WO2021123685A1 - Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank - Google Patents

Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank Download PDF

Info

Publication number
WO2021123685A1
WO2021123685A1 PCT/FR2020/052560 FR2020052560W WO2021123685A1 WO 2021123685 A1 WO2021123685 A1 WO 2021123685A1 FR 2020052560 W FR2020052560 W FR 2020052560W WO 2021123685 A1 WO2021123685 A1 WO 2021123685A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid form
energy balance
tank
estimation
Prior art date
Application number
PCT/FR2020/052560
Other languages
French (fr)
Inventor
Bernard Aoun
Pavel BORISEVICH
Romain NARME
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN202080097172.9A priority Critical patent/CN115135921A/en
Priority to KR1020227024712A priority patent/KR20220119654A/en
Priority to EP20848857.7A priority patent/EP4078014A1/en
Priority to JP2022537734A priority patent/JP2023507467A/en
Publication of WO2021123685A1 publication Critical patent/WO2021123685A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • F17C2225/044Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0473Time or time periods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0478Position or presence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0689Methods for controlling or regulating
    • F17C2250/0694Methods for controlling or regulating with calculations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the present invention relates to the field of transporting natural gas, and more particularly to the field of regulating the temperature of said natural gas during such transport.
  • the gas In order to more easily transport and / or store gas in liquid form, such as natural gas in liquid form, over long distances, the gas is usually liquefied by cooling it to cryogenic temperatures, for example - 163 ° C to atmospheric pressure, in order to obtain liquefied natural gas, commonly known by the acronym “LNG”, or “LNG” for “Liquefied Natural Gas”. This liquefied natural gas is then loaded into specialized storage tanks of the floating structure.
  • cryogenic temperatures for example - 163 ° C to atmospheric pressure
  • the storage tanks of the floating structure thus comprise both natural gas in liquid form and natural gas in gaseous form, the gaseous phase of natural gas forming the vessel head.
  • At least part of the natural gas present in the tank in gaseous form can be used to supply an engine intended to meet the energy needs for the operation of the floating structure, in particular for its propulsion and / or its production of water. electricity for on-board equipment.
  • it is in particular known to circulate natural gas in the gaseous state through at least one natural gas treatment system, so as to allow its heating and its compression, said system comprising a heat exchanger. used as a superheater and a compressor, both placed upstream of the engine.
  • the natural gas treatment system it is also known to configure the natural gas treatment system so that it can allow the condensation of a part taken from the natural gas in the state. gaseous.
  • the condensation of natural gas may in particular be required when the quantity of natural gas evaporated in the tank is too large in relation to the operating energy needs of the floating structure, the natural gas treatment system then allows the evaporated natural gas to be condensed. present in the tank in order to return it to the liquid state.
  • Such a liquefaction system can in particular be implemented when the floating structure is stopped and the consumption of gaseous natural gas by its engine or engines is zero, or almost zero.
  • An essential data to take into account for this type of transport is the state of natural gas in liquid form when the floating structure arrives at its destination to unload its cargo.
  • the stations for receiving natural gas in liquid form have requirements with regard to the characteristics of the natural gas in liquid form delivered, such as the temperature or the saturation pressure of said natural gas in liquid form.
  • the manager of the facility at the place of destination can therefore refuse the unloading of the cargo of natural gas in liquid form if it does not comply with the requirements of the place of destination.
  • Cargo temperature management raises two issues directly related to a buoyancy consumer fuel supply system.
  • the first problem concerns the cooling function of the power system. Lowering the temperature and / or the saturation pressure of natural gas in liquid form is superfluous if this leads to a very large deviation from the requirements of the place of destination. In this situation, the cooling function of the power system is overused and leads to unnecessary power consumption.
  • the second problem concerns the condensing function of the power system. When the condensation function is active, the surplus gas phase generated from the gas in liquid form reverts to the liquid phase and returns to the transport tank. However, the gas in condensed liquid form may have a higher temperature than the gas in liquid form present in the vessel.
  • the return of the gas in liquid form condensed in the tank can therefore lead to a general increase in the temperature of the gas in liquid form present in the tank, thus leading to the risk that the gas cargo in liquid form no longer meets the requirements of the place. of destination and resulting in refusal of delivery.
  • the inactivity of the condensing function of the supply system leads to the elimination of the surplus of the gas phase generated from the gas in liquid form, for example by combustion or by release into the air, and therefore a waste. of cargo.
  • the general problem is therefore to find a balance between the condensing and cooling functions of the supply system so that the cargo meets the requirements of the place of destination, but in turn limiting the energy consumption due to the disposal. of the gas phase generated from the gas in liquid form and / or the overconsumption of the cooling function of the supply system.
  • the present invention therefore proposes to optimize the use of the liquefaction system so as to guarantee that the cargo on delivery will be below the acceptance criterion by the place of destination, without however deviating too much from this criterion, so as to avoid road overconsumption related to the cooling function of the power system.
  • the invention consists of a method for estimating and adjusting an energy balance of a gas in liquid form contained in at least one vessel of a floating structure intended to deliver said gas in liquid form to a given place of destination, the floating structure comprising a system for supplying fuel to a consumer of the floating structure keen to implement a function of condensing a gas phase generated from the gas in liquid form and / or a function of cooling gas in liquid form, characterized in that the estimation and adjustment method comprises the following steps:
  • step C of establishing a second operating plan for the cooling function of gas in liquid form operated by the supply system until arrival at the place of destination, said second operating plan being established from the estimate of the surplus gas phase generated from the gas in liquid form during the journey,
  • step D of calculating an energy balance of the gas in liquid form at an instant t from the temperature of the gas in liquid form contained in the vessel and the properties of the gas in liquid form contained in the vessel,
  • step E of calculating a maximum energy balance from the maximum authorized temperature of the gas in liquid form, calculated in step A, and the characteristics of the gas in liquid form contained in the tank,
  • step F of estimating the energy balance of the gas in liquid form contained in the vessel at the arrival of the journey from the operating plans for the condensation and cooling functions determined in steps B and C and from the energy balance of the gas in liquid form at time t, determined in step D,
  • step G of adjusting the first operating plan and / or the second operating plan
  • step H of implementing the supply system according to the operating plans for the condensation and cooling functions of gas in liquid form adjusted in step G.
  • the floating structure may for example be a transport vessel capable of storing and / or transporting gas in liquid form, for example natural gas in liquid form, or LNG.
  • the fuel supply system of a consumer of the floating structure ensures the management of the gaseous phase generated from the gas in liquid form forming in the tank by using it wisely for the supply of one or more several consumers such as a propulsion engine of the floating structure, or an electric generator thereof.
  • the fuel supply system of a consumer of the floating structure is able to manage a state of the gas in liquid form contained in the tank, thanks to its cooling function and its condensing function.
  • the term "fuel supply system of a consumer of the floating structure" is hereinafter simplified to "supply system".
  • the estimation and adjustment process regulates the characteristics of the gas in liquid form so that a cargo of gas in liquid form is delivered to the place of destination having a saturation pressure of the gas in liquid form in accordance with the requirements of the destination, while minimizing the energy consumption required for temperature regulation.
  • the term energy balance is used to denote a numerical data obtained by a calculation which may result from a plurality of physical constants of the gas, such as the saturation pressure of the gas in liquid form or the temperature of the gas in liquid form, or else from the energy supplied or taken by the cooling or condensing functions of the power supply system.
  • the estimation and adjustment process can be initiated before a departure from the floating structure and / or during the journey between a starting point of the floating structure, for example a gas liquefaction terminal, and the place of the destination to which the cargo of gas in liquid form is delivered.
  • the tank containing the gas in liquid form is a tank which conforms and is suitable for the transport of such a cargo, and it may for example be a tank with primary and secondary membranes, each of the membranes being thermally insulated.
  • step A generally consists in determining the conditions for accepting the gas cargo in liquid form by the place of destination, more particularly the maximum authorized temperature of the vessel. gas in liquid form contained in the tank on arrival. It is however possible to reason in terms of the saturation pressure of the gas in liquid form or another value linked to the pressure and / or to the temperature. The calculation of such a target value not to be exceeded depends on the saturation pressure requirements of the gas in liquid form and on the temperature of the gas in liquid form at the place of destination and on the constant characteristics of the gas. Thus, it is understood that the requirement of the terminal receiving gas in liquid form is intended to prevent massive vaporization of natural gas during its transfer between the ship and the terminal by imposing conditions for acceptance of the cargo.
  • the maximum permitted temperature of the gas in liquid form contained in the tank on arrival depends on the properties of the gas in liquid form transported, namely the total mass of gas in liquid form and the specific heat capacity of the gas in liquid form.
  • These two data can for example be provided by any document relating to the cargo, such as a technical sheet, and can be taken into account by the supply system, for example by means of a control monitor.
  • Steps B and C consist of setting up an operating plan for each function of the power system.
  • operating plan it is necessary to understand a progress of the activity of each of the functions during the journey allowing to reach the place of destination.
  • Each of the functions namely the condensing function and the cooling function, is either active or inactive and the power system can switch from one mode to the other.
  • the operating plan for each of the functions therefore determines the active and inactive sequences of each of the functions during the journey, which result in heating or cooling of the cargo, as the case may be.
  • the condensing and cooling functions are qualified as active, it means that the power system is allowed to perform its condensing and / or cooling functions. Conversely, when the condensing and cooling functions are qualified as inactive, it means that the supply system is not authorized to implement its condensing and / or cooling functions.
  • the cooling function is active, the supply system is allowed to cool the gas in liquid form provided that there is presence of gas phase generated from the gas in liquid form.
  • the condensation function is active, the supply system is able to condense the gas in liquid form provided that there is presence of surplus gas phase generated from the gas in liquid form.
  • the temperature of the gas in liquid form contained in the tank may tend to increase.
  • this causes a lowering of the temperature when activated.
  • the temperature varies differently when the two functions act simultaneously, or can vary naturally depending on the environmental conditions during the journey. It is understood, however, that the major temperature variations occurring during the journey depend on the activation of the operating plans implemented during steps B and C of the estimation and adjustment process.
  • the operating plans for the condensing or cooling functions of the supply system are therefore flowcharts determining at what time t during the journey each of the functions must be activated or deactivated. It is also possible that the operating plan consists of maintaining active or inactive one or the other of the functions and this during the entire journey.
  • Each of these operating plans is determined from the estimate of the excess gas phase generated from the gas in liquid form during the journey.
  • the gas phase generated from the gas in liquid form emanates from the transport tank either naturally or in a forced manner. This gaseous phase can subsequently be used to supply the floating structure, for example the engine for propelling the floating structure, or a generator supplying the floating structure with electricity.
  • the gas phase generated from the gas in liquid form not used to supply the floating structure represents the surplus gas phase generated from the gas in liquid form.
  • the condensing function and the cooling function act simultaneously, it means that there is an excess gas phase generated from the gas in liquid form circulating in the supply system.
  • the presence of excess gas phase generated from the gas in liquid form can be detected by a system third party to the management system of the invention or directly through the estimation and adjustment method according to the invention.
  • Step D of the estimation and adjustment process consists in calculating the energy balance of the gas in liquid form at time t, that is to say from data measured at time t.
  • Step D is independent of steps B and C and can thus take place simultaneously or prior to steps B and C.
  • the calculation of the energy balance during step D depends on the total mass of gas in liquid form and on the specific heat capacity of the gas in liquid form, constants used during step A, as well as the average temperature of the gas in liquid form contained in the vessel at time t. More specifically, the energy balance of gas in liquid form is calculated from the following formula:
  • Be mGas x Cp x T Be being the energy balance of the gas in liquid form at time t, mGas being the total mass of the gas in liquid form, Cp being the mass heat capacity of the gas in liquid form and T being the temperature of the gas in liquid form at l 'instant t.
  • the temperature of the gas in liquid form can be measured by at least one temperature sensor arranged in the tank. Said temperature is then taken into account during the calculation of step D.
  • the temperature can be addressed in the form of an average, for example if several temperature sensors are installed in the tank, or if the floating structure comprises several tanks, each being provided with one or more temperature sensors.
  • the energy balance of the gas in liquid form at time t calculated during this step D is used during the rest of the estimation and adjustment process.
  • Step E consists of calculating an energy balance similar to the energy balance calculated in step D, but the energy balance of step E is the maximum energy balance, relating to the maximum authorized temperature of the gas in liquid form. calculated in step A.
  • the calculation of the maximum energy balance calculated during step E is independent of the energy balance of the gas in liquid form at time t calculated in step D. Steps D and E can therefore be performed simultaneously or one after the other in any order.
  • the maximum energy balance is calculated from the total mass of gas in liquid form, gas in liquid form, the mass heat capacity of gas in liquid form, and the maximum permitted temperature of gas in liquid form.
  • the calculation performed in step E is similar to the calculation performed in step D, with the maximum allowable temperature of the gas in liquid form instead of the temperature measured in the tank of the floating structure.
  • the estimation and adjustment method calculates an estimate of an energy balance of the gas in liquid form contained in the tank on arrival.
  • the estimation and adjustment method makes it possible to predict the characteristics of the gas in liquid form contained in the vessel on arrival of the floating structure at its place of destination, in particular the energy balance thereof.
  • the estimation and adjustment process uses the energy balance of the gas in liquid form at time t calculated during stage D, as well as the operating plans for the cooling and condensing functions of the supply system calculated in stages B and C.
  • the energy balance of the gas in liquid form at time t calculated during the step D constitutes a starting point for the estimation in terms of the saturation pressure of the gas in liquid form and of the temperature of the gas in liquid form.
  • the operating plans for the cooling and condensing functions calculated in steps B and C are also part of the estimate, as they influence the temperature of the gas in liquid form contained in the vessel as mentioned previously. From these three data, the estimation and adjustment process is able to determine the energy balance of the gas in liquid form once the floating structure has arrived at the place of destination, taking into account the operating plans of the functions. of cooling and condensation established previously.
  • the energy balance of gas in liquid form encompassing a plurality of characteristics, it is also possible to reason in terms of saturation pressure of gas in liquid form, temperature or quantity of heat exchange. By thus estimating the energy balance of the cargo on arrival, it is possible to adjust the operating plans so that the saturation pressure of the gas in liquid form on arrival makes it admissible.
  • Step G then consists of an adjustment of the operating plans according to a comparison between the maximum energy balance calculated in step E and the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the path calculated in step F.
  • the first operating plan of the condensation function and / or the second operating plan of the cooling function can be adjusted.
  • the adjustment may consist of stopping one and / or the other of the functions, the stopping being able to be instantaneous or programmed after a certain period of time.
  • One and / or the other of the functions can also be put into operation or put back into operation, also instantaneously or programmed.
  • the first operating plan of the condensation function and / or the second operating plan of the cooling function are modified on the basis of the data calculated or estimated during steps E and F.
  • Stage H consists of the implementation of the adjusted operating plans.
  • the power system no longer takes into account the operating plans established during stages B and C, which are replaced by the operating plans adjusted during stage G.
  • the adjusted operating plans are replaced by the operating plans adjusted during stage G. transmitted to the supply system at the end of the course of the estimation and adjustment process.
  • the supply system can therefore implement the cooling and / or the condensation of the gas in liquid form, keep them active or deactivate them, and this according to the respective adjusted operating plans which have been transmitted to it.
  • step G consists of activating the condensation function as long as the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated at step F, is less than the maximum energy balance calculated in step E.
  • the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path is less than the maximum energy balance, this means that at Upon arrival of the journey, the cargo of gas in liquid form will, for example, be at a saturation pressure of the gas in liquid form below the prerequisites defined by the place of destination. If this situation arises during the journey, there is no inconvenience in adjusting the operating plans of the functions of the supply system so as to allow and control an increase in the temperature of the gas in liquid form contained in the gas. tank.
  • the adjustment of the first operating plan of the condensation function can consist in keeping the latter active throughout the journey.
  • the excess gas phase generated from the gas in liquid form is therefore fully condensed instead of possibly being eliminated.
  • the condensing function is active.
  • the supply system is allowed to condense the excess gas phase generated from the gas in liquid form in the presence of the latter.
  • the condensation of gas in liquid form can vary in terms of activity, depending on the need to manage the gas. surplus gas phase generated from the gas in liquid form.
  • the condensation of the gas in liquid form can, for example, take place in a more sustained manner in the event of an excess of gas phase generated from the gas in liquid form in the tank, in order to reduce the pressure within the latter.
  • step G consists of stopping the cooling function at an estimated instant dr which guarantees that the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the path , calculated in step F, is less than the maximum energy balance calculated in step E.
  • the estimation and adjustment process will successively repeat the adjustment of the second operating plan of the cooling function and step F, even the step of estimating the energy balance of the gas under liquid form contained in the tank on arrival.
  • the adjustment of the second operating plan of the cooling function consists in determining the estimated instant dr, taking the arrival at the place of destination as the target.
  • the estimated instant dr is then determined as being before a certain period of time with respect to the arrival, for example several days or hours.
  • the estimation and adjustment process then recalculates the estimate of the energy balance gas in liquid form contained in the tank on arrival, this time taking into account the new adjustment of the second operating plan of the cooling function, i.e. stopping it by example several days or hours before arrival at the place of destination.
  • step H If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is no longer less than the maximum energy balance calculated in step E, then the estimation and adjustment process continues normally with step H. If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is still less than the maximum balance, the estimation and adjustment process then repeats the adjustment of the second plane d operation of the cooling function by further anticipating the estimated time dt by, for example, several days or hours before arrival at the place of destination. Then, the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is again calculated by taking into account the new adjustment.
  • the estimated instant dt is postponed in time. This loop makes it possible to determine the estimated instant dt closest to the current instant t, and thus to deactivate the cooling function as soon as possible in order to save as much energy as possible. Once the final estimated instant dt has been determined, the estimation and adjustment process continues with step H.
  • step G consists of stopping the condensation function as long as the estimation of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated at step F, is greater than the maximum energy balance calculated in step E.
  • the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the journey is greater than the maximum energy balance, this means that the cargo of gas in liquid form will be at a saturation pressure of gas in liquid form too high compared to the requirements of the place of destination upon arrival of the floating structure. In order to avoid such a situation, it is advisable to limit any action causing a rise in the temperature of the gas in liquid form contained in the tank.
  • the first operating plan of the condensing function is adjusted in order to cause a shutdown of the condensing function of the power system. at a given time of summer when the energy balance of the gas in liquid form contained in the tank exceeds the maximum energy balance.
  • the condensation function can optionally be reactivated if the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path again becomes less than the maximum energy balance thereafter.
  • step G consists of activating the cooling function as long as the estimation of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated in step F, is greater than the maximum energy balance calculated in step E. In this situation, it is essential to reduce the temperature of the gas in liquid form contained in the tank.
  • the second operating plan of the cooling function is also adjusted. so that the cooling function is active until the arrival of the floating structure at the place of destination, with the aim that the saturation pressure of the gas in liquid form meets the requirements of the place of destination.
  • the cooling function is therefore active.
  • the supply system is allowed to cool the gas in liquid form contained in the tank.
  • the feed system cools the gas in liquid form at the highest possible activity relative to a configuration of said feed system.
  • the estimation and adjustment method is repeated by iteration from step B and during the journey of the floating structure.
  • the journey time of the floating structure between its point of departure and the place of destination varies depending on the delivery, but the journey can last several days or even several weeks.
  • the estimate can for example be distorted in the medium or long term by environmental conditions, such as the weather or the state of the sea for maritime transport.
  • the estimation and adjustment process must be repeated regularly during the journey.
  • the estimation and adjustment process can for example be configured to start at a regular time interval, for example every six hours.
  • Step A is based on a calculation depending on fixed values. It is therefore not necessary to repeat this step after having launched the estimation and adjustment process for the first time.
  • the estimation and adjustment method is therefore repeatable by iteration from the step of establishing the first operating plan of the condensation function of the power supply system.
  • the estimation and adjustment method comprises an additional step D ', carried out simultaneously with step D, of calculating the energy balance of the gas in liquid form at time t at from the performance of the condensation and cooling functions from the start of the floating structure and up to the instant t and from an energy balance of the gas in liquid form at an instant t calculated during a earlier iteration.
  • the calculation of the energy balance of the gas in liquid form at time t carried out at step D 'no longer takes into account the temperature of the gas in liquid form contained in the tank at time t measured for example by the temperature sensor. temperature, but an energy balance of the gas in liquid form at time t calculated previously.
  • step D ’ is only executed if the estimation and adjustment process has already been carried out for the first time.
  • the energy balance of gas in liquid form at time t is calculated from the energy balance of gas in liquid form at an earlier time t, i.e. the energy balance of gas in liquid form from the previous one iteration of the estimation and adjustment process, which may have been calculated during step D or D ′.
  • the calculation of the energy balance of the gas in liquid form at time t during step D ' also takes into account the performance of the condensation and cooling functions from the start of the floating structure and up to the instant t.
  • the condensation function corresponds to data relating to the heat transmitted to the tank and leading to a general increase in the temperature of the latter, illustrated for example by a temperature differential at the inlet and outlet of an exchanger. of heat ensuring the function of condensation.
  • the cooling function this corresponds to data relating to the cold transmitted to the tank and resulting in a general decrease in the temperature thereof, illustrated for example by a temperature differential at the inlet and outlet of a heat exchanger providing the cooling function.
  • the energy balance of gas in liquid form at time t kept for step F is the highest among the energy balance of gas in liquid form at time t calculated at step D and the energy balance of the gas in liquid form at time t calculated in step D ′.
  • c ' is the energy balance of the gas in liquid form contained in the vessel at time t having the highest value among the result obtained in step D and the result obtained in step D 'which is used for the estimation of step F.
  • the energy balance of the gas in liquid form at time t having the highest value is considered to be the most pessimistic result.
  • the objective being not to exceed the maximum energy balance of the place of destination, the energy balance of the gas in liquid form should be kept at the highest time t as a safety measure.
  • the estimation and adjustment method comprises an additional step A 'of selecting a safety margin for the maximum energy balance of the gas in liquid form as a function of the characteristics of the path of the structure.
  • step E being carried out taking into account said safety margin.
  • the calculation of the maximum energy balance is always calculated as a function of the maximum authorized temperature of the gas in liquid form calculated in step A, but also by taking into account the safety margin.
  • a secure maximum energy balance is then obtained, with a value lower than the actual maximum energy balance.
  • the first operating plane of the condensing function and the second operating plane of the cooling function are adjusted according to the comparison between the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the journey and a virtual maximum energy balance, that is to say which takes into account the safety margin.
  • the safety margin thus guarantees the certainty of remaining below the actual maximum energy balance.
  • the safety margin can be chosen according to different parameters. For example, the longer the journey, the more preferable it is to select a high safety margin. A high safety margin is also recommended in the event of a lack of information about the weather conditions during the journey.
  • the safety margin can for example be entered manually through the control monitor, or it can be programmed to be variable over time.
  • step A ’ is therefore prior to step E during the estimation and adjustment process.
  • step A ’ is repeated by iteration during the path of the floating structure.
  • the repetition of step A ’ may be independent of the repetition of the estimation and adjustment process, or it may be part of it.
  • Stage A ’ can also be initiated manually, for example following the occurrence of an unforeseen meteorological phenomenon. It may then be wise to manually increase the value of the safety margin to alleviate the uncertainty due to said meteorological phenomenon.
  • the safety margin decreases as the floating structure approaches the place of destination. In other words, the closer the floating structure is to its destination, the lower the safety margin needs to be. It is therefore possible to program a degressive safety margin over time.
  • the floating structure is equipped with at least one motor supplied at least partially by the gas phase generated from the gas in liquid form, the estimation of the surplus of gas phase generated from the gas in liquid form. liquid during the journey being established from an image value of the heat inputs into the tank and from an estimate of the engine consumption.
  • the floating structure may be able to use the gaseous phase generated from the gas in liquid form, or even to create it, for example to supply its propulsion engine and / or its electricity generator.
  • the gas phase generated from the gas in liquid form not used for these various functions corresponds to the surplus gas phase generated from the gas in liquid form.
  • the latter needs to be estimated in quantity so that steps B and C of the estimation and adjustment process, that is to say the steps of establishing operating plans for the condensation and cooling functions of the power system, can be unwound.
  • the image value of the heat inputs into the tank may for example depend on the tank model used and therefore be available as a technical characteristic of the tank.
  • the image value of heat inputs into the tank can also be estimated using sensors.
  • the consumption of the engine can be estimated if the floating structure is equipped with a module making it possible to define a route plan for the journey to the place of destination.
  • the consumption of the motor can be estimated from the average speed of the floating structure on the remaining path, the latter depending on the remaining distance to be covered and the time remaining to reach instead of destination.
  • the surplus gas phase generated from the gas in liquid form can thus be estimated through a source external to the estimation and adjustment process, and for example be entered through the control monitor in order to be taken into account during the course of the estimation and adjustment process. This surplus can then be quantified in tonnes / hour.
  • the invention also covers a system for managing an energy balance of a gas in liquid form contained in at least one tank of a floating structure, implementing the estimation and adjustment method as described above, said management system comprising at least one system for supplying fuel to a consumer of the floating structure and at least one computer having the function of estimating a quantity of surplus gas phase generated from the gas in liquid form during of a path of the floating structure.
  • a system for managing the energy balance comprises the system for supplying fuel to a consumer of the floating structure implementing the condensation and cooling functions, and allows the estimation and adjustment process to be carried out.
  • the computer can transmit the estimate of the quantity of surplus gas phase generated from the gas in liquid form, essential for proceeding with the steps B and C.
  • the energy balance management system can also include the control monitor mentioned above.
  • the invention also covers a floating structure for the transport of gas in liquid form comprising a system for managing the energy balance of said gas as described above.
  • FIG. 1 is a schematic representation of an embodiment of a gas temperature management system in liquid form according to the invention.
  • FIG. 3 is a schematic representation of a process for estimating and adjusting an energy balance of gas in liquid form according to the invention, when the latter is launched for the first time
  • FIG. 4 is a schematic representation of an unfolding of the method for estimating and adjusting the energy balance of gas in liquid form according to the invention, when the latter is launched by iteration
  • FIG. 5 is a general diagram illustrating a fuel supply system for a consumer of the floating structure capable of carrying out a plurality of commands according to the estimation and adjustment process
  • FIG. 6 is a diagram of the supply system according to a first specific embodiment
  • FIG. 7 is a diagram of the supply system according to a second specific embodiment
  • fig 8 is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the operating plans of the condensation and cooling functions, in a situation where said energy balance of gas in liquid form is estimated to be too low on arrival,
  • fig 10 is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the operating plans for condensation and cooling functions, in a situation where said energy balance of gas in liquid form is estimated to be too high on arrival,
  • FIG. 11 is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the adjusted operating plans of the condensation and cooling functions, to alleviate the situation mentioned in figure 10,
  • [fig 12] is a curve representing a first example of the evolution of a value of a safety margin as a function of time
  • [fig 13] is a curve representing a second example of the evolution of the value of the safety margin as a function of time.
  • FIG. 1 represents a floating structure 1 heading towards a place of destination 2 along a path 3.
  • the floating structure 1 represented here is a transport vessel, for example. an LNG carrier.
  • the floating structure 1 transports a cargo of gas in liquid form in order to deliver it to the place of destination 2.
  • the floating structure 1 comprises at least one tank 9.
  • the place of destination 2 is a terminal intended to receive the gas in liquid form contained in the tank 9 of the floating structure 1. When the latter reaches the place of destination 2, the gas in liquid form is discharged for example into a tank 40.
  • Destination 2 imposes requirements on the characteristics of the gas in liquid form.
  • the requirements of the place of destination 2 may vary depending on the manager of the facility to which the place of destination 2 is attached, and mainly relate to the characteristics of the gas in liquid form, for example its saturation pressure and / or its temperature.
  • the cargo of gas in liquid form can potentially be refused by the manager of the installation of the place of destination 2.
  • Route 3 has a variable distance and can last several days or even weeks depending on the distance from a loading location to the destination. place of destination 2 and the speed of the floating structure 1.
  • FIG. 2 schematically represents a management system 4 of an energy balance of the gas in liquid form contained in the tank of the floating structure.
  • the energy balance of the gas in liquid form corresponds to a datum including various characteristics of said gas, such as its temperature, its saturation pressure, its total mass of gas in liquid form or its specific heat capacity, for example.
  • the management system 4 comprises a control unit 41 having in memory a method for estimating and adjusting the energy balance of the gas in liquid form contained in the tank of the floating structure.
  • the control unit 41 is thus able to initiate the estimation and adjustment process 5 in a regular and automated manner and / or following a manual control exerted for example by means of a control monitor 6. It is also possible to enter data manually through the control monitor 6, for example characteristics of the gas in liquid form transported, or any other information useful for the progress of the estimation and adjustment process 5 as will be specified thereafter.
  • the management system 4 also includes a system 8 for supplying fuel to a consumer of the floating structure.
  • the feed system 8 has the function of condensing and / or cooling the gas in liquid form contained in the tank and is able to adjust one or the other of these functions by activating or deactivating the latter.
  • the adjustment of the condensing and cooling functions of the power system 8 depends on the result of the estimation and adjustment process 5.
  • the control box 41 sends a signal to the system of. power supply 8, said signal indicating the adjustments to be made by the power supply system 8.
  • the management system 4 also includes a calculator 7.
  • the function of the calculator 7 is to estimate a quantity of surplus gas phase generated from the gas in liquid form during the journey of the floating structure.
