WO2021123470A1 - Dispositivo fotónico integrado de matriz cuántica de puertas fotónicas programables en campo, dispositivo quántico y circuitos programables - Google Patents

Dispositivo fotónico integrado de matriz cuántica de puertas fotónicas programables en campo, dispositivo quántico y circuitos programables Download PDF

Info

Publication number
WO2021123470A1
WO2021123470A1 PCT/ES2020/070671 ES2020070671W WO2021123470A1 WO 2021123470 A1 WO2021123470 A1 WO 2021123470A1 ES 2020070671 W ES2020070671 W ES 2020070671W WO 2021123470 A1 WO2021123470 A1 WO 2021123470A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
programmable
photonic
fppga
field
Prior art date
Application number
PCT/ES2020/070671
Other languages
English (en)
French (fr)
Inventor
Daniel Pérez López
José CAPMANY FRANCOY
Original Assignee
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València filed Critical Universitat Politècnica De València
Priority to CN202080088918.XA priority Critical patent/CN115280675A/zh
Priority to US17/785,294 priority patent/US20230029063A1/en
Priority to CA3164744A priority patent/CA3164744A1/en
Priority to JP2022537031A priority patent/JP2023507745A/ja
Priority to EP20811426.4A priority patent/EP4080767A1/en
Publication of WO2021123470A1 publication Critical patent/WO2021123470A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/14Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17724Structural details of logic blocks
    • H03K19/17728Reconfigurable logic blocks, e.g. lookup tables

