is bidirectional and uses only one-sided movement. An actuator or the like may be used.
  • the spring portion 140 is an elastic member that vibrates by applying a reaction force to the operation panel 120 in the direction opposite to the pressing direction when the suction force by the actuator 130 is released.
  • a leaf spring or a coil spring is used as the spring portion 140, one end of which is fixed to the fixed portion 110 and the other end of which is connected to the operation panel 120, so that the operation panel 120 is elastic with respect to the fixed portion 110. It has come to support the target.
  • the gap distance sensor 150 is a position sensor that detects the position of the operation panel 120 in the pressing direction, and is provided on the upper surface of the fixing portion 110.
  • a reflection type light amount sensor is used as the gap distance sensor 150.
  • the gap distance sensor 150 emits light toward the operation panel 120, reflects it on the operation panel 120, and returns based on the photoimaging position (the principle of triangular distance measurement that differs depending on the distance of the detected object).
  • the distance signal Ds corresponding to the distance between the fixed portion 110 and the operation panel 120 is detected.
  • the gap distance sensor 150 outputs the detected distance signal Ds to the control unit 160.
  • the control unit 160 is a part that receives the distance signal Ds from the gap distance sensor 150 and controls the on / off of the energization of the actuator 130.
  • the control unit 160 vibrates and tactilely touches the operator's finger F via the operation panel 120 by the suction force of the actuator 130 and the reaction force of the spring unit 140. Is to be given.
  • the control unit 160 has a CPU, RAM, a storage medium, and the like.
  • the control unit 160 stores in advance a plurality of ID input waveforms (reproduction start signals Ps) for performing feed forward control for the actuator 130.
  • One of the plurality of ID input waveforms is selected and set by the vehicle manufacturer, or is selected and set by the operator before or during use of the vehicle.
  • the ID input waveform corresponds to the set waveform of the present disclosure.
  • the ID input waveform becomes the reproduction start signal Ps output to the actuator 130.
  • the ID input waveform is a preset energization pattern (a voltage waveform is used here) for the actuator 130.
  • the acceleration pulse Ap for turning on / off the actuator 130 and the vibration behavior of the operation panel 120 by the spring portion 140 are grasped in advance, and then the brake pulse Bp for effectively stopping this vibration behavior.
  • the ID input waveform is not limited to the voltage waveform, and may be a waveform indicating a current value.
  • the acceleration pulse Ap has a rectangular waveform in which the actuator 130 is energized for a predetermined time and then temporarily turned off (voltage is set to 0).
  • the acceleration pulse Ap may be a sin wavy waveform or a combination of a sin wavy waveform and a rectangular waveform.
  • the brake pulse Bp is applied to the actuator 130 again so that the peak value of the attractive force is generated in the section A (phase of the brake input range) in FIG. 4 after the acceleration pulse Ap to the actuator 130 is turned off.
  • the operation panel 120 was returned in the opposite direction (front side in FIG. 4) by the spring portion 140, and further reversed in the pressing direction (back side in FIG. 4).
  • it is a section that further reverses from the maximum position in the pressing direction (top dead center Td in FIG. 4) and returns to the reverse maximum position in the opposite direction (bottom dead center Bd in FIG. 4).
  • the skirt of the brake pulse Bp is acceptable when it is within the section A or when it slightly protrudes. Further, after the peak of the brake pulse Bp, the pulse output is set to be gradually (smoothly) reduced (gradual descending portion S). The degree of reduction of the pulse output is, for example, about 0.5 to 2 V / ms. After the peak of the brake pulse Bp, the brake pulse Bp may be gradually lowered in steps. Further, the brake pulse Bp is not limited to the mountain-shaped pulse, and may be a rectangular waveform.
  • control unit 160 stores in advance the pressing threshold value for the distance signal Ds output from the gap distance sensor 150.
  • the pressing threshold is a value for determining whether or not there is a finger operation when the operation panel 120 is pressed and moved by the operator's finger F.
  • control unit 160 and its method described in the present disclosure are provided by a processor programmed to perform one or more functions embodied by a computer program, and a dedicated computer provided by configuring memory. , May be realized.
  • control unit 160 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor by one or more dedicated hardware logic circuits.
  • control unit 160 and its method described in the present disclosure include a processor and memory programmed to perform one or more functions, and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by a combination.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • each section is expressed as, for example, step S100.
  • each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section.
  • each section thus constructed can be referred to as a device, module, or means.
  • the configuration of the operating device 100 of the present embodiment is as described above, and the operation and the effect of the operation will be described below with reference to FIG.
  • any one of the plurality of ID input waveforms stored in the control unit 160 can be used as a standard input waveform by the vehicle manufacturer or as desired by the operator. It is appropriately selected and set as the input waveform.
  • step S100 of the flowchart shown in FIG. 5 the control unit 160 acquires the distance signal Ds from the gap distance sensor 150.
  • step S110 the control unit 160 determines whether or not the position (distance signal Ds) of the operation panel 120 with respect to the fixed unit 110 exceeds a predetermined pressing threshold value. If an affirmative determination is made in step S110, the control unit 160 proceeds to step S120 assuming that the position of the operation panel 120 exceeds the pressing threshold value and is finger-operated by the operator. Further, if a negative determination is made in step S110, it is assumed that there is no finger operation by the operator, and steps S100 and S110 are repeated.
  • step S120 the control unit 160 outputs the reproduction start signal Ps for reproducing the ID input waveform already selected and set to the actuator 130.
  • the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to have an ID input waveform (the voltage waveform of FIG. 4 is applied).
  • the operation panel 120 is attracted to the actuator 130 side (back side) by turning on the acceleration pulse Ap in the ID input waveform, and the acceleration pulse Ap is generated.
  • the acceleration pulse Ap is generated.
  • it is turned off (once turned off), it returns to the opposite direction (front side) by the spring portion 140.
  • This is the first return vibration due to the spring portion 140. Therefore, the operating device 100 can generate a sharp vibration tactile sensation that maximizes the acceleration of the first return vibration.
  • the acceleration pulse Ap is off, the operation panel 120 is inverted from the bottom dead center Bd1 and displaced to the back side based on the spring characteristics.
  • control unit 160 can respond by feed forward control based on the ID input waveform. Feed forward control can be inexpensively supported for feedback control.
  • control unit 160 is designed to determine the presence / absence of finger operation based on the position of the operation panel 120 by the gap distance sensor 150, whereby the presence / absence of finger operation can be clearly determined.
  • the control unit 160 is designed to gradually reduce the pulse output after the peak output (gradual descending unit S). As a result, when the operation panel 120 is stopped, a sudden braking action can be avoided and the operation panel 120 can be stopped smoothly.
  • the second embodiment is shown in FIGS. 6 and 7.
  • the operation device 100 of the second embodiment has the same configuration as that of the first embodiment, but the control content is changed.
  • the brake pulse Bp is applied by feedback control.
  • Step S100 and step S110 of FIG. 6 are the same as steps S100 and S110 described with reference to FIG.
  • step S125 the control unit 160 outputs the reproduction start signal Ps for reproducing the portion of the acceleration pulse Ap of the already set ID input waveform to the actuator 130. ..
  • the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to be the acceleration pulse Ap of the ID input waveform (the voltage waveform of the acceleration pulse Ap of FIG. 4 is applied).
  • the operation panel 120 is displaced (one-dot chain line in FIG. 4).
  • step S130 the control unit 160 acquires the distance signal Ds from the gap distance sensor 150 as in step S100.
  • step S140 the control unit 160 calculates (converts) the vibration phase, vibration amplitude, and vibration cycle of the operation panel 120 from the distance signal Ds.
  • step S150 the control unit 160 determines the profile of the waveform of the brake pulse Bp.
  • the waveform of the brake pulse Bp is determined by the brake voltage duty, the voltage application time, and the downward slope (duty, time) after the peak.
  • step S160 of FIG. 7 it is determined whether or not the waveform of the brake pulse Bp determined in step S160 of FIG. 7 is within the allowable range for the predetermined correction.
  • the permissible range determines whether or not the brake pulse Bp can be used.
  • step S170 the control unit 160 updates the waveform of the brake pulse Bp originally set in the ID input waveform to the waveform of the new brake pulse Bp set in step S150, and steps S190. Move to.
  • step S180 the control unit 160 shifts to step S190 without updating (prohibiting) the waveform of the brake pulse Bp that was originally set.
  • step S190 the control unit 160 determines whether or not the position of the operation panel 120 exceeds the bottom dead center Bd1 in the first return vibration and exceeds the top dead center Td on the retracting side (back side). Then, if affirmative determination is made, the process proceeds to step S200. If a negative determination is made in step S190, the process returns to step S130, and steps S130 to S190 are repeated.
  • step S200 the control unit 160 regenerates the actuator 130 so that the waveform of the brake pulse Bp updated in step S170 is obtained or the waveform of the brake pulse Bp originally set is obtained.
  • the start signal Ps is output.
  • the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to have the waveform of the updated (or original) brake pulse Bp.
  • control unit 160 determines whether or not there is a finger operation and grasps the phase of the operation panel 120 based on the position of the operation panel 120 by the gap distance sensor 150. .. As a result, the presence or absence of finger operation and the phase of the operation panel 120 can be clearly grasped based on the position of the operation panel 120 by the gap distance sensor 150.
  • control unit 160 sets the timing of adding the brake pulse Bp according to the phase of the operation panel 120 after adding the acceleration pulse Ap to the actuator 130, so that the brake pulse Bp is added. This enables feedback control based on the phase of the operation panel 120 when the brake pulse Bp is added.
  • control unit 160 determines the input waveform when the brake pulse Bp is added based on the vibration phase, vibration amplitude, and vibration cycle of the operation panel 120 by the gap distance sensor 150. Then, it is determined whether or not the determined input waveform is within the predetermined allowable range, and when the positive determination is made, the determined input waveform is updated and used, and when the negative determination is made, the determined input waveform is updated. Is prohibited. Thereby, the quality of the determined input waveform (brake pulse Bp) can be determined, and an appropriate input waveform can be used.
  • FIG. 1 A third embodiment is shown in FIG.
  • the addition of the brake pulse Bp is divided into a plurality of times (here, two times) in the ID input waveform.
  • the displacement characteristics of the operation panel 120 can change according to the settings of the operation panel 120, the actuator 130, and the spring portion 140. Therefore, if the operation panel 120 cannot be stopped by one brake pulse Bp due to the displacement characteristics of the operation panel 120, it is preferable to provide a plurality of brake pulses Bp (in sections A and B) in advance. As a result, the operation panel 120 can be appropriately stopped according to the displacement characteristics.
  • Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments.
  • the disclosure includes exemplary embodiments and modifications by those skilled in the art based on them.
  • disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations.
  • the disclosure can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another.
  • the technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims statement.
  • the operation device 100 is applied to, for example, various switch units of a vehicle air conditioner is shown, but the present invention is not limited to this, for example, a switch unit for audio equipment and a touch pad for remote control. Etc. may be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Push-Button Switches (AREA)

