WO2021123709A1 - A contra-rotating fan drive assembly - Google Patents

A contra-rotating fan drive assembly Download PDF

Info

Publication number
WO2021123709A1
WO2021123709A1 PCT/GB2020/052428 GB2020052428W WO2021123709A1 WO 2021123709 A1 WO2021123709 A1 WO 2021123709A1 GB 2020052428 W GB2020052428 W GB 2020052428W WO 2021123709 A1 WO2021123709 A1 WO 2021123709A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
impeller
assembly
contra
blades
Prior art date
Application number
PCT/GB2020/052428
Other languages
French (fr)
Inventor
Artem MARIE-MAGDELEINE
Hashanka THILAKAWARDHANA
Robert Fryer
Original Assignee
Dyson Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Limited filed Critical Dyson Technology Limited
Priority to CN202080085174.6A priority Critical patent/CN114867943A/en
Publication of WO2021123709A1 publication Critical patent/WO2021123709A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/007Axial-flow pumps multistage fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/024Multi-stage pumps with contrarotating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator

Definitions

  • the present invention relates to a contra-rotating fan drive assembly and to a fan assembly comprising the contra-rotating fan drive assembly.
  • a conventional domestic fan assembly typically includes an impeller comprising a set of blades mounted for rotation about an axis, together with a fan drive assembly for rotating the impeller to generate an air flow.
  • the movement and circulation of the air flow creates a breeze and, as a result, a user experiences a cooling effect as heat is dissipated through convection and evaporation.
  • the rotation of the impeller blades exerts a tangential or rotational component on the direction of the air flowing through the impeller. This not only reduces the mass flow through the fan and increases energy losses, but also exerts torque or turning force acting on the fan. It is known that these drawbacks can be offset by using two coaxial impellers arranged to rotate in opposite directions, often termed a contra-rotating impellers.
  • the aim of this invention is to substantially mitigate some of the drawbacks associated with contra-rotating impellers.
  • a contra-rotating fan drive assembly comprising a first impeller; a first motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator and an outer rotor connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the first motor is arranged concentrically within the second motor such that the second motor surrounds the periphery of the first motor.
  • the inner stator of the second motor comprises an aperture for receiving the first motor such that the inner stator of the second motor is circumferentially arranged about the outer stator of the first motor.
  • the first impeller is arranged coaxially with both the first and second motors.
  • the second impeller is arranged coaxially with both the first and second motors.
  • the second motor is shaftless.
  • the second impeller is directly connected or mounted to the outer rotor of the second motor.
  • the blades of the second impeller extend outwardly from an outer surface of the outer rotor of the second motor.
  • a fan assembly comprising a contra-rotating fan drive assembly according to the previous aspect.
  • a contra-rotating drive assembly comprising: a first set of blades; an inrunner motor for rotating the first set of blades in a first direction, the inrunner motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first set of blades; a second set of blades; and, a shaftless outrunner motor for rotating the second set of blades in a second direction opposite the first direction, the shaftless outrunner motor comprising an inner stator and an outer rotor, the second set of blades being connected to the outer rotor, wherein the inrunner motor and the shaftless outrunner motor are arranged coaxially and wherein the inrunner motor is arranged concentrically within the shaftless outrunner motor such that the outrunner motor surrounds the periphery of the inrunner motor.
  • the inner stator of the shaftless outrunner motor comprises an aperture for receiving the inrunner motor such that the inner stator of the shaftless outrunner motor is circumferentially arranged about the outer stator of the inrunner motor.
  • a contra-rotating fan drive assembly comprising a first impeller; a first motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator and an outer rotor connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the second motor is disposed between the first impeller and the first motor, and the inner stator of the second motor comprises an aperture through which the driveshaft of the first motor passes.
  • the first and second motors are axially spaced.
  • the first impeller is arranged coaxially with both the first and second motors.
  • the second impeller is arranged coaxially with both the first and second motors.
  • the second motor is shaftless.
  • the second impeller is directly connected or mounted to the outer rotor of the second motor.
  • blades of the second impeller extend outwardly from an outer surface of the outer rotor of the second motor.
  • a contra-rotating drive assembly comprising a first set of blades; an inrunner motor for rotating the first set of blades in a first direction, the inrunner motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first set of blades; a second set of blades; and, a shaftless outrunner motor for rotating the second set of blades in a second direction opposite the first direction, the shaftless outrunner motor comprising an inner stator and an outer rotor, the second set of blades being connected to the outer rotor; wherein the inrunner motor and the shaftless outrunner motor are arranged coaxially and wherein the shaftless outrunner motor is disposed between the first set of blades and the inrunner motor, and the inner stator of the shaftless outrunner motor comprises an aperture through which the driveshaft of the inrunner motor passes.
  • FIG. 1 is a sectional view of a fan assembly comprising a contra-rotating fan drive assembly according to an embodiment of the invention.
  • FIG. 2 is a sectional view of a fan assembly comprising a contra-rotating fan drive assembly according to another embodiment of the invention.
  • FIG. 1 shows a fan assembly 2 comprising a contra-rotating fan drive assembly 4 according to an embodiment of the invention.
  • the fan assembly 2 comprises a main housing 6 that forms a duct 8 defining an annular air flow path 10 that extends through the fan assembly 2.