  • the gas phase generated from the gas in liquid form occurs naturally within the tank of gas in liquid form, or it can be forced.
  • the estimate of excess gas phase generated from the gas in liquid form is calculated by estimating the consumption of the motor of the floating structure and by an image value of the heat entering the tank.
  • the computer 7 and the control unit 41 can be part of the same control unit or else be independent of each other.
  • the estimation of the consumption of the motor of the floating structure can be made by entering a route plan in the control monitor 6 which transmits the information. to the computer 7, or else by calculating an average speed of the floating structure from the distance remaining between a position of the floating structure and the place of destination and the time remaining to reach it.
  • the calculation of the average speed of the floating structure can also be carried out by entering data into the control monitor 6 which transmits the information to the computer 7.
  • the image value of the heat inputs into the tank can correspond to a design value of the heat inputs into the tank, or also to an estimate of the heat inputs into the tank.
  • the design value of the heat inputs into the tank depends on the model of the tank used for transport and can be given to computer 7 through the control monitor 6.
  • the estimate of the heat inputs into the tank can also be communicated by sensors included in said tank.
  • the excess gas phase generated from the gas in liquid form during the journey is estimated by the computer 7, the latter transmits the result to the control unit 41.
  • the surplus gas phase generated from the gas in liquid form to the course of the journey is a datum allowing the course of the estimation and adjustment process 5 as will be described hereinafter.
  • FIG. 3 is a schematic representation of the method for estimating and adjusting the energy balance of gas in liquid form according to the invention.
  • This diagram represents the flow of the estimation and adjustment process 5 when it is launched for the first time during the journey to the place of destination.
  • the estimation and adjustment process 5 can be started a first time before the start or at the start of the floating structure.
  • the solid arrows represent the course of each of the steps of the estimation and adjustment method 5, and the dotted arrows correspond to a data transmission between two steps of the estimation and adjustment method 5. or between an element of the system for managing the energy balance of gas in liquid form and a step of the estimation and adjustment process 5.
  • step A which makes it possible to calculate the maximum authorized temperature of the gas in liquid form contained in the tank on arrival at the place of destination.
  • the calculation of step A depends on certain constant characteristics of the gas in liquid form such as the total mass of gas in liquid form and the specific heat capacity of the latter. Such characteristics depend on the type of gas in liquid form being transported and are known in one way or another to the personnel of the floating structure. Thus, the total mass of gas in liquid form and the specific heat capacity of gas in liquid form can be entered or preselected through the control monitor 6 and transmitted for the calculation of step A of the estimation process. and adjustment 5.
  • the calculation of step A also depends on the maximum saturation pressure requirements of the gas in liquid form at the place of destination.
  • the maximum saturation pressure value required of the gas in liquid form is known as soon as the place of destination is known.
  • the saturation pressure requirements of the gas in liquid form can be entered through the control monitor 6 or be known, for example by means of a database listing all the places of destination authorized for reception and the unloading of gas in liquid form.
  • Step A consists of determining a safety margin in order to be sure that the energy balance of the gas in liquid form is lower than the requirements of the place of destination on arrival.
  • step A ' is not essential for the smooth running of the estimation and adjustment process 5 which can dispense with the safety margin to perform all the calculations and estimations, but nevertheless contributes to the 'optimization of the adjustment of the energy balance of gas in liquid form.
  • the safety margin can be determined automatically from the route plan and / or weather conditions, or manually via the command monitor 6. The safety margin is used for a calculation during a step E. L 'step A' can therefore take place at any time prior to step E.
  • Step B of the estimation and adjustment process 5 occurs after step A or step A '.
  • Step B consists of establishing the first operating plan for the condensing of the power supply system 8.
  • the first operating plan of the condensing function of the power supply system 8 indicates over time at which point in the journey the condensing function remains active or inactive and when the latter s 'activates or deactivates.
  • the establishment of the first operating plan depends on the amount of surplus gas phase generated from the gas in liquid form during the journey. It is in fact understood that, for example, if it is determined that no surplus gas phase generated from the gas in liquid form is generated during the journey, the supply system does not have a gas phase generated from the gas phase. gas in liquid form to be condensed and therefore does not need to be active during the journey.
  • stage C takes place in parallel or successively with stage B.
  • Stage C is based on the same principle as stage B, since it allows the establishment of the second operating plan of the cooling function of the system d power supply 8.
  • the second operating plan of the cooling function of the power supply system 8 indicates over time at which point in time during the journey the cooling function remains active or inactive and at when the latter is activated or deactivated.
  • the establishment of the second operating plan also depends on the quantity of surplus gas phase generated from the gas in liquid form during the journey, estimated by the computer 7. The estimate of surplus gas phase generated from the gas under liquid form is therefore taken into account for steps B and C.
  • step D which calculates an energy balance of the gas in liquid form at an instant t.
  • FIG. 3 showing the course of the estimation and adjustment process 5 during its first launch, the instant t corresponds here to the time of departure or before the departure of the floating structure.
  • the estimation and adjustment method 5 needs the characteristics of the gas in liquid form, in particular used during step A for the calculation of the maximum authorized temperature of the gas in liquid form contained in the tank on arrival, such as the total mass of gas in liquid form of gas in liquid form, or the specific heat capacity of gas in liquid form. These characteristics can be provided by the control monitor 6, just as for step A.
  • the calculation of the energy balance of the gas in liquid form at time t also requires the average temperature of the gas in liquid form contained in the tank. at time t.
  • the average temperature of the gas can be measured, for example, by means of a temperature sensor located in the tank. It is therefore the supply system 8 which supplies the average temperature in the tank and which transmits this to the control unit so that the estimation and adjustment method 5 can perform the calculation of step D.
  • step E consists in calculating a maximum energy balance.
  • the maximum energy balance corresponds to the limit of the requirements of the place of destination that the energy balance of the gas in liquid form contained in the tank must not exceed, otherwise the cargo will be refused once the floating structure has arrived at the place of destination. .
  • the energy balance of gas in liquid form can however exceed this limit of the maximum energy balance during the journey without consequences, but must imperatively fall under this maximum energy balance before the floating structure reaches the place of destination. It is understood that the maximum energy balance is a target for adjusting the energy balance of the gas in liquid form contained in the tank during the journey.
  • the estimation and adjustment method 5 needs the characteristics of the gas in liquid form and of the maximum authorized temperature of the gas in liquid form contained in the tank at l. 'arrival calculated during step A.
  • the data provided and the calculations performed during step A can therefore be transmitted for the calculation of step E.
  • the estimation and adjustment method 5 has carried out the 'step A', in other words if the safety margin has been determined and selected, said safety margin is also transmitted for be taken into account for the calculation of the maximum energy balance.
  • the maximum energy balance calculated during step E corresponds to the actual maximum energy balance in the absence of a safety margin, or to a virtual maximum energy balance, lower than the actual maximum energy balance due to the taking into account of the safety margin in the calculation.
  • Step F ensuring the estimation of the energy balance of the gas in liquid form contained in the vessel at the end of the journey.
  • Step F makes it possible to determine, while keeping the operating plans for the condensation and cooling functions established during steps B and C, what will be the energy balance of the gas in liquid form contained in the vessel at the arrival of the path. .
  • the calculation is based on the energy balance of the gas in liquid form at time t calculated during step D, as well as on the operating plans for the condensation and cooling functions established during steps B and C.
  • the estimation and adjustment method 5 can then estimate the evolution of the energy balance of the gas in liquid form during this step F, the condensation and cooling functions being able to vary said energy balance of the gas in liquid form depending on whether they are active or inactive and when they are activated and deactivated.
  • the energy balance of the gas in liquid form contained in the tank on arrival can therefore be determined from these data.
  • step G ensures the adjustment of the operating plans of the condensing and cooling functions of the supply system 8.
  • These adjustments are carried out as a function of a comparison between the maximum energy balance calculated during step E and the estimate of the energy balance of the gas in liquid form contained in the tank on arrival, calculated in step F.
  • the estimate of the energy balance gas in liquid form contained in the tank on arrival calculated during step F is based on the operating plans for the condensation and cooling functions established during steps B and C.
  • Step G therefore makes it possible to modify this estimate of the energy balance of the gas in liquid form contained in the tank on arrival by adjusting the operating plans for the condensing and cooling functions.
  • the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is greater than the maximum energy balance, this means that the cargo of gas in liquid form will be on arrival at a saturation pressure of the gas under excessive liquid form in relation to the maximum requirements of the place of destination.
  • the operating plans for the condensation and cooling functions must therefore be adjusted in order to reduce the temperature of the gas in liquid form contained in the vessel and by analogy the energy balance of the gas in liquid form.
  • the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is less than the maximum energy balance, this means that the cargo of gas in liquid form will be on arrival in compliance with the requirements of the place of destination, but it is nevertheless possible to make adjustments allowing an increase in the temperature of the gas in liquid form contained in the tank if these prove to be useful in terms of energy saving.
  • the operating plans for the condensation and cooling functions must therefore be adjusted in order to allow an increase in the temperature of the gas in liquid form contained in the tank and by analogy of the energy balance of the gas in liquid form.
  • Step G therefore determines the optimal adjustments of the operating plans for the condensing and cooling functions of the power system 8 to best meet the situation. Examples of adjustments to operating plans will be presented below.
  • FIG. 4 is a schematic representation of the estimation and adjustment method 5 of the energy balance of gas in liquid form during its repetition by iteration, that is to say when the estimation and adjustment method 5 is started during the journey after having been launched for the first time according to FIG. 3. Most of the steps of the estimation and adjustment process 5 are similar to what has been described previously, and reference will therefore be made to the description of Figure 3 for explanations relating to them. As in FIG.
  • the solid arrows represent the course of each of the steps of the estimation and adjustment process 5
  • the dotted arrows correspond to a transmission of data between two steps of the estimation and adjustment process.
  • step A the result of the calculation of step A, that is to say that of the maximum authorized temperature of the gas in liquid form contained in the tank on arrival, is invariable over time.
  • step A being however used for the calculation of step E, said result must however be kept during the journey, for example by means of a memory of the control unit.
  • Step A ’of selecting the safety margin is also not repeated.
  • the safety margin may however be caused to vary, and this independently of the progress of the estimation and adjustment process 5, or because it has been configured to vary over time when the estimation process and adjustment 5 was started the first time, either because it was changed manually through the control monitor 6.
  • the variation of the safety margin is the reason why step E is kept within the estimation and adjustment method 5 since it is a factor liable to vary over time for the calculation of step E.
  • Step B the estimation and adjustment method 5 when the latter is repeated by iteration, therefore begins with step B.
  • Steps B and C take place as when the estimation and adjustment method is first launched. 5, the amount of phase surplus gas generated from the gas in liquid form always being calculated and supplied by the computer 7.
  • Step D also takes place identically to what has been described above.
  • a step D ' takes place, in parallel with step D, which also calculates the energy balance of the gas in liquid form at time t, but according to a calculation different from that of step D.
  • the calculation the energy balance of the gas in liquid form at the instant t of step D ' is made from an energy balance of the gas in liquid form at an earlier instant t, calculated during a previous iteration of the process of estimation and adjustment 5, as well as from the performance of the condensation and cooling functions from the start of the floating structure.
  • the energy balance of the gas in liquid form at an earlier instant t can be recovered for example from the buffer memory of the control unit.
  • the performance of the condensing and cooling functions results in the heat transfer carried out by the condensing function and cold transfer carried out by the cooling function to the gas cargo in liquid form.
  • the performance of the condensing and cooling functions can therefore be measured by sensors located at the level of the elements of the supply system 8 ensuring the condensation and cooling of the gas in liquid form, which transmits these data to the control box for application during of step D '.
  • the housing of The control is configured to repeat the estimation and adjustment process 5 at regular intervals throughout the journey, according to the sequence of FIG. 4, for example once a day or every six hours.
  • Figure 5 is a general representation of the supply system 8 providing the functions of condensing and cooling gas in liquid form.
  • the supply system 8 interacts with the tank 9 as well as with a set of consumers.
  • the supply system 8 is suitable for managing the temperature of the gas in liquid form in the tank 9.
  • the supply system 8 comprises a liquid inlet 81 and a gas inlet 82.
  • the liquid inlet 81 links the supply system 8 to the tank 9, and is able to suck the gas in liquid form 13, for example by means of a gas pump in liquid form 26.
  • the gas inlet 82 extends from a vessel top which may include a certain quantity of gas phase 14 generated from the gas in liquid form to the supply system 8.
  • the gas phase 14 generated from the gas in liquid form can be sucked for example by a compressor 27 in order to be driven to the supply system 8.
  • the supply system 8 also includes a gas outlet 83 which extends from the supply system 8 to the set of consumers.
  • the consumers can be a propulsion engine 16, an electric generator 17, a combustion chamber 18 or a degassing mat 28.
  • the propulsion engine 16 makes it possible to advance the floating structure during the journey and is suitable for being supplied by the gas phase 14 generated from the gas in liquid form.
  • the electric generator 17 ensures the supply of electricity to the floating structure, for example the lighting or the on-board network of the floating structure and more generally any entity requiring an electrical supply.
  • the gas phase 14 generated from the gas in liquid form therefore serves as fuel for one and / or the other of these consumers.
  • the supply system 8 can suck the gas phase 14 generated from the gas in liquid form into the gas inlet 82.
  • the gas phase 14 generated from the gas under liquid form can then be processed by the supply system 8 and then exit the latter through the gas outlet 83, for example with the aim of supplying the propulsion motor 16 or the electric generator 17.
  • the gas phase 14 generated from the gas in liquid form and not used for powering the propulsion engine 16 or the electric generator 17 represents the surplus gas phase 14 generated from the gas in liquid form.
  • This surplus gaseous phase 14 generated from the gas in liquid form can wander burnt by the combustion chamber 18 or wander released into the atmosphere by the degassing mat 28.
  • Surplus gas phase 14 generated from the gas in liquid form can also be returned to supply system 8 through bypass 84 to be condensed by it. This being done, the gas in condensed liquid form returns to the tank 9 through a liquid outlet 85 of the supply system 8.
  • the latter If there is a need for cooling the gas in liquid form 13, the latter is sucked by the gas pump in liquid form 26 and circulates within the liquid inlet 81 to the supply system 8 where it is cooled there. . The cooled liquid gas 13 then returns to the vessel 9 through the liquid outlet 85.
  • Figure 6 is a schematic representation of a first embodiment of the supply system 8 providing the functions of condensing and cooling gas in liquid form.
  • the supply system 8 manages the temperature of the tank 9.
  • the tank 9 is at least partially filled with a certain quantity of gas in liquid form 13.
  • the tank top can also include a certain amount of gas phase 14 generated from the gas in liquid form.
  • the tank 9 also comprises at least the gas pump in liquid form 26.
  • the tank 9 also comprises a first temperature sensor 10. It is from this first temperature sensor 10 that the average temperature of the gas in liquid form 13 is measured and transmitted to the control unit for the calculation of step D of the estimation and adjustment process.
  • the first temperature sensor 10 of the tank 9 reads the temperature of the gas in liquid form which surround it. If the floating structure comprises a plurality of tanks 9 each comprising a first temperature sensor 10, the temperatures are averaged and then sent to the control unit.
  • the condensing function of the feed system 8 allows the excess gas phase 14 generated from the gas in liquid form to be condensed.
  • the gas phase 14 generated from the gas in liquid form from the tank 9 is sucked by the compressor 27 located outside the tank and constituting a gas phase circuit 15.
  • the gas phase circuit 15 transports the gas.
  • gas phase 14 generated from the gas in liquid form which extends until it emerges at the level of the propulsion engine 16 and / or the electric generator 17 with the aim of being used as fuel by the latter.
  • the gas phase 14 generated from the gas in liquid form and not used for supplying the propulsion engine 16 or the electric generator 17 represents the surplus gas phase 14 generated from the gas in liquid form and circulates within a circuit surplus 19.
  • the surplus circuit 19 allows the circulation of the surplus gas phase 14 generated from the gas in liquid form to a first heat exchanger 11. It is the first heat exchanger 11 which performs the condensation function. of the surplus gas phase 14 generated from the gas in liquid form, and this thanks to a heat exchange between a first pass 111 and a second pass 112.
  • the first pass 111 is crossed by the surplus gas phase 14 generated from the gas in liquid form which is then cooled by the second pass 112, so that the surplus gas phase 14 generated from the gas in liquid form condenses and changes to the liquid state.
  • the condensation function of the supply system 8 when the condensation function of the supply system 8 is active, the surplus gas phase 14 generated from the gas in liquid form is directed to the first heat exchanger 11 via the surplus circuit 19. If the condensing function of the feed system 8 is inactive, then the excess gas phase generated from the gas in liquid form is directed to the combustion chamber 18 to be burnt or else to the degassing mat 28 to be released into the 'atmosphere. In order to condense the surplus of gas phase 14 generated from the gas in liquid form, a fluid having a temperature lower than the state change temperature of the surplus gas phase 14 generated from the gas in liquid form circulates within the second pass 112.
  • the condensed gas circulates in a condensed gas circuit 20 to a return circuit 21 which directs the condensed gas towards the tank
  • the gas in liquid form 13 contained in the tank 9 is first of all sucked by the gas pump in liquid form 26.
  • the gas in liquid form 13 sucked in by the gas pump. gas in liquid form 26 circulates to a second heat exchanger 12. It is the second heat exchanger 12 which performs the function of cooling the gas in liquid form 13, and this thanks to a heat exchange between a third pass 121 and a fourth pass 122.
  • the gas in liquid form 13 sucked by the gas pump in liquid form 26 circulates in the second heat exchanger 12 through the fourth pass 122 and is cooled.
  • a fluid of a temperature lower than the gas in liquid form 13 circulates within the third pass 121.
  • the third pass 121 may be part of a refrigerant circuit external to the supply system 8, and not shown in FIG. 6.
  • the external refrigerant circuit may for example form part of a system of the vacuum evaporator type.
  • the cooled gas in liquid form 13 returns to the tank 9 through the return circuit 21.
  • the cooled gas in liquid form 13 makes it possible to generally cool down. the tank 9, the temperature of the gas in liquid form 13 being cooled below the temperature of the gas in liquid form 13 remaining in the tank 9.
  • the heat exchanges of the first heat exchanger 11 and of the second heat exchanger 12 are measured by a plurality of temperature sensors.
  • the power system 8 comprises two second temperature sensors 24, each located at the inlet and outlet of the first heat exchanger 11, and two third temperature sensors 25, each located at the inlet and outlet of the second heat exchanger 12.
  • the power supply system 8 receives the adjusted operating plans for the condensing and cooling functions.
  • the power supply system 8 modifies its operation according to the adjusted operating plans, being able to program the activation or deactivation of one and / or the other of the condensation and cooling functions.
  • Fig. 7 schematically shows a second embodiment of the power system 8. Compared to the first embodiment shown in Fig. 6, only the implementation of the cooling function of the power system 8 is different. Reference will therefore be made to the description of FIG. 6 for any part of the power supply system 8 common to the two embodiments.
  • the latter implements its cooling function in combination with a function of supplying consumers of the floating structure. Indeed, when the gas phase 14 generated from the gas in liquid form is sucked into the gas phase circuit 15, the latter passes through the second exchanger 12, circulating within the third pass 121. The gas in liquid form 13 contained in the tank 9 is for its part first sucked by the gas pump in liquid form 26 and then circulates through the fourth pass 122 located within the second heat exchanger 12.
  • the heat exchange taking place between the third pass 121 and the fourth pass 122 makes it possible both to increase the temperature of the gas phase 14 generated from the gas in liquid form in order to that this is adequate to supply the propulsion motor 16 and / or the electric generator 17, but also to sub-cool the gas in liquid form 13 sucked by the gas pump in liquid form 26. Subsequently, after having been cooled by the second heat exchanger 12, the cooled gas in liquid form 13 circulates in a cooled gas circuit 23, up to the return circuit 21 which directs the gas in liquid form 13 cooled into the tank 9.
  • the gas in cooled liquid form 13 returns to the tank 9 and makes it possible to cool the latter overall, the temperature of the gas in cooled liquid form 13 being lower than the temperature of the gas in liquid form 13 remaining in the tank 9.
  • the gas in liquid form 13 circulates in this way if the cooling function is active.
  • the supply system 8 therefore allows the condensing and cooling functions to be active or inactive simultaneously, insofar as there is presence of gas phase 14 generated from the gas in liquid form for the cooling function and surplus gas phase 14 generated from the gas in liquid form for the condensation function.
  • Figures 8 to 11 show a curve showing the evolution of the energy balance of the gas in liquid form contained in the tank as a function of time, that is to say during the path of the floating structure, and as a function of operating plans for the condensation and cooling functions shown in the upper part of each of Figures 8 to 11.
  • Figures 8 and 9 correspond respectively to an estimate and an adjustment following a situation where the estimate of the energy balance of the gas under liquid form on arrival is less than the maximum energy balance.
  • FIGS. 10 and 11 correspond respectively to an estimate and an adjustment following a situation where the estimate of the energy balance of gas in liquid form is greater than the maximum energy balance.
  • the initial situation presented is the launching of the estimation and adjustment process at an instant t during the journey of the floating structure between the departure 50 and the arrival 51.
  • Each of the curves of the energy balance as a function of time in Figures 8 to 11 includes an actual maximum energy balance 32, and the virtual maximum energy balance 33, that is, which takes into account the safety margin.
  • the virtual maximum energy balance 33 is less than the actual maximum energy balance 32, the difference depending on the value of the safety margin.
  • the actual maximum energy balance 32 is only present as an indication, because for each of the figures, the adjustment of the energy balance of the gas in liquid form contained in the tank is done according to the virtual maximum energy balance 33.
  • the balance real maximum energy 32 is constant over time.
  • the virtual maximum energy balance 33 gradually approaches the actual maximum energy balance over time, but for reasons of clarity, the virtual maximum energy balance 33 is also represented as being constant over time in FIGS. 8 to 11. .
  • FIGS. 8 to 11 also each represent the curves of the first operating plane 36 of the condensation function and of the second operating plane 37 of the cooling function over time.
  • the ordinates of the operating plan curves have only two positions: a 0 position and a 1 position.
  • the two operating planes are basic in position 1 throughout the journey, that is to say that the condensation and cooling functions are authorized throughout the journey.
  • FIG. 8 therefore represents a first situation during the journey of the floating structure.
  • the estimation and adjustment method is launched, and the energy balance of the gas in liquid form at time t 38 is obtained during step D or D 'of the method of estimation and adjustment, either from the temperature of the gas in liquid form contained in the tank, or from the performance of the condensation and cooling functions from the start 50.
  • the measured energy balance 34 is shown in solid lines because it has already been measured in real time from the start 50, the first measurement corresponding to a balance starting energy 30, determined when the estimation and adjustment process was started for the first time.
  • the change in the energy balance of the gas in liquid form after time t is dotted and represents a forecast energy balance 35 which is therefore evaluated by the estimation and adjustment process, more precisely during step F and from the energy balance of the gas in liquid form at time t 38.
  • the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 therefore corresponds to an estimate of the value of the energy balance when the floating structure arrives at the finish 51 if the operating plans as presented in FIG. 8 are maintained until this arrival 51.
  • the estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is less than the virtual maximum energy balance 33, calculated during step E of the estimation and adjustment process.
  • the gas in liquid form contained in the tank therefore meets the requirements of the place of destination.
  • FIG. 9 represents a curve implementing step G of the estimation and adjustment method according to the invention, with operating plans adjusted with respect to those presented in FIG. 8.
  • the estimation and adjustment method The adjustment always takes place at the instant t and after the observation that the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 was less than the virtual maximum energy balance 33.
  • the estimation process and adjustment therefore adjusts operating plans to ensure energy savings.
  • the first operating plane 36 of the condensation function is adjusted to be kept active, either in position 1, until the arrival 51 of the journey.
  • the excess gas phase generated from the gas in liquid form is therefore fully condensed, which does not lead to losses of the cargo.
  • the estimation and adjustment method implements one or more iterations in which the adjustment of the second operating plan 37 of the cooling function and the recalculation of the cooling function alternate successively. estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51.
  • the adjustment of the second operating plan 37 of the cooling function consists in selecting an instant when the cooling function is deactivated in taking arrival 51 as the target.
  • the iterations continue as long as the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is less than the virtual maximum energy balance 33, the selected instant at which the cooling function is deactivated being at each new occurrence more and more prior to the previous one, and the calculation of the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 being carried out each time with the new adjustment of the second operating plan 37 of the previously determined cooling function.
  • These iterations thus make it possible to determine the optimum estimated instant dt so that the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 does not exceed the virtual maximum energy balance 33, but while deactivating the Cooling function as early as possible in order to save maximum energy.
  • the estimation and adjustment process adjusts the second operating plan 37 of the cooling function and transmits it to the supply system.
  • the second adjusted operating plane 37 of the cooling function can be seen in figure 9, where it can be seen that the cooling function goes to position 0 as a result of the adjustment, causing it to be deactivated at the estimated time dt.
  • the cooling function is kept deactivated. Knowing this, and given that the condensation function is still active, the temperature of the gas in liquid form contained in the tank, and by analogy the energy balance of the gas in liquid form contained in the tank, presents a more significant increase between l 'estimated instant dt and arrival 51 as on the curve of FIG. 8.
  • the estimated instant dt thanks to the iterations of the estimation and adjustment process mentioned above, is however calculated so as to cause an increase in l estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 but without the latter exceeding the virtual maximum energy balance 33 on arrival 51 at the place of destination.
  • the gas in liquid form contained in the tank therefore always meets the requirements of the place of destination, but energy savings are made between the estimated time dt and arrival 51 since the cooling function is deactivated during this period. time consuming and therefore does not need to be supplied with energy.
  • the estimation and adjustment process therefore made it possible to limit the waste of energy while maintaining the gas in liquid form in accordance with the requirements of the place of destination.
  • FIG. 10 still represents the curve of the evolution of the energy balance of the gas in liquid form contained in the tank over time, but this time in the opposite situation to FIGS. 8 and 9.
  • the estimation and adjustment process calculates the estimate of the energy balance 31 of the gas in the form liquid contained in the tank on arrival 51 from the energy balance of the gas in liquid form at time t 38.
  • the estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is greater than the virtual maximum energy balance 33, and even the actual maximum energy balance 32, despite the constant activation of the cooling function throughout the journey as evidenced by the second plan of operation 37 of the cooling function visible on the a figure 10.
  • the gas in liquid form contained in the vessel upon arrival 51, and if the operating plans of the condensing and cooling functions are not adjusted, the gas in liquid form contained in the vessel will not meet the requirements of the place of destination, resulting in the refusal of the cargo by the latter.
  • it is essential to lower the saturation pressure of the gas in liquid form contained in the tank, leading to a decrease in the energy balance of the gas in liquid form contained in the tank as well, in order to meet the requirements of the place of destination.
  • a given instant of t is indicated in FIG. 10 and corresponds to the instant when the forecast energy balance 35 exceeds the virtual maximum energy balance 33, that is to say the instant from which the energy balance of the gas in liquid form contained in the tank no longer meets the requirements of the place of destination.
  • the estimation and adjustment method adjusts the second operating plan 37 of the control function. cooling so that the latter is active until the arrival 51 of the journey.
  • the main factor causing an increase in the temperature of the gas in liquid form contained in the tank as well as in the energy balance thereof is due to the condensation of the surplus gas phase generated from the gas in the form liquid.
  • the temperature of the condensed gas is higher than the temperature of the gas in liquid form contained in the tank.
  • the return of the condensed gas to the tank therefore leads in the long run to an increase in the temperature of the gas in liquid form contained in the tank.
  • the best way to stop such a rise in temperature is therefore to implement the first operating plan 36 adjusted for the condensation function so that the latter is deactivated.
  • the estimation and adjustment method adjusts the first operating plane 36 of the condensation function.
  • the condensation function is therefore programmed to be deactivated at the given instant of t, that is to say at the moment when the estimated energy balance 34 reaches the virtual maximum energy balance 33.
  • the estimation and evaluation process adjustment thus allows the condensing function to be kept active as long as possible.
  • the condensation function is deactivated.
  • the increase in the energy balance of the gas in liquid form contained in the tank is then stopped, by deactivating the condensation function, but also by keeping the cooling function in operation.
  • the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is therefore maintained at the level of the virtual maximum energy balance 33, which corresponds to the requirements of the place of destination. In this configuration, between the given time of summer and the arrival 51, the surplus gas phase generated from the gas in liquid form is no longer condensed by the supply system.
  • FIG. 12 represents a first example of a curve of the evolution of the safety margin 60 as a function of time, from the start 50 to the finish 51.
  • This first example shows a safety margin 60 which decreases over time.
  • the closer the floating structure is to the place of destination the more the safety margin 60 decreases and therefore the closer the virtual maximum energy balance approaches the actual maximum energy balance, given that the virtual maximum energy balance is recalculated at each step E by iterations of the estimation and adjustment process with the safety margin 60 which decreases as the floating structure approaches its destination.
  • the value of the safety margin can also depend on the amount of information that the personnel of the floating structure have concerning the trip, for example the meteorological conditions during this one or the sea conditions. Higher safety 60 may be indicated if there is no information regarding the trip conditions.
  • FIG. 13 represents a second example of the evolution of the safety margin 60 over time.
  • the safety margin 60 decreases over time, just as in the previous figure.
  • an unforeseen event 61 may occur.
  • Event 61 can be a natural phenomenon, for example a meteorological phenomenon such as a storm or fog, likely to slow down the speed of the floating structure.
  • Event 61 can also be a mechanical incident, for example a failure of the floating structure, capable of immobilizing the latter for a not insignificant period of time. Such an event 61 therefore lengthens the travel time to the place of destination. In this situation, the safety margin 60 as it was programmed at the start 50 is no longer adequate for the journey.
  • the safety margin 60 is increased when the event 61 has occurred, then decreases again over time. This modification guarantees a safety concerning the virtual maximum energy balance and makes it possible to avoid errors which could potentially lead to the refusal of the gas cargo in liquid form upon arrival at the place of destination.
  • the invention achieves the goal it had set itself, and makes it possible to propose a method for estimating and adjusting an energy balance of a gas in the form of liquid contained in a tank of a floating structure so that the said energy balance of the gas in liquid form complies with the requirements of a place of destination where the delivery of the gas in liquid form is intended, while adjusting consumption as much as possible energy from the power system.
  • Variants not described here could be implemented without departing from the context of the invention, as long as, according to the invention, they include a method of estimating the fit according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a method (5) for estimating and adjusting an energy balance of a gas in liquid form contained in at least one tank of a floating structure intended to deliver said gas in liquid form to a given place of destination, the floating structure comprising a system (8) for supplying fuel to a consumer of the floating structure (1) capable of carrying out a function of condensation of a gas phase generated from the gas in liquid form and a function of cooling the gas in liquid form, characterized in that the estimating and adjusting method (5) comprises a plurality of steps leading to the adjustment of operating plans of the condensation and cooling functions so that the energy balance of the gas in liquid form complies with the requirements of the place of destination on arrival.