Abstract

An operation device that, when finger-operated, imparts a vibrating sensation to a finger (F) of an operator via an operation panel (120) using suction force from an actuator (130) and counterforce from a spring section (140) wherein: a control unit (160), in order to impart the vibrating sensation, applies an accelerating pulse (Ap) to the actuator for a prescribed period of time, turning energization on and then off; after the accelerating pulse is applied to the actuator, a movable section is returned in the reverse direction by the spring section; after reversing to the pressing direction, the movable section reverses again from a maximum position in the pressing direction; and, during the period (A) when the movable section is returning to a reverse maximum position in the reverse direction, the control unit again applies a brake pulse (Bp) that turns energization on to the actuator so that a peak value of the suction force is generated.

Description

操作装置Operating device 関連出願の相互参照Cross-reference of related applications
 この出願は、2019年12月19日に日本に出願された特許出願第2019-229123号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2019-229123 filed in Japan on December 19, 2019, and the contents of the basic application are incorporated by reference as a whole.
 本開示は、操作パネルに対して操作者の指による入力操作があると、指に対する振動触覚を発生させる操作装置に関するものである。 The present disclosure relates to an operation device that generates a vibrating tactile sensation for a finger when an operator's finger inputs an operation to the operation panel.
 操作装置として、例えば、特許文献1に記載されたものが知られている。特許文献1の操作装置(触覚効果を生成する装置)は、コイル、中心対象(例えば金属)、およびバネを有するアクチュエータを備えており、タッチ感応パネルにおける操作者の指に対して振動による触覚フィードバックを生成するようになっている。 As an operating device, for example, the one described in Patent Document 1 is known. The operating device (device that produces a tactile effect) of Patent Document 1 includes an actuator having a coil, a central object (for example, metal), and a spring, and gives tactile feedback by vibration to the operator's finger on the touch-sensitive panel. Is designed to be generated.
 操作装置は、入力パルスによってアクチュエータを駆動し、コイルによる吸引力とバネによる戻り反力とによって、触覚フィードバックを生成する。そして、アクチュエータにより生成された触覚フィードバックの減衰効果を減らすように、入力パルスを除去した後に、ブレーキパルスを発生させる。ブレーキパルスは、約0.2V/msから0.3V/msまでのスリューレートを有する下降傾斜部を備えている。 The operating device drives the actuator by the input pulse, and generates tactile feedback by the suction force by the coil and the return reaction force by the spring. Then, after removing the input pulse, a brake pulse is generated so as to reduce the damping effect of the tactile feedback generated by the actuator. The brake pulse comprises a descending slope having a slew rate from about 0.2 V / ms to 0.3 V / ms.
 これにより、加速度応答を増加させ、且つ、ブレーキパルスを発生して、短い(急速に)機械的タイプの触覚効果に対する減衰効果を提供して、歯切れのよい触覚フィードバックを生成するようにしている。 This increases the acceleration response and generates a brake pulse to provide a damping effect on the short (rapidly) mechanical type of tactile effect to generate crisp tactile feedback.
特許第5599657号公報Japanese Patent No. 5599657
 しかしながら、上記特許文献1では、入力パルスの後に出力されるブレーキパルスは、入力パルスと同方向への力を継続する区間を設けており、且つ、この区間においては、可動部の振動位相に関係なく力が一定値として与えられるようにしている。よって、通常、振動触覚を得るために有効とされるバネによる最初の戻り反力が低減されてしまい、操作者の指に与えられる振動触覚が低下してしまう。 However, in Patent Document 1, the brake pulse output after the input pulse is provided with a section in which the force in the same direction as the input pulse is continued, and in this section, it is related to the vibration phase of the moving portion. The force is given as a constant value. Therefore, the initial return reaction force by the spring, which is usually effective for obtaining the vibration tactile sensation, is reduced, and the vibration tactile sensation given to the operator's finger is reduced.
 本開示の目的は、上記問題に鑑み、バネの初回リターンによる効果的な触覚を確保すると共に、ブレーキ効果によって、切れの良い触覚を付与できる操作装置を提供することにある。 In view of the above problems, an object of the present disclosure is to provide an operating device capable of ensuring an effective tactile sensation by the initial return of the spring and giving a sharp tactile sensation by the braking effect.
 本開示の一態様による操作装置は、操作者の指操作によって、押圧方向に可動する可動部と、
 通電時に、可動部に対して押圧方向に吸引力を発生するアクチュエータと、
 吸引力が解除されると、可動部に対して押圧方向とは逆方向に反力を付与して、振動するバネ部と、
 アクチュエータに対する通電のオンオフを制御する制御部と、を備え、
 指操作があったときに、アクチュエータによる吸引力と、バネ部による反力とによって、可動部を介して操作者の指に振動触覚を付与する操作装置であって、
 制御部は、振動触覚の付与のために、
 アクチュエータに対して所定時間、通電オンして、一旦、通電オフする加速パルスを付加すると共に、
 アクチュエータへの加速パルスの付加の後に、バネ部によって、可動部が、逆方向へ戻り、更に押圧方向へ反転した後に、押圧方向への最大位置から更に反転して、逆方向への逆最大位置に戻る間において、吸引力のピーク値が発生するように再度、アクチュエータに対して通電オンするブレーキパルスを付加する。
The operating device according to one aspect of the present disclosure includes a movable portion that can be moved in the pressing direction by a finger operation of the operator.
An actuator that generates suction force in the pressing direction with respect to the moving part when energized,
When the suction force is released, a reaction force is applied to the movable part in the direction opposite to the pressing direction, and the spring part vibrates.
It is equipped with a control unit that controls the on / off of energization of the actuator.
It is an operation device that gives a vibrating tactile sensation to the operator's finger via the movable part by the suction force of the actuator and the reaction force of the spring part when there is a finger operation.
The control unit is used to provide vibration and tactile sensation.
An acceleration pulse is added to the actuator by turning on the power for a predetermined time and then turning it off.
After adding the acceleration pulse to the actuator, the spring part returns the movable part in the opposite direction, further reverses in the pressing direction, then further reverses from the maximum position in the pressing direction, and reverses the maximum position in the opposite direction. While returning to, a brake pulse for energizing the actuator is applied again so that a peak value of the attractive force is generated.
 これによれば、アクチュエータを所定時間オンして、一旦オフすることで、バネ部による逆方向へのリターン振動を生かした切れの良い振動触覚を発生させることができる。そして、可動部が、押圧方向への最大位置から更に反転して、逆方向への逆最大位置に戻る間において、吸引力のピーク値が発生するようにアクチュエータを再度オンさせることで、可動部の振動位相とは逆方向となる吸引力を発生させることができ、振動を効果的に停止させる(ブレーキ効果を得る)ことができる。このブレーキ効果によって残振動を抑制し、振動雑味の少ない純クリック感を操作者の指に付与することができ、且つ、作動音を低減することができる。 According to this, by turning on the actuator for a predetermined time and then turning it off once, it is possible to generate a sharp vibration tactile sensation that makes use of the return vibration in the reverse direction by the spring portion. Then, while the movable part is further inverted from the maximum position in the pressing direction and returns to the reverse maximum position in the opposite direction, the movable part is turned on again so that the peak value of the attractive force is generated. It is possible to generate an attractive force in the direction opposite to the vibration phase of the above, and it is possible to effectively stop the vibration (obtain a braking effect). Due to this braking effect, residual vibration can be suppressed, a pure click feeling with less vibration and unpleasant taste can be given to the operator's finger, and operating noise can be reduced.