  • the duct 8 comprises a first end defining an annular air inlet 12, through which drive assembly 4 is configured to draw air into the duct 8, and a second end located opposite to the first end and defining an annular air outlet 16, where air that has been worked by drive assembly 4 is pumped from the duct 8.
  • the fan drive assembly 4 then comprises a first impeller 14 disposed adjacent to the air inlet 12 and a second impeller 18 disposed adjacent to the air outlet 16.
  • the first impeller 14 comprises a cap 19 for directing oncoming air towards the annular air inlet 12.
  • the duct 8 is aligned with the drive assembly 4 so that its longitudinal axis is collinear with a rotational axis 20 of the contra-rotating fan drive assembly 4.
  • the first and second impellers 14, 18 are mixed flow impellers each comprising a generally conical hub 22, a plurality of curved impeller blades 24 connected to the conical hub 22, and an annular shroud 26 connected to the impeller blades 24 so as to surround the conical hub 22 and impeller blades 24.
  • the impeller blades 24 are preferably integral with the conical hub 22, which is preferably formed from a plastic material.
  • the annular air flow path 10 is defined by an inner side of an outer wall 30 of the main housing 6 and an radially outer side 32 of the conical hubs 22, together with a radially outer side 34 of an inner wall 36 of the main housing 6 which sits adjacent the second impeller 18 and extends circumferentially about a first motor 38.
  • the contra-rotating fan drive assembly 4 comprises the first motor 38 and a second motor 40 coaxially mounted on a driveshaft 42 and power cable (not shown) for supplying electrical power to the first and second motors 38, 40.
  • the first and second motors 38, 40 may be brushless DC electric motors having independently variable speeds which are controlled by a control circuit (not shown). Such electric motors and control circuits will be familiar to the person skilled in the art, and so will not be discussed in further detail.
  • the fact that the speeds of the first and second motors 38, 40 can be independently controlled means that the quietest operating point maybe established, unlike a single motor geared contra-rotating fan drive assembly, which provides a fixed power split between impellers.
  • the driveshaft 42 is configured to rotate about the rotational axis 20 and is rotatably supported within the main housing 6 by first, second and third bearings 44, 46, 48.
  • the first motor 38 is an inrunner motor comprising an outer stator assembly 50 surrounding an inner rotor assembly 52, configured to rotate relative to the outer stator assembly 50, and the driveshaft 42, which is fastened, adjacent to one of its ends, to the inner rotor assembly 52.
  • the outer stator assembly 50 comprises a drum or bell housing 54 and a radial mounting plate 56 fastened to an open end of the bell housing.
  • the bell housing 54 is secured to an inner side of a rear wall 55 of the main housing 6 via a circumferential coupling 57, which is concentrically aligned with the rotational axis 20.
  • An outer side of the rear wall 55 carries a stator cap 59, which is shaped to provide a continuation of the external side 34 of the inner wall 36 of the main housing 6 so as to ensure that the air flows smoothly out from the annular air outlet 16.
  • the first bearing 44 is position between the driveshaft 42 and the radial mounting plate 56 to rotatably isolate the outer stator assembly 50 from the driveshaft 42.
  • the driveshaft 42 extends outwardly from the first motor 38 and connects with the first impeller 14 to transmit rotation of the inner rotor assembly 52 to the first impeller 14, which is configured to rotate about the rotational axis 20 in a first direction, for example, in the direction in which the impeller blades 24 of the first impeller 14 are curved.
  • the second motor 40 is an outrunner motor comprising an inner stator assembly 58 held within an outer rotor assembly 60 that is configured to rotate relative to the inner stator assembly 58.
  • the second motor 40 is “shaftless” insofar that, unlike the first motor 38, its rotor assembly 60 is not configured to drive a driveshaft in order transmit rotation to an impeller.
  • the inner stator assembly 58 comprises an elongate sleeve 62 defining a concentric aperture 64 through which the driveshaft 42 of the first motor 38 passes such that the second motor 40 is disposed between the first impeller 14 and the first motor 38.
  • This arrangement avoids the need for a separate structure supporting the outer stator assembly 50 of the first motor 38 and the inner stator assembly 58 of the second motor 40, which would increase the space occupied by the contra-rotating fan drive assembly 4.
  • the other end of the elongate sleeve 62 comprises a narrowed ring section 68.
  • the second and third bearings 46, 48 are provided between the driveshaft 42 and inner radial sides of the narrowed ring section 68 and the flange 66 to rotatably isolate the second motor 40 from the driveshaft 42.
  • the outer rotor assembly 60 comprises a drum or bell housing 70 rotatably supported on an outer radial side of the narrowed ring section 68 of the inner stator assembly 58 by a fourth bearing 72.
  • the conical hub 22 of the second impeller 18 is directly connected or mounted to the outer rotor assembly 60 via the bell housing 70 such that rotation of the outer rotor assembly 60 drives rotation of the second impeller 18 about the rotational axis 20 in a second direction, opposite the first direction in which the first impeller 14 is configured to rotate.
  • FIG. 2 shows a fan assembly 2 comprising a contra-rotating fan drive assembly 4 according to another embodiment of the invention.
  • the fan assembly 2 of this embodiment is similar to the assembly shown in FIG. 1 in that it comprises a main housing 6 that forms a duct 8 defining an annular air flow path 10 that extends through the fan assembly 2.
  • the duct 8 comprises a first end defining an annular air inlet 12, through which the drive assembly 4 is configured to draw air into the duct 8, and a second end located opposite to the first end and defining an annular air outlet 16, where air that has been worked by the drive assembly 4 is pumped from the duct 8.
  • the fan drive assembly 4 then comprises a first impeller 14 disposed adjacent to the air inlet 12 and a second impeller 18 disposed adjacent to the air outlet 16.
  • the first impeller 14 comprises a cap 19 for directing oncoming air towards the annular air inlet 12.
  • the duct 8 may be aligned with the drive assembly 4 so that its longitudinal axis is collinear with a rotational axis 20 of the contrarotating fan drive assembly 4.