Description

Description Description
Titre de l'invention : Procédé d’estimation et d’ajustement d’un bilan énergie d’un gaz sous forme liquide contenu dans une cuveTitle of the invention: Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank
La présente invention se rapport au domaine du rransporr de gaz naturel, et plus particulièrement au domaine de la régulation de température dudit gaz naturel au cours d’un tel transport. The present invention relates to the field of transporting natural gas, and more particularly to the field of regulating the temperature of said natural gas during such transport.
Afin de transporter et/ou de stocker plus facilement du gaz sous forme liquide, tel que du gaz naturel sous forme liquide, sur de longues distances, le gaz est généralement liquéfié en le refroidissant à des températures cryogéniques, par exemple - 163°C à la pression atmosphérique, afin d’obtenir du gaz naturel liquéfié, communément connu sous l’acronyme « GNL », ou encore « LNG » pour « Liquefied Natural Gas ». Ce gaz naturel liquéfié est ensuite chargé dans des cuves de stockages spécialisées de l’ouvrage flottant. In order to more easily transport and / or store gas in liquid form, such as natural gas in liquid form, over long distances, the gas is usually liquefied by cooling it to cryogenic temperatures, for example - 163 ° C to atmospheric pressure, in order to obtain liquefied natural gas, commonly known by the acronym “LNG”, or “LNG” for “Liquefied Natural Gas”. This liquefied natural gas is then loaded into specialized storage tanks of the floating structure.
De relies cuves ne sont néanmoins jamais parfaitement isolées rhermiquemenr de sorte qu’une évaporation naturelle du gaz est inévitable, ce phénomène étant appelé BOG, acronyme de l’anglais Boil-Off Gas. Les cuves de stockage de l’ouvrage flottant comprennent ainsi à la fois du gaz naturel sous une forme liquide et du gaz naturel sous forme gazeuse, la phase gazeuse du gaz naturel formant le ciel de cuve. However, the connected tanks are never perfectly thermally insulated so that natural evaporation of the gas is inevitable, this phenomenon being called BOG, acronym for Boil-Off Gas. The storage tanks of the floating structure thus comprise both natural gas in liquid form and natural gas in gaseous form, the gaseous phase of natural gas forming the vessel head.
De façon connue, au moins une partie du gaz naturel présent dans la cuve sous forme gazeuse peut être utilisée pour alimenter un moteur prévu pour pourvoir aux besoins énergétiques de fonctionnement de l’ouvrage flottant, notamment pour sa propulsion et/ou sa production d'électricité pour les équipements de bord. A cet effet, il est notamment connu de faire circuler le gaz naturel à l’état gazeux au travers d’au moins un système de traitement du gaz naturel, de manière à permettre son réchauffement et sa compression, ledit système comprenant un échangeur de chaleur utilisé comme surchauffeur et un compresseur, tous deux placés en amont du moteur. In a known manner, at least part of the natural gas present in the tank in gaseous form can be used to supply an engine intended to meet the energy needs for the operation of the floating structure, in particular for its propulsion and / or its production of water. electricity for on-board equipment. To this end, it is in particular known to circulate natural gas in the gaseous state through at least one natural gas treatment system, so as to allow its heating and its compression, said system comprising a heat exchanger. used as a superheater and a compressor, both placed upstream of the engine.
Il est également connu de configurer le système de traitement du gaz naturel de sorte qu’il puisse permettre la condensation d’une partie prélevée du gaz naturel à l’état gazeux. La condensation du gaz naturel peut notamment être requise lorsque la quantité de gaz naturel évaporé dans la cuve est trop importante par rapport aux besoins énergétiques de fonctionnement de l’ouvrage flottant, le système de traitement du gaz naturel permet alors de condenser le gaz naturel évaporé présent dans la cuve afin de l’y renvoyer à l’état liquide. Un tel système de liquéfaction peut notamment être mis en œuvre lorsque l’ouvrage flottant est à l’arrêt et que la consommation de gaz naturel gazeux par son ou ses moteurs est nulle, ou quasiment nulle. It is also known to configure the natural gas treatment system so that it can allow the condensation of a part taken from the natural gas in the state. gaseous. The condensation of natural gas may in particular be required when the quantity of natural gas evaporated in the tank is too large in relation to the operating energy needs of the floating structure, the natural gas treatment system then allows the evaporated natural gas to be condensed. present in the tank in order to return it to the liquid state. Such a liquefaction system can in particular be implemented when the floating structure is stopped and the consumption of gaseous natural gas by its engine or engines is zero, or almost zero.
Une donnée indispensable à prendre en compte pour ce type de transport est l’état du gaz naturel sous forme liquide lorsque l’ouvrage flottant arrive à destination pour décharger sa cargaison. En effet, les stations de réception de gaz naturel sous forme liquide présentent des exigences quant aux caractéristiques du gaz naturel sous forme liquide livré, telles que la température ou la pression de saturation dudit gaz naturel sous forme liquide. Le gestionnaire de l’installation du lieu de destination peut donc refuser le déchargement de la cargaison de gaz naturel sous forme liquide si celle-ci n’est pas conforme aux exigences du lieu de destination. La température étant un facteur variable qui évolue de manière significative au cours du transport, le risque majeur pris lors de ce type de transport est que le gaz naturel à l’état liquide arrive à destination à une pression de saturation et/ou une température qui ne correspond pas aux critères attendus par le gestionnaire de l’installation du lieu de destination, impliquant ainsi un potentiel refus ou un déclassement de la cargaison. An essential data to take into account for this type of transport is the state of natural gas in liquid form when the floating structure arrives at its destination to unload its cargo. In fact, the stations for receiving natural gas in liquid form have requirements with regard to the characteristics of the natural gas in liquid form delivered, such as the temperature or the saturation pressure of said natural gas in liquid form. The manager of the facility at the place of destination can therefore refuse the unloading of the cargo of natural gas in liquid form if it does not comply with the requirements of the place of destination. Since temperature is a variable factor which changes significantly during transport, the major risk taken during this type of transport is that the natural gas in the liquid state arrives at its destination at a saturation pressure and / or a temperature which does not meet the criteria expected by the manager of the facility at the place of destination, thus implying a potential rejection or downgrading of the cargo.
La gestion de la température de la cargaison soulève deux problèmes directement liés à un système d’alimentation en carburant d’un consommateur de l’ouvrage flottant. Le premier problème concerne la fonction de refroidissement du système d’alimentation. L’abaissement de la température et/ou de la pression de saturation du gaz naturel sous forme liquide est superflu si celui-ci conduit à un écart très élevé par rapport aux exigences du lieu de destination. Dans cette situation, la fonction de refroidissement du système d’alimentation est utilisée de manière excessive et entraîne une consommation d’énergie inutile. Le deuxième problème concerne la fonction de condensation du système d’alimentation. Lorsque la fonction de condensation est active, le surplus de phase gazeuse générée depuis le gaz sous forme liquide repasse en phase liquide et retourne dans la cuve de transport. Toutefois, le gaz sous forme liquide condensé peut présenter une température plus élevée que le gaz sous forme liquide présent dans la cuve. Le retour du gaz sous forme liquide condensé dans la cuve peur entraîner donc une hausse générale de la température du gaz sous forme liquide présent dans la cuve, conduisant ainsi au risque que la cargaison de gaz sous forme liquide ne soir plus conforme aux exigences du lieu de destination et entraînant un refus de la livraison. A contrario, l'inactivité de la fonction de condensation du système d’alimentation entraîne l’élimination du surplus de la phase gazeuse générée depuis le gaz sous forme liquide, par exemple par combustion ou par relargage dans l’air, et donc un gaspillage de la cargaison. Cargo temperature management raises two issues directly related to a buoyancy consumer fuel supply system. The first problem concerns the cooling function of the power system. Lowering the temperature and / or the saturation pressure of natural gas in liquid form is superfluous if this leads to a very large deviation from the requirements of the place of destination. In this situation, the cooling function of the power system is overused and leads to unnecessary power consumption. The second problem concerns the condensing function of the power system. When the condensation function is active, the surplus gas phase generated from the gas in liquid form reverts to the liquid phase and returns to the transport tank. However, the gas in condensed liquid form may have a higher temperature than the gas in liquid form present in the vessel. The return of the gas in liquid form condensed in the tank can therefore lead to a general increase in the temperature of the gas in liquid form present in the tank, thus leading to the risk that the gas cargo in liquid form no longer meets the requirements of the place. of destination and resulting in refusal of delivery. Conversely, the inactivity of the condensing function of the supply system leads to the elimination of the surplus of the gas phase generated from the gas in liquid form, for example by combustion or by release into the air, and therefore a waste. of cargo.
La problématique générale est donc de trouver un juste milieu entre les fonctions de condensation et de refroidissement du système d’alimentation afin que la cargaison soir conforme aux exigences du lieu de destination, mais tour en limitant la consommation d’énergie dû à l’élimination de la phase gazeuse générée depuis le gaz sous forme liquide et/ou à la surconsommation de la fonction de refroidissement du système d’alimentation. La présente invention propose donc d’optimiser l’utilisation du système de liquéfaction de manière à garantir que la cargaison à la livraison sera en dessous du critère d’acceptation par le lieu de destination, sans pour autant trop s’écarter de ce crirère, de manière à éviter route surconsommation liée à la fonction de refroidissement du système de d’alimentation. The general problem is therefore to find a balance between the condensing and cooling functions of the supply system so that the cargo meets the requirements of the place of destination, but in turn limiting the energy consumption due to the disposal. of the gas phase generated from the gas in liquid form and / or the overconsumption of the cooling function of the supply system. The present invention therefore proposes to optimize the use of the liquefaction system so as to guarantee that the cargo on delivery will be below the acceptance criterion by the place of destination, without however deviating too much from this criterion, so as to avoid road overconsumption related to the cooling function of the power system.
A ce rirre, l’invention consiste en un procédé d’estimation et d’ajustement d’un bilan énergie d’un gaz sous forme liquide contenu dans au moins une cuve d’un ouvrage flottant destiné à livrer ledit gaz sous forme liquide à un lieu de destination donné, l’ouvrage flottant comprenant un système d’alimentation en carburant d’un consommateur de l’ouvrage flottant âpre à mettre en œuvre une fonction de condensation d’une phase gazeuse générée depuis le gaz sous forme liquide et/ou une fonction de refroidissement du gaz sous forme liquide, caractérisé en ce que le procédé d’estimation et d’ajustement comprend les étapes suivantes : In this regard, the invention consists of a method for estimating and adjusting an energy balance of a gas in liquid form contained in at least one vessel of a floating structure intended to deliver said gas in liquid form to a given place of destination, the floating structure comprising a system for supplying fuel to a consumer of the floating structure keen to implement a function of condensing a gas phase generated from the gas in liquid form and / or a function of cooling gas in liquid form, characterized in that the estimation and adjustment method comprises the following steps:
- une étape A de calcul de la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée sur le lieu de destination, à partir des exigences de pression de saturation maximale de gaz sous forme liquide du lieu de destination et des caractéristiques du gaz sous forme liquide contenu dans la cuve, - a step A of calculating the maximum authorized temperature of the gas in liquid form contained in the tank on arrival at the place of destination, from the maximum saturation pressure requirements of gas in liquid form at the place of destination and characteristics of the gas in liquid form contained in the tank,
- une étape B d’établissement d’un premier plan d’exploitation de la fonction de condensation de la phase gazeuse générée depuis le gaz sous forme liquide opérée par le système d’alimentation jusqu’à l’arrivée au lieu de destination, ledit premier plan d’exploitation étant établi à partir d’une estimation d’un surplus de phase gazeuse générée depuis le gaz sous forme liquide dans la cuve au cours d’un trajet, a step B of establishing a first operating plan of the function of condensation of the gas phase generated from the gas in liquid form operated by the supply system until the arrival at the place of destination, said first operating plan being established from an estimate of a surplus of gas phase generated from the gas in liquid form in the vessel during a journey,
- une étape C d’établissement d’un deuxième plan d’exploitation de la fonction de refroidissement du gaz sous forme liquide opérée par le système d’alimentation jusqu’à l’arrivée au lieu de destination, ledit deuxième plan d’exploitation étant établi à partir de l’estimation du surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet, a step C of establishing a second operating plan for the cooling function of gas in liquid form operated by the supply system until arrival at the place of destination, said second operating plan being established from the estimate of the surplus gas phase generated from the gas in liquid form during the journey,
- une étape D de calcul d’un bilan énergie du gaz sous forme liquide à un instant t à partir de la température du gaz sous forme liquide contenu dans la cuve et des propriétés du gaz sous forme liquide contenu dans la cuve, - a step D of calculating an energy balance of the gas in liquid form at an instant t from the temperature of the gas in liquid form contained in the vessel and the properties of the gas in liquid form contained in the vessel,
- une étape E de calcul d’un bilan énergie maximal à partir de la température maximale autorisée du gaz sous forme liquide, calculée à l’étape A, et des caractéristiques du gaz sous forme liquide contenu dans la cuve, - a step E of calculating a maximum energy balance from the maximum authorized temperature of the gas in liquid form, calculated in step A, and the characteristics of the gas in liquid form contained in the tank,
- une étape F d’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet à partir des plans d’exploitation des fonctions de condensation et de refroidissement déterminés aux étapes B et C et du bilan énergie du gaz sous forme liquide à l’instant t, déterminé à l’étape D, - a step F of estimating the energy balance of the gas in liquid form contained in the vessel at the arrival of the journey from the operating plans for the condensation and cooling functions determined in steps B and C and from the energy balance of the gas in liquid form at time t, determined in step D,
- une étape G d’ajustement du premier plan d’exploitation et/ou du deuxième plan d’exploitation, - une étape H de mise en œuvre du système d’alimentation selon les plans d’exploitation des fonctions de condensation et de refroidissement du gaz sous forme liquide ajustés à l’étape G. - a step G of adjusting the first operating plan and / or the second operating plan, a step H of implementing the supply system according to the operating plans for the condensation and cooling functions of gas in liquid form adjusted in step G.
L‘ouvrage flottant peut par exemple être un navire de transport apte à stocker et/ou transporter du gaz sous forme liquide, par exemple du gaz naturel sous forme liquide, ou GNL. Le système d’alimentation en carburant d’un consommateur de l’ouvrage flottant assure la gestion de la phase gazeuse générée depuis le gaz sous forme liquide se formant dans la cuve en l’utilisant à bon escient pour l’alimentation d’un ou plusieurs consommateurs tels qu’un moteur de propulsion de l’ouvrage flottant, ou un générateur électrique de celui-ci. Parallèlement à cela, le système d’alimentation en carburant d’un consommateur de l’ouvrage flottant est apte à gérer un état du gaz sous forme liquide contenu dans la cuve, et ce grâce à sa fonction de refroidissement et sa fonction de condensation. Le terme « système d’alimentation en carburant d’un consommateur de l’ouvrage flottant » est par la suite simplifié en « système d’alimentation ». The floating structure may for example be a transport vessel capable of storing and / or transporting gas in liquid form, for example natural gas in liquid form, or LNG. The fuel supply system of a consumer of the floating structure ensures the management of the gaseous phase generated from the gas in liquid form forming in the tank by using it wisely for the supply of one or more several consumers such as a propulsion engine of the floating structure, or an electric generator thereof. At the same time, the fuel supply system of a consumer of the floating structure is able to manage a state of the gas in liquid form contained in the tank, thanks to its cooling function and its condensing function. The term "fuel supply system of a consumer of the floating structure" is hereinafter simplified to "supply system".
Le procédé d’estimation et d’ajustement permet de réguler les caractéristiques du gaz sous forme liquide de façon à ce qu’une cargaison de gaz sous forme liquide soit livrée au lieu de destination en présentant une pression de saturation du gaz sous forme liquide conforme aux exigences du lieu de destination, et ce tout en minimisant la consommation d’énergie nécessaire à la régulation de la température. Le terme bilan énergie est employé pour désigner une donnée chiffrée obtenu par un calcul pouvant découler d’une pluralité de constantes physiques du gaz, telles que la pression de saturation du gaz sous forme liquide ou la température du gaz sous forme liquide, ou encore de l’énergie apportée ou prélevée par les fonctions de refroidissement ou de condensation du système d’alimentation. Le procédé d’estimation et d’ajustement peut être initié avant un départ de l’ouvrage flottant et/ou durant le trajet entre un point de départ de l’ouvrage flottant, par exemple un terminal de liquéfaction de gaz, et le lieu de destination où la cargaison de gaz sous forme liquide est livrée. La cuve contenant le gaz sous forme liquide est une cuve conforme et adaptée au transport d’une telle cargaison, et il peut par exemple s’agir d’une cuve à membranes primaire et secondaire, chacune des membranes étant thermiquement isolée. The estimation and adjustment process regulates the characteristics of the gas in liquid form so that a cargo of gas in liquid form is delivered to the place of destination having a saturation pressure of the gas in liquid form in accordance with the requirements of the destination, while minimizing the energy consumption required for temperature regulation. The term energy balance is used to denote a numerical data obtained by a calculation which may result from a plurality of physical constants of the gas, such as the saturation pressure of the gas in liquid form or the temperature of the gas in liquid form, or else from the energy supplied or taken by the cooling or condensing functions of the power supply system. The estimation and adjustment process can be initiated before a departure from the floating structure and / or during the journey between a starting point of the floating structure, for example a gas liquefaction terminal, and the place of the destination to which the cargo of gas in liquid form is delivered. The tank containing the gas in liquid form is a tank which conforms and is suitable for the transport of such a cargo, and it may for example be a tank with primary and secondary membranes, each of the membranes being thermally insulated.
Le procédé d’estimation et d’ajustement débute par l’étape A qui consiste d’une manière générale à déterminer les conditions d’acceptation de la cargaison de gaz sous forme liquide par le lieu de destination, plus particulièrement la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée. Il est toutefois possible de raisonner en termes de pression de saturation du gaz sous forme liquide ou une autre valeur liée à la pression et/ou à la température. Le calcul d’une telle valeur cible à ne pas dépasser dépend des exigences en pression de saturation du gaz sous forme liquide et de la température du gaz sous forme liquide du lieu de destination et de caractéristiques constantes du gaz. Ainsi, on comprend bien que l’exigence du terminal recevant le gaz sous forme liquide a pour but d’éviter une vaporisation massive du gaz naturel lors de son transfert entre le bateau et le terminal en imposant des conditions d’acceptation de la cargaison. La température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée dépend des propriétés du gaz sous forme liquide transportée que sont la masse totale de gaz sous forme liquide et la capacité calorifique massique du gaz sous forme liquide. Ces deux données peuvent par exemple être apportés par un quelconque document relatif à la cargaison, tel qu’une fiche technique, et peuvent être prises en compte par le système d’alimentation, par exemple par le biais d’un moniteur de commande. The estimation and adjustment process begins with step A which generally consists in determining the conditions for accepting the gas cargo in liquid form by the place of destination, more particularly the maximum authorized temperature of the vessel. gas in liquid form contained in the tank on arrival. It is however possible to reason in terms of the saturation pressure of the gas in liquid form or another value linked to the pressure and / or to the temperature. The calculation of such a target value not to be exceeded depends on the saturation pressure requirements of the gas in liquid form and on the temperature of the gas in liquid form at the place of destination and on the constant characteristics of the gas. Thus, it is understood that the requirement of the terminal receiving gas in liquid form is intended to prevent massive vaporization of natural gas during its transfer between the ship and the terminal by imposing conditions for acceptance of the cargo. The maximum permitted temperature of the gas in liquid form contained in the tank on arrival depends on the properties of the gas in liquid form transported, namely the total mass of gas in liquid form and the specific heat capacity of the gas in liquid form. These two data can for example be provided by any document relating to the cargo, such as a technical sheet, and can be taken into account by the supply system, for example by means of a control monitor.
La température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée calculée par le procédé d’estimation et d’ajustement dépend également des exigences de pression de saturation maximale du gaz sous forme liquide déterminées par le gestionnaire de l’installation du lieu de destination. Une telle donnée est également connue par le biais d’une quelconque source d’information fournie par le lieu de destination et peut également être enregistrée dans le système d’alimentation d’une manière identique à ce qui a été décrit précédemment. Les étapes B et C consistent en la mise en place d’un plan d’exploitation pour chacune des fonctions du système d’alimentation. Par plan d’exploitation, il faut comprendre un déroulé de l’activité de chacune des fonctions au cours du trajet permettant de parvenir au lieu de destination. Chacune des fonctions, à savoir la fonction de condensation et la fonction de refroidissement, est soit active, soit inactive et le système d’alimentation peut passer d’un mode à l’autre. Le plan d’exploitation de chacune des fonctions détermine donc des séquences actives et inactives de chacune des fonctions au cours du trajet, qui se traduisent par un réchauffement ou un refroidissement de la cargaison, selon le cas.The maximum authorized temperature of the gas in liquid form contained in the tank on arrival calculated by the estimation and adjustment process also depends on the maximum saturation pressure requirements of the gas in liquid form determined by the plant manager. of the place of destination. Such data is also known by means of any source of information provided by the place of destination and can also be recorded in the power supply system in a manner identical to what has been described previously. Steps B and C consist of setting up an operating plan for each function of the power system. By operating plan, it is necessary to understand a progress of the activity of each of the functions during the journey allowing to reach the place of destination. Each of the functions, namely the condensing function and the cooling function, is either active or inactive and the power system can switch from one mode to the other. The operating plan for each of the functions therefore determines the active and inactive sequences of each of the functions during the journey, which result in heating or cooling of the cargo, as the case may be.
Lorsque l’on qualifie les fonctions de condensation et de refroidissement comme étant actives, cela signifie que le système d’alimentation est autorisé à mettre en œuvre ses fonctions de condensation et/ou de refroidissement. A contrario, lorsque l’on qualifie les fonctions de condensation et de refroidissement comme étant inactives, cela signifie que le système d’alimentation n’est pas autorisé à mettre en œuvre ses fonctions de condensation et/ou de refroidissement. Lorsque la fonction de refroidissement est active, le système d’alimentation est autorisé à refroidir le gaz sous forme liquide sous réserve qu’il y ait présence de phase gazeuse générée depuis le gaz sous forme liquide. Lorsque la fonction de condensation est active, le système d’alimentation est apte à condenser le gaz sous forme liquide sous réserve qu’il y ait présence de surplus de phase gazeuse générée depuis le gaz sous forme liquide. When the condensing and cooling functions are qualified as active, it means that the power system is allowed to perform its condensing and / or cooling functions. Conversely, when the condensing and cooling functions are qualified as inactive, it means that the supply system is not authorized to implement its condensing and / or cooling functions. When the cooling function is active, the supply system is allowed to cool the gas in liquid form provided that there is presence of gas phase generated from the gas in liquid form. When the condensation function is active, the supply system is able to condense the gas in liquid form provided that there is presence of surplus gas phase generated from the gas in liquid form.
Lorsque la fonction de condensation est active, la température du gaz sous forme liquide contenu dans la cuve peut avoir tendance à augmenter. Concernant la fonction de refroidissement, celle-ci entraîne un abaissement de la température lorsqu’elle est activée. La température varie différemment lorsque les deux fonctions agissent de manière simultanée, ou peut varier naturellement en fonction des conditions environnementales lors du trajet. On comprend toutefois que les variations de température majeures survenant au cours du trajet dépendent de l’activation des plans d’exploitation mis en œuvre lors des étapes B et C du procédé d’estimation et d’ajustement. When the condensation function is active, the temperature of the gas in liquid form contained in the tank may tend to increase. Regarding the cooling function, this causes a lowering of the temperature when activated. The temperature varies differently when the two functions act simultaneously, or can vary naturally depending on the environmental conditions during the journey. It is understood, however, that the major temperature variations occurring during the journey depend on the activation of the operating plans implemented during steps B and C of the estimation and adjustment process.
Les plans d’exploitation des fonctions de condensation ou de refroidissement du système d’alimentation sont donc des logigrammes déterminant à quel instant t du trajet chacune des fonctions doit s’activer ou se désactiver. Il est également possible que le plan d’exploitation consiste en un maintien actif ou inactif de l’une ou l’autre des fonctions et ce durant l’intégralité du trajet. The operating plans for the condensing or cooling functions of the supply system are therefore flowcharts determining at what time t during the journey each of the functions must be activated or deactivated. It is also possible that the operating plan consists of maintaining active or inactive one or the other of the functions and this during the entire journey.
Chacun de ces plans d’exploitation est déterminé à partir de l’estimation du surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet. La phase gazeuse générée depuis le gaz sous forme liquide émane de la cuve de transport de manière naturelle ou bien de manière forcée. Cette phase gazeuse peut par la suite être utilisée pour alimenter l’ouvrage flottant, par exemple le moteur permettant la propulsion de l’ouvrage flottant, ou bien un générateur alimentant l’ouvrage flottant en électricité. La phase gazeuse générée depuis le gaz sous forme liquide non utilisée pour alimenter l’ouvrage flottant représente le surplus de phase gazeuse générée depuis le gaz sous forme liquide. Lorsque la fonction de condensation et la fonction de refroidissement agissent de manière simultanée, cela signifie qu’il y a un surplus de phase gazeuse générée depuis le gaz sous forme liquide circulant au sein du système d’alimentation. Each of these operating plans is determined from the estimate of the excess gas phase generated from the gas in liquid form during the journey. The gas phase generated from the gas in liquid form emanates from the transport tank either naturally or in a forced manner. This gaseous phase can subsequently be used to supply the floating structure, for example the engine for propelling the floating structure, or a generator supplying the floating structure with electricity. The gas phase generated from the gas in liquid form not used to supply the floating structure represents the surplus gas phase generated from the gas in liquid form. When the condensing function and the cooling function act simultaneously, it means that there is an excess gas phase generated from the gas in liquid form circulating in the supply system.
La présence de surplus de phase gazeuse générée depuis le gaz sous forme liquide peut être détectée par un système tiers au système de gestion de l’invention ou directement par le biais du procédé d’estimation et d’ajustement selon l’invention. The presence of excess gas phase generated from the gas in liquid form can be detected by a system third party to the management system of the invention or directly through the estimation and adjustment method according to the invention.
L’étape D du procédé d’estimation et d’ajustement consiste à calculer le bilan énergie du gaz sous forme liquide à l’instant t, c’est-à-dire à partir de données mesurées à l’instant t. L’étape D est indépendante des étapes B et C et peut ainsi se dérouler de manière simultanée ou antérieure aux étapes B et C. Le calcul du bilan énergie lors de l’étape D dépend de la masse totale de gaz sous forme liquide et de la capacité calorifique massique du gaz sous forme liquide, constantes utilisées lors de l’étape A, ainsi que de la température moyenne du gaz sous forme liquide contenu dans la cuve à l’instant t. Plus particulièrement, le bilan d’énergie du gaz sous forme liquide est calculé à partir de la formule suivante : Step D of the estimation and adjustment process consists in calculating the energy balance of the gas in liquid form at time t, that is to say from data measured at time t. Step D is independent of steps B and C and can thus take place simultaneously or prior to steps B and C. The calculation of the energy balance during step D depends on the total mass of gas in liquid form and on the specific heat capacity of the gas in liquid form, constants used during step A, as well as the average temperature of the gas in liquid form contained in the vessel at time t. More specifically, the energy balance of gas in liquid form is calculated from the following formula:
Be = mGaz x Cp x T Be étant le bilan énergie du gaz sous forme liquide à l’instant t, mGaz étant la masse totale du gaz sous forme liquide, Cp étant la capacité calorifique massique du gaz sous forme liquide et T étant la température du gaz sous forme liquide à l’instant t. Be = mGas x Cp x T Be being the energy balance of the gas in liquid form at time t, mGas being the total mass of the gas in liquid form, Cp being the mass heat capacity of the gas in liquid form and T being the temperature of the gas in liquid form at l 'instant t.
La température du gaz sous forme liquide peut être mesurée par au moins un capteur de température disposé dans la cuve. Ladite température est alors prise en compte lors du calcul de l’étape D. La température peut être adressée sous forme d’une moyenne, par exemple si plusieurs capteurs de température sont mis en place dans la cuve, ou si l’ouvrage flottant comprend plusieurs cuves, chacune étant pourvue d’un ou plusieurs capteurs de température. Le bilan énergie du gaz sous forme liquide à l’instant t calculé lors de cette étape D est utilisé lors de la suite du procédé d’estimation et d’ajustement.The temperature of the gas in liquid form can be measured by at least one temperature sensor arranged in the tank. Said temperature is then taken into account during the calculation of step D. The temperature can be addressed in the form of an average, for example if several temperature sensors are installed in the tank, or if the floating structure comprises several tanks, each being provided with one or more temperature sensors. The energy balance of the gas in liquid form at time t calculated during this step D is used during the rest of the estimation and adjustment process.
L’étape E consiste en un calcul d’un bilan énergie similaire au bilan énergie calculé à l’étape D, mais le bilan énergie de l’étape E est le bilan énergie maximal, relatif à la température maximale autorisée du gaz sous forme liquide calculé à l’étape A. Le calcul du bilan énergie maximal calculé lors de l’étape E est indépendant du bilan énergie du gaz sous forme liquide à l’instant t calculé à l’étape D. Les étapes D et E peuvent donc être effectuées de manière simultanée ou bien l’une après l’autre dans un ordre quelconque. Le bilan énergie maximal est calculé à partir de la masse totale de gaz sous forme liquide du gaz sous forme liquide, de la capacité calorifique massique du gaz sous forme liquide, et de la température maximale autorisée du gaz sous forme liquide. Ainsi, le calcul effectué à l’étape E est similaire au calcul effectué à l’étape D, avec la température maximale autorisée du gaz sous forme liquide à la place de la température mesurée dans la cuve de l’ouvrage flottant. Step E consists of calculating an energy balance similar to the energy balance calculated in step D, but the energy balance of step E is the maximum energy balance, relating to the maximum authorized temperature of the gas in liquid form. calculated in step A. The calculation of the maximum energy balance calculated during step E is independent of the energy balance of the gas in liquid form at time t calculated in step D. Steps D and E can therefore be performed simultaneously or one after the other in any order. The maximum energy balance is calculated from the total mass of gas in liquid form, gas in liquid form, the mass heat capacity of gas in liquid form, and the maximum permitted temperature of gas in liquid form. Thus, the calculation performed in step E is similar to the calculation performed in step D, with the maximum allowable temperature of the gas in liquid form instead of the temperature measured in the tank of the floating structure.