操作装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the operation device. 操作装置を示すブロック図である。It is a block diagram which shows the operation device. 操作装置における作動を示す作動図である。It is an operation diagram which shows the operation in the operation device. アクチュエータに付加する入力波形における加速パルス、およびブレーキパルスを示す説明図である。It is explanatory drawing which shows the acceleration pulse and the brake pulse in the input waveform applied to the actuator. 第1実施形態における制御要領を示すフローチャートである。It is a flowchart which shows the control procedure in 1st Embodiment. 第2実施形態における制御要領を示すフローチャート(前半)である。It is a flowchart (first half) which shows the control procedure in 2nd Embodiment. 第2実施形態における制御要領を示すフローチャート(後半)である。It is a flowchart (the latter half) which shows the control procedure in 2nd Embodiment. 第3実施形態におけるブレーキパルスを示す説明図である。It is explanatory drawing which shows the brake pulse in 3rd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each form, the same reference numerals may be attached to the parts corresponding to the items described in the preceding forms, and duplicate explanations may be omitted. When only a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the combination of the embodiments even if it is not specified if there is no particular problem in the combination. It is also possible.
 (第1実施形態)
 第1実施形態の操作装置100を、図1~図5に示す。本実施形態の操作装置100は、例えば、車両用空調装置において、操作者(ユーザ)の指Fによって入力操作する(押圧操作する)ためのスイッチ部に適用したものである。車両用空調装置のスイッチ部は、例えば、エアコンオンスイッチ、オート(自動制御)スイッチ、ファン風量設定スイッチ、および吹出し口選択スイッチ等がある。図1~図3に示すように、操作装置100は、固定部110、操作パネル120、アクチュエータ130、バネ部140、隙間距離センサ150、および制御部160等を備えている。
(First Embodiment)
The operation device 100 of the first embodiment is shown in FIGS. 1 to 5. The operation device 100 of the present embodiment is applied to, for example, a switch unit for input operation (press operation) by a finger F of an operator (user) in a vehicle air conditioner. The switch unit of the vehicle air conditioner includes, for example, an air conditioner on switch, an auto (automatic control) switch, a fan air volume setting switch, and an outlet selection switch. As shown in FIGS. 1 to 3, the operation device 100 includes a fixing unit 110, an operation panel 120, an actuator 130, a spring unit 140, a gap distance sensor 150, a control unit 160, and the like.
 固定部110は、アクチュエータ130、バネ部140、および隙間距離センサ150等を固定する部材であり、ここでは、筐体の底部に対応する部材として示している。固定部110は、例えば、樹脂材によって形成されている。 The fixing portion 110 is a member for fixing the actuator 130, the spring portion 140, the gap distance sensor 150, and the like, and is shown here as a member corresponding to the bottom portion of the housing. The fixing portion 110 is formed of, for example, a resin material.
 操作パネル120は、操作者の指操作によって押圧方向に可動する部材(スイッチ部)となっており、固定部110の操作者側に配置されている。操作パネル120は、本開示の可動部に対応する。操作パネル120は、例えば、樹脂材から形成されている。そして、操作パネル120の固定部110側の面には、アクチュエータ130に対向するように、磁性体金属材料から形成された板部材が固定されている。 The operation panel 120 is a member (switch unit) that can be moved in the pressing direction by the operator's finger operation, and is arranged on the operator side of the fixing unit 110. The operation panel 120 corresponds to the movable portion of the present disclosure. The operation panel 120 is made of, for example, a resin material. A plate member made of a magnetic metal material is fixed to the surface of the operation panel 120 on the fixing portion 110 side so as to face the actuator 130.
 アクチュエータ130は、例えば、駆動回路131、および巻線コイル132を有している。巻線コイル132は、磁性体金属材料の芯部材の周りに巻回されたコイルである。アクチュエータ130は、制御部160からの再生開始信号Ps(後述)を受けると、駆動回路131から巻線コイル132への通電が行われて、電磁石として機能するようになっている。アクチュエータ130は、操作パネル120(磁性体金属材料の板部材)に対して押圧方向に吸引力を発生する吸引型アクチュエータとなっている。 The actuator 130 has, for example, a drive circuit 131 and a winding coil 132. The winding coil 132 is a coil wound around a core member of a magnetic metal material. When the actuator 130 receives the reproduction start signal Ps (described later) from the control unit 160, the drive circuit 131 energizes the winding coil 132 to function as an electromagnet. The actuator 130 is a suction type actuator that generates a suction force in the pressing direction with respect to the operation panel 120 (a plate member made of a magnetic metal material).
 尚、アクチュエータ130としては、上記の吸引型アクチュエータに限らず、この他にも、電磁石式で且つ永久磁石を用いた双方向型アクチュエータ、あるいは、双方向型で片側の動きのみを使用する反発型アクチュエータ等を用いるようにしてもよい。 The actuator 130 is not limited to the suction type actuator described above, but is also a bidirectional actuator that is an electromagnet type and uses a permanent magnet, or a repulsive type that is bidirectional and uses only one-sided movement. An actuator or the like may be used.
 バネ部140は、アクチュエータ130による吸引力が解除されたとき、操作パネル120に対して押圧方向とは逆方向に反力を付与して、振動する弾性部材となっている。バネ部140は、例えば、板バネやコイルバネが使用されており、一端が固定部110に固定され、他端が操作パネル120に接続されて、固定部110に対して、操作パネル120を、弾性的に支持するようになっている。 The spring portion 140 is an elastic member that vibrates by applying a reaction force to the operation panel 120 in the direction opposite to the pressing direction when the suction force by the actuator 130 is released. For example, a leaf spring or a coil spring is used as the spring portion 140, one end of which is fixed to the fixed portion 110 and the other end of which is connected to the operation panel 120, so that the operation panel 120 is elastic with respect to the fixed portion 110. It has come to support the target.
 隙間距離センサ150は、操作パネル120の押圧方向における位置を検出する位置センサであり、固定部110の上面に設けられている。隙間距離センサ150は、例えば、反射式光量センサが使用されている。隙間距離センサ150は、操作パネル120側に光を発射させて、操作パネル120で反射して戻ってきた光結像位置(検出物体の距離によって異なるという三角測距の原理)をもとに、固定部110と操作パネル120との間の距離に相当する距離信号Dsを検知するようになっている。隙間距離センサ150は、検知した距離信号Dsを制御部160に出力するようになっている。 The gap distance sensor 150 is a position sensor that detects the position of the operation panel 120 in the pressing direction, and is provided on the upper surface of the fixing portion 110. As the gap distance sensor 150, for example, a reflection type light amount sensor is used. The gap distance sensor 150 emits light toward the operation panel 120, reflects it on the operation panel 120, and returns based on the photoimaging position (the principle of triangular distance measurement that differs depending on the distance of the detected object). The distance signal Ds corresponding to the distance between the fixed portion 110 and the operation panel 120 is detected. The gap distance sensor 150 outputs the detected distance signal Ds to the control unit 160.