  • the first and second impellers 14, 18 are mixed flow impeller each comprising a generally conical hub 22, a plurality of curved impeller blades 24 connected to the conical hub 22, and an annular shroud 26 connected to the impeller blades 24 so as to surround the conical hub 22 and impeller blades 24.
  • the impeller blades 24 are preferably integral with the conical hub 22, which is preferably formed from a plastic material.
  • the annular air flow path 10 is defined by an inner side of an outer wall 30 of the main housing 6 and a radially outer side 32 of the conical hubs 22, together with a radially outer side 34 of an inner wall 36 of the main housing 6 which sits adjacent the second impeller 18.
  • the contra-rotating fan drive assembly 4 comprises the first motor 38 and a second motor 40, which, in this embodiment, are coaxially mounted about a driveshaft 42 defining the rotational axis 20, and power cable (not shown) for supplying electrical power to the first and second motors 38, 40.
  • the driveshaft 42 is supported within the main housing 6 by first, second and third bearings 44, 46, 48.
  • the first and second motors 38, 40 may be brushless DC electric motors having independently variable speeds which are controlled by a control circuit (not shown).
  • the first motor 38 is an inrunner motor comprising an outer stator assembly 50 surrounding an inner rotor assembly 52 that is configured to rotate relative to the outer stator assembly 50, and the driveshaft 42 that is fastened to the inner rotor assembly 52.
  • the outer stator assembly 50 comprises a drum or bell housing 54 that is rotatably isolated from the driveshaft 42 by the first and second bearings 44, 46 such that the outer stator assembly 50 is rotatably isolated from the driveshaft 42.
  • the bell housing 54 is secured to an inner side of a rear wall 55 of the main housing 6 via a circumferential coupling 57, which is concentrically aligned with the rotational axis 20.
  • An outer side of the rear wall 55 carries a stator cap 59, which is shaped to provide a continuation of the external side 34 of the inner wall 36 of the main housing 6 so as to ensure that the air flows smoothly out from the annular air outlet 16.
  • the driveshaft 42 extends outwardly from the first motor 38 and connects with the first impeller 14 to transmit rotation of the inner rotor assembly 52 to the first impeller 14, which is configured to rotate about the rotational axis 20 in a first direction, for example, in the direction in which the impeller blades 24 of the first impeller 14 are curved.
  • the second motor 40 is an outrunner motor comprising an inner stator assembly 58 held within an outer rotor assembly 60, configured to rotate relative to the inner stator assembly 58.
  • the second motor 40 is “shaftless” insofar that, unlike the first motor 38, its rotor assembly 60 is not configured to drive a driveshaft in order transmit rotation to an impeller.
  • the inner stator assembly 58 defines a concentric aperture in which the first motor 38 is held such that the first motor 38 is arranged concentrically within the second motor 40. That is, the second motor 40 surrounds a circumference/periphery of the first motor 38.
  • the inner stator assembly 58 of the second motor 40 is circumferentially arranged about the outer stator assembly 50 of the first motor 38. In this arrangement, the inner stator assembly 58 of the second motor 40 may be connected, either directly or indirectly, to an outer radial surface of the bell housing 54 of the first motor 38.
  • the outer rotor assembly 60 comprises a drum or bell housing 70 which is supported on the driveshaft 42 by the third bearing 48 to rotatably isolate the second motor 40 from the driveshaft 42.
  • the conical hub 22 of the second impeller 18 is directly connected or mounted to the outer rotor assembly 60 via the bell housing 70 such that rotation of the outer rotor assembly 60 drives rotation of the second impeller 18 about the rotational axis 20 in a second direction, opposite the first direction in which the first impeller 14 rotates.
  • concentrically arranging the first motor 38 within the second motor 40 means that the second motor 40 does not need to be directly supported on the driveshaft 42. This, in turn, means that the length of the driveshaft 42 can shortened, when compared to the embodiment of FIG. 1 , meaning that the contra-rotating fan drive assembly 4 occupies comparatively less space within the fan assembly 2.
  • the conical hub 22 of the second impeller 18 is connected to the outer rotor assembly 60 of the second motor 40 via the bell housing 70.
  • the conical hub 22 is not required and the plurality of impeller blades 24 of the second impeller 18 extend outwards directly from an outer radial surface the outer rotor assembly 60.
  • the outer radial surface may be defined by the bell housing 70 of the outer rotor assembly 60.
  • the contra-rotating first and second impellers 14, 18 function to pump air through the annular air flow path 10, but those skilled in the art will appreciate that this function, of pumping air through the annular air flow path 10, could also be carried out by contra-rotating propellers each having a plurality of blades.
  • the first motor 38 which is an inrunner motor, is arranged to drive the rotation of the first impeller 14, which is the front impeller of the contra-rotating fan drive assembly 4.
  • This arrangement is advantageous as, from an aerodynamic standpoint, the front impeller in a contrarotating fan arrangement requires more power and rotational speed when compared to the rear impeller, and inrunner motors are capable of producing higher rotational speeds, and are thus more efficient, comparative to outrunner motors.
  • the above described embodiments each relate to a contra-rotating drive assembly for driving a fan and therefore comprise first and second contra-rotating impellers, wherein an impeller is a rotating part of a machine that is designed to move a fluid.
  • contra-rotating drive assembly could equally be used to drive contra-rotating propellers for generating thrust.
  • Fan drive assemblies in accordance with the present invention have been described with reference to particular embodiments thereof in order to illustrate the principles of operation.
  • connection references e.g., attached, coupled, connected, joined, secured and the like are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other, unless specifically set forth in the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