Lors de l’étape F, le procédé d’estimation et d’ajustement calcule une estimation d’un bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée. Autrement dit, le procédé d’estimation et d’ajustement permet de prédire les caractéristiques du gaz sous forme liquide contenu dans la cuve à l’arrivée de l’ouvrage flottant sur son lieu de destination, notamment le bilan énergie de celui-ci. Pour estimer le bilan d’énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet, le procédé d’estimation et d’ajustement utilise le bilan énergie du gaz sous forme liquide à l’instant t calculé lors de l’étape D, ainsi que les plans d’exploitation des fonctions de refroidissement et de condensation du système d’alimentation calculés aux étapes B et C. Le bilan énergie du gaz sous forme liquide à l’instant t calculé lors de l’étape D constitue un point de départ de l’estimation en termes de pression de saturation du gaz sous forme liquide et de température du gaz sous forme liquide. Les plans d’exploitation des fonctions de refroidissement et de condensation calculés aux étapes B et C font également partie de l’estimation, car ils influent sur la température du gaz sous forme liquide contenu dans la cuve comme cela a été mentionné précédemment. A partir de ces trois données, le procédé d’estimation et d’ajustement est capable de déterminer le bilan énergie du gaz sous forme liquide une fois l’ouvrage flottant arrivé au lieu de destination en prenant en compte les plans d’exploitation des fonctions de refroidissement et de condensation établis précédemment. Le bilan énergie du gaz sous forme liquide englobant une pluralité de caractéristiques, il est également possible de raisonner en termes de pression de saturation du gaz sous forme liquide, de température ou de quantité d’échanges thermiques. En estimant ainsi le bilan énergie de la cargaison à l’arrivée, on peut ajuster les plans d’exploitation pour que la pression de saturation du gaz sous forme liquide à l’arrivée le rende admissible. During step F, the estimation and adjustment method calculates an estimate of an energy balance of the gas in liquid form contained in the tank on arrival. In other words, the estimation and adjustment method makes it possible to predict the characteristics of the gas in liquid form contained in the vessel on arrival of the floating structure at its place of destination, in particular the energy balance thereof. To estimate the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, the estimation and adjustment process uses the energy balance of the gas in liquid form at time t calculated during stage D, as well as the operating plans for the cooling and condensing functions of the supply system calculated in stages B and C. The energy balance of the gas in liquid form at time t calculated during the step D constitutes a starting point for the estimation in terms of the saturation pressure of the gas in liquid form and of the temperature of the gas in liquid form. The operating plans for the cooling and condensing functions calculated in steps B and C are also part of the estimate, as they influence the temperature of the gas in liquid form contained in the vessel as mentioned previously. From these three data, the estimation and adjustment process is able to determine the energy balance of the gas in liquid form once the floating structure has arrived at the place of destination, taking into account the operating plans of the functions. of cooling and condensation established previously. The energy balance of gas in liquid form encompassing a plurality of characteristics, it is also possible to reason in terms of saturation pressure of gas in liquid form, temperature or quantity of heat exchange. By thus estimating the energy balance of the cargo on arrival, it is possible to adjust the operating plans so that the saturation pressure of the gas in liquid form on arrival makes it admissible.
L’étape G consiste alors en un ajustement des plans d’exploitation en fonction d’un comparatif entre le bilan énergie maximale calculé à l’étape E et l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet calculée à l’étape F. En fonction dudit comparatif, le premier plan d’exploitation de la fonction de condensation et/ou le deuxième plan d’exploitation de la fonction de refroidissement peuvent être ajustés. L’ajustement peut consister en un arrêt de l’une et/ou l’autre des fonctions, l’arrêt pouvant être instantané ou programmé au bout d’un certain laps de temps. L’une et/ou l’autre des fonctions peuvent également être mises ou remises en fonctionnement, également de manière instantanée ou programmée. Ainsi, le premier plan d’exploitation de la fonction de condensation et/ou le deuxième plan d’exploitation de la fonction de refroidissement sont modifiés à partir des données calculées ou estimées lors des étapes E et F. L’étape H consiste en la mise en œuvre des plans d’exploitation ajustés. Autrement dit, le système d’alimentation ne prend plus en compte les plans d’exploitation établis lors des étapes B et C, qui sont remplacés par les plans d’exploitation ajustés lors de l’étape G. Les plans d’exploitation ajustés sont transmis au système d’alimentation à l’issue du déroulé du procédé d’estimation et d’ajustement. Le système d’alimentation peut donc mettre en œuvre le refroidissement et/ou la condensation du gaz sous forme liquide, les maintenir actives ou les désactiver, et ce en fonction des plans d’exploitation ajustés respectifs qui lui ont été transmis. Step G then consists of an adjustment of the operating plans according to a comparison between the maximum energy balance calculated in step E and the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the path calculated in step F. As a function of said comparison, the first operating plan of the condensation function and / or the second operating plan of the cooling function can be adjusted. The adjustment may consist of stopping one and / or the other of the functions, the stopping being able to be instantaneous or programmed after a certain period of time. One and / or the other of the functions can also be put into operation or put back into operation, also instantaneously or programmed. Thus, the first operating plan of the condensation function and / or the second operating plan of the cooling function are modified on the basis of the data calculated or estimated during steps E and F. Stage H consists of the implementation of the adjusted operating plans. In other words, the power system no longer takes into account the operating plans established during stages B and C, which are replaced by the operating plans adjusted during stage G. The adjusted operating plans are replaced by the operating plans adjusted during stage G. transmitted to the supply system at the end of the course of the estimation and adjustment process. The supply system can therefore implement the cooling and / or the condensation of the gas in liquid form, keep them active or deactivate them, and this according to the respective adjusted operating plans which have been transmitted to it.
Selon une caractéristique de l’invention, l’étape G consiste à une activation de la fonction de condensation tant que l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet, calculée à l’étape F, est inférieure au bilan énergie maximal calculé à l’étape E. Lorsque l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet est inférieure au bilan énergie maximal, cela signifie qu’à l’arrivée du trajet, la cargaison de gaz sous forme liquide sera par exemple à une pression de saturation du gaz sous forme liquide inférieure aux prérequis définis par le lieu de destination. Si cette situation survient au cours du trajet, il n’y a pas d’inconvénient à ajuster les plans d’exploitation des fonctions du système d’alimentation de manière à autoriser et maîtriser une hausse de la température du gaz sous forme liquide contenu dans la cuve. Ainsi, si ce n’est pas déjà le cas, l’ajustement du premier plan d’exploitation de la fonction de condensation peut consister au maintien de cette dernière active tout le long du trajet. Le surplus de phase gazeuse générée depuis le gaz sous forme liquide est donc intégralement condensé au lieu d’être possiblement éliminé. Il n’y a donc pas de pertes de gaz sous forme liquide contenu dans la cuve, si ce n’est la phase gazeuse générée depuis le gaz sous forme liquide et utilisée pour l’alimentation de l’ouvrage flottant. According to one characteristic of the invention, step G consists of activating the condensation function as long as the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated at step F, is less than the maximum energy balance calculated in step E. When the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path is less than the maximum energy balance, this means that at Upon arrival of the journey, the cargo of gas in liquid form will, for example, be at a saturation pressure of the gas in liquid form below the prerequisites defined by the place of destination. If this situation arises during the journey, there is no inconvenience in adjusting the operating plans of the functions of the supply system so as to allow and control an increase in the temperature of the gas in liquid form contained in the gas. tank. Thus, if this is not already the case, the adjustment of the first operating plan of the condensation function can consist in keeping the latter active throughout the journey. The excess gas phase generated from the gas in liquid form is therefore fully condensed instead of possibly being eliminated. There is therefore no loss of gas in liquid form contained in the tank, except for the gas phase generated from the gas in liquid form and used to feed the floating structure.
Dans cette situation, la fonction de condensation est active. Autrement dit, le système d’alimentation est autorisé à condenser le surplus de phase gazeuse générée depuis le gaz sous forme liquide en cas de présence de celui-ci. La condensation du gaz sous forme liquide peut varier en termes d’activité, et ce en fonction d’un besoin de gestion du surplus de phase gazeuse générée depuis le gaz sous forme liquide. La condensation du gaz sous forme liquide peur par exemple se faire de manière plus soutenue en cas d’excès de phase gazeuse générée depuis le gaz sous forme liquide dans la cuve, afin de diminuer la pression au sein de cette dernière. In this situation, the condensing function is active. In other words, the supply system is allowed to condense the excess gas phase generated from the gas in liquid form in the presence of the latter. The condensation of gas in liquid form can vary in terms of activity, depending on the need to manage the gas. surplus gas phase generated from the gas in liquid form. The condensation of the gas in liquid form can, for example, take place in a more sustained manner in the event of an excess of gas phase generated from the gas in liquid form in the tank, in order to reduce the pressure within the latter.
Selon une caractéristique de l’invention, l'étape G consiste en un arrêt de la fonction de refroidissement à un instant estimé dr qui garantir que l'estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet, calculée à l'étape F, est inférieure au bilan énergie maximal calculé à l'étape E. Après l'ajustement du premier plan d'exploitation de la fonction de condensation qui consiste au maintien de celle-ci tour le long du trajet, il est possible que l’estimation du bilan énergie du gaz sous forme liquide à l’arrivée soir toujours inférieure aux exigences du lieu de destination. Il est donc envisageable d’ajuster le deuxième plan d'exploitation de la fonction de refroidissement afin de que cette dernière soir désactivée à l'instant estimé dr. Un tel ajustement permet d’économiser l’énergie consommée par la fonction de refroidissement durant le laps de temps où celle-ci est désactivée. Cela entraîne une hausse de température du gaz sous forme liquide contenu dans la cuve, de par le fait que le gaz sous forme liquide n’est plus refroidi par la fonction de refroidissemenr. C’est pourquoi l'instant estimé dr où la fonction de refroidissemenr est stoppée est établi de sorte à ce que le gaz sous forme liquide contenu dans la cuve augmente en température mais que cette augmentation n’enrraîne pas un dépassement des exigences au moment où le gaz sous forme liquide sera livré sur le lieu de destination à l’arrivée du trajet. According to one characteristic of the invention, step G consists of stopping the cooling function at an estimated instant dr which guarantees that the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the path , calculated in step F, is less than the maximum energy balance calculated in step E. After the adjustment of the first operating plan of the condensation function which consists in maintaining it around the length of the path, it is possible that the estimate of the energy balance of the gas in liquid form on arrival is still lower than the requirements of the place of destination. It is therefore possible to adjust the second operating plan for the cooling function so that this last evening is deactivated at the estimated time dr. Such an adjustment saves the energy consumed by the cooling function during the time it is deactivated. This causes a rise in the temperature of the gas in liquid form contained in the vessel, because the gas in liquid form is no longer cooled by the cooling function. This is why the estimated instant dr when the cooling function is stopped is established so that the gas in liquid form contained in the tank increases in temperature but this increase does not lead to the requirements being exceeded at the moment when the gas in liquid form will be delivered to the place of destination upon arrival of the journey.
Pour ce faire, le procédé d’estimation et d’ajustement va successivement répéter l'ajustement du deuxième plan d’exploitation de la fonction de refroidissemenr et l'étape F, soir l’étape de l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée. L’ajustement du deuxième plan d’exploitation de la fonction de refroidissemenr consiste à déterminer l’instant estimé dr, en prenant l’arrivée au lieu de destination comme cible. L’instant estimé dr est alors déterminé comme étant antérieur à un certain laps de temps par rapport à l’arrivée, par exemple plusieurs jours ou heures. Le procédé d’estimation et d’ajustement recalcule ensuite l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée, cette fois en prenant en compte le nouvel ajustement du deuxième plan d’exploitation de la fonction de refroidissement, c’est-à-dire l’arrêt de celle-ci par exemple plusieurs jours ou heures avant l’arrivée au lieu de destination. Si l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée n’est plus inférieure au bilan énergie maximal calculé à l'étape E, alors le procédé d’estimation et d’ajustement se poursuit normalement avec l’étape H. Si l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est toujours inférieure au bilan maximal, le procédé d’estimation et d’ajustement répète alors l’ajustement du deuxième plan d’exploitation de la fonction de refroidissement en antériorisant encore l’instant estimé dt de par exemple plusieurs jours ou heures avant l’arrivée au lieu de destination. Puis, l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est à nouveau calculée en prenant en compte le nouvel ajustement. Ainsi, tant que l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est inférieure au bilan énergie maximal, l’instant estimé dt est repoussé dans le temps. Cette boucle permet de déterminer l’instant estimé dt le plus proche de l’instant t actuel, et ainsi de désactiver la fonction de refroidissement le plus tôt possible afin d’économiser un maximum d’énergie. Une fois l’instant estimé dt définitif déterminé, le procédé d’estimation et d’ajustement se poursuit avec l’étape H. To do this, the estimation and adjustment process will successively repeat the adjustment of the second operating plan of the cooling function and step F, even the step of estimating the energy balance of the gas under liquid form contained in the tank on arrival. The adjustment of the second operating plan of the cooling function consists in determining the estimated instant dr, taking the arrival at the place of destination as the target. The estimated instant dr is then determined as being before a certain period of time with respect to the arrival, for example several days or hours. The estimation and adjustment process then recalculates the estimate of the energy balance gas in liquid form contained in the tank on arrival, this time taking into account the new adjustment of the second operating plan of the cooling function, i.e. stopping it by example several days or hours before arrival at the place of destination. If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is no longer less than the maximum energy balance calculated in step E, then the estimation and adjustment process continues normally with step H. If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is still less than the maximum balance, the estimation and adjustment process then repeats the adjustment of the second plane d operation of the cooling function by further anticipating the estimated time dt by, for example, several days or hours before arrival at the place of destination. Then, the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is again calculated by taking into account the new adjustment. Thus, as long as the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is less than the maximum energy balance, the estimated instant dt is postponed in time. This loop makes it possible to determine the estimated instant dt closest to the current instant t, and thus to deactivate the cooling function as soon as possible in order to save as much energy as possible. Once the final estimated instant dt has been determined, the estimation and adjustment process continues with step H.
Selon une caractéristique de l’invention, l’étape G consiste en un arrêt de la fonction de condensation tant que l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet, calculée à l’étape F, est supérieure au bilan énergie maximal calculé à l’étape E. Lorsque l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet est supérieure au bilan énergie maximal, cela signifie que la cargaison de gaz sous forme liquide sera à une pression de saturation du gaz sous forme liquide trop élevée par rapport aux exigences du lieu de destination à l’arrivée de l’ouvrage flottant. Afin d’éviter une telle situation, il convient de limiter toute action entraînant une hausse de température du gaz sous forme liquide contenu dans la cuve. Ainsi, le premier plan d’exploitation de la fonction de condensation est ajusté afin d’entraîner un arrêt de la fonction de condensation du système d’alimentation à un instant donné d’t où le bilan énergie du gaz sous forme liquide contenu dans la cuve dépasse le bilan énergie maximal. La fonction de condensation peut éventuellement être réactivée si l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet redevient inférieure au bilan énergie maximal par la suite. According to one characteristic of the invention, step G consists of stopping the condensation function as long as the estimation of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated at step F, is greater than the maximum energy balance calculated in step E. When the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the journey is greater than the maximum energy balance, this means that the cargo of gas in liquid form will be at a saturation pressure of gas in liquid form too high compared to the requirements of the place of destination upon arrival of the floating structure. In order to avoid such a situation, it is advisable to limit any action causing a rise in the temperature of the gas in liquid form contained in the tank. Thus, the first operating plan of the condensing function is adjusted in order to cause a shutdown of the condensing function of the power system. at a given time of summer when the energy balance of the gas in liquid form contained in the tank exceeds the maximum energy balance. The condensation function can optionally be reactivated if the estimate of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path again becomes less than the maximum energy balance thereafter.
Selon une caractéristique de l’invention, l’étape G consiste à une activation de la fonction de refroidissement tant que l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet, calculée à l’étape F, est supérieure au bilan énergie maximal calculé à l’étape E. Dans cette situation, il est indispensable de faire diminuer la température du gaz sous forme liquide contenu dans la cuve. Ainsi, dans le même temps que le premier plan d’exploitation de la fonction de condensation est ajusté afin que celle-ci soit désactivée à l’instant donné d’t, le deuxième plan d’exploitation de la fonction de refroidissement est également ajusté afin que la fonction de refroidissement soit active jusqu’à l’arrivée de l’ouvrage flottant au lieu de destination, et ce dans le but que la pression de saturation du gaz sous forme liquide réponde aux exigences du lieu de destination. According to one characteristic of the invention, step G consists of activating the cooling function as long as the estimation of the energy balance of the gas in liquid form contained in the vessel at the arrival of the path, calculated in step F, is greater than the maximum energy balance calculated in step E. In this situation, it is essential to reduce the temperature of the gas in liquid form contained in the tank. Thus, at the same time as the first operating plan of the condensing function is adjusted so that it is deactivated at the given time of t, the second operating plan of the cooling function is also adjusted. so that the cooling function is active until the arrival of the floating structure at the place of destination, with the aim that the saturation pressure of the gas in liquid form meets the requirements of the place of destination.
Dans cette situation, la fonction de refroidissement est donc active. Autrement dit, le système d’alimentation est autorisé à refroidir le gaz sous forme liquide contenu dans la cuve. Le système d’alimentation refroidit le gaz sous forme liquide selon une activité la plus élevée possible par rapport à une configuration dudit système d’alimentation. In this situation, the cooling function is therefore active. In other words, the supply system is allowed to cool the gas in liquid form contained in the tank. The feed system cools the gas in liquid form at the highest possible activity relative to a configuration of said feed system.
Selon une caractéristique de l’invention, le procédé d’estimation et d’ajustement est répété par itération à partir de l’étape B et pendant le trajet de l’ouvrage flottant. Le temps de trajet de l’ouvrage flottant entre son point de départ et le lieu de destination est variable selon la livraison, mais le trajet peut durer plusieurs jours, voire plusieurs semaines. L’estimation peut par exemple être faussée sur le moyen ou le long terme par des conditions environnementales, telles que la météo ou l’état de la mer pour le transport maritime. Ainsi, afin de parvenir à l’objectif désiré, le procédé d’estimation et d’ajustement doit être répété régulièrement au cours du trajet. De ce fait, le procédé d’estimation et d’ajustement peut par exemple être paramétré pour se lancer à un intervalle de temps régulier, par exemple toutes les six heures. L’étape A repose sur un calcul dépendant de valeurs fixes. Il n’est donc pas nécessaire de réitérer cette étape après avoir lancé le procédé d’estimation et d’ajustement une première fois. Le procédé d’estimation et d’ajustement est donc répétable par itération à partir de l’étape d’établissement du premier plan d’exploitation de la fonction de condensation du système d’alimentation. According to one characteristic of the invention, the estimation and adjustment method is repeated by iteration from step B and during the journey of the floating structure. The journey time of the floating structure between its point of departure and the place of destination varies depending on the delivery, but the journey can last several days or even several weeks. The estimate can for example be distorted in the medium or long term by environmental conditions, such as the weather or the state of the sea for maritime transport. Thus, in order to achieve the desired objective, the estimation and adjustment process must be repeated regularly during the journey. As a result, the estimation and adjustment process can for example be configured to start at a regular time interval, for example every six hours. Step A is based on a calculation depending on fixed values. It is therefore not necessary to repeat this step after having launched the estimation and adjustment process for the first time. The estimation and adjustment method is therefore repeatable by iteration from the step of establishing the first operating plan of the condensation function of the power supply system.
Selon une caractéristique de l’invention, le procédé d’estimation et d’ajustement comprend une étape supplémentaire D’, effectuée de manière simultanée à l’étape D, de calcul du bilan énergie du gaz sous forme liquide à l’instant t à partir de l’exécution des fonctions de condensation et de refroidissement depuis le départ de l’ouvrage flottant et jusqu’à l’instant t et à partir d’un bilan énergie du gaz sous forme liquide à un instant t calculé lors d’une itération antérieure. Le calcul du bilan énergie du gaz sous forme liquide à l’instant t effectué à l’étape D’ ne prend plus en compte la température du gaz sous forme liquide contenu dans la cuve à l’instant t relevé par exemple par le capteur de température, mais un bilan énergie du gaz sous forme liquide à l’instant t calculé précédemment. Autrement dit, l’étape D’ ne s’exécute que si le procédé d’estimation et d’ajustement a déjà été mis en œuvre une première fois. D’une manière avantageuse, le bilan énergie du gaz sous forme liquide à l’instant t est calculé à partir du bilan énergie du gaz sous forme liquide à un instant t antérieur, soit le bilan énergie du gaz sous forme liquide issu de la précédente itération du procédé d’estimation et d’ajustement, pouvant avoir été calculé lors de l’étape D ou D’. According to one characteristic of the invention, the estimation and adjustment method comprises an additional step D ', carried out simultaneously with step D, of calculating the energy balance of the gas in liquid form at time t at from the performance of the condensation and cooling functions from the start of the floating structure and up to the instant t and from an energy balance of the gas in liquid form at an instant t calculated during a earlier iteration. The calculation of the energy balance of the gas in liquid form at time t carried out at step D 'no longer takes into account the temperature of the gas in liquid form contained in the tank at time t measured for example by the temperature sensor. temperature, but an energy balance of the gas in liquid form at time t calculated previously. In other words, step D ’is only executed if the estimation and adjustment process has already been carried out for the first time. Advantageously, the energy balance of gas in liquid form at time t is calculated from the energy balance of gas in liquid form at an earlier time t, i.e. the energy balance of gas in liquid form from the previous one iteration of the estimation and adjustment process, which may have been calculated during step D or D ′.
Le calcul du bilan énergie du gaz sous forme liquide à l’instant t lors de l’étape D’ prend également en compte l’exécution des fonctions de condensation et de refroidissement depuis le départ de l’ouvrage flottant et jusqu’à l’instant t. Pour la fonction de condensation, cela correspond à des données relatives à la chaleur transmise à la cuve et entraînant une hausse générale de la température de celle-ci, illustrée par exemple par un différentiel de la température en entrée et en sortie d’un échangeur de chaleur assurant la fonction de condensation. Pour la fonction de refroidissement, cela correspond à des données relatives au froid transmis à la cuve et entraînant une baisse générale de la température de celle-ci, illustré par exemple par un différentiel de la température en entrée et en sortie d’un échangeur de chaleur assurant la fonction de refroidissement.The calculation of the energy balance of the gas in liquid form at time t during step D 'also takes into account the performance of the condensation and cooling functions from the start of the floating structure and up to the instant t. For the condensation function, this corresponds to data relating to the heat transmitted to the tank and leading to a general increase in the temperature of the latter, illustrated for example by a temperature differential at the inlet and outlet of an exchanger. of heat ensuring the function of condensation. For the cooling function, this corresponds to data relating to the cold transmitted to the tank and resulting in a general decrease in the temperature thereof, illustrated for example by a temperature differential at the inlet and outlet of a heat exchanger providing the cooling function.
Selon une caractéristique de l’invention, le bilan énergie du gaz sous forme liquide à l’instant t conservé pour l’étape F est le plus élevé parmi le bilan énergie du gaz sous forme liquide à l’instant t calculé à l’étape D et le bilan énergie du gaz sous forme liquide à l’instant t calculé à l’étape D’. Autrement dit, lorsque par la suite le procédé d’estimation et d’ajustement parvient à l’étape F, soit l’étape d’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve estimé à l’arrivé, c’est le bilan énergie du gaz sous forme liquide contenu dans la cuve à l’instant t ayant la valeur la plus élevée parmi le résultat obtenu à l’étape D et le résultat obtenu à l’étape D’ qui est utilisé pour l’estimation de l’étape F. Le bilan énergie du gaz sous forme liquide à l’instant t ayant la valeur la plus élevée est considéré comme étant le résultat le plus pessimiste. L’objectif étant de ne pas dépasser le bilan énergie maximal du lieu de destination, il convient de conserver le bilan énergie du gaz sous forme liquide à l’instant t le plus élevé par mesure de sûreté. According to one characteristic of the invention, the energy balance of gas in liquid form at time t kept for step F is the highest among the energy balance of gas in liquid form at time t calculated at step D and the energy balance of the gas in liquid form at time t calculated in step D ′. In other words, when the estimation and adjustment method subsequently reaches step F, that is to say the step of estimating the energy balance of the gas in liquid form contained in the vessel estimated on arrival, c ' is the energy balance of the gas in liquid form contained in the vessel at time t having the highest value among the result obtained in step D and the result obtained in step D 'which is used for the estimation of step F. The energy balance of the gas in liquid form at time t having the highest value is considered to be the most pessimistic result. The objective being not to exceed the maximum energy balance of the place of destination, the energy balance of the gas in liquid form should be kept at the highest time t as a safety measure.
Selon une caractéristique de l’invention, le procédé d’estimation et d’ajustement comprend une étape supplémentaire A’ de sélection d’une marge de sécurité du bilan énergie maximal du gaz sous forme liquide en fonction des caractéristiques du trajet de l’ouvrage flottant, l’étape E étant effectuée en prenant en compte ladite marge de sécurité. Afin d’être certain que l’ouvrage flottant n’arrive pas au lieu de destination avec une cargaison de gaz sous forme liquide dont le bilan énergie est supérieur aux exigences dudit lieu de destination, il est possible de prendre en compte une marge de sécurité pour diminuer virtuellement la valeur du bilan énergie maximal. Ainsi, lors de l’étape E, le calcul du bilan énergie maximal est toujours calculé en fonction de la température maximale autorisée du gaz sous forme liquide calculé à l’étape A, mais également en prenant en compte la marge de sécurité. On obtient alors un bilan énergie maximal sécurisé, d’une valeur inférieure au bilan énergie maximal réel. Lors de la suite du procédé d’estimation et d’ajustement, le premier plan d’exploitation de la fonction de condensation et le deuxième plan d’exploitation de la fonction de refroidissement sont ajustés en fonction du comparatif entre l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet et un bilan énergie maximal virtuel, c’est-à-dire qui prend en compte la marge de sécurité. La marge de sécurité garantit ainsi la certitude de se maintenir sous le bilan énergie maximal réel. According to one characteristic of the invention, the estimation and adjustment method comprises an additional step A 'of selecting a safety margin for the maximum energy balance of the gas in liquid form as a function of the characteristics of the path of the structure. floating, step E being carried out taking into account said safety margin. In order to be certain that the floating structure does not arrive at the place of destination with a cargo of gas in liquid form whose energy balance is greater than the requirements of said place of destination, it is possible to take into account a safety margin to virtually reduce the value of the maximum energy balance. Thus, during step E, the calculation of the maximum energy balance is always calculated as a function of the maximum authorized temperature of the gas in liquid form calculated in step A, but also by taking into account the safety margin. A secure maximum energy balance is then obtained, with a value lower than the actual maximum energy balance. During the rest of the estimation and adjustment process, the first operating plane of the condensing function and the second operating plane of the cooling function are adjusted according to the comparison between the estimate of the energy balance of the gas in liquid form contained in the tank at the arrival of the journey and a virtual maximum energy balance, that is to say which takes into account the safety margin. The safety margin thus guarantees the certainty of remaining below the actual maximum energy balance.
La marge de sécurité peut être choisie en fonction de différents paramètres. Par exemple, plus le trajet est long, plus il est préférable de sélectionner une marge de sécurité élevée. Une marge de sécurité élevée est également recommandée en cas de manque d’informations concernant les conditions météorologiques au cours du trajet. La marge de sécurité peut par exemple être entrée manuellement par le biais du moniteur de commande, ou encore être programmée pour être variable au cours du temps. The safety margin can be chosen according to different parameters. For example, the longer the journey, the more preferable it is to select a high safety margin. A high safety margin is also recommended in the event of a lack of information about the weather conditions during the journey. The safety margin can for example be entered manually through the control monitor, or it can be programmed to be variable over time.
La marge de sécurité étant utilisée pour le calcul de l’étape E, l’étape A’ est donc antérieure à l’étape E au cours du procédé d’estimation et d’ajustement. Since the safety margin is used for the calculation of step E, step A ’is therefore prior to step E during the estimation and adjustment process.
Selon une caractéristique de l’invention, l’étape A’ est répétée par itération au cours du trajet de l’ouvrage flottant. La répétition de l’étape A’ peut être indépendante de la répétition du procédé d’estimation et d’ajustement, ou bien faire partie de celui-ci. L’étape A’ peut également être enclenchée manuellement, par exemple suite à l’apparition d’un phénomène météorologique imprévu. Il peut alors être judicieux d’augmenter manuellement la valeur de la marge de sécurité pour pallier l’incertitude dû audit phénomène météorologique. According to a feature of the invention, step A ’is repeated by iteration during the path of the floating structure. The repetition of step A ’may be independent of the repetition of the estimation and adjustment process, or it may be part of it. Stage A ’can also be initiated manually, for example following the occurrence of an unforeseen meteorological phenomenon. It may then be wise to manually increase the value of the safety margin to alleviate the uncertainty due to said meteorological phenomenon.
Selon une caractéristique de l’invention, la marge de sécurité diminue au fur et à mesure que l’ouvrage flottant s’approche du lieu de destination. Autrement dit, plus l’ouvrage flottant se rapproche de son lieu de destination, moins la marge de sécurité nécessite d’être élevée. Il est donc possible de programmer une marge de sécurité dégressive au cours du temps. According to a feature of the invention, the safety margin decreases as the floating structure approaches the place of destination. In other words, the closer the floating structure is to its destination, the lower the safety margin needs to be. It is therefore possible to program a degressive safety margin over time.