 制御部160は、隙間距離センサ150からの距離信号Dsを受け、アクチュエータ130に対する通電のオンオフを制御する部位となっている。制御部160は、操作パネル120に対する操作者の指操作があったときに、アクチュエータ130による吸引力と、バネ部140による反力とによって、操作パネル120を介して操作者の指Fに振動触覚を付与するようになっている。 The control unit 160 is a part that receives the distance signal Ds from the gap distance sensor 150 and controls the on / off of the energization of the actuator 130. When the operator's finger is operated on the operation panel 120, the control unit 160 vibrates and tactilely touches the operator's finger F via the operation panel 120 by the suction force of the actuator 130 and the reaction force of the spring unit 140. Is to be given.
 制御部160は、CPU、RAM、および記憶媒体等を有している。制御部160は、アクチュエータ130に対して、フィードフォアード制御を行うための複数のID入力波形(再生開始信号Ps)を予め記憶している。複数のID入力波形のうちの1つが、車両メーカにおいて選択設定される、あるいは、車両の使用前に、もしくは使用時に、操作者によって選択設定される。ID入力波形は、本開示の設定波形に対応する。 The control unit 160 has a CPU, RAM, a storage medium, and the like. The control unit 160 stores in advance a plurality of ID input waveforms (reproduction start signals Ps) for performing feed forward control for the actuator 130. One of the plurality of ID input waveforms is selected and set by the vehicle manufacturer, or is selected and set by the operator before or during use of the vehicle. The ID input waveform corresponds to the set waveform of the present disclosure.
 ID入力波形は、アクチュエータ130に対して出力される再生開始信号Psとなる。ID入力波形は、図4に示すように、アクチュエータ130に対する通電パターン(ここでは電圧波形を使用)を予め設定したものである。ID入力波形は、最初にアクチュエータ130をオンオフさせるための加速パルスApと、バネ部140による操作パネル120の振動挙動を予め把握したうえで、この振動挙動を効果的に停止させるためのブレーキパルスBpとを含んでいる。尚、ID入力波形は、電圧波形に限らず、他にも、電流値を示す波形としてもよい。 The ID input waveform becomes the reproduction start signal Ps output to the actuator 130. As shown in FIG. 4, the ID input waveform is a preset energization pattern (a voltage waveform is used here) for the actuator 130. For the ID input waveform, first, the acceleration pulse Ap for turning on / off the actuator 130 and the vibration behavior of the operation panel 120 by the spring portion 140 are grasped in advance, and then the brake pulse Bp for effectively stopping this vibration behavior. And include. The ID input waveform is not limited to the voltage waveform, and may be a waveform indicating a current value.
 加速パルスApは、アクチュエータ130に対して所定時間、通電オンして、一旦、通電オフする(電圧0にする)矩形状の波形となっている。尚、加速パルスApは、sin波状の波形、もしくはsin波状と矩形状の波形とを組み合わせたもの等としてもよい。 The acceleration pulse Ap has a rectangular waveform in which the actuator 130 is energized for a predetermined time and then temporarily turned off (voltage is set to 0). The acceleration pulse Ap may be a sin wavy waveform or a combination of a sin wavy waveform and a rectangular waveform.
 また、ブレーキパルスBpは、アクチュエータ130への加速パルスApがオフされた後に、図4中の区間A(ブレーキ入力範囲の位相)において、吸引力のピーク値が発生するように再度、アクチュエータ130に対して通電オンする山状のパルスとなっている。区間Aは、加速パルスApがオフされた後に、バネ部140によって、操作パネル120が、逆方向(図4中の手前側)へ戻り、更に押圧方向(図4中の奥側)へ反転した後に、押圧方向への最大位置(図4中の上死点Td)から更に反転して、逆方向への逆最大位置(図4中の下死点Bd)に戻る区間である。 Further, the brake pulse Bp is applied to the actuator 130 again so that the peak value of the attractive force is generated in the section A (phase of the brake input range) in FIG. 4 after the acceleration pulse Ap to the actuator 130 is turned off. On the other hand, it is a mountain-shaped pulse that turns on electricity. In the section A, after the acceleration pulse Ap was turned off, the operation panel 120 was returned in the opposite direction (front side in FIG. 4) by the spring portion 140, and further reversed in the pressing direction (back side in FIG. 4). Later, it is a section that further reverses from the maximum position in the pressing direction (top dead center Td in FIG. 4) and returns to the reverse maximum position in the opposite direction (bottom dead center Bd in FIG. 4).
 ブレーキパルスBpのすそ野は、区間A内に入っている場合、あるいは多少はみ出している場合のいずれも許容可能である。また、ブレーキパルスBpのピークの後は、徐々に(滑らかに)パルス出力が低減されるように設定されている(徐下降部S)。パルス出力の低減度合いは、例えば、0.5~2V/ms程度である。尚、ブレーキパルスBpのピークの後は、階段状に段階を刻んで徐下降してもよい。また、ブレーキパルスBpは、山状のパルスに限らず、矩形状の波形としてもよい。 The skirt of the brake pulse Bp is acceptable when it is within the section A or when it slightly protrudes. Further, after the peak of the brake pulse Bp, the pulse output is set to be gradually (smoothly) reduced (gradual descending portion S). The degree of reduction of the pulse output is, for example, about 0.5 to 2 V / ms. After the peak of the brake pulse Bp, the brake pulse Bp may be gradually lowered in steps. Further, the brake pulse Bp is not limited to the mountain-shaped pulse, and may be a rectangular waveform.
 また、制御部160は、隙間距離センサ150から出力される距離信号Dsに対する押圧閾値を予め記憶している。押圧閾値は、操作者の指Fによって操作パネル120が押圧されて、移動されたときに、指操作があったか否かを判定するための値となっている。 Further, the control unit 160 stores in advance the pressing threshold value for the distance signal Ds output from the gap distance sensor 150. The pressing threshold is a value for determining whether or not there is a finger operation when the operation panel 120 is pressed and moved by the operator's finger F.
 本開示に記載の制御部160およびその手法は、コンピュータプログラムにより具体化された一つないしは複数の機能を実行するようにプログラムされたプロセッサ、およびメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。 The control unit 160 and its method described in the present disclosure are provided by a processor programmed to perform one or more functions embodied by a computer program, and a dedicated computer provided by configuring memory. , May be realized.
 あるいは、本開示に記載の制御部160およびその手法は、一つ以上の専用ハードウエア理論回路によって、プロセッサを構成することにより提供された専用コンピュータにより、実現されてもよい。 Alternatively, the control unit 160 and its method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor by one or more dedicated hardware logic circuits.
 もしくは、本開示に記載の制御部160およびその手法は、一つないしは複数の機能を実行するようにプログラムされたプロセッサおよびメモリーと、一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合せにより構成された一つ以上の専用コンピュータにより、実現されてもよい。 Alternatively, the control unit 160 and its method described in the present disclosure include a processor and memory programmed to perform one or more functions, and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by a combination.
 また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
 ここで、本実施形態に記載されるフローチャート、あるいはフローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、ステップS100と表現される。更に、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。また、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。 Here, the flowchart described in the present embodiment or the processing of the flowchart is composed of a plurality of sections (or referred to as steps), and each section is expressed as, for example, step S100. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Also, each section thus constructed can be referred to as a device, module, or means.
 本実施形態の操作装置100の構成は、以上のようになっており、以下、図5を加えて、作動および作用効果について説明する。 The configuration of the operating device 100 of the present embodiment is as described above, and the operation and the effect of the operation will be described below with reference to FIG.
 操作装置100が使用される前の準備段階として、制御部160に記憶された複数のID入力波形のうちのいずれかが、車両メーカによって標準的な入力波形として、あるいは、操作者によって好みに応じた入力波形として、適宜選択設定される。 As a preparatory step before the operating device 100 is used, any one of the plurality of ID input waveforms stored in the control unit 160 can be used as a standard input waveform by the vehicle manufacturer or as desired by the operator. It is appropriately selected and set as the input waveform.