There is provided a contra-rotating fan drive assembly comprising a first impeller; a first motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator and an outer rotor connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the first motor is arranged concentrically within the second motor such that the second motor surrounds the periphery of the first motor.

Description

A CONTRA-ROTATING FAN DRIVE ASSEMBLY
TECHNICAL FIELD
The present invention relates to a contra-rotating fan drive assembly and to a fan assembly comprising the contra-rotating fan drive assembly.
BACKGROUND
A conventional domestic fan assembly typically includes an impeller comprising a set of blades mounted for rotation about an axis, together with a fan drive assembly for rotating the impeller to generate an air flow. The movement and circulation of the air flow creates a breeze and, as a result, a user experiences a cooling effect as heat is dissipated through convection and evaporation. The rotation of the impeller blades exerts a tangential or rotational component on the direction of the air flowing through the impeller. This not only reduces the mass flow through the fan and increases energy losses, but also exerts torque or turning force acting on the fan. It is known that these drawbacks can be offset by using two coaxial impellers arranged to rotate in opposite directions, often termed a contra-rotating impellers. The rotation of the downstream impeller in this arrangement cancels the rotational component applied to the air flowing through the upstream impeller, maximising mass flow through the fan and minimising energy losses. The torque acting on the fan is also effectively cancelled out due contra-rotating impellers. However, contra-rotating impellers are not widely used in domestic fans, partly due to their expense, but also due to the fact that occupy more space when compared to fan comprising a single impeller.
The aim of this invention is to substantially mitigate some of the drawbacks associated with contra-rotating impellers.
SUMMARY OF THE INVENTION
According to an aspect of the invention, there is provided a contra-rotating fan drive assembly comprising a first impeller; a first motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator and an outer rotor connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the first motor is arranged concentrically within the second motor such that the second motor surrounds the periphery of the first motor.
Preferably, the inner stator of the second motor comprises an aperture for receiving the first motor such that the inner stator of the second motor is circumferentially arranged about the outer stator of the first motor. Preferably, the first impeller is arranged coaxially with both the first and second motors. Preferably, the second impeller is arranged coaxially with both the first and second motors. Preferably, the second motor is shaftless. Preferably, the second impeller is directly connected or mounted to the outer rotor of the second motor. Preferably, the blades of the second impeller extend outwardly from an outer surface of the outer rotor of the second motor.
According to another aspect of the invention, there is provided a fan assembly comprising a contra-rotating fan drive assembly according to the previous aspect.
According to another aspect of the invention, there is provided a contra-rotating drive assembly comprising: a first set of blades; an inrunner motor for rotating the first set of blades in a first direction, the inrunner motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first set of blades; a second set of blades; and, a shaftless outrunner motor for rotating the second set of blades in a second direction opposite the first direction, the shaftless outrunner motor comprising an inner stator and an outer rotor, the second set of blades being connected to the outer rotor, wherein the inrunner motor and the shaftless outrunner motor are arranged coaxially and wherein the inrunner motor is arranged concentrically within the shaftless outrunner motor such that the outrunner motor surrounds the periphery of the inrunner motor.
Preferably, the inner stator of the shaftless outrunner motor comprises an aperture for receiving the inrunner motor such that the inner stator of the shaftless outrunner motor is circumferentially arranged about the outer stator of the inrunner motor.
According to another aspect of the invention, there is provided a contra-rotating fan drive assembly comprising a first impeller; a first motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator and an outer rotor connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the second motor is disposed between the first impeller and the first motor, and the inner stator of the second motor comprises an aperture through which the driveshaft of the first motor passes.
Preferably, the first and second motors are axially spaced. Preferably, the first impeller is arranged coaxially with both the first and second motors. Preferably, the second impeller is arranged coaxially with both the first and second motors.
Preferably, the second motor is shaftless. Preferably, the second impeller is directly connected or mounted to the outer rotor of the second motor. Preferably, blades of the second impeller extend outwardly from an outer surface of the outer rotor of the second motor. According to another aspect of the invention, there is provided a fan assembly comprising a contra-rotating fan drive assembly according to the previous aspect.
According to another aspect of the invention, there is provided a contra-rotating drive assembly comprising a first set of blades; an inrunner motor for rotating the first set of blades in a first direction, the inrunner motor comprising an inner rotor, an outer stator and a driveshaft connecting the inner rotor and the first set of blades; a second set of blades; and, a shaftless outrunner motor for rotating the second set of blades in a second direction opposite the first direction, the shaftless outrunner motor comprising an inner stator and an outer rotor, the second set of blades being connected to the outer rotor; wherein the inrunner motor and the shaftless outrunner motor are arranged coaxially and wherein the shaftless outrunner motor is disposed between the first set of blades and the inrunner motor, and the inner stator of the shaftless outrunner motor comprises an aperture through which the driveshaft of the inrunner motor passes.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the above and other aspects of the invention, reference is made to the following description which is to be used in conjunction with the accompanying drawings, where:
FIG. 1 is a sectional view of a fan assembly comprising a contra-rotating fan drive assembly according to an embodiment of the invention; and,
FIG. 2 is a sectional view of a fan assembly comprising a contra-rotating fan drive assembly according to another embodiment of the invention.
In the drawings, like reference signs designate corresponding parts where appropriate.
DETAILED DESCRIPTION OF THE INVENTION
Specific embodiments of the invention will now be described in which numerous features will be discussed in detail in order to provide a thorough understanding of the inventive concept as defined in the appended claims. However, it will be apparent to the reader that the invention may be put in to effect without the specific details and that, in some instances, well known methods, techniques and structures have not been described in detail in order not to obscure the inventive concept unnecessarily.