Selon une caractéristique de l’invention, l’ouvrage flottant est équipé au moins d’un moteur alimenté au moins partiellement par la phase gazeuse générée depuis le gaz sous forme liquide, l’estimation du surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet étant établie à partir d’une valeur image des entrées de chaleur dans la cuve et d’une estimation de la consommation du moteur. Comme cela a été dit précédemment, l’ouvrage flottant peut être apte à utiliser la phase gazeuse générée depuis le gaz sous forme liquide, voire à la créer, pour par exemple alimenter son moteur de propulsion et/ou son générateur d’électricité. La phase gazeuse générée depuis le gaz sous forme liquide non utilisée pour ces différentes fonctions correspond au surplus de phase gazeuse générée depuis le gaz sous forme liquide. Ce dernier nécessite d’être estimé en quantité afin que les étapes B et C du procédé d’estimation et d’ajustement, c’est-à-dire les étapes d'établissement des plans d’exploitation des fonctions de condensation et de refroidissement du système d’alimentation, puissent se dérouler. La valeur image des entrées de chaleur dans la cuve peut par exemple dépendre du modèle de cuve utilisé et donc être disponible comme une caractéristique technique de la cuve. La valeur image des entrées de chaleur dans la cuve peut également être estimée à l’aide de capteurs.According to one characteristic of the invention, the floating structure is equipped with at least one motor supplied at least partially by the gas phase generated from the gas in liquid form, the estimation of the surplus of gas phase generated from the gas in liquid form. liquid during the journey being established from an image value of the heat inputs into the tank and from an estimate of the engine consumption. As has been said previously, the floating structure may be able to use the gaseous phase generated from the gas in liquid form, or even to create it, for example to supply its propulsion engine and / or its electricity generator. The gas phase generated from the gas in liquid form not used for these various functions corresponds to the surplus gas phase generated from the gas in liquid form. The latter needs to be estimated in quantity so that steps B and C of the estimation and adjustment process, that is to say the steps of establishing operating plans for the condensation and cooling functions of the power system, can be unwound. The image value of the heat inputs into the tank may for example depend on the tank model used and therefore be available as a technical characteristic of the tank. The image value of heat inputs into the tank can also be estimated using sensors.
La consommation du moteur peut être estimée si l’ouvrage flottant est équipé d’un module permettant de définir un plan de route pour le trajet vers le lieu de destination.The consumption of the engine can be estimated if the floating structure is equipped with a module making it possible to define a route plan for the journey to the place of destination.
Si ce n’est pas le cas, la consommation du moteur peut être estimée à partir de la vitesse moyenne de l’ouvrage flottant sur le trajet restant, cette dernière dépendant de la distance restante à parcourir et du temps restant pour parvenir au lieu de destination.If this is not the case, the consumption of the motor can be estimated from the average speed of the floating structure on the remaining path, the latter depending on the remaining distance to be covered and the time remaining to reach instead of destination.
Le surplus de phase gazeuse générée depuis le gaz sous forme liquide peut ainsi être estimé par le biais d’une source externe au procédé d’estimation et d’ajustement, et par exemple être entré par le biais du moniteur de commande afin d’être pris en compte lors du déroulement du procédé d’estimation et d’ajustement. Ce surplus peut alors être quantifié en tonnes/heure. The surplus gas phase generated from the gas in liquid form can thus be estimated through a source external to the estimation and adjustment process, and for example be entered through the control monitor in order to be taken into account during the course of the estimation and adjustment process. This surplus can then be quantified in tonnes / hour.
L’invention couvre également un système de gestion d’un bilan énergie d’un gaz sous forme liquide contenu dans au moins une cuve d’un ouvrage flottant, mettant en œuvre le procédé d’estimation et d’ajustement tel que décrit précédemment, ledit système de gestion comprenant au moins un système d'alimentation en carburant d'un consommateur de l'ouvrage flottant et au moins un calculateur ayant pour fonction d'estimer une quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours d'un trajet de l’ouvrage flottant. Un tel système de gestion du bilan énergie comprend le système d’alimentation en carburant d’un consommateur de l’ouvrage flottant mettant en œuvre les fonctions de condensation et de refroidissement, et permet le déroulement du procédé d’estimation et d’ajustement. Afin d’assurer le bon déroulement du procédé d’estimation et d’ajustement, notamment les étapes B et C établissant respectivement le premier plan d’exploitation de la fonction de condensation de la phase gazeuse générée depuis le gaz sous forme liquide et le deuxième plan d’exploitation de la fonction de refroidissement du gaz sous forme liquide opérée par le système d’alimentation, le calculateur peut transmettre l’estimation de la quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide, indispensable pour procéder aux étapes B et C. Le système de gestion du bilan énergie peut également comprendre le moniteur de commande évoqué précédemment. The invention also covers a system for managing an energy balance of a gas in liquid form contained in at least one tank of a floating structure, implementing the estimation and adjustment method as described above, said management system comprising at least one system for supplying fuel to a consumer of the floating structure and at least one computer having the function of estimating a quantity of surplus gas phase generated from the gas in liquid form during of a path of the floating structure. Such a system for managing the energy balance comprises the system for supplying fuel to a consumer of the floating structure implementing the condensation and cooling functions, and allows the estimation and adjustment process to be carried out. In order to ensure the smooth running of the estimation and adjustment process, in particular steps B and C respectively establishing the first operating plan of the gas phase condensation function generated from the gas in liquid form and the second operating plan for the cooling function of gas in liquid form operated by the supply system, the computer can transmit the estimate of the quantity of surplus gas phase generated from the gas in liquid form, essential for proceeding with the steps B and C. The energy balance management system can also include the control monitor mentioned above.
L’invention couvre également un ouvrage flottant de transport de gaz sous forme liquide comprenant un système de gestion du bilan énergie dudit gaz tel que décrit précédemment. The invention also covers a floating structure for the transport of gas in liquid form comprising a system for managing the energy balance of said gas as described above.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : [fig 1] est une représentation schématique d’un ouvrage flottant chargé en gaz sous forme liquide et effectuant un trajet vers un lieu de destination, Other characteristics and advantages of the invention will become apparent from the following description on the one hand, and from several exemplary embodiments given by way of indication and not limiting with reference to the appended schematic drawings on the other hand, in which : [fig 1] is a schematic representation of a floating structure loaded with gas in liquid form and making a journey to a place of destination,
[fig 2] est une représentation schématique d’un mode de réalisation d’un système de gestion de la température du gaz sous forme liquide selon l’invention, [fig 2] is a schematic representation of an embodiment of a gas temperature management system in liquid form according to the invention,
[fig 3] est une représentation schématique d’un déroulement d’un procédé d’estimation et d’ajustement d’un bilan énergie du gaz sous forme liquide selon l’invention, lorsque celui-ci est lancé pour la première fois, [fig 4] est une représentation schématique d’un déroulement du procédé d’estimation et d’ajustement du bilan énergie du gaz sous forme liquide selon l’invention, lorsque celui- ci est lancé par itération, [fig 3] is a schematic representation of a process for estimating and adjusting an energy balance of gas in liquid form according to the invention, when the latter is launched for the first time, [fig 4] is a schematic representation of an unfolding of the method for estimating and adjusting the energy balance of gas in liquid form according to the invention, when the latter is launched by iteration,
[fig 5] est un schéma général illustrant un système d’alimentation en carburant d’un consommateur de l’ouvrage flottant apte à exécuter une pluralité de commande en fonction du procédé d’estimation et d’ajustement, [fig 5] is a general diagram illustrating a fuel supply system for a consumer of the floating structure capable of carrying out a plurality of commands according to the estimation and adjustment process,
[fig 6] est un schéma du système d’alimentation selon un premier mode de réalisation spécifique, [fig 6] is a diagram of the supply system according to a first specific embodiment,
[fig 7] est un schéma du système d’alimentation selon un deuxième mode de réalisation spécifique, [fig 7] is a diagram of the supply system according to a second specific embodiment,
[fig 8] est une courbe représentant l’évolution du bilan énergie du gaz sous forme liquide en fonction du temps ainsi que des plans d’exploitation des fonctions de condensation et de refroidissement, dans une situation où ledit bilan énergie du gaz sous forme liquide est estimé comme étant trop faible à l’arrivée, [fig 8] is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the operating plans of the condensation and cooling functions, in a situation where said energy balance of gas in liquid form is estimated to be too low on arrival,
[fig 9] est une courbe représentant l’évolution du bilan énergie du gaz sous forme liquide en fonction du temps ainsi que les plans d’exploitation ajustés des fonctions de condensation et de refroidissement, pour pallier la situation évoquée à la figure 8,[fig 9] is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the adjusted operating plans of the condensation and cooling functions, to alleviate the situation mentioned in figure 8,
[fig 10] est une courbe représentant l’évolution du bilan énergie du gaz sous forme liquide en fonction du temps ainsi que les plans d’exploitation de fonctions de condensation et de refroidissement, dans une situation où ledit bilan énergie du gaz sous forme liquide est estimé comme étant trop élevé à l’arrivée, [fig 10] is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the operating plans for condensation and cooling functions, in a situation where said energy balance of gas in liquid form is estimated to be too high on arrival,
[fig 11] est une courbe représentant l’évolution du bilan énergie du gaz sous forme liquide en fonction du temps ainsi que les plans d’exploitation ajustés des fonctions de condensation et de refroidissement, pour pallier situation évoquée à la figure 10,[fig 11] is a curve representing the evolution of the energy balance of gas in liquid form as a function of time as well as the adjusted operating plans of the condensation and cooling functions, to alleviate the situation mentioned in figure 10,
[fig 12] est une courbe représentant un premier exemple de l’évolution d’une valeur d’une marge de sécurité en fonction du temps, [fig 13] est une courbe représentant un deuxième exemple de l’évolution de la valeur de la marge de sécurité en fonction du temps. [fig 12] is a curve representing a first example of the evolution of a value of a safety margin as a function of time, [fig 13] is a curve representing a second example of the evolution of the value of the safety margin as a function of time.
Afin de visualiser le contexte dans lequel s’inscrit l’invention, la figure 1 représente un ouvrage flottant 1 se dirigeant vers un lieu de destination 2 selon un trajet 3. L’ouvrage flottant 1 représenté est ici un navire de transport, par exemple un méthanier. L’ouvrage flottant 1 transporte une cargaison de gaz sous forme liquide dans le but de livrer cette dernière au lieu de destination 2. Afin d’assurer un tel transport, l’ouvrage flottant 1 comprend au moins une cuve 9. In order to visualize the context in which the invention falls, FIG. 1 represents a floating structure 1 heading towards a place of destination 2 along a path 3. The floating structure 1 represented here is a transport vessel, for example. an LNG carrier. The floating structure 1 transports a cargo of gas in liquid form in order to deliver it to the place of destination 2. In order to ensure such transport, the floating structure 1 comprises at least one tank 9.
Le lieu de destination 2 est un terminal destiné à recevoir le gaz sous forme liquide contenu dans la cuve 9 de l’ouvrage flottant 1. Lorsque ce dernier atteint le lieu de destination 2, le gaz sous forme liquide est déchargé par exemple dans un réservoir 40.The place of destination 2 is a terminal intended to receive the gas in liquid form contained in the tank 9 of the floating structure 1. When the latter reaches the place of destination 2, the gas in liquid form is discharged for example into a tank 40.
Le lieu de destination 2 impose toutefois des exigences concernant les caractéristiques du gaz sous forme liquide. Les exigences du lieu de destination 2 peuvent varier selon le gestionnaire de l’installation auquel le lieu de destination 2 est rattaché, et concernent principalement des caractéristiques du gaz sous forme liquide, par exemple sa pression de saturation et/ou sa température. Destination 2, however, imposes requirements on the characteristics of the gas in liquid form. The requirements of the place of destination 2 may vary depending on the manager of the facility to which the place of destination 2 is attached, and mainly relate to the characteristics of the gas in liquid form, for example its saturation pressure and / or its temperature.
Si le gaz sous forme liquide contenu dans la cuve 9 de l’ouvrage flottant 1 ne répond pas à ces exigences de pression de saturation du gaz sous forme liquide, la cargaison de gaz sous forme liquide peut potentiellement être refusée par le gestionnaire de l’installation du lieu de destination 2. If the gas in liquid form contained in the vessel 9 of the floating structure 1 does not meet these saturation pressure requirements of the gas in liquid form, the cargo of gas in liquid form can potentially be refused by the manager of the installation of the place of destination 2.
Afin d’éviter cela, la cargaison de gaz sous forme liquide doit être étroitement surveillée tout au long du trajet 3. Le trajet 3 présente une distance variable et peut durer plusieurs jours, voire plusieurs semaines selon la distance entre un lieu de chargement et le lieu de destination 2 et la vitesse de l’ouvrage flottant 1. In order to avoid this, the cargo of gas in liquid form should be closely monitored throughout Route 3. Route 3 has a variable distance and can last several days or even weeks depending on the distance from a loading location to the destination. place of destination 2 and the speed of the floating structure 1.
La figure 2 représente schématiquement un système de gestion 4 d’un bilan énergie du gaz sous forme liquide contenu dans la cuve de l’ouvrage flottant. Le bilan énergie du gaz sous forme liquide correspond à une donnée englobant diverses caractéristiques dudit gaz, tels que sa température, sa pression de saturation, sa masse totale de gaz sous forme liquide ou sa capacité calorifique massique par exemple. Le système de gestion 4 comprend un boîtier de commande 41 ayant en mémoire un procédé d’estimation et d’ajustement 5 du bilan énergie du gaz sous forme liquide contenu dans la cuve de l’ouvrage flottant. Le boîtier de commande 41 est ainsi apte à initier le procédé d’estimation et d’ajustement 5 de manière régulière et automatisée et/ou suite à une commande manuelle exercée par exemple par le biais d’un moniteur de commande 6. Il est également possible d’entrer manuellement des données par le biais du moniteur de commande 6, par exemple des caractéristiques du gaz sous forme liquide transporté, ou toute autre information utile pour le déroulement du procédé d’estimation et d’ajustement 5 tel que cela sera précisé par la suite. FIG. 2 schematically represents a management system 4 of an energy balance of the gas in liquid form contained in the tank of the floating structure. The energy balance of the gas in liquid form corresponds to a datum including various characteristics of said gas, such as its temperature, its saturation pressure, its total mass of gas in liquid form or its specific heat capacity, for example. The management system 4 comprises a control unit 41 having in memory a method for estimating and adjusting the energy balance of the gas in liquid form contained in the tank of the floating structure. The control unit 41 is thus able to initiate the estimation and adjustment process 5 in a regular and automated manner and / or following a manual control exerted for example by means of a control monitor 6. It is also possible to enter data manually through the control monitor 6, for example characteristics of the gas in liquid form transported, or any other information useful for the progress of the estimation and adjustment process 5 as will be specified thereafter.
Le système de gestion 4 comprend également un système d’alimentation 8 en carburant d’un consommateur de l’ouvrage flottant. Le système d’alimentation 8 a pour fonction de condenser et/ou de refroidir le gaz sous forme liquide contenu dans la cuve et est apte à ajuster l’une ou l’autre de ces fonctions par activation ou désactivation de ces dernières. L’ajustement des fonctions de condensation et de refroidissement du système d’alimentation 8 dépend du résultat du procédé d’estimation et d’ajustement 5. Ainsi, lorsque ce dernier s’achève, le boîtier de commande 41 envoie un signal au système d’alimentation 8, ledit signal indiquant les ajustements à effectuer par le système d’alimentation 8. The management system 4 also includes a system 8 for supplying fuel to a consumer of the floating structure. The feed system 8 has the function of condensing and / or cooling the gas in liquid form contained in the tank and is able to adjust one or the other of these functions by activating or deactivating the latter. The adjustment of the condensing and cooling functions of the power system 8 depends on the result of the estimation and adjustment process 5. Thus, when the latter ends, the control box 41 sends a signal to the system of. power supply 8, said signal indicating the adjustments to be made by the power supply system 8.
Le système de gestion 4 comprend également un calculateur 7. Le calculateur 7 a pour fonction d’estimer une quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet de l’ouvrage flottant. La phase gazeuse générée depuis le gaz sous forme liquide se fait naturellement au sein de la cuve de gaz sous forme liquide, ou bien peut être forcée. L’estimation de surplus de phase gazeuse générée depuis le gaz sous forme liquide est calculée grâce à une estimation de la consommation du moteur de l’ouvrage flottant et à une valeur image des entrées de chaleur dans la cuve. Le calculateur 7 et le boîtier de commande 41 peuvent faire partie d’une même unité de contrôle ou bien être indépendant l’un de l’autre. The management system 4 also includes a calculator 7. The function of the calculator 7 is to estimate a quantity of surplus gas phase generated from the gas in liquid form during the journey of the floating structure. The gas phase generated from the gas in liquid form occurs naturally within the tank of gas in liquid form, or it can be forced. The estimate of excess gas phase generated from the gas in liquid form is calculated by estimating the consumption of the motor of the floating structure and by an image value of the heat entering the tank. The computer 7 and the control unit 41 can be part of the same control unit or else be independent of each other.
L’estimation de la consommation du moteur de l’ouvrage flottant peut être faite grâce à l’entrée d’un plan de route dans le moniteur de commande 6 qui transmet l’information au calculateur 7, ou bien par le calcul d’une vitesse moyenne de l’ouvrage flottant à partir de la distance restante entre une position de l’ouvrage flottant et le lieu de destination et du temps restant pour y parvenir. Le calcul de la vitesse moyenne de l’ouvrage flottant peut également être effectué en rentrant des données dans le moniteur de commande 6 qui transmet l’information au calculateur 7. The estimation of the consumption of the motor of the floating structure can be made by entering a route plan in the control monitor 6 which transmits the information. to the computer 7, or else by calculating an average speed of the floating structure from the distance remaining between a position of the floating structure and the place of destination and the time remaining to reach it. The calculation of the average speed of the floating structure can also be carried out by entering data into the control monitor 6 which transmits the information to the computer 7.
La valeur image des entrées de chaleur dans la cuve peut correspondre à une valeur de design des entrées de chaleur dans la cuve, ou également à une estimation des entrées de chaleur dans la cuve. La valeur design des entrées de chaleur dans la cuve dépend du modèle de cuve utilisée pour le transport et peut être donnée au calculateur 7 par le biais du moniteur de commande 6. L’estimation des entrées de chaleur dans la cuve peut également être communiquée par des capteurs inclus dans ladite cuve. The image value of the heat inputs into the tank can correspond to a design value of the heat inputs into the tank, or also to an estimate of the heat inputs into the tank. The design value of the heat inputs into the tank depends on the model of the tank used for transport and can be given to computer 7 through the control monitor 6. The estimate of the heat inputs into the tank can also be communicated by sensors included in said tank.
Une fois que le surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet est estimé par le calculateur 7, ce dernier transmet le résultat au boîtier de commande 41. Le surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet est une donnée permettant le déroulement du procédé d’estimation et d’ajustement 5 tel que cela sera décrit par la suite. Once the excess gas phase generated from the gas in liquid form during the journey is estimated by the computer 7, the latter transmits the result to the control unit 41. The surplus gas phase generated from the gas in liquid form to the course of the journey is a datum allowing the course of the estimation and adjustment process 5 as will be described hereinafter.
La figure 3 est une représentation schématique du procédé d’estimation et d’ajustement 5 du bilan énergie du gaz sous forme liquide selon l’invention. Ce schéma représente le déroulé du procédé d’estimation et d’ajustement 5 lorsque celui-ci est lancé pour la première fois lors du trajet vers le lieu de destination. Le procédé d’estimation et d’ajustement 5 peut être lancé une première fois avant le départ ou au départ de l’ouvrage flottant. Sur la figure 3, les flèches pleines représentent le déroulé de chacune des étapes du procédé d’estimation et d’ajustement 5, et les flèches en pointillées correspondent à une transmission de données entre deux étapes du procédé d’estimation et d’ajustement 5 ou entre un élément du système de gestion du bilan énergie du gaz sous forme liquide et une étape du procédé d’estimation et d’ajustement 5. FIG. 3 is a schematic representation of the method for estimating and adjusting the energy balance of gas in liquid form according to the invention. This diagram represents the flow of the estimation and adjustment process 5 when it is launched for the first time during the journey to the place of destination. The estimation and adjustment process 5 can be started a first time before the start or at the start of the floating structure. In FIG. 3, the solid arrows represent the course of each of the steps of the estimation and adjustment method 5, and the dotted arrows correspond to a data transmission between two steps of the estimation and adjustment method 5. or between an element of the system for managing the energy balance of gas in liquid form and a step of the estimation and adjustment process 5.
Lorsque le procédé d’estimation et d’ajustement 5 est lancé une première fois, celui-ci débute par une étape A qui permet de calculer la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée sur le lieu de destination. Le calcul de l’étape A dépend de certaines caractéristiques constantes du gaz sous forme liquide telles que la masse totale de gaz sous forme liquide et la capacité calorifique massique de celui- ci. De telles caractéristiques dépendent du type de gaz sous forme liquide transporté et sont connues d’une manière ou d’une autre par le personnel de l’ouvrage flottant. Ainsi, la masse totale de gaz sous forme liquide et la capacité calorifique massique du gaz sous forme liquide peuvent être entrées ou être présélectionnées par le biais du moniteur de commande 6 et être transmises pour le calcul de l’étape A du procédé d’estimation et d’ajustement 5. Le calcul de l’étape A dépend également des exigences de pression de saturation maximale du gaz sous forme liquide du lieu de destination. Ces exigences variant en fonction du lieu de destination, la valeur de pression de saturation maximale exigée du gaz sous forme liquide est connue dès lors que le lieu de destination est connu. Les exigences de pression de saturation du gaz sous forme liquide peuvent être entrées par le biais du moniteur de commande 6 ou être connues, par exemple par le biais d’une base de données répertoriant l’ensemble des lieux de destination habilités à la réception et au déchargement de gaz sous forme liquide. When the estimation and adjustment process 5 is launched for the first time, it begins with a step A which makes it possible to calculate the maximum authorized temperature of the gas in liquid form contained in the tank on arrival at the place of destination. The calculation of step A depends on certain constant characteristics of the gas in liquid form such as the total mass of gas in liquid form and the specific heat capacity of the latter. Such characteristics depend on the type of gas in liquid form being transported and are known in one way or another to the personnel of the floating structure. Thus, the total mass of gas in liquid form and the specific heat capacity of gas in liquid form can be entered or preselected through the control monitor 6 and transmitted for the calculation of step A of the estimation process. and adjustment 5. The calculation of step A also depends on the maximum saturation pressure requirements of the gas in liquid form at the place of destination. As these requirements vary according to the place of destination, the maximum saturation pressure value required of the gas in liquid form is known as soon as the place of destination is known. The saturation pressure requirements of the gas in liquid form can be entered through the control monitor 6 or be known, for example by means of a database listing all the places of destination authorized for reception and the unloading of gas in liquid form.
Une fois le calcul de l’étape A effectué, le procédé d’estimation et d’ajustement 5 peut passer directement à une étape B, ou bien passer par une étape intermédiaire A’. L’étape A’ consiste en la détermination d’une marge de sécurité afin d’avoir la certitude que le bilan énergie du gaz sous forme liquide est inférieure aux exigences du lieu de destination à l’arrivée. Ainsi, l’étape A’ n’est pas indispensable pour le bon déroulement du procédé d’estimation et d’ajustement 5 qui peut se passer de la marge de sécurité pour effectuer l’ensemble des calculs et estimations, mais contribue néanmoins à l’optimisation de l’ajustement du bilan énergie du gaz sous forme liquide. La marge de sécurité peut être déterminée automatiquement à partir du plan de route et/ou des conditions météorologiques, ou bien manuellement par le biais du moniteur de commande 6. La marge de sécurité est utilisée pour un calcul lors d’une étape E. L’étape A’ peut donc se dérouler à un instant quelconque antérieur à l’étape E. Once the calculation of step A has been carried out, the estimation and adjustment process 5 can go directly to a step B, or else go through an intermediate step A ’. Step A ’consists of determining a safety margin in order to be sure that the energy balance of the gas in liquid form is lower than the requirements of the place of destination on arrival. Thus, step A 'is not essential for the smooth running of the estimation and adjustment process 5 which can dispense with the safety margin to perform all the calculations and estimations, but nevertheless contributes to the 'optimization of the adjustment of the energy balance of gas in liquid form. The safety margin can be determined automatically from the route plan and / or weather conditions, or manually via the command monitor 6. The safety margin is used for a calculation during a step E. L 'step A' can therefore take place at any time prior to step E.
L’étape B du procédé d’estimation et d’ajustement 5 survient après l’étape A ou l’étape A’. L’étape B consiste en l’établissement du premier plan d’exploitation de la fonction de condensation du système d’alimentation 8. Le premier plan d’exploitation de la fonction de condensation du système d’alimentation 8 indique au cours du temps à quel instant du trajet la fonction de condensation reste active ou inactive et à quel instant cette dernière s’active ou se désactive. L’établissement du premier plan d’exploitation dépend de la quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet. On comprend en effet que par exemple s’il est déterminé qu’aucun surplus de phase gazeuse générée depuis le gaz sous forme liquide n’est généré au cours du trajet, le système d’alimentation n’a pas de phase gazeuse générée depuis le gaz sous forme liquide à condenser et ne nécessite donc pas d’être actif lors du trajet. Un tel surplus peut résulter d’un cas où le consommateur de l’ouvrage flottant est mis à l’arrêt, l’évaporation naturelle du gaz sous forme liquide continuant à se produire. Le surplus de phase gazeuse générée depuis le gaz sous forme liquide est estimé par le calculateur 7 qui transmet donc l’information au boîtier de commande afin que le procédé d’estimation et d’ajustement 5 puisse effectuer l’étape B. Step B of the estimation and adjustment process 5 occurs after step A or step A '. Step B consists of establishing the first operating plan for the condensing of the power supply system 8. The first operating plan of the condensing function of the power supply system 8 indicates over time at which point in the journey the condensing function remains active or inactive and when the latter s 'activates or deactivates. The establishment of the first operating plan depends on the amount of surplus gas phase generated from the gas in liquid form during the journey. It is in fact understood that, for example, if it is determined that no surplus gas phase generated from the gas in liquid form is generated during the journey, the supply system does not have a gas phase generated from the gas phase. gas in liquid form to be condensed and therefore does not need to be active during the journey. Such a surplus may result from a case where the consumer of the floating structure is shut down, the natural evaporation of the gas in liquid form continuing to occur. The surplus gas phase generated from the gas in liquid form is estimated by the computer 7 which therefore transmits the information to the control unit so that the estimation and adjustment process 5 can perform step B.
Une étape C se déroule parallèlement ou successivement à l’étape B. L’étape C repose sur le même principe que l’étape B, puisqu’elle permet l’établissement du deuxième plan d’exploitation de la fonction de refroidissement du système d’alimentation 8. De même que pour l’étape B, le deuxième plan d’exploitation de la fonction de refroidissement du système d’alimentation 8 indique au cours du temps à quel instant du trajet la fonction de refroidissement reste active ou inactive et à quel instant cette dernière s’active ou se désactive. L’établissement du deuxième plan d’exploitation dépend également de la quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet, estimée par le calculateur 7. L’estimation de surplus de phase gazeuse générée depuis le gaz sous forme liquide entre donc en compte pour les étapes B et C. A stage C takes place in parallel or successively with stage B. Stage C is based on the same principle as stage B, since it allows the establishment of the second operating plan of the cooling function of the system d power supply 8. As for step B, the second operating plan of the cooling function of the power supply system 8 indicates over time at which point in time during the journey the cooling function remains active or inactive and at when the latter is activated or deactivated. The establishment of the second operating plan also depends on the quantity of surplus gas phase generated from the gas in liquid form during the journey, estimated by the computer 7. The estimate of surplus gas phase generated from the gas under liquid form is therefore taken into account for steps B and C.
Le procédé d’estimation et d’ajustement 5 se poursuit ensuite avec une étape D qui calcule un bilan énergie du gaz sous forme liquide à un instant t. La figure 3 représentant le déroulé du procédé d’estimation et d’ajustement 5 lors de son premier lancement, l’instant t correspond ici au moment du départ ou avant le départ de l’ouvrage flottant. Pour le calcul du bilan énergie du gaz sous forme liquide à l’instant t, le procédé d’estimation et d’ajustement 5 a besoin des caractéristiques du gaz sous forme liquide, notamment utilisée lors de l’étape A pour le calcul de la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée, telles que la masse totale de gaz sous forme liquide du gaz sous forme liquide, ou la capacité calorifique massique du gaz sous forme liquide. Ces caractéristiques peuvent être fournies par le moniteur de commande 6, tout comme pour l’étape A. Le calcul du bilan énergie du gaz sous forme liquide à l’instant t a également besoin de la température moyenne du gaz sous forme liquide contenu dans la cuve à l’instant t. La température moyenne du gaz peut être mesurée par exemple grâce à un capteur de température situé dans la cuve. C’est donc le système d’alimentation 8 qui fournit la température moyenne dans la cuve et qui transmet celle-ci au boîtier de commande afin que le procédé d’estimation et d’ajustement 5 puisse effectuer le calcul de l’étape D. The estimation and adjustment method 5 then continues with a step D which calculates an energy balance of the gas in liquid form at an instant t. FIG. 3 showing the course of the estimation and adjustment process 5 during its first launch, the instant t corresponds here to the time of departure or before the departure of the floating structure. For the calculation of the energy balance of gas in liquid form at time t, the estimation and adjustment method 5 needs the characteristics of the gas in liquid form, in particular used during step A for the calculation of the maximum authorized temperature of the gas in liquid form contained in the tank on arrival, such as the total mass of gas in liquid form of gas in liquid form, or the specific heat capacity of gas in liquid form. These characteristics can be provided by the control monitor 6, just as for step A. The calculation of the energy balance of the gas in liquid form at time t also requires the average temperature of the gas in liquid form contained in the tank. at time t. The average temperature of the gas can be measured, for example, by means of a temperature sensor located in the tank. It is therefore the supply system 8 which supplies the average temperature in the tank and which transmits this to the control unit so that the estimation and adjustment method 5 can perform the calculation of step D.
Une fois l’étape D achevée, le procédé d’estimation et d’ajustement 5 poursuit avec une étape E qui consiste à calculer un bilan énergie maximal. Le bilan énergie maximal correspond à la limite des exigences du lieu de destination que le bilan énergie du gaz sous forme liquide contenu dans la cuve ne doit pas franchir, sous peine que la cargaison soit refusée une fois l’ouvrage flottant arrivé au lieu de destination. Le bilan énergie du gaz sous forme liquide peut toutefois franchir cette limite du bilan énergie maximal au cours du trajet sans conséquences, mais doit impérativement repasser sous ce bilan énergie maximal avant que l’ouvrage flottant ne parvienne au lieu de destination. On comprend que le bilan énergie maximal est une cible pour ajuster le bilan énergie du gaz sous forme liquide contenu dans la cuve au cours du trajet. Once step D has been completed, the estimation and adjustment method 5 continues with step E which consists in calculating a maximum energy balance. The maximum energy balance corresponds to the limit of the requirements of the place of destination that the energy balance of the gas in liquid form contained in the tank must not exceed, otherwise the cargo will be refused once the floating structure has arrived at the place of destination. . The energy balance of gas in liquid form can however exceed this limit of the maximum energy balance during the journey without consequences, but must imperatively fall under this maximum energy balance before the floating structure reaches the place of destination. It is understood that the maximum energy balance is a target for adjusting the energy balance of the gas in liquid form contained in the tank during the journey.