Definitions

  • the current invention refers to a quantum system based on an integrated photonic circuit carried out by combining and interconnecting programmable photonic processing circuits, implemented on a photonic circuit capable of implementing one or multiple quantum and classical circuits with feedback elements. optical and / or linear transformations of multiple ports, by programming its resources and selecting its input and output ports.
  • the invention also refers to a quantum matrix (or array) of reversible photonic gates programmed in the field for quantum signal processing, from the English quantum field-programmable photonic gate array (Q-FPPGA), which comprises at least one programmable circuit based on tunable optical power dividers with independent phase tuning capability and high performance peripheral circuits enabling classical and quantum operations.
  • Q-FPPGA English quantum field-programmable photonic gate array
  • the programmable multifunctional photonics seeks the design of hardware configurations based on integrated optics that implement a wide variety of applications and functionalities through the specific programming of its components.
  • PMP programmable multifunctional photonics
  • MZIs Mach-Zehnder interferometers
  • a recent patent application also describes a technical improvement of waveguide meshes based on the combination of tuning and basic processing units, from the English Tunable Basic Unit (TBU) that have the same spatial / angular orientation. .
  • TBU Tunable Basic Unit
  • the object of the invention described here solves the problems mentioned and allows the design of quantum and classical signal processing systems in a programmable way where all the mentioned components are connected to a reconfigurable optical core that allows the implementation of reconfigurable linear transformations, conditioning of the signal and the dynamic interconnection between high-performance classical processing blocks, high-performance quantum signal processing blocks, inter-chip couplers and fiber-chip couplers.
  • the object of the invention is based on the repetition, replication and interconnection of programmable analogue photonic processing units and reconfigurable interconnections Preferably implemented on a photonic chip.
  • These components provide the building blocks for the implementation of basic analog signal optical operations (reconfigurable optical power and power split plus Independent phase configuration) and, by extension, reconfigurable rotary 2x2 gates or arrays.
  • the processing carried out is reconfigurable, in the same way that the programmable logic blocks carry out digital operations in the electronic FPGAs or in the configurable analog blocks, which carry out analog operations in the matrices
  • the object of the Invention allows the obtaining of one or several simultaneous photonic circuits and / or multiport linear transformations. through the specific programming of the Integrated components and resources, that is, of the photonic blocks of programmable analog operation, classic high-performance signal processing blocks (from the English High Performance Building-block, HPB) and signal processing blocks quantum of high performance (from the English Quantum High Performance Building-block, QHPB), and the selection of e the ports used.
  • the essential contribution of this invention is the architecture, the work flow, the arrangement of technological layers and the technical description that allows the programming of multipurpose Interconnection schemes for the realization of quantum signal processing and quantum signal processing in parallel to classical signal processing.
  • the object of the Invention presents an architecture composed of a core connected to optical ports, high-performance processing blocks and high-performance quantum processing blocks, including at least three layers that describe the architecture from a hardware and software point of view.
  • the core of the device can be implemented by attending to different forms of Internal Interconnection of programmable photonic analog blocks or basic tuning units of Equal orientation and forming a pattern. Without this constituting a limiting example through a) a hexagonal uniform conventional distribution, b) through a proposed layout of units with the same orientation, c) triangular uniform conventional distribution, d) proposed layout of units with the same orientation, e) layout proposed units with the same orientation and forming a non-uniform pattern.
  • a hexagonal uniform conventional distribution b) through a proposed layout of units with the same orientation
  • c) triangular uniform conventional distribution d
  • proposed layout of units with the same orientation e) layout proposed units with the same orientation and forming a non-uniform pattern.
  • the quantum system based on photonic circuits, a photonic matrix of reconfigurable analog gates programmed in the field for quantum signal processing, from the English (Quantum field-programmable photonic gate array) of the present invention offers a series of advantages inherent to field programming or in real time, expanded by the optical circuit topologies introduced by the invention. These include:
  • the proposed chip (Q-FPPGA) of the current invention can be applied in the following fields:
  • Aerospace and defense avionics, communications, security solutions, space.
  • Automotive High-quality video resolution, image processing, vehicle-to-vehicle communication and connectivity.
  • Wired and wireless communications Optical transport networks, 5G connectivity interfaces, Mobile network
  • Figure 1 shows a general diagram of the Q-FPPGA architecture and details of the three layers that describe the architecture from a hardware and software point of view.
  • Figure 2 non-limiting examples of an interconnection diagram for the realization of the Q-FPPGA core, (a1): conventional hexagonal uniform distribution, (a2) Proposed layout of units with the same orientation.
  • FIG. 2b non-limiting examples of an interconnection diagram for the Q-FPPGA core realization.
  • (b2) proposed layout of units with the same orientation.
  • FIG. 1 non-limiting examples of an interconnection diagram for the realization of the Q-FPPGA core.
  • (c2) proposed layout of units with the same orientation.
  • Figure 2d-e shows some non-limiting examples of an interconnection diagram for the realization of the Q-FPPGA core with basic tuning units of the same orientation and forming a non-uniform pattern.
  • Figure 3 shows a non-limiting example of the classification of different classical and quantum devices present in the Q-FPPGA architecture.
  • Figure 4 (left) main steps of the design / configuration flow of the photonic integrated device and quantum system of the current invention, (right) software and hardware layers of the photonic circuit and expanded scheme including the peripheral high-performance elements.
  • Figure 5 shows the simultaneous implementation of a classical circuit based on a ring cavity, a Mach-Zehnder interferometer and a 3x3 multiport device using a reconfigurable Q-FPPGA core of the chip of the current invention.
  • Figure 6 shows on the left a non-limiting example of the implementation of a quantum circuit with verification paths (in this case a CNOT type gate.
  • Figure 7 non-limiting example of the implementation of a set of programmable quantum circuits that switch or share resources simultaneously.
  • Figure 8 non-limiting example of simultaneous implementation of an independent quantum circuitry. Each circuit uses its own resources.
  • Figure 9 shows a non-limiting example of a programmable quantum circuit corresponding to a quantum Fourier transform.
  • a Q-FPPGA comprising at least one, but preferably a large number of programmable analog photonic processing blocks (PPABs) implemented by a series of waveguide elements integrated into a photonic circuit. These blocks have programmable characteristics and can propagate the optical signal in both directions.
  • PPABs programmable analog photonic processing blocks
  • the design in Figure 1 does not consider any particular interconnect topology for the Q-FPPGA core, serving only as an illustrative example.
  • Figure 2 shows different design interconnection alternatives and geometries for the Q-FPPGA core implementation.
  • the PPAB is to offer independently tuned power couplings and adjustable phase response settings, as explained below.
  • the waveguide mesh performs dynamic routing or switching between the different ports and areas of the Q-FPPGA and between classical and quantum high-performance processing blocks.
  • Q-FPPGAs can include classical and quantum advanced processing blocks (HPB, QHPB) to expand their capabilities and include high-level functionality connected to the core of the chip.
  • HPB classical and quantum advanced processing blocks
  • QHPB quantum advanced processing blocks
  • FIG 1 shows a schematic of the above description.
  • the availability of high-level functions and blocks on the chip allows the area required by these functions to be reduced compared to their implementation by the basic blocks of the kernel. Also, some of the functions cannot be divided and programmed exclusively using the kernel.
  • Some examples of these processing blocks include highly dispersive elements, spiral delay lines, generic modulation and photodetection subsystems, optical amplifiers, optical source subsystems, and high-performance filtering systems, among others.
  • HPB A special case of HPB is that which comprises an element, interconnected with the optical core, which comprises a multiplexing and demultiplexing subsystem, which can be spectrally cyclic, or non-cyclic, allowing the processing of different spatial channels / modes as well as different channels. spectra defined by the frequency of the signal.