The inventive concept, as defined in the appended claims, is intended to cover contra-rotating fan drive assemblies comprising coaxial motor arrangements that enable the space occupied by the assemblies to be reduced comparative to know contra-rotating fan drive assemblies. FIG. 1 shows a fan assembly 2 comprising a contra-rotating fan drive assembly 4 according to an embodiment of the invention. The fan assembly 2 comprises a main housing 6 that forms a duct 8 defining an annular air flow path 10 that extends through the fan assembly 2. The duct 8 comprises a first end defining an annular air inlet 12, through which drive assembly 4 is configured to draw air into the duct 8, and a second end located opposite to the first end and defining an annular air outlet 16, where air that has been worked by drive assembly 4 is pumped from the duct 8. The fan drive assembly 4 then comprises a first impeller 14 disposed adjacent to the air inlet 12 and a second impeller 18 disposed adjacent to the air outlet 16. The first impeller 14 comprises a cap 19 for directing oncoming air towards the annular air inlet 12. The duct 8 is aligned with the drive assembly 4 so that its longitudinal axis is collinear with a rotational axis 20 of the contra-rotating fan drive assembly 4.
The first and second impellers 14, 18 are mixed flow impellers each comprising a generally conical hub 22, a plurality of curved impeller blades 24 connected to the conical hub 22, and an annular shroud 26 connected to the impeller blades 24 so as to surround the conical hub 22 and impeller blades 24. The impeller blades 24 are preferably integral with the conical hub 22, which is preferably formed from a plastic material.
The annular air flow path 10 is defined by an inner side of an outer wall 30 of the main housing 6 and an radially outer side 32 of the conical hubs 22, together with a radially outer side 34 of an inner wall 36 of the main housing 6 which sits adjacent the second impeller 18 and extends circumferentially about a first motor 38.
The contra-rotating fan drive assembly 4 comprises the first motor 38 and a second motor 40 coaxially mounted on a driveshaft 42 and power cable (not shown) for supplying electrical power to the first and second motors 38, 40. The first and second motors 38, 40 may be brushless DC electric motors having independently variable speeds which are controlled by a control circuit (not shown). Such electric motors and control circuits will be familiar to the person skilled in the art, and so will not be discussed in further detail. The fact that the speeds of the first and second motors 38, 40 can be independently controlled means that the quietest operating point maybe established, unlike a single motor geared contra-rotating fan drive assembly, which provides a fixed power split between impellers. The driveshaft 42 is configured to rotate about the rotational axis 20 and is rotatably supported within the main housing 6 by first, second and third bearings 44, 46, 48.
The first motor 38 is an inrunner motor comprising an outer stator assembly 50 surrounding an inner rotor assembly 52, configured to rotate relative to the outer stator assembly 50, and the driveshaft 42, which is fastened, adjacent to one of its ends, to the inner rotor assembly 52. The outer stator assembly 50 comprises a drum or bell housing 54 and a radial mounting plate 56 fastened to an open end of the bell housing. The bell housing 54 is secured to an inner side of a rear wall 55 of the main housing 6 via a circumferential coupling 57, which is concentrically aligned with the rotational axis 20. An outer side of the rear wall 55 carries a stator cap 59, which is shaped to provide a continuation of the external side 34 of the inner wall 36 of the main housing 6 so as to ensure that the air flows smoothly out from the annular air outlet 16. The first bearing 44 is position between the driveshaft 42 and the radial mounting plate 56 to rotatably isolate the outer stator assembly 50 from the driveshaft 42. The driveshaft 42 extends outwardly from the first motor 38 and connects with the first impeller 14 to transmit rotation of the inner rotor assembly 52 to the first impeller 14, which is configured to rotate about the rotational axis 20 in a first direction, for example, in the direction in which the impeller blades 24 of the first impeller 14 are curved.
The second motor 40 is an outrunner motor comprising an inner stator assembly 58 held within an outer rotor assembly 60 that is configured to rotate relative to the inner stator assembly 58. The second motor 40 is “shaftless” insofar that, unlike the first motor 38, its rotor assembly 60 is not configured to drive a driveshaft in order transmit rotation to an impeller. The inner stator assembly 58 comprises an elongate sleeve 62 defining a concentric aperture 64 through which the driveshaft 42 of the first motor 38 passes such that the second motor 40 is disposed between the first impeller 14 and the first motor 38. One end of the elongate sleeve 62, adjacent the bell housing 54 of the first motor 38, comprises a flange 66 fastened to the bell housing 54 of the first motor 38, connecting the outer stator assembly 50 of the first motor 38 and the inner stator assembly 58 of the second motor 40. This arrangement avoids the need for a separate structure supporting the outer stator assembly 50 of the first motor 38 and the inner stator assembly 58 of the second motor 40, which would increase the space occupied by the contra-rotating fan drive assembly 4. The other end of the elongate sleeve 62 comprises a narrowed ring section 68. The second and third bearings 46, 48 are provided between the driveshaft 42 and inner radial sides of the narrowed ring section 68 and the flange 66 to rotatably isolate the second motor 40 from the driveshaft 42. The outer rotor assembly 60 comprises a drum or bell housing 70 rotatably supported on an outer radial side of the narrowed ring section 68 of the inner stator assembly 58 by a fourth bearing 72. The conical hub 22 of the second impeller 18 is directly connected or mounted to the outer rotor assembly 60 via the bell housing 70 such that rotation of the outer rotor assembly 60 drives rotation of the second impeller 18 about the rotational axis 20 in a second direction, opposite the first direction in which the first impeller 14 is configured to rotate.
FIG. 2 shows a fan assembly 2 comprising a contra-rotating fan drive assembly 4 according to another embodiment of the invention. The fan assembly 2 of this embodiment is similar to the assembly shown in FIG. 1 in that it comprises a main housing 6 that forms a duct 8 defining an annular air flow path 10 that extends through the fan assembly 2. The duct 8 comprises a first end defining an annular air inlet 12, through which the drive assembly 4 is configured to draw air into the duct 8, and a second end located opposite to the first end and defining an annular air outlet 16, where air that has been worked by the drive assembly 4 is pumped from the duct 8. The fan drive assembly 4 then comprises a first impeller 14 disposed adjacent to the air inlet 12 and a second impeller 18 disposed adjacent to the air outlet 16. The first impeller 14 comprises a cap 19 for directing oncoming air towards the annular air inlet 12. The duct 8 may be aligned with the drive assembly 4 so that its longitudinal axis is collinear with a rotational axis 20 of the contrarotating fan drive assembly 4.