 図5に示すフローチャートのステップS100で、制御部160は、隙間距離センサ150から距離信号Dsを取得する。 In step S100 of the flowchart shown in FIG. 5, the control unit 160 acquires the distance signal Ds from the gap distance sensor 150.
 次に、ステップS110で、制御部160は、固定部110に対する操作パネル120の位置(距離信号Ds)は、予め定めた押圧閾値を超えたか否かを判定する。ステップS110で、肯定判定すると、制御部160は、操作パネル120の位置が押圧閾値を超えており、操作者によって指操作されたものとして、ステップS120に移行する。また、ステップS110で、否定判定すると、操作者による指操作はないとして、ステップS100、S110を繰り返す。 Next, in step S110, the control unit 160 determines whether or not the position (distance signal Ds) of the operation panel 120 with respect to the fixed unit 110 exceeds a predetermined pressing threshold value. If an affirmative determination is made in step S110, the control unit 160 proceeds to step S120 assuming that the position of the operation panel 120 exceeds the pressing threshold value and is finger-operated by the operator. Further, if a negative determination is made in step S110, it is assumed that there is no finger operation by the operator, and steps S100 and S110 are repeated.
 ステップS120では、制御部160は、既に選択設定されたID入力波形を再生するための再生開始信号Psを、アクチュエータ130に対して出力する。これに伴って、アクチュエータ130の駆動回路131は、巻線コイル132に対して、ID入力波形となるように通電する(図4の電圧波形を付与する)。 In step S120, the control unit 160 outputs the reproduction start signal Ps for reproducing the ID input waveform already selected and set to the actuator 130. Along with this, the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to have an ID input waveform (the voltage waveform of FIG. 4 is applied).
 図4の一点鎖線(操作パネル120の変位)で示すように、ID入力波形のうち、加速パルスApのオンによって、操作パネル120は、アクチュエータ130側(奥側)に吸引され、加速パルスApがオフ(一旦、オフ)されることで、バネ部140によって逆方向(手前側)に戻る。これは、バネ部140による1回目のリターン振動となる。よって、操作装置100は、1回目のリターン振動の加速度を最大限に生かした切れの良い振動触覚を発生させることができる。更に、加速パルスApがオフしている間に、操作パネル120は、バネ特性に基づき、下死点Bd1から反転して、奥側に変位する。 As shown by the alternate long and short dash line (displacement of the operation panel 120) in FIG. 4, the operation panel 120 is attracted to the actuator 130 side (back side) by turning on the acceleration pulse Ap in the ID input waveform, and the acceleration pulse Ap is generated. When it is turned off (once turned off), it returns to the opposite direction (front side) by the spring portion 140. This is the first return vibration due to the spring portion 140. Therefore, the operating device 100 can generate a sharp vibration tactile sensation that maximizes the acceleration of the first return vibration. Further, while the acceleration pulse Ap is off, the operation panel 120 is inverted from the bottom dead center Bd1 and displaced to the back side based on the spring characteristics.
 次に、操作パネル120が奥側の上死点Tdに至り、この上死点Tdから更に反転して、手前側の下死点Bdに戻る間(区間A)において、ID入力波形においては、予めブレーキパルスBpが発生されるようになっている。よって、操作パネル120の振動位相とは逆方向となる吸引力を発生させることができ、振動を効果的に停止させる(ブレーキ効果を得る)ことができる。このブレーキ効果によって残振動を抑制し、振動雑味の少ない純クリック感(キレの良いクリック感)を操作者の指Fに付与することができ、且つ、作動音を低減することができる。 Next, while the operation panel 120 reaches the top dead center Td on the back side, is further inverted from this top dead center Td, and returns to the bottom dead center Bd on the front side (section A), in the ID input waveform, Brake pulse Bp is generated in advance. Therefore, it is possible to generate a suction force in the direction opposite to the vibration phase of the operation panel 120, and it is possible to effectively stop the vibration (obtain the braking effect). By this braking effect, residual vibration can be suppressed, a pure click feeling (a sharp click feeling) with less vibration miscellaneous taste can be given to the operator's finger F, and the operating noise can be reduced.
 また、制御部160は、ID入力波形(設定波形)を用いることで、ID入力波形に基づくフィードフォアード制御による対応が可能となる。フィードフォアード制御は、フィードバック制御に対して安価な対応が可能である。 Further, by using the ID input waveform (set waveform), the control unit 160 can respond by feed forward control based on the ID input waveform. Feed forward control can be inexpensively supported for feedback control.
 また、制御部160は、隙間距離センサ150による操作パネル120の位置に基づいて、指操作の有無を判定するようにしており、これにより、明確に指操作の有無を判定することができる。 Further, the control unit 160 is designed to determine the presence / absence of finger operation based on the position of the operation panel 120 by the gap distance sensor 150, whereby the presence / absence of finger operation can be clearly determined.
 また、制御部160は、アクチュエータ130に対するブレーキパルスBpを付加する際に、ピーク出力の後に徐々にパルス出力を低減させるようにしている(徐下降部S)。これにより、操作パネル120を停止させる際に、急激なブレーキ作用を回避して、滑らかに停止させることができる。 Further, when the brake pulse Bp is applied to the actuator 130, the control unit 160 is designed to gradually reduce the pulse output after the peak output (gradual descending unit S). As a result, when the operation panel 120 is stopped, a sudden braking action can be avoided and the operation panel 120 can be stopped smoothly.
 (第2実施形態)
 第2実施形態を図6、図7に示す。第2実施形態の操作装置100は、上記第1実施形態と構成同一としつつも、制御内容を変更したものである。第2実施形態では、フィードバック制御により、ブレーキパルスBpを付与するようにしている。図6のステップS100とステップS110は、図5で説明したステップS100とステップS110と同一である。
(Second Embodiment)
The second embodiment is shown in FIGS. 6 and 7. The operation device 100 of the second embodiment has the same configuration as that of the first embodiment, but the control content is changed. In the second embodiment, the brake pulse Bp is applied by feedback control. Step S100 and step S110 of FIG. 6 are the same as steps S100 and S110 described with reference to FIG.
 ステップS100、ステップS110の後に、ステップS125で、制御部160は、既に設定されたID入力波形のうち、加速パルスApの部分を再生するための再生開始信号Psを、アクチュエータ130に対して出力する。これに伴って、アクチュエータ130の駆動回路131は、巻線コイル132に対して、ID入力波形の加速パルスApとなるように通電する(図4の加速パルスApの電圧波形を付与する)。これにより、操作パネル120に変位(図4の一点鎖線)が発生する。 After step S100 and step S110, in step S125, the control unit 160 outputs the reproduction start signal Ps for reproducing the portion of the acceleration pulse Ap of the already set ID input waveform to the actuator 130. .. Along with this, the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to be the acceleration pulse Ap of the ID input waveform (the voltage waveform of the acceleration pulse Ap of FIG. 4 is applied). As a result, the operation panel 120 is displaced (one-dot chain line in FIG. 4).
 この変位の発生に伴って、ステップS130で、制御部160は、ステップS100と同様に、隙間距離センサ150から距離信号Dsを取得する。 With the occurrence of this displacement, in step S130, the control unit 160 acquires the distance signal Ds from the gap distance sensor 150 as in step S100.
 次に、ステップS140で、制御部160は、距離信号Dsから、操作パネル120の振動位相、振動振幅、および振動周期を算出(換算)する。 Next, in step S140, the control unit 160 calculates (converts) the vibration phase, vibration amplitude, and vibration cycle of the operation panel 120 from the distance signal Ds.
 次に、ステップS150で、制御部160は、ブレーキパルスBpの波形のプロファイルを決定する。ブレーキパルスBpの波形は、ブレーキ電圧duty、電圧印加時間、およびピーク後の下降傾斜(duty、時間)によって決定する。 Next, in step S150, the control unit 160 determines the profile of the waveform of the brake pulse Bp. The waveform of the brake pulse Bp is determined by the brake voltage duty, the voltage application time, and the downward slope (duty, time) after the peak.