  • quantum HPBs These offer quantum functionality that can be efficiently divided, distributed and programmed within the core of the Q-FPPGA in addition to being combined with HPBs and QHPBs, as quantum sources, detectors, processing signals and auxiliary detectors, among others.
  • Figure 3 illustrates as a non-limiting example a set of components that may be present in Q-FPPGA.
  • the Q-FPPQA can implement complex autonomous or parallel circuits, signal processing transformations, and quantum processing operations by dividing conventional optical processing circuits into photonic blocks of reconfigurable interconnect (RPIs) and PPAB units, and through advanced processing blocks.
  • RPIs reconfigurable interconnect
  • the Q-FPPGA core programming concept is illustrated by three generic designs, depicted in Figure 5, respectively.
  • Figure 5 (a) shows how the configuration of each processing unit leads to the programming of two optical filters based on a resonant ring and a Mach-Zehnder interferometer.
  • Figure 5 (b) shows the programming of the core of a Q-FPPGA for obtaining a multiport interferometer.
  • the matrix of quantum gates programmed in the field or in real time, from the English (quantum field-programmable photonic gate array (Q-FPPGA)), according to the invention is a matrix of independent elements that can be interconnected according to the specifications of the user for the configuration of a wide variety of classical and quantum applications.
  • the Q-FPPGA combines the programmability of the most basic reconfigurable photonic ICs and quantum processing components into a scalable interconnect structure, enabling the programming of much higher density dynamic circuits.
  • the programming of complex circuits is given by interconnectivity.
  • Our proposed invention thus solves some of the problems associated with quantum circuits.
  • the quantum and classical circuits are programmed using shared resources integrated in a chip offering the advantages inherent to the devices direct programming (or in the field): reduction of times to produce, develop and bring a solution to market, reduction of prototyping times and non-recurring engineering costs, reduction of financial risks in the development of ideas and their transfer to ASPICs, multifunctional and multitasking operations, circuit optimization, performance improvements and PPAB reproducibility.
  • the present invention incorporates dynamic quantum signal processing by incorporating advanced processing blocks and architecture and workflow design.
  • the left part of Figure 4 shows the main steps of the design flow, described below. Similar to phbtonic FPPA, the starting point of the design flow is the input of the application to be implemented. In this case, they can be quantum and / or classical applications. The specifications are then processed through an optimization procedure to improve the area used and the performance of the final circuit. Then, the specifications are transformed into a circuit compatible with the elements included in the Q-FPPGA (technology mapping process), optimizing attributes such as delay, performance achieved or the number of elements used.
  • Q-FPPGA technology mapping process
  • the technology mapping phase transforms the optimized network into a circuit consisting of a restricted set of the Q-FPPGA elements. This is done by selecting components and parts of the network that can be implemented by the elements available in the Q-FPPGA, and then specifying how the interconnection between these elements is carried out. This will determine the total number of processing components required by the target implementation.
  • the location of the different parts of the circuit is decided by assigning them to a specific location on the Q-FPPGA.
  • global routines are in charge of selecting the processing elements that will operate as access paths.
  • this structure does not have to be physically differentiated from the processing and interface elements.
  • the processing elements are configured accordingly and the performances are calculated and the design verification is performed.
  • This process can be done physically by feeding all configuration data to the programming units for configure the final chip or by employing accurate models of the Q-FPPGA.
  • the steps contained in the design flow can be performed automatically through the software layer, by the user, or by both parties, depending on the autonomy and capabilities of the Q-FPPGA. Furthermore, a failure in any of the above steps would require an iterative process until the specifications are satisfactorily met.
  • a parallel optimization process provides robust operation in addition to fault and manufacturing defect tolerance capabilities, and increased physical device processing capabilities.
  • the Q-FPPGA can incorporate multiple and independent cores that can be interconnected to each other and to advanced processing blocks to increase their processing capacity.
  • These waveguide cores can be integrated on the same substrate or on different chips.
  • FIGs 6 to 10 show some examples where Q-FPPGAs of different types are programmed for the emulation and simultaneous implementation of different quantum photonic circuits.
  • the examples are representative of capabilities and are not intended to be exhaustive. Instead, they show simple configurations that can be extended to more complex circuits. Only relevant components such as optical input and output ports, HPBs and QHPBs are shown in these diagrams.
  • the figure includes the diagram of the Q-FPPGA with the active PPABs highlighted in the waveguide core and the diagrams of the different circuits implemented.
  • Figure 6 represents an operation case where the Q-FPPGA is programmed for the Implementation of quantum gates.
  • the case illustrated here corresponds to a C-NOT gate with an arrangement shown in the right part of the figure), where the Input state and control photons (heralded ') are generated by QHPBs that generate pairs of photons through non-linear effects such as Spontaneous Four Wave Mixing (SFWM) and output state and control photons are detected by specific QHPBs blocks that they implement photon counters.
  • the programmable waveguides in mesh form implement two tasks, the filtering of one of the two photons generated by SFWM) and the linear unit transformation implemented by the CNOT gate.
  • the QHPBs should ideally be on the same chip, but can be placed externally, within the Q-FPPGA by hybrid or heterogeneous integration.
  • FIG. 7 illustrates switch mode operation.
  • two or more circuits are programmed in the resources available in the Q-FPPGA which in this case share QHPBs, and specifically the independent photon sources.
  • the example illustrates a triangular boson sampler and a Hadamard gate whose implementation is shown in the upper right and lower right, respectively.
  • Both circuits share QHPBs that generate pairs of photons via SFWM, in addition to a common part of the nucleus formed by the waveguide mesh to implement their corresponding linear transformations.
  • the commutation is carried out by means of the tuning of the Programmable Photonic Analog Block (PPAB) within the waveguide mesh to select the operation of one or the other circuit.
  • Photon detection is performed in this example by non-shared QHPBs.
  • PPAB Programmable Photonic Analog Block
  • Figure 8 illustrates shared mode operation where two or more circuits are configured simultaneously on the physical device defined by the waveguide mesh and the peripheral blocks.
  • the QHPBs are used in the preparation in the detection of the input and output signals respectively and different sections of the waveguide mesh are used to implement photon filters and required unit linear transformations.
  • the two circuits are in this case a Hadamard gate and a cascade of gates corresponding to the rotational X, Y and Z transformations).
  • the QHPB that implements the initial state of the Hadamard gates are photon pair sources that require post filtering, while those that implement the initial state of cascading rotation matrices are single photon sources.
  • Figure 9 illustrates the case in which a quantum state or mode (of dimension N) is inserted through one of its ports at the input of the QFPGA.
  • the QFPGA is programmed to perform a simple linear transformation and no additional QHPBs are used, unless the final state is measured.
  • the implementation of a quantum Fourier transform is represented.
  • Figure 10 shows an example of a mixed operation of classical and quantum signals.
  • part of the core formed by the waveguide mesh implements a quantum gate (cascade of rotation matrices), while another implements a classical coupled cavity filter (CROW) to process the classical signal generated by using two HPBs consisting of on an integrated DBF and an external modulator.
  • CROW classical coupled cavity filter
  • the physical implementation of the Q-FPPGA device can be carried out by means of integrated optics either in silicon photonics technology or other group IV materials or by hybrid or heterogeneous combinations together with other materials such as those of group III-V.
  • phase tuning elements such as: MEMS, thermo-optical, opto-mechanical, electro-capacitive effects, phase change materials or non-volatile actuators.
  • phase actuators are integrated into any interferometric or non-interferometric, resonant or non-resonant structure with more than two ports.
  • more complex Q-FPPGAs can be designed by configuring different block interconnection schemes. Some examples are shown in Figure 2.
  • the physical device (hardware) corresponding to the integrated optical circuit must be integrated together with the electronic control systems to carry out programming tasks for the opto-electronic actuators and to carry out the global circuit tasks and optimizations.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