The first and second impellers 14, 18 are mixed flow impeller each comprising a generally conical hub 22, a plurality of curved impeller blades 24 connected to the conical hub 22, and an annular shroud 26 connected to the impeller blades 24 so as to surround the conical hub 22 and impeller blades 24. The impeller blades 24 are preferably integral with the conical hub 22, which is preferably formed from a plastic material.
The annular air flow path 10 is defined by an inner side of an outer wall 30 of the main housing 6 and a radially outer side 32 of the conical hubs 22, together with a radially outer side 34 of an inner wall 36 of the main housing 6 which sits adjacent the second impeller 18.
The contra-rotating fan drive assembly 4 comprises the first motor 38 and a second motor 40, which, in this embodiment, are coaxially mounted about a driveshaft 42 defining the rotational axis 20, and power cable (not shown) for supplying electrical power to the first and second motors 38, 40. The driveshaft 42 is supported within the main housing 6 by first, second and third bearings 44, 46, 48. As with the previous embodiment, the first and second motors 38, 40 may be brushless DC electric motors having independently variable speeds which are controlled by a control circuit (not shown).
The first motor 38 is an inrunner motor comprising an outer stator assembly 50 surrounding an inner rotor assembly 52 that is configured to rotate relative to the outer stator assembly 50, and the driveshaft 42 that is fastened to the inner rotor assembly 52. The outer stator assembly 50 comprises a drum or bell housing 54 that is rotatably isolated from the driveshaft 42 by the first and second bearings 44, 46 such that the outer stator assembly 50 is rotatably isolated from the driveshaft 42. The bell housing 54 is secured to an inner side of a rear wall 55 of the main housing 6 via a circumferential coupling 57, which is concentrically aligned with the rotational axis 20. An outer side of the rear wall 55 carries a stator cap 59, which is shaped to provide a continuation of the external side 34 of the inner wall 36 of the main housing 6 so as to ensure that the air flows smoothly out from the annular air outlet 16. The driveshaft 42 extends outwardly from the first motor 38 and connects with the first impeller 14 to transmit rotation of the inner rotor assembly 52 to the first impeller 14, which is configured to rotate about the rotational axis 20 in a first direction, for example, in the direction in which the impeller blades 24 of the first impeller 14 are curved. The second motor 40 is an outrunner motor comprising an inner stator assembly 58 held within an outer rotor assembly 60, configured to rotate relative to the inner stator assembly 58. The second motor 40 is “shaftless” insofar that, unlike the first motor 38, its rotor assembly 60 is not configured to drive a driveshaft in order transmit rotation to an impeller. In this embodiment, the inner stator assembly 58 defines a concentric aperture in which the first motor 38 is held such that the first motor 38 is arranged concentrically within the second motor 40. That is, the second motor 40 surrounds a circumference/periphery of the first motor 38. Specifically, the inner stator assembly 58 of the second motor 40 is circumferentially arranged about the outer stator assembly 50 of the first motor 38. In this arrangement, the inner stator assembly 58 of the second motor 40 may be connected, either directly or indirectly, to an outer radial surface of the bell housing 54 of the first motor 38. The outer rotor assembly 60 comprises a drum or bell housing 70 which is supported on the driveshaft 42 by the third bearing 48 to rotatably isolate the second motor 40 from the driveshaft 42. The conical hub 22 of the second impeller 18 is directly connected or mounted to the outer rotor assembly 60 via the bell housing 70 such that rotation of the outer rotor assembly 60 drives rotation of the second impeller 18 about the rotational axis 20 in a second direction, opposite the first direction in which the first impeller 14 rotates. By concentrically arranging the first motor 38 within the second motor 40 means that the second motor 40 does not need to be directly supported on the driveshaft 42. This, in turn, means that the length of the driveshaft 42 can shortened, when compared to the embodiment of FIG. 1 , meaning that the contra-rotating fan drive assembly 4 occupies comparatively less space within the fan assembly 2.
It will be appreciated by those skilled in the art that the invention has been described by way of example only, and that a variety of alternative approaches or modifications may be adopted without departing from the scope of the invention as defined by the appended claims. For example, in both of the embodiments described above, the conical hub 22 of the second impeller 18 is connected to the outer rotor assembly 60 of the second motor 40 via the bell housing 70. However, embodiments are envisioned in which the conical hub 22 is not required and the plurality of impeller blades 24 of the second impeller 18 extend outwards directly from an outer radial surface the outer rotor assembly 60. In such an embodiment, the outer radial surface may be defined by the bell housing 70 of the outer rotor assembly 60. Moreover, in the embodiments described above, the contra-rotating first and second impellers 14, 18 function to pump air through the annular air flow path 10, but those skilled in the art will appreciate that this function, of pumping air through the annular air flow path 10, could also be carried out by contra-rotating propellers each having a plurality of blades.
In all embodiments the first motor 38, which is an inrunner motor, is arranged to drive the rotation of the first impeller 14, which is the front impeller of the contra-rotating fan drive assembly 4. This arrangement is advantageous as, from an aerodynamic standpoint, the front impeller in a contrarotating fan arrangement requires more power and rotational speed when compared to the rear impeller, and inrunner motors are capable of producing higher rotational speeds, and are thus more efficient, comparative to outrunner motors.
Furthermore, the above described embodiments each relate to a contra-rotating drive assembly for driving a fan and therefore comprise first and second contra-rotating impellers, wherein an impeller is a rotating part of a machine that is designed to move a fluid. However, those skilled in the art will appreciate that the above-described contra-rotating drive assembly could equally be used to drive contra-rotating propellers for generating thrust. Fan drive assemblies in accordance with the present invention have been described with reference to particular embodiments thereof in order to illustrate the principles of operation. The above description is thus by way of illustration and directional references (including: upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, side, above, below, front, middle, back, vertical, horizontal, height, depth width, and so forth) and any other terms having an implied orientation refer only to the orientation of the features as shown in the accompanying drawings. They should not be read to be requirements or limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the appended claims. Connection references (e.g., attached, coupled, connected, joined, secured and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other, unless specifically set forth in the appended claims.