Pour ce calcul du bilan énergie maximal lors de l’étape E, le procédé d’estimation et d’ajustement 5 a besoin des caractéristiques du gaz sous forme liquide et de la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée calculée lors de l’étape A. Les données fournies et les calculs effectués lors de l’étape A peuvent donc être transmis pour le calcul de l’étape E. Si le procédé d’estimation et d’ajustement 5 a effectué l’étape A’, autrement dit si la marge de sécurité a été déterminée et sélectionnée, ladite marge de sécurité est également transmise pour être prise en compte pour le calcul du bilan énergie maximal. Ainsi, le bilan énergie maximal calculé lors de l’étape E correspond au bilan énergie maximal réel en l’absence de marge de sécurité, ou à un bilan énergie maximal virtuel, inférieur au bilan énergie maximal réel dû à la prise en compte de la marge de sécurité dans le calcul. For this calculation of the maximum energy balance during step E, the estimation and adjustment method 5 needs the characteristics of the gas in liquid form and of the maximum authorized temperature of the gas in liquid form contained in the tank at l. 'arrival calculated during step A. The data provided and the calculations performed during step A can therefore be transmitted for the calculation of step E. If the estimation and adjustment method 5 has carried out the 'step A', in other words if the safety margin has been determined and selected, said safety margin is also transmitted for be taken into account for the calculation of the maximum energy balance. Thus, the maximum energy balance calculated during step E corresponds to the actual maximum energy balance in the absence of a safety margin, or to a virtual maximum energy balance, lower than the actual maximum energy balance due to the taking into account of the safety margin in the calculation.
L’étape suivante du procédé d’estimation et d’ajustement 5 est une étape F assurant l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet. L’étape F permet de déterminer, en conservant les plans d’exploitation des fonctions de condensation et de refroidissement établis lors des étapes B et C, quel sera le bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée du trajet. Pour effectuer une telle estimation, le calcul est basé sur le bilan énergie du gaz sous forme liquide à l’instant t calculé lors de l’étape D, ainsi que sur les plans d’exploitation des fonctions de condensation et de refroidissement établis lors des étapes B et C. Ces derniers ayant été établis pour l’intégralité du trajet lors des étapes B et C, le procédé d’estimation et d’ajustement 5 peut alors estimer l’évolution du bilan énergie du gaz sous forme liquide lors de cette étape F, les fonctions de condensation et de refroidissement étant aptes à faire varier ledit bilan énergie du gaz sous forme liquide selon qu’elles sont actives ou inactives et quand elles s’activent et se désactivent. Le bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est donc déterminable à partir de ces données. The next step of the estimation and adjustment process 5 is a step F ensuring the estimation of the energy balance of the gas in liquid form contained in the vessel at the end of the journey. Step F makes it possible to determine, while keeping the operating plans for the condensation and cooling functions established during steps B and C, what will be the energy balance of the gas in liquid form contained in the vessel at the arrival of the path. . To make such an estimate, the calculation is based on the energy balance of the gas in liquid form at time t calculated during step D, as well as on the operating plans for the condensation and cooling functions established during steps B and C. These latter having been established for the entire path during steps B and C, the estimation and adjustment method 5 can then estimate the evolution of the energy balance of the gas in liquid form during this step F, the condensation and cooling functions being able to vary said energy balance of the gas in liquid form depending on whether they are active or inactive and when they are activated and deactivated. The energy balance of the gas in liquid form contained in the tank on arrival can therefore be determined from these data.
Le procédé d’estimation et d’ajustement 5 se poursuit ensuite par une étape G qui assure l’ajustement des plans d’exploitation des fonctions de condensation et de refroidissement du système d’alimentation 8. Ces ajustements sont effectués en fonction d’un comparatif entre le bilan énergie maximal calculé lors de l’étape E et l’estimation du bilan énergie du gaz sous forme liquide contenue dans la cuve à l’arrivée, calculée à l’étape F. Pour rappel, l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée calculée lors de l’étape F est basé sur les plans d’exploitation des fonctions de condensation et de refroidissement établis lors des étapes B et C. L’étape G permet donc de modifier cette estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée en ajustant les plans d'exploitation des fonctions de condensation et de refro idissement. The estimation and adjustment method 5 then continues with a step G which ensures the adjustment of the operating plans of the condensing and cooling functions of the supply system 8. These adjustments are carried out as a function of a comparison between the maximum energy balance calculated during step E and the estimate of the energy balance of the gas in liquid form contained in the tank on arrival, calculated in step F. As a reminder, the estimate of the energy balance gas in liquid form contained in the tank on arrival calculated during step F is based on the operating plans for the condensation and cooling functions established during steps B and C. Step G therefore makes it possible to modify this estimate of the energy balance of the gas in liquid form contained in the tank on arrival by adjusting the operating plans for the condensing and cooling functions.
Si l’estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est supérieure au bilan énergie maximal, cela signifie que la cargaison de gaz sous forme liquide sera à l’arrivée à une pression de saturation du gaz sous forme liquide excessive par rapport aux exigences maximales du lieu de destination. Les plans d'exploitation des fonctions de condensation et de refroidissement doivent donc être ajustés afin de faire diminuer la température du gaz sous forme liquide contenu dans la cuve et par analogie le bilan énergie du gaz sous forme liquide. If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is greater than the maximum energy balance, this means that the cargo of gas in liquid form will be on arrival at a saturation pressure of the gas under excessive liquid form in relation to the maximum requirements of the place of destination. The operating plans for the condensation and cooling functions must therefore be adjusted in order to reduce the temperature of the gas in liquid form contained in the vessel and by analogy the energy balance of the gas in liquid form.
Si l'estimation du bilan énergie du gaz sous forme liquide contenu dans la cuve à l’arrivée est inférieure au bilan énergie maximal, cela signifie que la cargaison de gaz sous forme liquide sera à l’arrivée dans le respect des exigences du lieu de destination, mais qu’il est néanmoins possible d’effectuer des ajustements autorisant une hausse de température du gaz sous forme liquide contenu dans la cuve si ceux-ci s’avèrent utiles en termes d’économie d’énergie. Les plans d'exploitation des fonctions de condensation et de refro idissement doivent donc erre ajustés afin d’autoriser une augmentation de la température du gaz sous forme liquide contenu dans la cuve et par analogie du bilan énergie du gaz sous forme liquide. If the estimate of the energy balance of the gas in liquid form contained in the tank on arrival is less than the maximum energy balance, this means that the cargo of gas in liquid form will be on arrival in compliance with the requirements of the place of destination, but it is nevertheless possible to make adjustments allowing an increase in the temperature of the gas in liquid form contained in the tank if these prove to be useful in terms of energy saving. The operating plans for the condensation and cooling functions must therefore be adjusted in order to allow an increase in the temperature of the gas in liquid form contained in the tank and by analogy of the energy balance of the gas in liquid form.
L’étape G détermine donc les ajustements optimaux des plans d’exploitation des fonctions de condensation et de refroidissement du système d’alimentation 8 pour répondre au mieux à la situation. Des exemples concernant les ajustements des plans d’exploitation seront présentés par la suite. Step G therefore determines the optimal adjustments of the operating plans for the condensing and cooling functions of the power system 8 to best meet the situation. Examples of adjustments to operating plans will be presented below.
Le procédé d’estimation et d’ajustement 5 se termine enfin par une étape H, mettant en œuvre les plans d’exploitation ajustés lors de l’étape G. L’étape H marque la fin du procédé d’estimation et d’ajustement 5 et envoie les plans d’exploitation ajustés des fonctions de condensation et de refroidissement vers le système d’alimentation 8 afin que ce dernier les mette en application. Les détails du fonctionnement du système d’alimentation 8 seront présentés par la suite. La figure 4 est une représentation schématique du procédé d’estimation et d’ajustement 5 du bilan énergie du gaz sous forme liquide lors de sa répétition par itération, c’est-à- dire lorsque le procédé d’estimation et d’ajustement 5 est lancé au cours du trajet après avoir été lancé une première fois selon la figure 3. La plupart des étapes du procédé d’estimation et d’ajustement 5 sont similaires à ce qui a été décrit précédemment, et on se reportera donc à la description de la figure 3 pour les explications concernant celles-ci. Tout comme pour la figure 3, les flèches pleines représentent le déroulé de chacune des étapes du procédé d’estimation et d’ajustement 5, et les flèches en pointillées correspondent à une transmission de données entre deux étapes du procédé d’estimation et d’ajustement 5 ou entre un élément du système de gestion du bilan énergie du gaz sous forme liquide et une étape du procédé d’estimation et d’ajustement 5. The estimation and adjustment method 5 finally ends with a step H, implementing the operating plans adjusted during step G. Step H marks the end of the estimation and adjustment method. 5 and sends the adjusted operating plans of the condensing and cooling functions to the power system 8 for the latter to implement. The details of the operation of the power system 8 will be presented below. FIG. 4 is a schematic representation of the estimation and adjustment method 5 of the energy balance of gas in liquid form during its repetition by iteration, that is to say when the estimation and adjustment method 5 is started during the journey after having been launched for the first time according to FIG. 3. Most of the steps of the estimation and adjustment process 5 are similar to what has been described previously, and reference will therefore be made to the description of Figure 3 for explanations relating to them. As in FIG. 3, the solid arrows represent the course of each of the steps of the estimation and adjustment process 5, and the dotted arrows correspond to a transmission of data between two steps of the estimation and adjustment process. adjustment 5 or between an element of the system for managing the energy balance of gas in liquid form and a step of the estimation and adjustment process 5.
Lorsque le procédé d’estimation et d’ajustement 5 est répété par itération, il n’est plus utile d’initier l’étape A. En effet, le résultat du calcul de l’étape A, c’est-à-dire celui de la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée, est invariable au cours du temps. Le résultat de l’étape A étant toutefois utilisé pour le calcul de l’étape E, ledit résultat doit toutefois être conservé durant le trajet, par exemple par le biais d’une mémoire du boîtier de commande. When the estimation and adjustment process 5 is repeated by iteration, it is no longer useful to initiate step A. Indeed, the result of the calculation of step A, that is to say that of the maximum authorized temperature of the gas in liquid form contained in the tank on arrival, is invariable over time. The result of step A being however used for the calculation of step E, said result must however be kept during the journey, for example by means of a memory of the control unit.
L’étape A’ consistant à sélectionner la marge de sécurité n’est également pas répétée. La marge de sécurité peut toutefois être amenée à varier, et ce de manière indépendante au déroulement du procédé d’estimation et d’ajustement 5, soit parce qu’elle a été paramétrée pour varier au cours du temps lorsque le procédé d’estimation et d’ajustement 5 a été lancé la première fois, soit parce qu’elle a été modifiée manuellement par le biais du moniteur de commande 6. La variation de la marge de sécurité est la raison pour laquelle l’étape E est maintenue au sein du procédé d’estimation et d’ajustement 5 puisqu’il s’agit d’un facteur susceptible de varier au cours du temps pour le calcul de l’étape E. Step A ’of selecting the safety margin is also not repeated. The safety margin may however be caused to vary, and this independently of the progress of the estimation and adjustment process 5, or because it has been configured to vary over time when the estimation process and adjustment 5 was started the first time, either because it was changed manually through the control monitor 6. The variation of the safety margin is the reason why step E is kept within the estimation and adjustment method 5 since it is a factor liable to vary over time for the calculation of step E.
Le procédé d’estimation et d’ajustement 5, lorsque celui-ci est répété par itération, commence donc par l’étape B. Les étapes B et C se déroulent telles que lors du premier lancement du procédé d’estimation et d’ajustement 5, la quantité de surplus de phase gazeuse générée depuis le gaz sous forme liquide étant toujours calculée et apportée par le calculateur 7. The estimation and adjustment method 5, when the latter is repeated by iteration, therefore begins with step B. Steps B and C take place as when the estimation and adjustment method is first launched. 5, the amount of phase surplus gas generated from the gas in liquid form always being calculated and supplied by the computer 7.
L’étape D se déroule également de manière identique à ce qui a été décrit précédemment. En revanche, il se déroule une étape D’, parallèlement à l’étape D, qui calcule également le bilan énergie du gaz sous forme liquide à l’instant t, mais selon un calcul différent de celui de l’étape D. Le calcul du bilan énergie du gaz sous forme liquide à l’instant t de l’étape D’ se fait à partir d’un bilan énergie du gaz sous forme liquide à un instant t antérieur, calculé lors d’une itération précédente du procédé d’estimation et d’ajustement 5, ainsi qu’à partir des exécutions des fonctions de condensation et de refroidissement depuis le départ de l’ouvrage flottant. Le bilan énergie du gaz sous forme liquide à un instant t antérieur peut être récupéré par exemple à partir de la mémoire tampon du boîtier de commande. Les exécutions des fonctions de condensation et de refroidissement sont à l’origine de transfert de chaleur effectué par la fonction de condensation et de transfert de froid effectué par la fonction de refroidissement vers la cargaison de gaz sous forme liquide. Les exécutions des fonctions de condensation et de refroidissement peuvent donc être mesurées par des capteurs situés au niveau des éléments du système d’alimentation 8 assurant la condensation et le refroidissement du gaz sous forme liquide, qui transmet ces données au boîtier de commande pour application lors de l’étape D’. Step D also takes place identically to what has been described above. On the other hand, a step D 'takes place, in parallel with step D, which also calculates the energy balance of the gas in liquid form at time t, but according to a calculation different from that of step D. The calculation the energy balance of the gas in liquid form at the instant t of step D 'is made from an energy balance of the gas in liquid form at an earlier instant t, calculated during a previous iteration of the process of estimation and adjustment 5, as well as from the performance of the condensation and cooling functions from the start of the floating structure. The energy balance of the gas in liquid form at an earlier instant t can be recovered for example from the buffer memory of the control unit. The performance of the condensing and cooling functions results in the heat transfer carried out by the condensing function and cold transfer carried out by the cooling function to the gas cargo in liquid form. The performance of the condensing and cooling functions can therefore be measured by sensors located at the level of the elements of the supply system 8 ensuring the condensation and cooling of the gas in liquid form, which transmits these data to the control box for application during of step D '.
Après le calcul des bilans énergie du gaz sous forme liquide à l’instant t des étapes D et D’, seul le bilan énergie du gaz sous forme liquide à l’instant t ayant la valeur la plus élevée est conservé. Ce dernier est considéré comme ayant la valeur la plus pessimiste, la priorité étant de se maintenir sous le bilan énergie maximal calculé par la suite. After calculating the energy balances of the gas in liquid form at time t in steps D and D ’, only the energy balance of the gas in liquid form at time t having the highest value is kept. The latter is considered to have the most pessimistic value, the priority being to remain below the maximum energy balance calculated subsequently.
La suite du procédé d’estimation et d’ajustement 5 se déroule ensuite conformément à ce qui a été décrit à la figure 3. Une fois le procédé d’estimation et d’ajustement 5 achevé, les ajustements des plans d’exploitation des fonctions de condensation et de refroidissement sont transmis au système d’alimentation 8, et le procédé d’estimation et d’ajustement 5 peut à nouveau se répéter directement à partir de l’étape B en fonction du paramétrage du boîtier de commande. D’une manière avantageuse, le boîtier de commande est configuré pour répéter le procédé d’estimation et d’ajustement 5 à intervalles réguliers tout au long du trajet, selon le déroulé de la figure 4, par exemple une fois par jour ou toutes les six heures. The remainder of the estimation and adjustment process 5 then proceeds in accordance with what has been described in FIG. 3. Once the estimation and adjustment process 5 has been completed, the adjustments of the operating plans of the functions. of condensation and cooling are transmitted to the power system 8, and the estimation and adjustment process 5 can again be repeated directly from step B according to the setting of the control box. Advantageously, the housing of The control is configured to repeat the estimation and adjustment process 5 at regular intervals throughout the journey, according to the sequence of FIG. 4, for example once a day or every six hours.
La figure 5 est une représentation générale du système d’alimentation 8 assurant les fonctions de condensation et de refroidissement du gaz sous forme liquide. D’une manière générale, le système d’alimentation 8 interagit avec la cuve 9 ainsi qu’avec un ensemble de consommateurs. Figure 5 is a general representation of the supply system 8 providing the functions of condensing and cooling gas in liquid form. In general, the supply system 8 interacts with the tank 9 as well as with a set of consumers.
Le système d’alimentation 8 est apte à assurer la gestion de la température du gaz sous forme liquide de la cuve 9. Pour ce faire, le système d’alimentation 8 comprend une entrée de liquide 81 et une entrée de gaz 82. L’entrée de liquide 81 lie le système d’alimentation 8 à la cuve 9, et est apte à aspirer le gaz sous forme liquide 13, par exemple par le biais d’une pompe de gaz sous forme liquide 26. L’entrée de gaz 82 s’étend d’un ciel de cuve pouvant comporter une certaine quantité de phase gazeuse 14 générée depuis le gaz sous forme liquide jusqu’au système d’alimentation 8. La phase gazeuse 14 générée depuis le gaz sous forme liquide peut être aspirée par exemple par un compresseur 27 afin d’être conduite jusqu’au système d’alimentation 8. The supply system 8 is suitable for managing the temperature of the gas in liquid form in the tank 9. To do this, the supply system 8 comprises a liquid inlet 81 and a gas inlet 82. The liquid inlet 81 links the supply system 8 to the tank 9, and is able to suck the gas in liquid form 13, for example by means of a gas pump in liquid form 26. The gas inlet 82 extends from a vessel top which may include a certain quantity of gas phase 14 generated from the gas in liquid form to the supply system 8. The gas phase 14 generated from the gas in liquid form can be sucked for example by a compressor 27 in order to be driven to the supply system 8.
Le système d’alimentation 8 comprend également une sortie de gaz 83 qui s’étend du système d’alimentation 8 jusqu’à l’ensemble de consommateurs. A titre d’exemples les consommateurs peuvent être un moteur 16 de propulsion, un générateur électrique 17, une chambre de combustion 18 ou un mat de dégazage 28. Le moteur 16 de propulsion permet de faire avancer l’ouvrage flottant durant le trajet et est apte à être alimenté par la phase gazeuse 14 générée depuis le gaz sous forme liquide. Le générateur électrique 17 assure l’alimentation en électricité de l’ouvrage flottant, par exemple l’éclairage ou le réseau de bord de l’ouvrage flottant et plus généralement toute entité nécessitant une alimentation électrique. La phase gazeuse 14 générée depuis le gaz sous forme liquide sert donc de carburant pour l’un et/ou l’autre de ces consommateurs. Ainsi, par exemple en cas d’excès de phase gazeuse 14 générée depuis le gaz sous forme liquide, le système d’alimentation 8 peut aspirer la phase gazeuse 14 générée depuis le gaz sous forme liquide au sein de l’entrée de gaz 82. La phase gazeuse 14 générée depuis le gaz sous forme liquide peut être ensuite traitée par le système d’alimentation 8 puis sortir de ce dernier par la sortie de gaz 83, par exemple dans le but d’alimenter le moteur 16 de propulsion ou le générateur électrique 17. The supply system 8 also includes a gas outlet 83 which extends from the supply system 8 to the set of consumers. By way of example, the consumers can be a propulsion engine 16, an electric generator 17, a combustion chamber 18 or a degassing mat 28. The propulsion engine 16 makes it possible to advance the floating structure during the journey and is suitable for being supplied by the gas phase 14 generated from the gas in liquid form. The electric generator 17 ensures the supply of electricity to the floating structure, for example the lighting or the on-board network of the floating structure and more generally any entity requiring an electrical supply. The gas phase 14 generated from the gas in liquid form therefore serves as fuel for one and / or the other of these consumers. Thus, for example in the event of an excess of gas phase 14 generated from the gas in liquid form, the supply system 8 can suck the gas phase 14 generated from the gas in liquid form into the gas inlet 82. The gas phase 14 generated from the gas under liquid form can then be processed by the supply system 8 and then exit the latter through the gas outlet 83, for example with the aim of supplying the propulsion motor 16 or the electric generator 17.
La phase gazeuse 14 générée depuis le gaz sous forme liquide et non utilisée pour l’alimenrarion du moteur 16 de propulsion ou du générateur électrique 17 représente le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide. Ce surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide peur erre brûlé par la chambre de combustion 18 ou erre relargué dans l'atmosphère par le mat de dégazage 28. The gas phase 14 generated from the gas in liquid form and not used for powering the propulsion engine 16 or the electric generator 17 represents the surplus gas phase 14 generated from the gas in liquid form. This surplus gaseous phase 14 generated from the gas in liquid form can wander burnt by the combustion chamber 18 or wander released into the atmosphere by the degassing mat 28.
Le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide peur également retourner au système d’alimentation 8 par le biais d’une dérivation 84 afin d’être condensé par celui-ci. Ceci étant fait, le gaz sous forme liquide condensé retourne dans la cuve 9 par le biais d’une sortie de liquide 85 du système d’alimentation 8. Surplus gas phase 14 generated from the gas in liquid form can also be returned to supply system 8 through bypass 84 to be condensed by it. This being done, the gas in condensed liquid form returns to the tank 9 through a liquid outlet 85 of the supply system 8.
En cas de besoin de refroidissement du gaz sous forme liquide 13, ce dernier est aspiré par la pompe de gaz sous forme liquide 26 et circule au sein de l'entrée de liquide 81 jusqu’au système d’alimentation 8 où il y est refroidi. Le gaz sous forme liquide 13 refroidi retourne ensuite au sein de la cuve 9 par le biais de la sortie de liquide 85. If there is a need for cooling the gas in liquid form 13, the latter is sucked by the gas pump in liquid form 26 and circulates within the liquid inlet 81 to the supply system 8 where it is cooled there. . The cooled liquid gas 13 then returns to the vessel 9 through the liquid outlet 85.
La figure 6 est une représentation schématique d’un premier mode de réalisation du système d’alimentation 8 assurant les fonctions de condensation et de refroidissement du gaz sous forme liquide. Figure 6 is a schematic representation of a first embodiment of the supply system 8 providing the functions of condensing and cooling gas in liquid form.
Tour comme pour la figure 5, le système d’alimentation 8 assure la gestion de la température de la cuve 9. La cuve 9 est au moins partiellement remplie par une certaine quantité de gaz sous forme liquide 13. Le ciel de cuve peur également comprendre une certaine quantité de phase gazeuse 14 générée depuis le gaz sous forme liquide. La cuve 9 comprend également au moins la pompe de gaz sous forme liquide 26. La cuve 9 comprend également un premier capteur de température 10. C’est à partir de ce premier capteur de température 10 que la température moyenne du gaz sous forme liquide 13 est mesurée et transmise au boîtier de commande pour le calcul de l'étape D du procédé d’estimation et d’ajustement. Pour l’exemple de la figure 6, le premier capteur de température 10 de la cuve 9 relève la température du gaz sous forme liquide qui l’entoure. Si l’ouvrage flottant comprend une pluralité de cuves 9 comprenant chacune un premier capteur de température 10, une moyenne des températures est effectuée puis envoyée au boîtier de commande. As in FIG. 5, the supply system 8 manages the temperature of the tank 9. The tank 9 is at least partially filled with a certain quantity of gas in liquid form 13. The tank top can also include a certain amount of gas phase 14 generated from the gas in liquid form. The tank 9 also comprises at least the gas pump in liquid form 26. The tank 9 also comprises a first temperature sensor 10. It is from this first temperature sensor 10 that the average temperature of the gas in liquid form 13 is measured and transmitted to the control unit for the calculation of step D of the estimation and adjustment process. For the example of FIG. 6, the first temperature sensor 10 of the tank 9 reads the temperature of the gas in liquid form which surround it. If the floating structure comprises a plurality of tanks 9 each comprising a first temperature sensor 10, the temperatures are averaged and then sent to the control unit.
Comme cela a été indiqué précédemment, la fonction de condensation du système d’alimentation 8 permet de condenser le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide. Pour ce faire, la phase gazeuse 14 générée depuis le gaz sous forme liquide de la cuve 9 est aspirée par le compresseur 27 situé en dehors de la cuve et constitutif d’un circuit de phase gazeuse 15. Le circuit de phase gazeuse 15 transporte la phase gazeuse 14 générée depuis le gaz sous forme liquide qui s’étend jusqu’à déboucher au niveau du moteur 16 de propulsion et/ou du générateur électrique 17 dans le but d’être utilisé comme carburant par ces derniers. As indicated above, the condensing function of the feed system 8 allows the excess gas phase 14 generated from the gas in liquid form to be condensed. To do this, the gas phase 14 generated from the gas in liquid form from the tank 9 is sucked by the compressor 27 located outside the tank and constituting a gas phase circuit 15. The gas phase circuit 15 transports the gas. gas phase 14 generated from the gas in liquid form which extends until it emerges at the level of the propulsion engine 16 and / or the electric generator 17 with the aim of being used as fuel by the latter.
La phase gazeuse 14 générée depuis le gaz sous forme liquide et non utilisée pour l’alimentation du moteur 16 de propulsion ou du générateur électrique 17 représente le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide et circule au sein d’un circuit de surplus 19. Le circuit de surplus 19 permet la circulation du surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide jusqu’à un premier échangeur de chaleur 11. C’est le premier échangeur de chaleur 11 qui assure la fonction de condensation du surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide, et ce grâce à un échange de chaleur entre une première passe 111 et une deuxième passe 112. La première passe 111 est traversée par le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide qui est alors refroidi par la deuxième passe 112, et ce afin que le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide se condense et passe à l’état liquide. On comprend ainsi que lorsque la fonction de condensation du système d’alimentation 8 est active, le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide est dirigé vers le premier échangeur de chaleur 11 par le biais du circuit de surplus 19. Si la fonction de condensation du système d’alimentation 8 est inactive, alors le surplus de phase gazeuse générée depuis le gaz sous forme liquide est dirigé vers la chambre de combustion 18 pour être brûlé ou bien vers le mat de dégazage 28 pour être libéré dans l’atmosphère. Afin de condenser le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide, un fluide présentant une température plus basse que la température de changement d’état du surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide circule au sein de la deuxième passe 112. The gas phase 14 generated from the gas in liquid form and not used for supplying the propulsion engine 16 or the electric generator 17 represents the surplus gas phase 14 generated from the gas in liquid form and circulates within a circuit surplus 19. The surplus circuit 19 allows the circulation of the surplus gas phase 14 generated from the gas in liquid form to a first heat exchanger 11. It is the first heat exchanger 11 which performs the condensation function. of the surplus gas phase 14 generated from the gas in liquid form, and this thanks to a heat exchange between a first pass 111 and a second pass 112. The first pass 111 is crossed by the surplus gas phase 14 generated from the gas in liquid form which is then cooled by the second pass 112, so that the surplus gas phase 14 generated from the gas in liquid form condenses and changes to the liquid state. It is thus understood that when the condensation function of the supply system 8 is active, the surplus gas phase 14 generated from the gas in liquid form is directed to the first heat exchanger 11 via the surplus circuit 19. If the condensing function of the feed system 8 is inactive, then the excess gas phase generated from the gas in liquid form is directed to the combustion chamber 18 to be burnt or else to the degassing mat 28 to be released into the 'atmosphere. In order to condense the surplus of gas phase 14 generated from the gas in liquid form, a fluid having a temperature lower than the state change temperature of the surplus gas phase 14 generated from the gas in liquid form circulates within the second pass 112.
Une fois le surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide condensé par le premier échangeur de chaleur 11 , le gaz condensé circule dans un circuit de gaz condensé 20 jusqu’à un circuit de retour 21 qui dirige le gaz condensé vers la cuveOnce the surplus gas phase 14 has been generated from the gas in liquid form condensed by the first heat exchanger 11, the condensed gas circulates in a condensed gas circuit 20 to a return circuit 21 which directs the condensed gas towards the tank
9. 9.
Concernant la fonction de refroidissement du système d’alimentation 8, le gaz sous forme liquide 13 contenu dans la cuve 9 est tout d’abord aspiré par la pompe de gaz sous forme liquide 26. Le gaz sous forme liquide 13 aspiré par la pompe de gaz sous forme liquide 26 circule jusqu’à un deuxième échangeur de chaleur 12. C’est le deuxième échangeur de chaleur 12 qui assure la fonction de refroidissement du gaz sous forme liquide 13, et ce grâce à un échange de chaleur entre une troisième passe 121 et une quatrième passe 122. Le gaz sous forme liquide 13 aspiré par la pompe de gaz sous forme liquide 26 circule dans le deuxième échangeur de chaleur 12 par le biais de la quatrième passe 122 et est refroidi. Afin de refroidir le gaz sous forme liquide 13 qui est déjà à une température très faible, un fluide d’une température inférieure au gaz sous forme liquide 13 circule au sein de la troisième passe 121. La troisième passe 121 peut faire partie d’un circuit réfrigérant externe au système d’alimentation 8, et non représenté sur la figure 6. Le circuit réfrigérant externe peut par exemple faire partie d’un système de type évaporateur sous vide. Regarding the cooling function of the supply system 8, the gas in liquid form 13 contained in the tank 9 is first of all sucked by the gas pump in liquid form 26. The gas in liquid form 13 sucked in by the gas pump. gas in liquid form 26 circulates to a second heat exchanger 12. It is the second heat exchanger 12 which performs the function of cooling the gas in liquid form 13, and this thanks to a heat exchange between a third pass 121 and a fourth pass 122. The gas in liquid form 13 sucked by the gas pump in liquid form 26 circulates in the second heat exchanger 12 through the fourth pass 122 and is cooled. In order to cool the gas in liquid form 13 which is already at a very low temperature, a fluid of a temperature lower than the gas in liquid form 13 circulates within the third pass 121. The third pass 121 may be part of a refrigerant circuit external to the supply system 8, and not shown in FIG. 6. The external refrigerant circuit may for example form part of a system of the vacuum evaporator type.
Par la suite, après avoir été refroidi par le deuxième échangeur de chaleur 12, le gaz sous forme liquide 13 refroidi retourne dans la cuve 9 par le biais du circuit de retour 21. Ainsi, le gaz sous forme liquide 13 refroidi permet de globalement refroidir la cuve 9, la température du gaz sous forme liquide 13 refroidi étant inférieure à la température du gaz sous forme liquide 13 resté dans la cuve 9. Subsequently, after having been cooled by the second heat exchanger 12, the cooled gas in liquid form 13 returns to the tank 9 through the return circuit 21. Thus, the cooled gas in liquid form 13 makes it possible to generally cool down. the tank 9, the temperature of the gas in liquid form 13 being cooled below the temperature of the gas in liquid form 13 remaining in the tank 9.
Les échanges de chaleur du premier échangeur de chaleur 11 et du deuxième échangeur de chaleur 12 sont mesurés par une pluralité de capteurs de température. Ainsi, le système d’alimentation 8 comprend deux deuxièmes capteurs de température 24, chacun situé à l’entrée et à la sortie du premier échangeur de chaleur 11, et deux troisièmes capteurs de température 25, chacun situé à l’entrée et à la sortie du deuxième échangeur de chaleur 12. Par le biais d’un calcul d’une différence de température entre les sorties et les entrées de chacun des échangeurs de chaleur, il est possible de mesurer l’entrée de chaleur dans la cuve 9 grâce aux deuxièmes capteurs de température 24 et l’entrée de froid dans la cuve 9 grâce aux troisièmes capteurs de température 25. L’entrée de chaleur et l’entrée de froid sont des données utilisées pour le calcul de l’exécution des fonctions de condensation et de refroidissement du système d’alimentation 8, les dites exécutions servant pour le calcul du bilan énergie du gaz sous forme liquide à l’instant t de l’étape D’ du procédé d’estimation et d’ajustement. Ces données sont donc envoyées au boîtier de commande par le système d’alimentation 8. The heat exchanges of the first heat exchanger 11 and of the second heat exchanger 12 are measured by a plurality of temperature sensors. So the power system 8 comprises two second temperature sensors 24, each located at the inlet and outlet of the first heat exchanger 11, and two third temperature sensors 25, each located at the inlet and outlet of the second heat exchanger 12. By calculating a temperature difference between the outputs and the inputs of each of the heat exchangers, it is possible to measure the heat input into the tank 9 thanks to the second sensors of the heat exchanger. temperature 24 and the cold input into the tank 9 thanks to the third temperature sensors 25. The heat input and the cold input are data used for the calculation of the execution of the condensing and cooling functions of the tank. supply system 8, the said executions serving for the calculation of the energy balance of the gas in liquid form at the instant t of step D ′ of the estimation and adjustment process. These data are therefore sent to the control unit by the power supply system 8.