La invención se refiere a un sistema cuántico basado en un circuito fotónico integrado llevado a cabo mediante la combinación e interconexión de circuitos de procesamiento fotónicos programadles, implementados sobre un circuito fotónico capaz de implementar uno o múltiples circuitos cuánticos y clásicos con elementos de realimentación óptica y/o transformaciones lineales de múltiples puertos, mediante la programación de sus recursos y la selección de sus puertos de entrada y salida. La invención también se refiere a una matriz (o array) cuántica de puertas fotónicas reversibles programadas en campo para procesado de señales cuánticas, ( quantum field-programmable photonic gate array (Q-FPPGA)), que comprende al menos un circuito programadle basado en divisores de potencia óptica sintonizables con capacidad de sintonización de fase independiente y circuitos periféricos de altas prestaciones habilitando operaciones clásicas y cuánticas.

Description

DISPOSITIVO FOTÓNICO INTEGRADO DE MATRIZ CUÁNTICA DE PUERTAS
FOTÓNICAS PROGRAMARLES EN CAMPO. DISPOSITIVO CUÁNTICO Y
CIRCUITOS PROGRAMARLES
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La invención actual se refiere a un sistema cuántico basado en un circuito fotónico integrado llevado a cabo mediante la combinación y la interconexión de circuitos de procesamiento fotónicos programables, implementados sobre un circuito fotónico capaz de implementar uno o múltiples circuitos cuánticos y clásicos con elementos de realimentación óptica y/o transformaciones lineales de múltiples puertos, mediante la programación de sus recursos y la selección de sus puertos de entrada y salida. La invención también se refiere a una matriz (o array) cuántico de puertas fotónicas reversibles programadas en campo para procesado de señales cuánticas, del inglés quantum field-programmable photonic gate array (Q-FPPGA), que comprende al menos un circuito programable basado en divisores de potencia óptica sintonizables con capacidad de sintonización de fase independiente y circuitos periféricos de altas prestaciones habilitando operaciones clásicas y cuánticas.
ANTECEDENTES DE LA INVENCIÓN
La fotónica multifuncional programable (PMP) busca el diseño de configuraciones hardware basados en óptica integrada que ¡mplementan una gran variedad de aplicaciones y funcionalidades mediante la programación especifica de sus componentes. Varios autores han tratado trabajos teóricos proponiendo diferentes configuraciones y principios de diseño relativos a circuitos programables basados en la encadenación e interconexión de divisores de potencia óptica o ¡nterferómetros Mach- Zehnder (MZIs). Aunque estas propuestas ofrecen soluciones físicas versátiles para implementar circuitos, no definen una arquitectura completa para un dispositivo fotónico que pueda ser programado para implementar circuitos arbitrarios simples y complejos de manera aislada o simultánea. Sólo una serie de patentes recientes (US16/235,056, JP2016-247546, P201930410, P201831118) proponen y consideran los detalles mencionados, dando como resultado la definición de un dispositivo fotónico programable en campo, del inglés field programmable photonic arrays (FPGA). Adicionalmente, se ha propuesto la combinación de unidades de procesamiento básico óptico con capacidad de programar/sintonizar/seleccionar el porcentaje de división de potencia óptica entre sus puertos de salida y la sintonización de la fase, dando como resultado elementos de guíaonda mallados con diferentes topologías y una versatilidad sin precedentes en relación a sus funcionalidades. En particular, algunas de las arquitecturas propuestas permiten la recirculación de la señal óptica dentro del mallado, permitiendo la formación de cavidades ópticas, bucles de tipo Sagnac y circuitos más complejos. Además, una solicitud de patente reciente (P201930410) también describe una mejora técnica de las mallas de guías de onda basadas en la combinación de unidades de sintonización y procesamiento básico, del inglés Tunable Basic Unit (TBU) que tienen la misma orientación espacial/angular. Esto significa que los ejes longitudinales de las TBUs están en paralelo entre sí, independientemente de la topología de interconexión empleada. Esta ventaja técnica mitiga defectos de fabricación y mejora las prestaciones y la escalabilidad de los circuitos fabricados.
En paralelo, varios autores han publicado circuitos integrados que realizan transformaciones lineales de los modos guiados a la entrada de un mallado de guíaondas. Las arquitecturas propuestas requieren la combinación e interconexión fija de los divisores de potencia y los actuadores de fase. Algunas publicaciones emplean estos circuitos para la realización de un conjunto de operaciones limitada que se utilizan en el procesamiento de señales cuánticas, de manera más notoria en la creación de matrices de transformación describen la operación entre los modos de entrada y salida. DESCRIPCIÓN DE LA INVENCIÓN
El objeto de la invención descrito aquí resuelve los problemas mencionados y permite el diseño de sistemas de procesamiento de señales cuánticas y clásicas de forma programadle donde todos los componentes mencionados están conectados a un núcleo óptico reconfigurable que permite la implementación de transformaciones lineales reconfigurables, el acondicionamiento de la señal y la interconexión dinámica entre bloques de procesamiento cásico de altas prestaciones, bloques de procesamiento de señal cuántica de altas prestaciones, acopladores entre chips y acopladores fibra-chip.
El objeto de la invención se basa en la repetición, réplica e interconexión de unidades fotónicas de procesado analógico programadles e interconexiones reconfigurables ¡mplementadas de forma preferente en un chip fotónico. Estos componentes ofrecen los bloques básicos para la ¡mplementación de operaciones ópticas de señal analógica básicas (potencia óptica reconfigurable y división de energía además de configuración de fase Independiente) y, por extensión puertas o matrices 2x2 de rotación reconfigurables. En un sentido muy amplio, se puede considerar que el procesado realizado es reconfigurable, de la misma manera que los bloques lógicos programables llevan a cabo operaciones digitales en las FPGAs electrónicas o en los bloques analógicos configurables, que llevan a cabo operaciones analógicas en las matrices analógicas programables, del Inglés ( Field-Programmable Analog Arrafl. De este modo, y en virtud de lo propuesto a continuación, se puede observar que el objeto de la Invención permite la obtención de uno o varios circuitos fotónicos simultáneos y/o transformaciones lineales multipuerto mediante la programación específica de los recursos y componentes Integrados, es decir, de los bloques fotónicos de operación analógica programables, bloques de procesado de señal clásicos de altas prestaciones, (del Inglés High Performance Building-block, HPB) y bloques de procesado de señal quántico de altas prestaciones (del Inglés Quantum High Performance Building-block, QHPB), y la selección de los puertos empleados. Así, la contribución esencial de esta Invención es la arquitectura, el flujo de trabajo, la disposición de capas tecnológicas y la descripción técnica que permite la programación de los esquemas de Interconexión multipropósito para la realización de procesado de señales cuánticas y procesado de señales cuánticas en paralelo a procesado clásico de señales.
El objeto de la Invención presenta una arquitectura compuesta por un núcleo conectado a puertos ópticos, Bloques procesamiento de altas prestaciones y Bloques de procesamiento cuántico de altas prestaciones, Incluyendo al menos tres capas que describen la arquitectura desde un punto de vista hardware y software.
El núcleo del dispositivo puede implementarse atendiendo a diferentes formas de Interconexión Interna de bloques analógicos fotónico programables o unidades de sintonización básica de Igual orientación y formando un patrón. Sin que esto constituya un ejemplo limitativo mediante a) una distribución convencional uniforme hexagonal, b) mediante un layout propuesto de unidades con la misma orientación, c) distribución convencional uniforme triangular, d) layout propuesto de unidades con la misma orientación, e) layout propuesto de unidades con la misma orientación y formando un patrón no uniforme. El objeto de la invención se describe en el conjunto de reivindicaciones, incluidas aquí como referencia.
La operación cuántica completa requiere que el circuito se alimente por una señal proveniente de una fuente generadora cuántica y que se detecte en elementos de detección de señales cuánticas. En conjunto, aunque los sistemas o circuitos actuales son capaces de realizar transformaciones lineales reconfigurables requeridas para las operaciones cuánticas, no ofrecen la flexibilidad requerida para interconectar de forma dinámica los diferentes subsistemas o bloques de procesamiento requeridos por el procesador.
El sistema cuántico basado en circuitos fotónicos, una matriz fotónica de puertas analógicas reconfigurables programada en campo para procesado de señales cuánticas, del inglés ( Quantum field-programmable photonic gate array) de la presente invención ofrece una serie de ventajas inherentes a la programación en campo o en tiempo real, expandidas por las topologías del circuito óptico introducidas por la invención. Estas incluyen:
• Reducción en los tiempos de producción y de llegada al mercado.
• Tiempos de desarrollo de prototipo menores y reducción de costes asociados.
• Reducción de riesgos financieros en el desarrollo de ideas y en su traslación a ASPICS.