Claims

1. A contra-rotating fan drive assembly comprising: a first impeller; a first motor comprising an inner rotor assembly, an outer stator assembly and a driveshaft connecting the inner rotor assembly and the first impeller, the first motor being arranged to rotate the first impeller in a first direction; a second impeller; and, a second motor comprising an inner stator assembly and an outer rotor assembly connected to the second impeller, the second motor being arranged to rotate the second impeller in a second direction opposite the first direction, wherein the first and second motors are arranged coaxially and wherein the first motor is arranged concentrically within the second motor.
2. The contra-rotating fan drive assembly of claim 1 , wherein the inner stator assembly of the second motor comprises an aperture for receiving the first motor such that the inner stator assembly of the second motor is circumferentially arranged about the outer stator assembly of the first motor.
3. The contra-rotating fan drive assembly of any one of claims 1 or 2, wherein the second motor is shaftless.
4. The contra-rotating fan drive assembly of any one of claims 1 to 3, wherein the second impeller is directly connected to the outer rotor assembly of the second motor.
5. The contra-rotating fan drive assembly of any one of claims 1 to 4, wherein blades of the second impeller extend outwardly from an outer surface of the outer rotor assembly of the second motor.
6. A fan assembly comprising a contra-rotating fan drive assembly according to any one of claims 1 to 5.
7. A contra-rotating drive assembly comprising: a first set of blades; an inrunner motor for rotating the first set of blades in a first direction, the inrunner motor comprising an inner rotor assembly, an outer stator assembly and a driveshaft connecting the inner rotor assembly and the first set of blades; a second set of blades; and, a shaftless outrunner motor for rotating the second set of blades in a second direction opposite the first direction, the shaftless outrunner motor comprising an inner stator assembly and an outer rotor assembly, the second set of blades being connected to the outer rotor assembly, wherein the inrunner motor and the shaftless outrunner motor are arranged coaxially, and wherein the inrunner motor is arranged concentrically within the shaftless outrunner motor.
8. The contra-rotating drive assembly of claim 7, wherein the inner stator assembly of the shaftless outrunner motor comprises an aperture for receiving the inrunner motor such that the inner stator assembly of the shaftless outrunner motor is circumferentially arranged about the outer stator assembly of the inrunner motor.
PCT/GB2020/052428 2019-12-20 2020-10-02 A contra-rotating fan drive assembly WO2021123709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080085174.6A CN114867943A (en) 2019-12-20 2020-10-02 Contrarotating fan driving assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1919006.5 2019-12-20
GB1919006.5A GB2590627B (en) 2019-12-20 2019-12-20 A fan drive assembly