A l’issue du déroulé du procédé d’estimation et d’ajustement, le système d’alimentation 8 reçoit les plans d’exploitation ajustés des fonctions de condensation et de refroidissement. Le système d’alimentation 8 modifie alors son fonctionnement en fonction des plans d’exploitation ajustés en étant apte à programmer l’activation ou la désactivation de l’une et/ou l’autre des fonctions de condensation et de refroidissement.At the end of the estimation and adjustment process, the power supply system 8 receives the adjusted operating plans for the condensing and cooling functions. The power supply system 8 then modifies its operation according to the adjusted operating plans, being able to program the activation or deactivation of one and / or the other of the condensation and cooling functions.
La figure 7 représente schématiquement un deuxième mode de réalisation du système d’alimentation 8. Par rapport au premier mode de réalisation présenté en figure 6, seule la mise en œuvre de la fonction de refroidissement du système d’alimentation 8 est différente. On se référera donc à la description de la figure 6 pour toute partie du système d’alimentation 8 commune aux deux modes de réalisation. Fig. 7 schematically shows a second embodiment of the power system 8. Compared to the first embodiment shown in Fig. 6, only the implementation of the cooling function of the power system 8 is different. Reference will therefore be made to the description of FIG. 6 for any part of the power supply system 8 common to the two embodiments.
Dans ce deuxième mode de réalisation du système d’alimentation 8, ce dernier met en œuvre sa fonction de refroidissement en combinaison avec une fonction d’alimentation des consommateurs de l’ouvrage flottant. En effet, lorsque la phase gazeuse 14 générée depuis le gaz sous forme liquide est aspirée au sein du circuit de phase gazeuse 15, celle- ci traverse le deuxième échangeur 12, en circulant au sein de la troisième passe 121. Le gaz sous forme liquide 13 contenu dans la cuve 9 est quant à lui tout d’abord aspiré par la pompe de gaz sous forme liquide 26 et circule ensuite à travers la quatrième passe 122 située au sein du deuxième échangeur de chaleur 12. L’échange de chaleur s’effectuant entre la troisième passe 121 et la quatrième passe 122 permet à la fois d’augmenter la température de la phase gazeuse 14 générée depuis le gaz sous forme liquide afin que celle-ci soit adéquat pour alimenter le moteur 16 de propulsion et/ou le générateur électrique 17, mais également de sous- refroidir le gaz sous forme liquide 13 aspiré par la pompe de gaz sous forme liquide 26. Par la suite, après avoir été refroidi par le deuxième échangeur de chaleur 12, le gaz sous forme liquide 13 refroidi circule dans un circuit de gaz refroidi 23, et ce jusqu’au circuit de retour 21 qui dirige le gaz sous forme liquide 13 refroidi dans la cuve 9. In this second embodiment of the supply system 8, the latter implements its cooling function in combination with a function of supplying consumers of the floating structure. Indeed, when the gas phase 14 generated from the gas in liquid form is sucked into the gas phase circuit 15, the latter passes through the second exchanger 12, circulating within the third pass 121. The gas in liquid form 13 contained in the tank 9 is for its part first sucked by the gas pump in liquid form 26 and then circulates through the fourth pass 122 located within the second heat exchanger 12. The heat exchange taking place between the third pass 121 and the fourth pass 122 makes it possible both to increase the temperature of the gas phase 14 generated from the gas in liquid form in order to that this is adequate to supply the propulsion motor 16 and / or the electric generator 17, but also to sub-cool the gas in liquid form 13 sucked by the gas pump in liquid form 26. Subsequently, after having been cooled by the second heat exchanger 12, the cooled gas in liquid form 13 circulates in a cooled gas circuit 23, up to the return circuit 21 which directs the gas in liquid form 13 cooled into the tank 9.
Ainsi, le gaz sous forme liquide 13 refroidi retourne dans la cuve 9 et permet de globalement refroidir celle-ci, la température du gaz sous forme liquide 13 refroidi étant inférieure à la température du gaz sous forme liquide 13 resté dans la cuve 9. Thus, the gas in cooled liquid form 13 returns to the tank 9 and makes it possible to cool the latter overall, the temperature of the gas in cooled liquid form 13 being lower than the temperature of the gas in liquid form 13 remaining in the tank 9.
Le gaz sous forme liquide 13 circule de cette manière si la fonction de refroidissement est active. Le système d’alimentation 8 permet donc aux fonctions de condensation et de refroidissement d’être active ou inactive de manière simultanée, dans la mesure où il y a présence de phase gazeuse 14 générée depuis le gaz sous forme liquide pour la fonction de refroidissement et de surplus de phase gazeuse 14 générée depuis le gaz sous forme liquide pour la fonction de condensation. The gas in liquid form 13 circulates in this way if the cooling function is active. The supply system 8 therefore allows the condensing and cooling functions to be active or inactive simultaneously, insofar as there is presence of gas phase 14 generated from the gas in liquid form for the cooling function and surplus gas phase 14 generated from the gas in liquid form for the condensation function.
Les figures 8 à 11 représentent une courbe de l’évolution du bilan énergie du gaz sous forme liquide contenu dans la cuve en fonction du temps, c’est-à-dire au cours du trajet de l’ouvrage flottant, et en fonction des plans d’exploitation des fonctions de condensation et de refroidissement représentés en partie supérieure de chacune des figures 8 à 11. Les figures 8 et 9 correspondent respectivement à une estimation et un ajustement suite à une situation où l’estimation du bilan énergie du gaz sous forme liquide à l’arrivée est inférieure au bilan énergie maximal. Les figures 10 et 11 correspondent respectivement à une estimation et un ajustement suite à une situation où l’estimation du bilan énergie du gaz sous forme liquide est supérieure au bilan énergie maximal. Pour chacune des figures 8 à 11, la situation initiale présentée est le lancement du procédé d’estimation et d’ajustement à un instant t au cours du trajet de l’ouvrage flottant entre le départ 50 et l’arrivée 51. Figures 8 to 11 show a curve showing the evolution of the energy balance of the gas in liquid form contained in the tank as a function of time, that is to say during the path of the floating structure, and as a function of operating plans for the condensation and cooling functions shown in the upper part of each of Figures 8 to 11. Figures 8 and 9 correspond respectively to an estimate and an adjustment following a situation where the estimate of the energy balance of the gas under liquid form on arrival is less than the maximum energy balance. FIGS. 10 and 11 correspond respectively to an estimate and an adjustment following a situation where the estimate of the energy balance of gas in liquid form is greater than the maximum energy balance. For each of FIGS. 8 to 11, the initial situation presented is the launching of the estimation and adjustment process at an instant t during the journey of the floating structure between the departure 50 and the arrival 51.
Chacune des courbes du bilan énergie en fonction du temps des figures 8 à 11 comprend un bilan énergie maximal réel 32, et le bilan énergie maximal virtuel 33, c’est-à-dire qui prend en compte la marge de sécurité. Le bilan énergie maximal virtuel 33 est inférieur au bilan énergie maximal réel 32, la différence dépendant de la valeur de la marge de sécurité. Le bilan énergie maximal réel 32 n’est présent qu’à titre indicatif, car pour chacune des figures, 1’ajustement du bilan énergie du gaz sous forme liquide contenu dans la cuve se fait en fonction du bilan énergie maximal virtuel 33. Le bilan énergie maximal réel 32 est constant au cours du temps. Avantageusement, le bilan énergie maximal virtuel 33 se rapproche progressivement du bilan énergie maximal réel au cours du temps, mais pour des raisons de clarté, le bilan énergie maximal virtuel 33 est également représenté comme étant constant au cours du temps sur les figures 8 à 11.Each of the curves of the energy balance as a function of time in Figures 8 to 11 includes an actual maximum energy balance 32, and the virtual maximum energy balance 33, that is, which takes into account the safety margin. The virtual maximum energy balance 33 is less than the actual maximum energy balance 32, the difference depending on the value of the safety margin. The actual maximum energy balance 32 is only present as an indication, because for each of the figures, the adjustment of the energy balance of the gas in liquid form contained in the tank is done according to the virtual maximum energy balance 33. The balance real maximum energy 32 is constant over time. Advantageously, the virtual maximum energy balance 33 gradually approaches the actual maximum energy balance over time, but for reasons of clarity, the virtual maximum energy balance 33 is also represented as being constant over time in FIGS. 8 to 11. .
Les figures 8 à 11 représentent également chacune les courbes du premier plan d’exploitation 36 de la fonction de condensation et du deuxième plan d’exploitation 37 de la fonction de refroidissement au cours du temps. Les ordonnées des courbes des plans d'exploitation ne présentent que deux positions : une position 0 et une position 1. Lorsque les plans d'exploitations sont en position 0, cela signifie que les fonctions associées sont inactives. Lorsque les plans d’exploitations sont en position 1, cela signifie que les fonctions associées sont actives, ce qui autorise par conséquent la condensation et/ou le refroidissement du gaz sous forme liquide par le biais du système d'alimentation. Pour chacune des situations, on part du principe que les deux plans d’exploitation sont de base en position 1 durant tout le trajet, c’est-à-dire que les fonctions de condensation et de refroidissement sont autorisées durant tout le trajet. FIGS. 8 to 11 also each represent the curves of the first operating plane 36 of the condensation function and of the second operating plane 37 of the cooling function over time. The ordinates of the operating plan curves have only two positions: a 0 position and a 1 position. When the operating plans are in position 0, this means that the associated functions are inactive. When the operating plans are in position 1, it means that the associated functions are active, which therefore allows the condensation and / or cooling of the gas in liquid form through the supply system. For each of the situations, it is assumed that the two operating planes are basic in position 1 throughout the journey, that is to say that the condensation and cooling functions are authorized throughout the journey.
La figure 8 représente donc une première situation lors du trajet de l’ouvrage flottant. Ainsi, à l’instant t, le procédé d’estimation et d’ajustement se lance, et le bilan énergie du gaz sous forme liquide à l’instant t 38 est obtenu lors de l’étape D ou D’ du procédé d’estimation et d’ajustement, soit à partir de la température du gaz sous forme liquide contenu dans la cuve, soit à partir de l’exécution des fonctions de condensation et de refroidissement depuis le départ 50. Il est possible d’observer l’évolution du bilan énergie du gaz sous forme liquide contenu dans la cuve depuis le départ 50 et jusqu’à l’instant t, l’évolution correspondant à un bilan énergie mesuré 34. Le bilan énergie mesuré 34 est représenté en traits pleins car il a déjà été mesuré en temps réel depuis le départ 50, la première mesure correspondant à un bilan énergie de départ 30, déterminée lorsque le procédé d’estimation et d’ajustement a été lancé une première fois. L’évolution du bilan énergie du gaz sous forme liquide postérieure à l’instant t est en pointillés et représente un bilan énergie prévisionnel 35 qui est donc évalué par le procédé d’estimation et d’ajustement, plus précisément lors de l’étape F et à partir du bilan énergie du gaz sous forme liquide à l’instant t 38. L’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 correspond donc à une estimation de la valeur du bilan énergie lorsque l’ouvrage flottant parviendra à l’arrivée 51 si les plans d’exploitation tel que présentés sur la figure 8 sont maintenus jusqu’à cette arrivée 51.FIG. 8 therefore represents a first situation during the journey of the floating structure. Thus, at time t, the estimation and adjustment method is launched, and the energy balance of the gas in liquid form at time t 38 is obtained during step D or D 'of the method of estimation and adjustment, either from the temperature of the gas in liquid form contained in the tank, or from the performance of the condensation and cooling functions from the start 50. It is possible to observe the evolution of the energy balance of the gas in liquid form contained in the tank from the start 50 and up to the instant t, the change corresponding to a measured energy balance 34. The measured energy balance 34 is shown in solid lines because it has already been measured in real time from the start 50, the first measurement corresponding to a balance starting energy 30, determined when the estimation and adjustment process was started for the first time. The change in the energy balance of the gas in liquid form after time t is dotted and represents a forecast energy balance 35 which is therefore evaluated by the estimation and adjustment process, more precisely during step F and from the energy balance of the gas in liquid form at time t 38. The estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 therefore corresponds to an estimate of the value of the energy balance when the floating structure arrives at the finish 51 if the operating plans as presented in FIG. 8 are maintained until this arrival 51.
Il est constaté sur la figure 8 que sans ajustement des plans d’exploitation du procédé d’estimation et d’ajustement selon l’invention, l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 est inférieure au bilan énergie maximal virtuel 33, calculé lors de l’étape E du procédé d’estimation et d’ajustement. Le gaz sous forme liquide contenu dans la cuve satisfait donc les exigences du lieu de destination. Il est néanmoins possible d’ajuster les plans d’exploitation afin de limiter la consommation énergétique du système d’alimentation. It can be seen in FIG. 8 that without adjusting the operating plans of the estimation and adjustment method according to the invention, the estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is less than the virtual maximum energy balance 33, calculated during step E of the estimation and adjustment process. The gas in liquid form contained in the tank therefore meets the requirements of the place of destination. However, it is possible to adjust the operating plans in order to limit the energy consumption of the power supply system.
La figure 9 représente une courbe mettant en œuvre l’étape G du procédé d’estimation et d’ajustement selon l’invention, avec des plans d’exploitation ajustés par rapport à ceux présentés en figure 8. Le procédé d’estimation et d’ajustement se déroule toujours à l’instant t et après la constatation que l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 était inférieure au bilan énergie maximal virtuel 33. Le procédé d’estimation et d’ajustement ajuste donc les plans d’exploitation afin de garantir une économie d’énergie. Ainsi, bien que cela soit déjà le cas dans l’exemple présenté, le premier plan d’exploitation 36 de la fonction de condensation est ajusté pour être maintenu actif, soit en position 1, jusqu’à l’arrivée 51 du trajet. Le surplus de phase gazeuse générée depuis le gaz sous forme liquide est donc intégralement condensé, ce qui n’entraîne pas de pertes de la cargaison. FIG. 9 represents a curve implementing step G of the estimation and adjustment method according to the invention, with operating plans adjusted with respect to those presented in FIG. 8. The estimation and adjustment method The adjustment always takes place at the instant t and after the observation that the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 was less than the virtual maximum energy balance 33. The estimation process and adjustment therefore adjusts operating plans to ensure energy savings. Thus, although this is already the case in the example presented, the first operating plane 36 of the condensation function is adjusted to be kept active, either in position 1, until the arrival 51 of the journey. The excess gas phase generated from the gas in liquid form is therefore fully condensed, which does not lead to losses of the cargo.
Par ailleurs, l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 étant inférieure au bilan énergie maximal virtuel 33, il est également possible de désactiver la fonction de refroidissement à un instant estimé dt au cours du trajet. Pour déterminer l’instant estimé dt, le procédé d’estimation et d’ajustement met en œuvre une ou des itérations où s’alternent successivement l’ajustement du deuxième plan d’exploitation 37 de la fonction de refroidissement et le recalcul de l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51. Ici, l’ajustement du deuxième plan d’exploitation 37 de la fonction de refroidissement consiste à sélectionner un instant où la fonction de refroidissement est désactivée en prenant l’arrivée 51 comme cible. Les itérations se poursuivent tant que l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 est inférieure au bilan énergie maximal virtuel 33, l’instant sélectionné où la fonction de refroidissement est désactivée étant à chaque nouvelle occurrence de plus en plus antérieure à la précédente, et le calcul de l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 étant effectué chaque fois avec le nouvel ajustement du deuxième plan d’exploitation 37 de la fonction de refroidissement déterminé précédemment. Ces itérations permettent ainsi de déterminer l’instant estimé dt optimal pour que l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 ne dépasse pas le bilan énergie maximal virtuel 33, mais tout en désactivant la fonction de refroidissement le plus tôt possible afin d’économiser un maximum d’énergie. Furthermore, the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 being less than the virtual maximum energy balance 33, it is also possible to deactivate the cooling function at an estimated instant dt during of the journey. To determine the estimated instant dt, the estimation and adjustment method implements one or more iterations in which the adjustment of the second operating plan 37 of the cooling function and the recalculation of the cooling function alternate successively. estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51. Here, the adjustment of the second operating plan 37 of the cooling function consists in selecting an instant when the cooling function is deactivated in taking arrival 51 as the target. The iterations continue as long as the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is less than the virtual maximum energy balance 33, the selected instant at which the cooling function is deactivated being at each new occurrence more and more prior to the previous one, and the calculation of the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 being carried out each time with the new adjustment of the second operating plan 37 of the previously determined cooling function. These iterations thus make it possible to determine the optimum estimated instant dt so that the estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 does not exceed the virtual maximum energy balance 33, but while deactivating the Cooling function as early as possible in order to save maximum energy.
Une fois l’instant estimé dt obtenu, le procédé d’estimation et d’ajustement ajuste le deuxième plan d’exploitation 37 de la fonction de refroidissement et le transmet au système d’alimentation. Le deuxième plan d’exploitation 37 ajusté de la fonction de refroidissement est visible sur la figure 9, où l’on peut voir que la fonction de refroidissement passe en position 0 suite à l’ajustement, entraînant sa désactivation à l’instant estimé dt. Ainsi, entre l’instant estimé dt et l’arrivée 51, la fonction de refroidissement est maintenue désactivée. Sachant cela, et étant donné que la fonction de condensation est toujours active, la température du gaz sous forme liquide contenu dans la cuve, et par analogie le bilan énergie du gaz sous forme liquide contenu dans la cuve, présente une augmentation plus significative entre l’instant estimé dt et l’arrivée 51 que sur la courbe de la figure 8. L’instant estimé dt, grâce aux itérations du procédé d’estimation et d’ajustement évoquées précédemment, est toutefois calculé de sorte à entraîner une augmentation de l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 mais sans que cette dernière ne dépasse le bilan énergie maximal virtuel 33 lors de l’arrivée 51 au lieu de destination. Once the estimated time dt has been obtained, the estimation and adjustment process adjusts the second operating plan 37 of the cooling function and transmits it to the supply system. The second adjusted operating plane 37 of the cooling function can be seen in figure 9, where it can be seen that the cooling function goes to position 0 as a result of the adjustment, causing it to be deactivated at the estimated time dt. Thus, between the estimated instant dt and the arrival 51, the cooling function is kept deactivated. Knowing this, and given that the condensation function is still active, the temperature of the gas in liquid form contained in the tank, and by analogy the energy balance of the gas in liquid form contained in the tank, presents a more significant increase between l 'estimated instant dt and arrival 51 as on the curve of FIG. 8. The estimated instant dt, thanks to the iterations of the estimation and adjustment process mentioned above, is however calculated so as to cause an increase in l estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 but without the latter exceeding the virtual maximum energy balance 33 on arrival 51 at the place of destination.
Le gaz sous forme liquide contenu dans la cuve respecte donc toujours les exigences du lieu de destination, mais des économies d’énergie sont faites entre l’instant estimé dt et l’arrivée 51 étant donné que la fonction de refroidissement est désactivée durant ce laps de temps et ne nécessite donc pas d’être alimentée en énergie. Le procédé d’estimation et d’ajustement a donc permis de limiter le gaspillage d’énergie tout en maintenant le gaz sous forme liquide conforme aux exigences du lieu de destination. The gas in liquid form contained in the tank therefore always meets the requirements of the place of destination, but energy savings are made between the estimated time dt and arrival 51 since the cooling function is deactivated during this period. time consuming and therefore does not need to be supplied with energy. The estimation and adjustment process therefore made it possible to limit the waste of energy while maintaining the gas in liquid form in accordance with the requirements of the place of destination.
La figure 10 représente toujours la courbe d’évolution du bilan énergie du gaz sous forme liquide contenu dans la cuve au cours du temps mais cette fois dans la situation inverse aux figures 8 et 9. En effet, selon le procédé d’estimation et d’ajustement, durant l’instant t du trajet, le bilan énergie du gaz sous forme liquide à l’instant t 38 est calculé, puis le procédé d’estimation et d’ajustement calcule l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 à partir du bilan énergie du gaz sous forme liquide à l’instant t 38. Comme cela est visible sur la figure 10, l’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 est supérieure au bilan énergie maximal virtuel 33, et même au bilan énergie maximal réel 32, et ce malgré l’activation constante de la fonction de refroidissement tout le long du trajet comme en témoigne le deuxième plan d’exploitation 37 de la fonction de refroidissement visible sur la figure 10. Dans cette situation, lors de l’arrivée 51, et si les plans d’exploitation des fonctions de condensation et de refroidissement ne sont pas ajustés, le gaz sous forme liquide contenu dans la cuve ne répondra pas aux exigences du lieu de destination, entraînant le refus de la cargaison par celui-ci. Pour éviter cela, il est indispensable de faire baisser la pression de saturation du gaz sous forme liquide contenu dans la cuve, entraînant une baisse du bilan énergie du gaz sous forme liquide contenu dans la cuve également, afin de répondre aux exigences du lieu de destination lors de l’arrivée 51. Un instant donné d’t est indiqué sur la figure 10 et correspond à l’instant oit le bilan énergie prévisionnel 35 dépasse le bilan énergie maximal virtuel 33, soit l’instant à partir duquel le bilan énergie du gaz sous forme liquide contenu dans la cuve n’est plus conforme aux exigences du lieu de destination. FIG. 10 still represents the curve of the evolution of the energy balance of the gas in liquid form contained in the tank over time, but this time in the opposite situation to FIGS. 8 and 9. In fact, according to the estimation process and d 'adjustment, during the instant t of the journey, the energy balance of the gas in liquid form at the instant t 38 is calculated, then the estimation and adjustment process calculates the estimate of the energy balance 31 of the gas in the form liquid contained in the tank on arrival 51 from the energy balance of the gas in liquid form at time t 38. As can be seen in FIG. 10, the estimation of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is greater than the virtual maximum energy balance 33, and even the actual maximum energy balance 32, despite the constant activation of the cooling function throughout the journey as evidenced by the second plan of operation 37 of the cooling function visible on the a figure 10. In this situation, upon arrival 51, and if the operating plans of the condensing and cooling functions are not adjusted, the gas in liquid form contained in the vessel will not meet the requirements of the place of destination, resulting in the refusal of the cargo by the latter. To avoid this, it is essential to lower the saturation pressure of the gas in liquid form contained in the tank, leading to a decrease in the energy balance of the gas in liquid form contained in the tank as well, in order to meet the requirements of the place of destination. upon arrival 51. A given instant of t is indicated in FIG. 10 and corresponds to the instant when the forecast energy balance 35 exceeds the virtual maximum energy balance 33, that is to say the instant from which the energy balance of the gas in liquid form contained in the tank no longer meets the requirements of the place of destination.
Les ajustements nécessaires pour pallier la situation évoquée en figure 10 sont représentés en figure 11. Ainsi, si ce n’est pas déjà le cas, le procédé d’estimation et d’ajustement ajuste le deuxième plan d’exploitation 37 de la fonction de refroidissement afin que cette dernière soit active jusqu’à l’arrivée 51 du trajet. The adjustments necessary to alleviate the situation mentioned in FIG. 10 are shown in FIG. 11. Thus, if this is not already the case, the estimation and adjustment method adjusts the second operating plan 37 of the control function. cooling so that the latter is active until the arrival 51 of the journey.
Comme cela a été évoqué précédemment, le principal facteur entraînant une hausse de la température du gaz sous forme liquide contenu dans la cuve ainsi que du bilan énergie de celui-ci est dû à la condensation du surplus de phase gazeuse générée depuis le gaz sous forme liquide. En effet, bien que ce dernier soit condensé afin de passer sous forme liquide, la température du gaz condensé est plus élevée que la température du gaz sous forme liquide contenu dans la cuve. Le retour du gaz condensé dans la cuve entraîne donc à la longue une hausse de la température du gaz sous forme liquide contenu dans la cuve. Le meilleur moyen de stopper une telle hausse de température est donc de mettre en œuvre le premier plan d’exploitation 36 ajusté de la fonction de condensation afin que cette dernière se désactive. As mentioned previously, the main factor causing an increase in the temperature of the gas in liquid form contained in the tank as well as in the energy balance thereof is due to the condensation of the surplus gas phase generated from the gas in the form liquid. Indeed, although the latter is condensed in order to pass in liquid form, the temperature of the condensed gas is higher than the temperature of the gas in liquid form contained in the tank. The return of the condensed gas to the tank therefore leads in the long run to an increase in the temperature of the gas in liquid form contained in the tank. The best way to stop such a rise in temperature is therefore to implement the first operating plan 36 adjusted for the condensation function so that the latter is deactivated.
Ainsi le procédé d’estimation et d’ajustement ajuste le premier plan d’exploitation 36 de la fonction de condensation. La fonction de condensation est donc programmée pour être désactivée à l’instant donné d’t, c’est-à-dire au moment où le bilan énergie estimé 34 atteint le bilan énergie maximal virtuel 33. Le procédé d’estimation et d’ajustement permet ainsi de maintenir la fonction de condensation active le plus longtemps possible. Arrivé à l’instant donné d’t, la fonction de condensation se désactive. La hausse du bilan énergie du gaz sous forme liquide contenu dans la cuve est alors stoppée, grâce à la désactivation de la fonction de condensation, mais également grâce au maintien de la fonction de refroidissement en activité. L’estimation du bilan énergie 31 du gaz sous forme liquide contenu dans la cuve à l’arrivée 51 est donc maintenue au niveau du bilan énergie maximal virtuel 33, ce qui correspond aux exigences du lieu de destination. Dans cette configuration, entre l’instant donné d’t et l’arrivée 51, le surplus de phase gazeuse générée depuis le gaz sous forme liquide n’est plus condensé par le système d’alimentation. Thus the estimation and adjustment method adjusts the first operating plane 36 of the condensation function. The condensation function is therefore programmed to be deactivated at the given instant of t, that is to say at the moment when the estimated energy balance 34 reaches the virtual maximum energy balance 33. The estimation and evaluation process adjustment thus allows the condensing function to be kept active as long as possible. At the given time of summer, the condensation function is deactivated. The increase in the energy balance of the gas in liquid form contained in the tank is then stopped, by deactivating the condensation function, but also by keeping the cooling function in operation. The estimate of the energy balance 31 of the gas in liquid form contained in the tank on arrival 51 is therefore maintained at the level of the virtual maximum energy balance 33, which corresponds to the requirements of the place of destination. In this configuration, between the given time of summer and the arrival 51, the surplus gas phase generated from the gas in liquid form is no longer condensed by the supply system.
La figure 12 représente un premier exemple d’une courbe de l’évolution de la marge de sécurité 60 en fonction du temps, du départ 50 à l’arrivée 51. Ce premier exemple présente une marge de sécurité 60 dégressive au cours du temps. Autrement dit, plus l’ouvrage flottant se rapproche du lieu de destination, plus la marge de sécurité 60 diminue et par conséquent plus le bilan énergie maximal virtuel se rapproche du bilan énergie maximal réel, étant donné que le bilan énergie maximal virtuel est recalculé à chaque étape E par des itérations du procédé d’estimation et d’ajustement avec la marge de sécurité 60 qui diminue au fur et à mesure que l’ouvrage flottant se rapproche de sa destination. FIG. 12 represents a first example of a curve of the evolution of the safety margin 60 as a function of time, from the start 50 to the finish 51. This first example shows a safety margin 60 which decreases over time. In other words, the closer the floating structure is to the place of destination, the more the safety margin 60 decreases and therefore the closer the virtual maximum energy balance approaches the actual maximum energy balance, given that the virtual maximum energy balance is recalculated at each step E by iterations of the estimation and adjustment process with the safety margin 60 which decreases as the floating structure approaches its destination.
La valeur de la marge de sécurité peut également dépendre de la quantité d’informations que détient le personnel de l’ouvrage flottant concernant le trajet, par exemple les conditions météorologiques au cours de celui-ci ou encore les conditions de mer. Ainsi une marge de sécurité 60 plus élevée peut être indiquée s’il n’y a aucune information concernant les conditions du trajet. The value of the safety margin can also depend on the amount of information that the personnel of the floating structure have concerning the trip, for example the meteorological conditions during this one or the sea conditions. Higher safety 60 may be indicated if there is no information regarding the trip conditions.
La figure 13 représente un deuxième exemple de l’évolution de la marge de sécurité 60 au cours du temps. Lors du début de ce trajet, la marge de sécurité 60 diminue au cours du temps, tout comme sur la figure précédente. Il est cependant possible qu’un évènement 61 imprévu survienne. L’évènement 61 peut être un phénomène naturel, par exemple un phénomène météorologique comme une tempête ou du brouillard, susceptibles de ralentir l’allure de l’ouvrage flottant. L’évènement 61 peut également être un incident mécanique, par exemple une panne de l’ouvrage flottant, susceptible d’immobiliser ce dernier durant un laps de temps non négligeable. Un tel évènement 61 rallonge donc le temps de trajet jusqu’au lieu de destination. Dans cette situation, la marge de sécurité 60 telle qu’elle a été programmée au départ 50 n’est plus adéquate au trajet. Il est donc possible de reprogrammer la marge de sécurité 60 afin d’adapter celle- ci aux conséquences de l’évènement 61, c’est-à-dire le ralentissement ou l’immobilisation de l’ouvrage flottant dans les exemples suscités. Sur la figure 13, la marge de sécurité 60 est réhaussée au moment oit l’évènement 61 est survenu, puis diminue à nouveau au cours du temps. Cette modification garantit une sécurité concernant le bilan énergie maximal virtuel et permet d’éviter des erreurs pouvant potentiellement entraîner le refus de la cargaison de gaz sous forme liquide lors de l’arrivée au lieu de destination. FIG. 13 represents a second example of the evolution of the safety margin 60 over time. At the start of this journey, the safety margin 60 decreases over time, just as in the previous figure. However, it is possible that an unforeseen event 61 may occur. Event 61 can be a natural phenomenon, for example a meteorological phenomenon such as a storm or fog, likely to slow down the speed of the floating structure. Event 61 can also be a mechanical incident, for example a failure of the floating structure, capable of immobilizing the latter for a not insignificant period of time. Such an event 61 therefore lengthens the travel time to the place of destination. In this situation, the safety margin 60 as it was programmed at the start 50 is no longer adequate for the journey. It is therefore possible to reprogram the safety margin 60 in order to adapt it to the consequences of the event 61, that is to say the slowing down or immobilization of the floating structure in the above examples. In FIG. 13, the safety margin 60 is increased when the event 61 has occurred, then decreases again over time. This modification guarantees a safety concerning the virtual maximum energy balance and makes it possible to avoid errors which could potentially lead to the refusal of the gas cargo in liquid form upon arrival at the place of destination.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. Of course, the invention is not limited to the examples which have just been described and numerous modifications can be made to these examples without departing from the scope of the invention.
L’invention, telle qu’elle vient d’être décrite, atteint bien le but qu’elle s’était fixée, et permet de proposer un procédé d’estimation et d’ajustement d’un bilan énergie d’un gaz sous forme liquide contenu dans une cuve d’un ouvrage flottant afin que ledit bilan énergie du gaz sous forme liquide soit conforme aux exigences d’un lieu de destination où est destinée la livraison du gaz sous forme liquide, et ce tout en ajustant au mieux la consommation d’énergie du système d’alimentation. Des variantes non décrites ici pourraient être mises en œuvre sans sortir du contexte de l’invention, dès lors que, conformément à l’invention, elles comprennent un procédé d’estimation de d’ajustement conforme à l’invention. The invention, as it has just been described, achieves the goal it had set itself, and makes it possible to propose a method for estimating and adjusting an energy balance of a gas in the form of liquid contained in a tank of a floating structure so that the said energy balance of the gas in liquid form complies with the requirements of a place of destination where the delivery of the gas in liquid form is intended, while adjusting consumption as much as possible energy from the power system. Variants not described here could be implemented without departing from the context of the invention, as long as, according to the invention, they include a method of estimating the fit according to the invention.