• Circuitos multifuncionales y de operación simultánea o paralela.
• Optimización de circuitos.
• Reducción de áreas de fabricación y refinamiento de una arquitectura única y común.
• Mejor rendimiento y reproducibilidad de bloques fotónicos analógicos programables.
• Mayor número de topologías alternativas no limitadas a factores geométricos ni a disposiciones fijas.
El chip propuesto (Q-FPPGA) de la invención actual se puede aplicar en los siguientes campos:
Aplicaciones clásicas:
• Aeroespacio y defensa (aviónica, comunicaciones, soluciones de seguridad, espacio). Automoción (Resolución de video de alta calidad, procesado de imágenes, comunicación entre vehículos y conectividad.
Centros de datos (Servidores, enrutadores, conmutadores, pasarelas) Computación de altas prestaciones (Servidores, super-computadores, sistemas SIGINT, radares de largo alcance, sistemas de conformación de haz, computación cuántica, redes neuronales de alta velocidad.
Diseño de circuitos integrados (Prototipado de circuitos de aplicación específica, emulación de hardware).
Comunicaciones cableadas e inalámbricas (Redes ópticas de transporte, interfaces de conectividad 5G, Red móvil)
Aceleradores de hardware.
Inteligencia artificial, aprendizaje automático y aprendizaje automático mediante redes neuronales profundas.
Kits educativos.
DESCRIPCIÓN DE LOS DIBUJOS Y FIGURAS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Figura 1 muestra un esquema general de la arquitectura Q-FPPGA y detalle de las tres capas que describen la arquitectura desde un punto de vista hardware y software.
Figura 2a ejemplos no limitativos de un diagrama de interconexión para la realización del núcleo de la Q-FPPGA, (a1): distribución convencional uniforme hexagonal, (a2) Layout propuesto de unidades con la misma orientación.
Figura 2b ejemplos no limitativos de un diagrama de interconexión para la realización del núcleo de la Q-FPPGA. (b1): distribución convencional uniforme cuadrada, (b2) layout propuesto de unidades con la misma orientación.
Figura 2c ejemplos no limitativos de un diagrama de interconexión para la realización del núcleo de la Q-FPPGA. (c1): distribución convencional uniforme triangular, (c2) layout propuesto de unidades con la misma orientación.
Figura 2d-e muestra algunos ejemplos no limitativos de un diagrama de interconexión para la realización del núcleo de la Q-FPPGA con unidades de sintonización básica de igual orientación y formando un patrón no uniforme.
Figura 3 muestra un ejemplo no limitativo de la clasificación de diferentes dispositivos clásicos y cuánticos presentes en la arquitectura Q-FPPGA.
Figura 4 (izquierda) principales pasos del flujo de diseño/configuración del dispositivo integrado fotónico y sistema cuántico de la invención actual, (derecha) capas software y hardware del circuito fotónico y esquema expandido incluyendo los elementos de altas prestaciones periféricos.
Figura 5 muestra la implementación simultanea de un circuito clásico basado en una cavidad de anillo, un interferómetro Mach-Zehnder y un dispositivo 3x3 multipuerto utilizando un núcleo Q-FPPGA reconfigurable del chip de la invención actual.
Figura 6 muestra en la parte de la izquierda un ejemplo no limitativo de la implementación de un circuito cuántico con caminos de verificación (en este caso una puerta de tipo CNOT.
Figura 7 ejemplo no limitativo de la implementación de un conjunto de circuitos cuánticos programables que conmutan o comparten recursos de manera simultánea.
Figura 8 ejemplo no limitativo de implementación simultanea de un conjunto de circuitos cuánticos independiente. Cada circuito emplea sus propios recursos.
Figura 9 muestra un ejemplo no limitativo de un circuito cuántico programable correspondiente a una transformada de Fourier quántica.
Figura 10 (izquierda) ejemplo de configuración simultanea de circuitos cuánticos y clásicos, (derecha) esquemas de los circuitos implementados. DESCRIPCIÓN DE UNA FORMA DE REALIZACIÓN DE LA INVENCIÓN
A continuación, se detalla un ejemplo de realización de la invención de acuerdo a las figuras mostradas. En la Figura 1, se muestra una Q-FPPGA que comprende al menos uno, pero preferiblemente un gran número de bloques de procesamiento fotónico analógico programables (PPABs) implementados mediante una serie de elementos de guía de onda integrados en un circuito fotónico. Estos bloques poseen características programables y pueden propagar la señal óptica en ambas direcciones. El diseño de la Figura 1 no considera ninguna topología de interconexión particular para el núcleo de la Q-FPPGA, sirviendo únicamente como ejemplo ilustrativo. La Figura 2 muestra diferentes alternativas y geometrías de interconexión diseño para la ¡mplementación del núcleo de la Q-FPPGA. Aunque se pueden considerar diferentes configuraciones para la implementación del PPAB, en este caso ilustramos el diseño con unidades básicas e 4 puertos, tal y como las que se describen en US 16/235,056, JP 2018- 247546, P201930410, P201831118, incluidas aquí como referencia. La función del
PPAB es la de ofrecer de forma independiente acoplos de potencia sintonizadle y la configuración ajusfadle de la respuesta de la fase, tal y como se explica a continuación. En general, la malla de guíaondas realiza un rutado dinámico o conmutación entre los diferentes puertos y áreas de la Q-FPPGA y entre los bloques de procesado de altas prestaciones clásicos y cuánticos.
De forma similar a las familias modernas de FPGAs, las Q-FPPGA pueden incluir bloques de procesado avanzado clásico y cuántico (HPB, QHPB) para expandir sus capacidades e Incluir funcionalidad de alto nivel conectada con el núcleo del chip. La parte de la derecha de la Figura 1 muestra un esquema de la descripción anterior. La disponibilidad de funciones y bloques de alto nivel en el chip permite reducir el área requerida por dichas funciones comparado con su ¡mplementación mediante los bloques básicos del núcleo. Además, alguna de las funciones no se puede dividir y programar utilizando exclusivamente el núcleo. Algunos ejemplos de estos bloques de procesamiento incluyen elementos altamente dispersivos, líneas de retardo en espiral, subsistemas de modulación y fotodetección genéricos, amplificadores ópticos, subsistemas de fuentes ópticas y sistemas de filtrado de altas prestaciones, entre otros. Un caso especial de HPB es el que comprende un elemento, interconectado con el núcleo óptico, que comprende un subsistema de multiplexado y demultiplexado, pudiendo ser espectralmente cíclico, o no-cíclico, permitiendo el procesamiento de diferentes canales espaciales / modos así como diferentes canales espectrales definidos por la frecuencia de la señal. Sin embargo, la mayor ventaja técnica proviene de la interconexión de HPBs cuánticos. Éstos ofrecen funcionalidad cuántica que puede ser dividida, distribuida y programada de forma eficiente dentro del núcleo de la Q-FPPGA además de combinarse con los HPBs y los QHPBs, como fuentes cuánticas, detectores, señales de procesamiento y detectores auxiliares, entre otros. La Figura 3 ilustra como ejemplo no limitativo un conjunto de componentes susceptibles de estar presentes en la Q-FPPGA.
Los PPAB son bloques o componentes fotónicos 2x2 que ofrecen la capacidad de configurar de manera independiente un desfase común y un ratio de división de potencia óptica K=sinθ (0<=K<=1) entre las los campos de entrada y salida de sus guíaondas de acceso.
Mediante la programación específica y la concatenación de bloques de procesamiento, la Q-FPPQA puede implementar circuitos complejos autónomos o trabajando en paralelo, transformaciones de procesamiento de señal y operaciones de procesamiento cuántico mediante la división de los circuitos de procesamiento óptico convencionales en bloques fotónicos de interconexión reconfigurable (del inglés, RPIs) y las unidades PPAB, y mediante los bloques de procesamiento avanzado. En particular, el concepto de programación del núcleo de la Q-FPPGA se ilustra mediante tres diseños genéricos, representados en la Figura 5, respectivamente. La Figura 5(a) muestra como la configuración de cada unidad de procesamiento lleva a la programación de dos filtros ópticos basados en un anillo resonante y un interferómetro Mach-Zehnder. La Figura 5(b) muestra la programación del núcleo de una Q-FPPGA para la obtención de un interferómetro multipuerto.
La matriz de puertas cuánticas programadas en campo o en tiempo real, del inglés (quantum field-programmable photonic gate array (Q-FPPGA)), de acuerdo con la invención es una matriz de elementos independientes que pueden interconectarse de acuerdo a las especificaciones del usuario para la configuración de una gran variedad de aplicaciones clásicas y cuánticas. La Q-FPPGA combina la programabilidad de los circuitos integrados fotónicos reconfigurables más básicos y los componentes de procesado cuántico en una estructura escalable de interconexión, permitiendo la programación de circuitos dinámicos de mucha mayor densidad. Así, la programación de circuitos complejos viene dada por la interconectividad. Nuestra invención propuesta resuelve de este modo algunos de los problemas asociados a los circuitos cuánticos. Los circuitos cuánticos y clásicos se programan empleando recursos compartidos integrados en un chip ofreciendo las ventajas inherentes a los dispositivos de programación directa (o en campo): reducción de los tiempos para producir, desarrollar y llevar una solución a mercado, reducción de los tiempos de prototipado y costes de ingeniería no recurrente, reducción de riesgos financieros en el desarrollo de ideas y su translación a ASPICs, operaciones multifuncionales y multitarea, optimización de circuitos, mejoras del rendimiento y la reproducibilidad de los PPAB. En comparación con las FPPA o los circuitos fotónicos reconfigurables, la invención presente incorpora procesado dinámico de señales cuánticas gracias a la incorporación de bloques de procesado avanzado y el diseño del flujo de trabajo y la arquitectura.