Publications (1)

Publication Number Publication Date
WO2021123709A1 true WO2021123709A1 (en) 2021-06-24

Family

ID=69322670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2020/052428 WO2021123709A1 (en) 2019-12-20 2020-10-02 A contra-rotating fan drive assembly

Country Status (3)

Country Link
CN (1) CN114867943A (en)
GB (1) GB2590627B (en)
WO (1) WO2021123709A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149366A1 (en) * 2001-10-06 2003-04-17 Leybold Vakuum Gmbh Axial friction vacuum pump has two concentric rotor components with drives, rotating in opposite directions to improve relative speed of pumping structures
EP3150931A1 (en) * 2015-09-29 2017-04-05 Xiaomi Inc. Air purifier and blower device thereof
US20180249873A1 (en) * 2017-03-06 2018-09-06 Samsung Electronics Co., Ltd Fan unit and cleaner having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780422B2 (en) * 2004-10-07 2010-08-24 Ebm-Papst St. Georgen Gmbh & Co. Kg Assembly for transporting fluids
JP2008169725A (en) * 2007-01-10 2008-07-24 Hitachi Appliances Inc Electric blower and vacuum cleaner equipped with same
JP5273475B2 (en) * 2008-09-02 2013-08-28 日本電産株式会社 Inline axial fan
CN101994713B (en) * 2009-08-26 2014-03-26 鸿富锦精密工业(深圳)有限公司 Fan and electronic device provided with same
JP2017012731A (en) * 2015-06-30 2017-01-19 三星電子株式会社Samsung Electronics Co.,Ltd. Vacuum cleaner
US11525456B2 (en) * 2015-07-09 2022-12-13 Bascom Hunter Technologies, Inc. Compact axial fan
CN107503889A (en) * 2016-06-14 2017-12-22 郑钧尹 Utilize the power supply unit of electric fan wind-power electricity generation
JP2018105269A (en) * 2016-12-28 2018-07-05 日本電産株式会社 Blowing device and cleaner equipped with the same
CN208364446U (en) * 2018-07-03 2019-01-11 广东威灵电机制造有限公司 Fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149366A1 (en) * 2001-10-06 2003-04-17 Leybold Vakuum Gmbh Axial friction vacuum pump has two concentric rotor components with drives, rotating in opposite directions to improve relative speed of pumping structures
EP3150931A1 (en) * 2015-09-29 2017-04-05 Xiaomi Inc. Air purifier and blower device thereof
US20180249873A1 (en) * 2017-03-06 2018-09-06 Samsung Electronics Co., Ltd Fan unit and cleaner having the same

Also Published As

Publication number Publication date
GB201919006D0 (en) 2020-02-05
GB2590627B (en) 2022-03-30
CN114867943A (en) 2022-08-05
GB2590627A (en) 2021-07-07

Similar Documents

Publication Publication Date Title
EP3376043B1 (en) Motor fan
EP0761979B1 (en) Axial flow fan
US3303995A (en) Fan motor cooling arrangement
EP3147510B1 (en) Coreless donut-type motor fan for ventilation and cooling
US20130323096A1 (en) Diagonal fan
US11323003B2 (en) Compact, modular, pump or turbine with integral modular motor or generator and coaxial fluid flow
CN103671250A (en) Fan
CN111436205A (en) Modular multi-stage integrally sealed electric pump with integrally cooled motor and independently controlled rotor speed
EP0651161B1 (en) Device for cooling en electric motor for a turbo-fan
NO347974B1 (en) Improved arrangement for pressurizing of fluid
KR20160118612A (en) Electric water pump
EP4052358B1 (en) Compact, modular, pump or turbine with integral modular motor or generator and coaxial fluid flow
CN107131154A (en) Blower fan system and electric device
CN214756008U (en) Counter-rotating fan driving assembly and fan assembly
WO2021123709A1 (en) A contra-rotating fan drive assembly
CN112678138A (en) Tandem motor pump jet propeller
KR101852263B1 (en) Fluid machinery having multifunctional bearingless axial impeller using magnetic levitation
JP2023553731A (en) Lantern with elements for heat dissipation
US11346369B2 (en) Blower assembly and methods of assembling the same
CN214756009U (en) Fan driving assembly
CN214756007U (en) Fan driving assembly
JP2012524200A (en) Blower module
KR20100009403A (en) Low noise blower module
US20240191718A1 (en) Electric Motor With Cooling Arrangement
US11913459B2 (en) Fan assembly with a magnetic vane rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20789233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20789233

Country of ref document: EP

Kind code of ref document: A1