Claims

REVENDICATIONS
1- Procédé d’estimation et d’ajustement (5) d’un bilan énergie d’un gaz sous forme liquide (13) contenu dans au moins une cuve (9) d’un ouvrage flottant (1) destiné à livrer ledit gaz sous forme liquide (13) à un lieu de destination (2) donné, l’ouvrage flottant (1) comprenant un système d’alimentation (8) en carburant d’un consommateur de l’ouvrage flottant (1) apte à mettre en œuvre une fonction de condensation d’une phase gazeuse (14) générée depuis le gaz sous forme liquide et/ou une fonction de refroidissement du gaz sous forme liquide (13), caractérisé en ce que le procédé d’estimation et d’ajustement (5) comprend les étapes suivantes : une étape A de calcul de la température maximale autorisée du gaz sous forme liquide contenu dans la cuve à l’arrivée sur le lieu de destination, à partir des exigences de pression de saturation maximale de gaz sous forme liquide du lieu de destination (2) et des caractéristiques du gaz sous forme liquide contenu dans la cuve, une étape B d’établissement d’un premier plan d’exploitation (36) de la fonction de condensation de la phase gazeuse (14) générée depuis le gaz sous forme liquide opérée par le système d’alimentation (8) jusqu’à l’arrivée (51) au lieu de destination (2), ledit premier plan d’exploitation (36) étant établi à partir d’une estimation d’un surplus de phase gazeuse (14) générée depuis le gaz sous forme liquide dans la cuve (9) au cours d’un trajet (3), une étape C d’établissement d’un deuxième plan d’exploitation (37) de la fonction de refroidissement du gaz sous forme liquide (13) opérée par le système d’alimentation (8) jusqu’à l’arrivée (51) au lieu de destination (2), ledit deuxième plan d’exploitation (37) étant établi à partir de l’estimation du surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet (3), une étape D de calcul d’un bilan énergie du gaz sous forme liquide à un instant t (38) à partir de la température du gaz sous forme liquide (13) contenu dans la cuve (9) et des propriétés du gaz sous forme liquide (13) contenu dans la cuve (9), une étape E de calcul d’un bilan énergie maximal (32, 33) à partir de la température maximale autorisée du gaz sous forme liquide (13) calculée à l’étape A, et des caractéristiques du gaz sous forme liquide (13) contenu dans la cuve (9), une étape F d’estimation du bilan énergie (31) du gaz sous forme liquide contenu dans la cuve à l’arrivée (51) du trajet (3) à partir des plans d’exploitation (36,1- Estimation and adjustment method (5) of an energy balance of a gas in liquid form (13) contained in at least one tank (9) of a floating structure (1) intended to deliver said gas in liquid form (13) at a given place of destination (2), the floating structure (1) comprising a fuel supply system (8) to a consumer of the floating structure (1) capable of putting into operation performs a function of condensing a gas phase (14) generated from the gas in liquid form and / or a function of cooling the gas in liquid form (13), characterized in that the estimation and adjustment method ( 5) comprises the following steps: a step A of calculating the maximum authorized temperature of the gas in liquid form contained in the vessel on arrival at the place of destination, from the maximum saturation pressure requirements of gas in liquid form the place of destination (2) and the characteristics of the gas in liquid form contained in the tank, a step B to establish ssement of a first operating plan (36) of the function of condensation of the gas phase (14) generated from the gas in liquid form operated by the supply system (8) up to the inlet (51) at the destination (2), said first operating plan (36) being established from an estimate of a surplus gas phase (14) generated from the gas in liquid form in the vessel (9) during of a path (3), a step C of establishing a second operating plan (37) of the gas cooling function in liquid form (13) operated by the supply system (8) until on arrival (51) at the place of destination (2), said second operating plan (37) being established from the estimate of the surplus gas phase generated from the gas in liquid form during the journey (3 ), a step D of calculating an energy balance of the gas in liquid form at an instant t (38) from the temperature of the gas in liquid form (13) contained in the tank (9) and properties of the gas in liquid form (13) contained in the tank (9), a step E of calculating a maximum energy balance (32, 33) from the maximum authorized temperature of the gas in liquid form (13) calculated in step A, and the characteristics of the gas in liquid form (13) contained in the tank (9), a step F of estimating the energy balance (31) of the gas in liquid form contained in the tank at the arrival (51) of the path (3) from the operating plans (36,
37) des fonctions de condensation et de refroidissement déterminés aux étapes B et C et du bilan énergie du gaz sous forme liquide à l’instant t (38), déterminé à l’étape D, une étape G d’ajustement du premier plan d’exploitation (36) et/ou du deuxième plan d’exploitation (37), une étape H de mise en œuvre du système d’alimentation (8) selon les plans d’exploitation (36, 37) des fonctions de condensation et de refroidissement du gaz sous forme liquide (13) ajustés à l’étape G. 37) of the condensation and cooling functions determined in steps B and C and of the energy balance of the gas in liquid form at time t (38), determined in step D, a step G of adjusting the first plane d 'operation (36) and / or the second operating plan (37), a step H of implementing the power supply system (8) according to the operating plans (36, 37) of the condensation and cooling functions. cooling of the gas in liquid form (13) adjusted in step G.
2- Procédé d’estimation et d’ajustement (5) du bilan énergie selon la revendication précédente, dans lequel l’étape G consiste à une activation de la fonction de condensation tant que l’estimation du bilan énergie (31) du gaz sous forme liquide contenu dans la cuve à l’arrivée (51) du trajet (3), calculée à l’étape F, est inférieure au bilan énergie maximal (32, 33) calculé à l’étape E. 2- A method of estimating and adjusting (5) the energy balance according to the preceding claim, wherein step G consists of activating the condensation function as long as the estimation of the energy balance (31) of the gas under liquid form contained in the tank at the arrival (51) of the path (3), calculated in step F, is less than the maximum energy balance (32, 33) calculated in step E.
3- Procédé d’estimation et d’ajustement (5) du bilan énergie selon l’une quelconque des revendications précédentes, dans lequel l’étape G consiste en un arrêt de la fonction de refroidissement à un instant estimé dt qui garantit que l’estimation du bilan énergie (31) du gaz sous forme liquide contenu dans la cuve à l’arrivée (51) du trajet (3), calculée à l’étape F, est inférieure au bilan énergie maximal (32, 33) calculé à l’étape E. 3- A method of estimating and adjusting (5) the energy balance according to any one of the preceding claims, wherein step G consists of stopping the cooling function at an estimated time dt which guarantees that the estimate of the energy balance (31) of the gas in liquid form contained in the tank at the arrival (51) of the path (3), calculated in step F, is less than the maximum energy balance (32, 33) calculated at l 'step E.
4- Procédé d’estimation et d’ajustement (5) du bilan énergie selon la revendication 1, dans lequel l’étape G consiste en un arrêt de la fonction de condensation tant que l’estimation du bilan énergie (31) du gaz sous forme liquide contenu dans la cuve à l’arrivée (51) du trajet (3), calculée à l’étape F, est supérieure au bilan énergie maximal (32, 33) calculé à l’étape E. 4- A method of estimating and adjusting (5) the energy balance according to claim 1, wherein step G consists of stopping the condensation function as long as the estimation of the energy balance (31) of the gas under liquid form contained in the tank at the arrival (51) of the path (3), calculated in step F, is greater than the maximum energy balance (32, 33) calculated in step E.
5- Procédé d’estimation et d’ajustement (5) du bilan énergie selon la revendication 1 ou 4, dans lequel l’étape G consiste à une activation de la fonction de refroidissement tant que l’estimation du bilan énergie (31) du gaz sous forme liquide contenu dans la cuve à l’arrivée (51) du trajet (3), calculée à l’étape F, est supérieure au bilan énergie maximal (32, 33) calculé à l’étape E. 6- Procédé d’estimation et d’ajustement (5) selon l’une quelconque des revendications précédentes, répété par itération à partir de l’étape B et pendant le trajet (3) de l’ouvrage flottant (1). 5- A method of estimating and adjusting (5) the energy balance according to claim 1 or 4, wherein step G consists of activating the cooling function as long as the estimation of the energy balance (31) of the gas in liquid form contained in the tank at the arrival (51) of the path (3), calculated in step F, is greater than the maximum energy balance (32, 33) calculated in step E. 6. Estimation and adjustment method (5) according to any one of the preceding claims, repeated by iteration from step B and during the path (3) of the floating structure (1).
7- Procédé d’estimation et d’ajustement (5) selon la revendication 6, comprenant une étape supplémentaire D’, effectuée de manière simultanée à l’étape D, de calcul du bilan énergie du gaz sous forme liquide à l’instant t (38) à partir de l’exécution des fonctions de condensation et de refroidissement depuis le départ (50) de l’ouvrage flottant (1) et jusqu’à l’instant t et à partir d’un bilan énergie du gaz sous forme liquide à un instant t (38) calculé lors d’une itération antérieure. 7- Estimation and adjustment method (5) according to claim 6, comprising an additional step D ', carried out simultaneously with step D, of calculating the energy balance of the gas in liquid form at the instant t (38) from the performance of the condensation and cooling functions from the start (50) of the floating structure (1) and up to the instant t and from an energy balance of the gas in the form liquid at an instant t (38) calculated during a previous iteration.
8- Procédé d’estimation et d’ajustement (5) selon la revendication 7, dans lequel le bilan énergie du gaz sous forme liquide à l’instant t (38) conservé pour l’étape F est le plus élevé parmi le bilan énergie du gaz sous forme liquide à l’instant t (38) calculé à l’étape D et le bilan énergie du gaz sous forme liquide à l’instant t (38) calculé à l’étape D’. 8- Estimation and adjustment method (5) according to claim 7, wherein the energy balance of the gas in liquid form at time t (38) kept for step F is the highest among the energy balance. gas in liquid form at time t (38) calculated in step D and the energy balance of gas in liquid form at time t (38) calculated in step D '.
9- Procédé d’estimation et d’ajustement (5) selon l’une quelconque des revendications 1 à 5, comprenant une étape supplémentaire A’ de sélection d’une marge de sécurité (60) du bilan énergie maximal (32, 33) du gaz sous forme liquide (13) en fonction des caractéristiques du trajet (3) de l’ouvrage flottant (1), l’étape E étant effectuée en prenant en compte ladite marge de sécurité (60). 9- A method of estimating and adjusting (5) according to any one of claims 1 to 5, comprising an additional step A 'of selecting a safety margin (60) of the maximum energy balance (32, 33) gas in liquid form (13) as a function of the characteristics of the path (3) of the floating structure (1), step E being carried out taking into account said safety margin (60).
10- Procédé d’estimation et d’ajustement (5) selon la revendication 9, dans lequel l’étape A’ est répétée par itération au cours du trajet (3) de l’ouvrage flottant (1). 10. Estimation and adjustment method (5) according to claim 9, wherein step A ’is repeated by iteration during the path (3) of the floating structure (1).
11- Procédé d’estimation et d’ajustement (5) selon la revendication 9 ou 10, dans lequel la marge de sécurité (60) diminue au fur et à mesure que l’ouvrage flottant (1) s’approche du lieu de destination (2). 11- A method of estimation and adjustment (5) according to claim 9 or 10, wherein the safety margin (60) decreases as the floating structure (1) approaches the place of destination (2).
12- Procédé d’estimation et d’ajustement (5) selon l’une quelconque des revendications précédentes, dans lequel l’ouvrage flottant (1) est équipé au moins d’un moteur (16) alimenté au moins partiellement par la phase gazeuse (14) générée depuis le gaz sous forme liquide, l’estimation du surplus de phase gazeuse générée depuis le gaz sous forme liquide au cours du trajet (3) étant établie à partir d’une valeur image des entrées de chaleur dans la cuve (9) et d’une estimation de la consommation du moteur (16). 12- Estimation and adjustment method (5) according to any one of the preceding claims, in which the floating structure (1) is equipped with at least one motor (16) supplied at least partially by the gas phase. (14) generated from the gas in liquid form, the estimate of the surplus gas phase generated from the gas in liquid form during the path (3) being established from an image value of the heat inputs into the tank (9) and an estimate of the consumption of the engine (16).
13- Système de gestion (4) d’un bilan énergie d’un gaz sous forme liquide (13) contenu dans au moins une cuve (9) d’un ouvrage flottant (1), mettant en œuvre le procédé d’estimation et d’ajustement (5) selon l’une quelconque des revendications précédentes, ledit système de gestion (4) comprenant au moins un système d'alimentation (8) en carburant d'un consommateur de l'ouvrage flottant (1) et au moins un calculateur (7) ayant pour fonction d'estimer une quantité de surplus de phase gazeuse (14) générée depuis le gaz sous forme liquide au cours d'un trajet (3) de l’ouvrage flottant (1). 13- Management system (4) of an energy balance of a gas in liquid form (13) contained in at least one tank (9) of a floating structure (1), implementing the estimation method and adjustment (5) according to any one of the preceding claims, said management system (4) comprising at least one system (8) for supplying fuel to a consumer of the floating structure (1) and at least a calculator (7) having the function of estimating an amount of surplus gas phase (14) generated from the gas in liquid form during a path (3) of the floating structure (1).
14- Ouvrage flottant (1) de transport de gaz sous forme liquide (13) comprenant un système de gestion (4) du bilan énergie dudit gaz selon la revendication précédente. 14- Floating structure (1) for transporting gas in liquid form (13) comprising a management system (4) of the energy balance of said gas according to the preceding claim.
PCT/FR2020/052560 2019-12-20 2020-12-18 Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank WO2021123685A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080097172.9A CN115135921A (en) 2019-12-20 2020-12-18 Method for estimating and adjusting the energy balance of a liquid gas contained in a tank
KR1020227024712A KR20220119654A (en) 2019-12-20 2020-12-18 How to estimate and adjust the energy balance of liquid gas contained in a tank
EP20848857.7A EP4078014A1 (en) 2019-12-20 2020-12-18 Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank
JP2022537734A JP2023507467A (en) 2019-12-20 2020-12-18 A method for estimating and adjusting the energy balance of a liquid gas contained in a tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1915335A FR3105462B1 (en) 2019-12-20 2019-12-20 Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank
FRFR1915335 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021123685A1 true WO2021123685A1 (en) 2021-06-24

Family

ID=70008792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052560 WO2021123685A1 (en) 2019-12-20 2020-12-18 Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank

Country Status (6)

Country Link
EP (1) EP4078014A1 (en)
JP (1) JP2023507467A (en)
KR (1) KR20220119654A (en)
CN (1) CN115135921A (en)
FR (1) FR3105462B1 (en)
WO (1) WO2021123685A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956285A2 (en) * 2007-02-12 2008-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd A method for treating boil-off gas of an LNG carrier
WO2018189789A1 (en) * 2017-04-10 2018-10-18 日本郵船株式会社 Tank state estimation method and tank state estimation program
US20190241244A1 (en) * 2016-07-05 2019-08-08 Kawasaki Jukogyo Kabushiki Kaisha Ship operation management system
FR3077867A1 (en) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2003389A3 (en) * 2007-06-15 2017-04-19 Daewoo Shipbuilding & Marine Engineering Co., Ltd Method and apparatus for treating boil-off gas in an LNG carrier having a reliquefaction plant, and LNG carrier having said apparatus for treating boil-off gas
GB2540080B (en) * 2014-04-19 2017-09-06 Tada Masashi Cold utilization system, energy system provided with cold utilization system, and method for utilizing cold utilization system
FR3045775B1 (en) * 2015-12-18 2018-07-06 Engie METHOD AND SYSTEM FOR CALCULATING IN REAL-TIME THE PERIOD OF AUTONOMY OF AN UN-REFRIGERATED TANK CONTAINING LNG
CN110997475B (en) * 2017-07-31 2022-10-04 大宇造船海洋株式会社 Boil-off gas reliquefaction system and boil-off gas reliquefaction method for ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956285A2 (en) * 2007-02-12 2008-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd A method for treating boil-off gas of an LNG carrier
US20190241244A1 (en) * 2016-07-05 2019-08-08 Kawasaki Jukogyo Kabushiki Kaisha Ship operation management system
WO2018189789A1 (en) * 2017-04-10 2018-10-18 日本郵船株式会社 Tank state estimation method and tank state estimation program
FR3077867A1 (en) * 2018-02-09 2019-08-16 Gaztransport Et Technigaz METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP

Also Published As

Publication number Publication date
FR3105462B1 (en) 2021-12-03
JP2023507467A (en) 2023-02-22
FR3105462A1 (en) 2021-06-25
CN115135921A (en) 2022-09-30
EP4078014A1 (en) 2022-10-26
KR20220119654A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
EP1596122B1 (en) System for delivering combustible gas for propulsing a ship transporting liquefied gas
EP1460331B1 (en) Energy supply of a gas terminal by a liquefied gas transporting vessel
JP6449650B2 (en) Liquefied gas treatment system and method
EP1963758A1 (en) Refrigeration-generation solar unit for an air-conditioning system, heat-generation solar unit, corresponding devices and corresponding control method
EP4158170B1 (en) Device for regulating the pressure of an aircraft cryogenic fuel tank
EP3172499B1 (en) Cold production apparatus, including means for condensation by air and water simultaneously, and the method for implementing said facility
EP3559426A1 (en) Method for operating a cooling system for a hybrid electric vehicle comprising a liquid coolant transfer circuit
EP4264114A1 (en) Power supply and cooling system for a floating structure
EP2695858A1 (en) System for storing and delivering gaseous ammonia
FR2999686A1 (en) AIR CONDITIONING SYSTEM USING DEEP SEA WATER
WO2021123685A1 (en) Method for estimating and adjusting an energy balance of a gas in liquid form contained in a tank
EP2795714B1 (en) Heat-storage device for heating a vehicle battery
EP2556229B1 (en) Method for estimating the initial temperature of a mechanical member of a vehicle at the start-up of the vehicle
FR3077235A1 (en) METHOD FOR THE HEAT TREATMENT OF A HABITACLE AND A DEVICE FOR ELECTRICALLY STORING A MOTOR VEHICLE
EP1511965B1 (en) Method and installation for controlling at least one cryogenic centrifugal compressor, compression line
FR3117086A1 (en) Method and system for assisting in the management of a liquefied gas transport vessel of the type consuming boil-off gas for its propulsion
FR3093785A1 (en) Pressure control system in a liquefied natural gas tank.
FR3071276A1 (en) DEVICE AND METHOD FOR SUPPLYING GAS WITH METHANE INDEX OPTIMIZED BY AT LEAST ONE THERMAL MOTOR, IN PARTICULAR A LIQUEFIED GAS TRANSPORT SHIP
EP4253822A1 (en) Gas supply system for high and low pressure gas consuming devices and method for controlling such a system
WO2023111414A1 (en) Cooling circuit for a system for supplying and cooling a gas
FR3127332A1 (en) Method for controlling a motor vehicle battery heater
EP2391520A1 (en) Method and device for managing the power from a power train of a hybrid motor vehicle
WO2023117537A1 (en) Powertrain comprising an electric pump for heating a gearbox
FR3031139A1 (en) METHOD FOR CONTROLLING THE LUBRICATING OIL TEMPERATURE OF AN ENGINE
EP4198686A1 (en) Method for optimising the power consumption of a computer infrastructure and associated system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537734

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227024712

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848857

Country of ref document: EP

Effective date: 20220720