La parte de la izquierda de la Figura 4 muestra los pasos principales del flujo de diseño, que se describe a continuación. De forma similar a la FPPA fbtónica, el punto de partida del flujo de diseño es la entrada de la aplicación a implementar. En este caso, pueden ser aplicaciones cuánticas y/o clásicas. A continuación, se procesan las especificaciones mediante un procedimiento de optimización para mejorar el área empleada y las prestaciones del circuito final. Entonces, las especificaciones se transforman en un circuito compatible con los elementos incluidos en la Q-FPPGA (proceso de mapeo de la tecnología), optimizando los atributos como el retardo, las prestaciones alcanzadas o el número de elementos empleados.
La fase de mapeo de la tecnología transforma la red optimizada en un circuito que consiste en un conjunto restringido de los elementos de la Q-FPPGA. Esto se realiza mediante la selección de componentes y partes de la red que pueden ser implementado por los elementos disponibles en la Q-FPPGA, y especificando a continuación como se realiza la interconexión entre dichos elementos. Esto determinará el número total de componentes de procesamiento requeridos por la implementación objetivo.
A continuación, se decide la localización de las diferentes partes del circuito mediante su asignación a una localización específica en la Q-FPPGA. En ese momento, rutinas globales se encargan de la selección de los elementos de procesamiento que operarán como caminos de acceso. Al contrario que en una FPGA electrónica, esta estructura no tiene por qué diferenciarse físicamente de los elementos de procesamiento y de interconexión. Después, se configuran los elementos de procesamiento de manera correspondiente y se calculan las prestaciones y se realiza la verificación del diseño. Este proceso se puede realizar de forma física mediante la alimentación de todos los datos de configuración a las unidades de programación para configurar el chip final o mediante el empleo de modelos precisos de la Q-FPPGA. En cada paso, es posible realizar un proceso de optimización que podría decidir reconfigurar alguno de los pasos anteriores. De la descripción anterior, se puede apreciar que la Q-FPPGA Implica no solo el dispositivo físico fotónico y de control electrónico, sino que también Incluye una capa software (observar la parte derecha de la Figura 1 y la Figura 4).
Los pasos contenidos en el flujo de diseño pueden realizarse de forma automática a través de la capa software, por el usuario, o por ambas partes, dependiendo de la autonomía y las capacidades de la Q-FPPGA. Además, un fallo en cualquiera de los pasos anteriores requeriría un proceso Iterativo hasta que las especificaciones se cumplan de manera satisfactoria. Un proceso de optimización en paralelo proporciona una operación robusta además de una capacidad de tolerancia a fallos y defectos de fabricación, y un Incremento de las capacidades de procesamiento del dispositivo físico.
Además, la Q-FPPGA puede Incorporar múltiples e Independientes núcleos que se pueden interconectar entre sí y a bloques de procesamiento avanzado para aumentar su capacidad de procesamiento. Estos núcleos de guíaonda pueden Integrarse en el mismo substrato o en diferentes chips.
EJEMPLOS DE OPERACION Las Figuras 6 a 10 muestran algunos ejemplos donde Q-FPPGAs de diferentes tipos se programan para la emulación y la implementación simultanea de diferentes circuitos fotónicos quánticos. Los ejemplos son representativos de las capacidades y no pretenden ser exhaustivos. En su lugar, muestran configuraciones sencillas que pueden extenderse a circuitos más complejos. En estos esquemas solo se muestran los componentes relevantes como los puertos ópticos de entrada y salida, los HPBs y los QHPBs. En cada caso, la figura Incluye el esquema de la Q-FPPGA con los PPABs activos resaltados en el núcleo de guíaondas y los esquemas de los diferentes circuitos ¡mplementados. La Figura 6 representa un caso de operación donde la Q-FPPGA se programa para la Implementación de puertas cuánticas. El caso que se ¡lustra aquí corresponde a una puerta C-NOT con una disposición mostrada en la parte derecha de la figura), donde el estado de entrada y los fotones de control ( heralded ') se generan mediante QHPBs que generan pares de fotones mediante efectos no lineales como Four Wave Mixing espontáneo (SFWM) y el estado de salida y los fotones de control son detectados mediante bloques QHPBs específicos que implementan contadores de fotones. Las guías de onda programadles en forma de malla implementan dos tareas, la de filtrado de uno de los dos fotones generados mediante SFWM) y la transformación unitaria lineal que implementa la puerta CNOT. Los QHPBs deberían, de manera ideal, estar sobre el mismo chip, pero pueden situarse de forma extema, dentro de la Q-FPPGA mediante integración híbrida o heterogénea. Nótese que los bloques HPBs no usados y los puertos de entrada y salida de la Q-FPPGA no empleados en este caso no se muestran por simplicidad. Además, circuitos más complejos se pueden implementar extendiendo el concepto mostrado y utilizando un mayor porcentaje de los recursos, componentes y porción de malla, así como QHPBs extra implementando fuentes y detectores adicionales.
La Figura 7 ilustra la operación en modo conmutación. Aquí dos o más circuitos se programan en los recursos disponibles en la Q-FPPGA que comparte en este caso QHPBs, y de forma específica las fuentes de fotones independientes. El ejemplo ilustra un muestreador de bosones triangular y una puerta Hadamard cuya implementación se muestra en la parte superior derecha y en la parte inferior derecha, respectivamente. Ambos circuitos comparten QHPBs que generan pares de fotones vía SFWM, además de una parte común del núcleo formado por la malla de guía de ondas para implementar sus correspondientes transformaciones lineales. La conmutación se realiza mediante la sintonización de los Bloques fotónicos de procesado analógico programable (del inglés Programmable Photonic Analog Block, PPAB), dentro de la malla de guíaonda para seleccionar la operación de uno u otro circuito. La detección de fotones se realiza en este ejemplo mediante QHPBs no compartidos. La Figura 8 ilustra la operación en modo compartido donde dos o más circuitos se configuran de forma simultánea sobre el dispositivo físico definido por la malla de guíaonda y los bloques periféricos. En este caso específico, los QHPBs se emplean en la preparación en la detección de las señales de entrada y de salida respectivamente y diferentes secciones de la malla de guía de ondas se emplea para implementar filtros de fotones y transformaciones lineales unitarias requeridas. Los dos circuitos son en este caso una puerta Hadamard y una cascada de puertas correspondiente a las transformaciones X, Y y Z de rotación). El QHPB que implementa el estado inicial de la puerta Hadamard son fuentes de pares de fotones que requieren un filtrado posterior, mientras que aquellos que implementan el estado inicial de las matrices de rotación en cascada son fuentes de fotones individuales. La Figura 9 ilustra el caso en el que a la entrada de la QFPGA se inserta mediante uno de sus puertos un estado o modo cuántico (de dimensión N). Aquí, la QFPGA se programa para realizar una transformación lineal simple y no se utilizan QHPBs adicionales, a menos que se mida el estado final. En el caso del ejemplo de la Figura 9, se representa la implementación de una transformada de Fourier cuántica.
Finalmente, la Figura 10 muestra un ejemplo de operación mixta de señales clásicas y cuánticas. Aquí, parte del núcleo formado por la malla de guíaonda implementa una puerta cuántica (cascada de matrices de rotación), mientras que otra implementa un filtro clásico de cavidades acopladas (CROW) para procesar la señal clásica generada mediante la utilización de dos HPBs que consisten en un DBF integrado y un modulador extemo.
IMPLEMENTACIÓN FÍSICA La implementación física del dispositivo Q-FPPGA se puede realizar mediante óptica integrada ya sea en tecnología de fotónica de silicio u otros materiales del grupo IV o mediante combinaciones híbridas o heterogéneas junto con otros materiales como los del grupo lll-V.
Para los elementos PPAB, la tecnología actual de fotónica integrada permite la integración de elementos de sintonización de fase como: MEMS, efectos termo- ópticos, opto-mecánicos, electro-capacitivos, materiales de cambio de fase o actuadores no volátiles. Estos actuadores de fase se Integran en cualquier estructura interferométrica o no interferométrica, resonante o no resonante con más de dos puertos. Finalmente, tal y como se ha mencionado anteriormente, se pueden diseñar Q-FPPGAs más complejas mediante la configuración de esquemas de interconexión de bloques diferentes. Algunos ejemplos se muestran en la Figura 2.
Tal y como se describe en la Figura 1, el dispositivo físico (hardware) correspondiente al circuito óptico integrado se ha de integrar junto con los sistemas de control electrónico para la realización de tareas de programación de los actuadores opto- electrónicos y para la realización de tareas y optimizaciones globales del circuito.