 次に、図7のステップS160で、決定したブレーキパルスBpの波形は、予め定めた補正のための許容範囲内か否かを判定する。許容範囲は、ブレーキパルスBpとして、使用でき得るものか否かを判定するものである。 Next, it is determined whether or not the waveform of the brake pulse Bp determined in step S160 of FIG. 7 is within the allowable range for the predetermined correction. The permissible range determines whether or not the brake pulse Bp can be used.
 ステップS160で肯定判定すると、ステップS170で、制御部160は、ID入力波形においてもともと設定されていたブレーキパルスBpの波形を、ステップS150で設定した新しいブレーキパルスBpの波形に更新して、ステップS190に移行する。 If an affirmative determination is made in step S160, in step S170, the control unit 160 updates the waveform of the brake pulse Bp originally set in the ID input waveform to the waveform of the new brake pulse Bp set in step S150, and steps S190. Move to.
 一方、ステップS160で否定判定すると、ステップS180で、制御部160は、もともと設定されていたブレーキパルスBpの波形の更新を行わず(禁止して)ステップS190に移行する。 On the other hand, if a negative determination is made in step S160, in step S180, the control unit 160 shifts to step S190 without updating (prohibiting) the waveform of the brake pulse Bp that was originally set.
 そして、ステップS190で、制御部160は、操作パネル120の位置が、1回目リターン振動における下死点Bd1を超え、且つ、引込み側(奥側)の上死点Tdを超えたか否かを判定し、肯定判定すると、ステップS200に移行する。尚、ステップS190で、否定判定した場合は、ステップS130に戻り、ステップS130~ステップS190を繰り返す。 Then, in step S190, the control unit 160 determines whether or not the position of the operation panel 120 exceeds the bottom dead center Bd1 in the first return vibration and exceeds the top dead center Td on the retracting side (back side). Then, if affirmative determination is made, the process proceeds to step S200. If a negative determination is made in step S190, the process returns to step S130, and steps S130 to S190 are repeated.
 そして、ステップS200では、制御部160は、ステップS170で更新したブレーキパルスBpの波形となるように、あるいは、もともと設定されていたブレーキパルスBpの波形となるように、アクチュエータ130に対して、再生開始信号Psを出力する。これに伴って、アクチュエータ130の駆動回路131は、巻線コイル132に対して、更新した(あるいはもともとの)ブレーキパルスBpの波形となるように通電する。 Then, in step S200, the control unit 160 regenerates the actuator 130 so that the waveform of the brake pulse Bp updated in step S170 is obtained or the waveform of the brake pulse Bp originally set is obtained. The start signal Ps is output. Along with this, the drive circuit 131 of the actuator 130 energizes the winding coil 132 so as to have the waveform of the updated (or original) brake pulse Bp.
 以上のように、本実施形態では、制御部160は、隙間距離センサ150による操作パネル120の位置に基づいて、指操作の有無の判定、および操作パネル120の位相の把握を行うようにしている。これにより、隙間距離センサ150による操作パネル120の位置に基づいて、明確に指操作の有無、および操作パネル120の位相の把握ができる。 As described above, in the present embodiment, the control unit 160 determines whether or not there is a finger operation and grasps the phase of the operation panel 120 based on the position of the operation panel 120 by the gap distance sensor 150. .. As a result, the presence or absence of finger operation and the phase of the operation panel 120 can be clearly grasped based on the position of the operation panel 120 by the gap distance sensor 150.
 また、制御部160は、アクチュエータ130に対する加速パルスApの付加の後に、操作パネル120の位相に応じて、ブレーキパルスBp付加のタイミングを設定して、ブレーキパルスBpの付加を行うようにしている。これにより、ブレーキパルスBp付加を行うにあたって、操作パネル120の位相に基づいたフィードバック制御が可能となる。 Further, the control unit 160 sets the timing of adding the brake pulse Bp according to the phase of the operation panel 120 after adding the acceleration pulse Ap to the actuator 130, so that the brake pulse Bp is added. This enables feedback control based on the phase of the operation panel 120 when the brake pulse Bp is added.
 また、制御部160は、ブレーキパルスBp付加時の入力波形を、隙間距離センサ150による操作パネル120の振動位相、振動振幅、および振動周期に基づき決定する。そして、決定した入力波形が予め定めた許容範囲内であるか否かを判定して、肯定判定のとき、決定した入力波形に更新して使用し、否定判定のとき、決定した入力波形の更新を禁止するようにしている。これにより、決定した入力波形(ブレーキパルスBp)の良否を判定して、適切な入力波形を使用することができる。 Further, the control unit 160 determines the input waveform when the brake pulse Bp is added based on the vibration phase, vibration amplitude, and vibration cycle of the operation panel 120 by the gap distance sensor 150. Then, it is determined whether or not the determined input waveform is within the predetermined allowable range, and when the positive determination is made, the determined input waveform is updated and used, and when the negative determination is made, the determined input waveform is updated. Is prohibited. Thereby, the quality of the determined input waveform (brake pulse Bp) can be determined, and an appropriate input waveform can be used.
 (第3実施形態)
 第3実施形態を図8に示す。第3実施形態は、ID入力波形において、ブレーキパルスBpの付加を複数回(ここでは2回)に分けたものとしている。
(Third Embodiment)
A third embodiment is shown in FIG. In the third embodiment, the addition of the brake pulse Bp is divided into a plurality of times (here, two times) in the ID input waveform.
 操作装置100においては、操作パネル120、アクチュエータ130、およびバネ部140の設定に応じて、操作パネル120の変位特性は変化し得る。よって、操作パネル120の変位特性からして、1回のブレーキパルスBpでは操作パネル120を停止できない場合は、予め、ブレーキパルスBpを複数(区間A、区間Bに)設けるようにするとよい。これにより、変位特性に応じた操作パネル120の適切な停止が可能となる。 In the operation device 100, the displacement characteristics of the operation panel 120 can change according to the settings of the operation panel 120, the actuator 130, and the spring portion 140. Therefore, if the operation panel 120 cannot be stopped by one brake pulse Bp due to the displacement characteristics of the operation panel 120, it is preferable to provide a plurality of brake pulses Bp (in sections A and B) in advance. As a result, the operation panel 120 can be appropriately stopped according to the displacement characteristics.
 (その他の実施形態)
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、更に請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
(Other embodiments)
Disclosure in this specification, drawings and the like is not limited to the illustrated embodiments. The disclosure includes exemplary embodiments and modifications by those skilled in the art based on them. For example, disclosure is not limited to the parts and / or element combinations shown in the embodiments. Disclosure can be carried out in various combinations. The disclosure can have additional parts that can be added to the embodiments. Disclosures include those in which the parts and / or elements of the embodiment are omitted. Disclosures include the replacement or combination of parts and / or elements between one embodiment and another. The technical scope disclosed is not limited to the description of the embodiments. Some technical scopes disclosed are indicated by the claims description and should be understood to include all modifications within the meaning and scope equivalent to the claims statement.
 本実施形態では、操作装置100を、例えば、車両用空調装置の各種スイッチ部に適用した例を示したが、これに限らず、例えば、オーディオ機器用のスイッチ部や、遠隔操作用のタッチパッド等に適用してもよい。 In the present embodiment, an example in which the operation device 100 is applied to, for example, various switch units of a vehicle air conditioner is shown, but the present invention is not limited to this, for example, a switch unit for audio equipment and a touch pad for remote control. Etc. may be applied.