Claims

REIVINDICACIONES
1. Una matriz cuántica de puertas fotónicas programables en campo para (del Inglés Quantum Field-programmable photonic gate array, Q-FPPGA) caracterizada por comprender:
- un núcleo formado por una matriz de puertas fotónicas programadles en campo, y
- al menos un bloque de procesado cuántico de altas prestaciones (del Inglés quantum High Performance Building Block, QHPBB), Donde al menos uno de los elementos de procesado cuántico de altas prestaciones (QHPBB) se conecta al núcleo reconfigurable de la matriz de puertas fotónicas programables en campo.
2. La matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 1 , donde al menos una matriz cuántica de puertas fotónicas programables (Q-FPPGA) además Incluya al menos un puerto óptico y/o al menos un bloque de procesado cuántico de altas prestaciones (HPBB) conectados al núcleo de la matriz cuántica de puertas fotónicas reconfigurables.
3. La matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) de acuerdo a cualquiera de las reivindicaciones 1 y 2, donde al menos una matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) además Incluya al menos un bloque fotónico de procesamiento analógico programable, del Inglés ( Programmable Photonic Analog Block, PPAB) ¡mplementados mediante una serie de guíaondas fotónicas Integrados en un chip fotónico.
4. La matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 3, Incluyendo al menos dos bloques fbtónicos de procesamiento analógico programable (PPAB) Integrados en la misma orientación y siguiendo una topología uniforme.
5. La matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 4, donde la topología uniforme de distribución es una de las seleccionadas entre una topología hexagonal de mallas de guíaonda, topología cuadrada de mallas de guíaonda o topología triangular de mallas de guíaonda.
6. La matriz cuántica de puertas fotónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 3, incluyendo al menos dos bloques fbtónicos de procesamiento analógico programable (PPAB) integrados en la misma orientación y siguiendo una topología no uniforme.
7. La matriz cuántica de puertas fbtónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 2, donde al menos uno de los elementos de procesado de altas prestaciones (HPBBs) es uno de los seleccionados entre elementos altamente dispersivos, líneas de retardo de guíaonda, elementos de modulación genéricos y sistemas de fotodetección, amplificadores ópticos y subsistemas de emisión y estructuras de filtrado de altas prestaciones, multiplexores y demultiplexores.
8. La matriz cuántica de puertas fótónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 2, donde al menos uno de los elementos de procesado cuántico de altas prestaciones (QHPBBs) es uno de los seleccionados entre fuentes cuánticas, detectores, unidades de procesado y detectores.
9. La matriz cuántica de puertas fbtónicas programables en campo (Q-FPPGA) de acuerdo a la reivindicación 2, donde además se incluyen múltiples e independientes núcleos de procesamiento interconectado entre sí y conectados a los elementos de procesado de altas prestaciones (HPBBs, Q-HPBBs).
10. Un dispositivo integrado fotónico y cuántico implementado mediante un circuito fotónico integrado en chip sobre un substrato, caracterizado porque comprende:
-una capa física que incluye al menos una matriz cuántica de puertas fótónicas programables en campo (Q-FPPGA) de cualquiera de las reivindicaciones anteriores; -una capa de electrónica de control; y -una capa software.
11. Un circuito cuántico programable que incluye un circuito fotónico integrado y un dispositivo cuántico de acuerdo a la reivindicación 10.
12. El circuito cuántico programable de la reivindicación 11, donde el circuito se basa en un anillo resonante o un interferómetro de tipo Mach-Zehnder (MZIs).
13. Un método de diseño de circuitos cuánticos programables de los mencionados en las reivindicaciones 11 o 12 caracterizados por comprender los siguientes pasos:
- elección de una aplicación inicial para ser implementada; -procesamiento de un área o de las prestaciones del circuito cuántico programable;
- mapeo y transferencia de la aplicación en un circuito compatible con los elementos de la matriz cuántica de puertas felónicas programabas en campo (Q-FPPGA).
14. El método de la reivindicación 13 donde el paso de mapeo/transferencia/configuración de la aplicación en un circuito compatible con los elementos de la matriz cuántica de puertas felónicas programadles en campo (Q- FPPGA) comprende además:
- un primer paso de selección donde las partes del circuito se ¡mplementan mediante elementos del circuito Integrado.
- un paso de interconexión donde cada bloque de procesamiento básico es asignado a una localización especifica en la matriz cuántica de puertas felónicas programadles en campo (Q- FPPGA).
- un segundo paso de selección donde se seleccionan los elementos de procesado que operan como caminos de acceso e Interconexión.
15. El método de la reivindicación 14 donde además se incluye:
- el cálculo de las prestaciones del circuito y un paso de verificación del diseño.
16. El método de la reivindicación 15 donde además el cálculo de las prestaciones del circuito y el paso de verificación del diseño se realiza de forma física mediante la carga y datos de configuración de los datos necesarios para programar las unidades que configuran el chip o mediante el empleo de modelos precisos de la matriz cuántica de puertas felónicas programable en campo (Q-FPPGA).
17. El método de cualquiera de las reivindicaciones 13 a 16 donde los pasos se llevan a cabo de manera automática por la capa software, por el usuario o por una mezcla de ambos, dependiendo del grado de autonomía y de las capacidades de la matriz cuántica de puertas felónicas programable en campo (Q-FPPGA).
PCT/ES2020/070671 2019-12-18 2020-10-30 Dispositivo fotónico integrado de matriz cuántica de puertas fotónicas programables en campo, dispositivo quántico y circuitos programables WO2021123470A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080088918.XA CN115280675A (zh) 2019-12-18 2020-10-30 量子场可编程光子门阵列集成光子和量子器件以及可编程电路
US17/785,294 US20230029063A1 (en) 2019-12-18 2020-10-30 Integrated photonic device comprising a field-programmable photonic gate array, a quantum device and programmable circuits
CA3164744A CA3164744A1 (en) 2019-12-18 2020-10-30 Quantum field programmable photonic gate array integrated photonic and quantum device, and programmable circuits
JP2022537031A JP2023507745A (ja) 2019-12-18 2020-10-30 量子フィールドプログラマブルフォトニックゲートアレイ、集積フォトニック及び量子デバイス、並びにプログラマブル回路
EP20811426.4A EP4080767A1 (en) 2019-12-18 2020-10-30 Integrated photonic device comprising a field-programmable photonic gate array, a quantum device and programmable circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201931123 2019-12-18
ES201931123A ES2752086B2 (es) 2019-12-18 2019-12-18 Dispositivo fotonico integrado de matriz cuantica de puertas fotonicas programables en campo, dispositivo quantico y circuitos programables

Publications (1)

Publication Number Publication Date
WO2021123470A1 true WO2021123470A1 (es) 2021-06-24

Family

ID=70002685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070671 WO2021123470A1 (es) 2019-12-18 2020-10-30 Dispositivo fotónico integrado de matriz cuántica de puertas fotónicas programables en campo, dispositivo quántico y circuitos programables

Country Status (7)

Country Link
US (1) US20230029063A1 (es)
EP (1) EP4080767A1 (es)
JP (1) JP2023507745A (es)
CN (1) CN115280675A (es)
CA (1) CA3164744A1 (es)
ES (1) ES2752086B2 (es)
WO (1) WO2021123470A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114297133A (zh) * 2021-11-26 2022-04-08 军事科学院系统工程研究院网络信息研究所 路径可编程多功能微波光子信号处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2730448B2 (es) * 2019-05-09 2020-03-19 Univ Valencia Politecnica Chip fotonico,matriz fotonica programable por campo y circuito integrado fotonico.
ES2795820B2 (es) * 2020-07-16 2021-03-17 Univ Valencia Politecnica Circuito integrado fotónico programable y método de operación relacionado

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053544A2 (en) * 2002-12-11 2004-06-24 Canon Kabushiki Kaisha Photonic circuit board
US20150354938A1 (en) * 2014-06-06 2015-12-10 Jacob C. Mower Methods, systems, and apparatus for programmable quantum photonic processing
ES2695323A1 (es) * 2018-11-19 2019-01-03 Univ Valencia Politecnica Metodo de configuracion y optimizacion de dispositivos fotonicos programables basados en estructuras malladas de guiaondas opticas integradas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053544A2 (en) * 2002-12-11 2004-06-24 Canon Kabushiki Kaisha Photonic circuit board
US20150354938A1 (en) * 2014-06-06 2015-12-10 Jacob C. Mower Methods, systems, and apparatus for programmable quantum photonic processing
ES2695323A1 (es) * 2018-11-19 2019-01-03 Univ Valencia Politecnica Metodo de configuracion y optimizacion de dispositivos fotonicos programables basados en estructuras malladas de guiaondas opticas integradas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114297133A (zh) * 2021-11-26 2022-04-08 军事科学院系统工程研究院网络信息研究所 路径可编程多功能微波光子信号处理方法

Also Published As

Publication number Publication date
EP4080767A1 (en) 2022-10-26
US20230029063A1 (en) 2023-01-26
CA3164744A1 (en) 2021-06-24
JP2023507745A (ja) 2023-02-27
ES2752086A1 (es) 2020-04-02
ES2752086B2 (es) 2020-08-07
CN115280675A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021123470A1 (es) Dispositivo fotónico integrado de matriz cuántica de puertas fotónicas programables en campo, dispositivo quántico y circuitos programables
US11073658B2 (en) Photonic chip, field programmable photonic array and programmable circuit
US10673440B1 (en) Unified programmable computational memory and configuration network
US7137095B1 (en) Freeway routing system for a gate array
Lyke et al. An introduction to reconfigurable systems
Chan et al. Architectural tradeoffs in field-programmable-device-based computing systems
WO2020225471A1 (es) Chip fotónico, matriz fotónica programable por campo y circuito integrado fotónico
CN114631106A (zh) 光子量子计算机架构
JP7425535B2 (ja) フォトニックチップ、フィールドプログラマブルフォトニックアレイおよびフォトニック集積回路
WO2022013466A1 (es) Circuito integrado fotónico programable y método de operación relacionado
TW567669B (en) Very fine grain field programmable gate array architecture and circuitry
KR20040030846A (ko) 크기 가변 및 자동 생성을 위한 계층적 멀티플렉서 기반집적회로 상호접속 아키텍처
JP2024505908A (ja) フォールトトレラント量子コンピュータのためのインタリーブモジュール
US6870396B2 (en) Tileable field-programmable gate array architecture
El-Boghdadi et al. On the communication capability of the self-reconfigurable gate array architecture
Bogaerts et al. The new world of programmable photonics
Ben-Asher et al. Combining boolean gates and branching programs in one model can lead to faster circuits
CN102063410B (zh) 一种基于可编程硬件计算平台的计算机
Singha et al. Survey on Reconfigurable Architecture and Computing
Capmany et al. Programmable integrated photonics: a new paradigm for low cost multifunctional optics
Schneider et al. Integrated guided-wave crossbar interconnection of SEED arrays
Hamish Ricky et al. Design and Analysis of Digital Photonic Full Adder
noosh Eshaghian Parallel Algorithms for Image Processing on OMC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20811426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3164744

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022537031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020811426

Country of ref document: EP

Effective date: 20220718