Claims (8)

  1.  操作者の指操作によって、押圧方向に可動する可動部(120)と、
     通電時に、前記可動部に対して前記押圧方向に吸引力を発生するアクチュエータ(130)と、
     前記吸引力が解除されると、前記可動部に対して前記押圧方向とは逆方向に反力を付与して、振動するバネ部(140)と、
     前記アクチュエータに対する通電のオンオフを制御する制御部(160)と、を備え、
     前記指操作があったときに、前記アクチュエータによる前記吸引力と、前記バネ部による前記反力とによって、前記可動部を介して前記操作者の指(F)に振動触覚を付与する操作装置であって、
     前記制御部は、前記振動触覚の付与のために、
     前記アクチュエータに対して所定時間、通電オンして、一旦、通電オフする加速パルス(Ap)を付加すると共に、
     前記アクチュエータへの前記加速パルスの付加の後に、前記バネ部によって、前記可動部が、前記逆方向へ戻り、更に前記押圧方向へ反転した後に、前記押圧方向への最大位置から更に反転して、前記逆方向への逆最大位置に戻る間(A)において、前記吸引力のピーク値が発生するように再度、前記アクチュエータに対して通電オンするブレーキパルス(Bp)を付加する操作装置。
    A movable part (120) that can be moved in the pressing direction by the operator's finger operation,
    An actuator (130) that generates a suction force in the pressing direction with respect to the moving portion when energized.
    When the suction force is released, a reaction force is applied to the movable portion in a direction opposite to the pressing direction, and the spring portion (140) vibrates.
    A control unit (160) for controlling the on / off of energization of the actuator is provided.
    An operating device that imparts a vibrating tactile sensation to the operator's finger (F) via the movable portion by the suction force of the actuator and the reaction force of the spring portion when the finger operation is performed. There,
    The control unit is used to impart the vibration and tactile sensation.
    An acceleration pulse (Ap) is added to the actuator by turning on the power for a predetermined time and then turning off the power once.
    After the addition of the acceleration pulse to the actuator, the spring portion causes the movable portion to return in the opposite direction, further reverse in the pressing direction, and then further reverse from the maximum position in the pressing direction. An operating device for applying a brake pulse (Bp) that turns on the actuator again so that a peak value of the attractive force is generated while returning to the reverse maximum position in the reverse direction (A).
  2.  前記制御部は、予め設定された設定波形に基づいて、前記アクチュエータに対する前記加速パルスの付加、および前記ブレーキパルスの付加を行う請求項1に記載の操作装置。 The operating device according to claim 1, wherein the control unit adds the acceleration pulse to the actuator and the brake pulse based on a preset waveform.
  3.  前記可動部の前記押圧方向における位置を検出する位置センサ(150)を備え、
     前記制御部は、前記位置センサによる前記可動部の位置に基づいて、前記指操作の有無を判定する請求項2に記載の操作装置。
    A position sensor (150) for detecting the position of the movable portion in the pressing direction is provided.
    The operating device according to claim 2, wherein the control unit determines the presence or absence of the finger operation based on the position of the movable unit by the position sensor.
  4.  前記可動部の前記押圧方向における位置を検出する位置センサ(150)を備え、
     前記制御部は、前記位置センサによる前記可動部の位置に基づいて、前記指操作の有無の判定、および前記可動部の位相の把握を行う請求項1に記載の操作装置。
    A position sensor (150) for detecting the position of the movable portion in the pressing direction is provided.
    The operating device according to claim 1, wherein the control unit determines the presence or absence of a finger operation and grasps the phase of the movable portion based on the position of the movable portion by the position sensor.
  5.  前記制御部は、前記アクチュエータに対する前記加速パルスの付加の後に、前記可動部の位相に応じて、前記ブレーキパルスの付加のタイミングを設定して、前記ブレーキパルスの付加を行う請求項4に記載の操作装置。 The fourth aspect of claim 4, wherein the control unit sets the timing of the addition of the brake pulse according to the phase of the movable unit after the addition of the acceleration pulse to the actuator, and adds the brake pulse. Operating device.
  6.  前記制御部は、前記ブレーキパルスの付加時の入力波形を、前記位置センサによる前記可動部の振動位相、振動振幅、および振動周期に基づき決定し、決定した前記入力波形が予め定めた許容範囲内であるか否かを判定して、肯定判定のとき、決定した前記入力波形に更新して使用し、否定判定のとき、決定した前記入力波形の更新を禁止する請求項5に記載の操作装置。 The control unit determines the input waveform when the brake pulse is applied based on the vibration phase, vibration amplitude, and vibration cycle of the movable portion by the position sensor, and the determined input waveform is within a predetermined allowable range. The operation device according to claim 5, wherein it is determined whether or not the above is true, and when a positive determination is made, the determined input waveform is updated and used, and when a negative determination is made, updating of the determined input waveform is prohibited. ..
  7.  前記制御部は、前記アクチュエータに対する前記ブレーキパルスを付加する際に、ピーク出力の後に徐々にパルス出力を低減させる請求項1~請求項6のいずれか1つに記載の操作装置。 The operating device according to any one of claims 1 to 6, wherein the control unit gradually reduces the pulse output after the peak output when the brake pulse is applied to the actuator.
  8.  前記制御部は、前記アクチュエータに対する前記ブレーキパルスの付加を、複数回に分けて行う請求項1~請求項7のいずれか1つに記載の操作装置。 The operating device according to any one of claims 1 to 7, wherein the control unit applies the brake pulse to the actuator in a plurality of times.
PCT/JP2020/039480 2019-12-19 2020-10-21 Operation device WO2021124673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-229123 2019-12-19
JP2019229123A JP7306257B2 (en) 2019-12-19 2019-12-19 Operating device

Publications (1)

Publication Number Publication Date
WO2021124673A1 true WO2021124673A1 (en) 2021-06-24

Family

ID=76431534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039480 WO2021124673A1 (en) 2019-12-19 2020-10-21 Operation device

Country Status (2)

Country Link
JP (1) JP7306257B2 (en)
WO (1) WO2021124673A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023090177A (en) 2021-12-17 2023-06-29 アルプスアルパイン株式会社 Vibration generation device and vibration generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186845A1 (en) * 2012-06-11 2013-12-19 富士通株式会社 Electronic device, vibration generation program, and system using vibration patterns
JP2017027731A (en) * 2015-07-21 2017-02-02 株式会社日本自動車部品総合研究所 Operating device
JP2019101524A (en) * 2017-11-29 2019-06-24 日本電産株式会社 Haptic output device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186845A1 (en) * 2012-06-11 2013-12-19 富士通株式会社 Electronic device, vibration generation program, and system using vibration patterns
JP2017027731A (en) * 2015-07-21 2017-02-02 株式会社日本自動車部品総合研究所 Operating device
JP2019101524A (en) * 2017-11-29 2019-06-24 日本電産株式会社 Haptic output device

Also Published As

Publication number Publication date
JP2021097004A (en) 2021-06-24
JP7306257B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
US10180723B2 (en) Force sensor with haptic feedback
US20180194229A1 (en) Motor vehicle operating device with haptic feedback
JP6386952B2 (en) Electronic device and vibration control method
JP5620377B2 (en) Tactile feedback control method
WO2021124673A1 (en) Operation device
JP6104468B2 (en) Automobile haptic accelerator pedal with elastically coupled actuator, method for closed-loop control of the haptic accelerator pedal, and closed-loop control unit
CN112204499A (en) Button actuator, button actuator feedback system including the same, and control method thereof
JP6092373B2 (en) Motor vehicle tactile accelerator pedal control method and control apparatus having a start condition, a computer program for executing the method, and a computer-readable medium storing the computer program
RU2008121261A (en) ENGINE OPERATION CONTROL DEVICE, ENGINE OPERATION CONTROL METHOD AND AIRCRAFT CONTAINING SUCH DEVICE
WO2019150737A1 (en) Tactile presentation system, computer program and storage medium
US20210074244A1 (en) Electronic apparatus
US20190138097A1 (en) Operating device, in particular in the form of a touchpad
JP2021068259A (en) Tactile sense presentation device
WO2022044452A1 (en) Input device
JP2022547747A (en) Systems and methods for controlling haptic actuators to perform braking
JP2005028510A (en) Inner force sense imparting type input device
JP7344057B2 (en) Control device, control method, and program
WO2020158576A1 (en) Relay device and method for controlling relay device
EP4198695A1 (en) Vibration generator and vibration generating method
KR20140102213A (en) Method and control device for controlling a haptic acceleration pedal that is to be set in oscillation in a motor vehicle
JP7360282B2 (en) Control device, control method, and program
WO2021049084A1 (en) Control device, control method, and program
JP6012498B2 (en) Input device
JP2022524604A (en) Vehicle operation unit
JP2017037397A (en) Electrically-driven fader driving device and electrically-driven fader driving program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901916

Country of ref document: EP

Kind code of ref document: A1