WO2021123418A1 - Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz - Google Patents

Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz Download PDF

Info

Publication number
WO2021123418A1
WO2021123418A1 PCT/EP2020/087412 EP2020087412W WO2021123418A1 WO 2021123418 A1 WO2021123418 A1 WO 2021123418A1 EP 2020087412 W EP2020087412 W EP 2020087412W WO 2021123418 A1 WO2021123418 A1 WO 2021123418A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
network
compression device
compression
pressure
Prior art date
Application number
PCT/EP2020/087412
Other languages
English (en)
Inventor
Alban SESMAT
Francis BAINIER
Mathieu ASSEMAT
Original Assignee
Grtgaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grtgaz filed Critical Grtgaz
Priority to EP20833883.0A priority Critical patent/EP4078016B1/fr
Publication of WO2021123418A1 publication Critical patent/WO2021123418A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/068Distribution pipeline networks

Definitions

  • the present invention relates to a station for regulating the circulation of a gas between two gas networks. More particularly, the present invention relates to a station for regulating a gas from a so-called "upstream” network transporting the gas at a pressure P a to a so-called “downstream” gas network transporting the gas at a pressure Pb such that P a. is strictly greater than Pb.
  • the flow rate of gas from an upstream gas transport network to a downstream network transporting gas at a pressure lower than the gas pressure of the upstream network is regulated by a valve.
  • the actuation of the valve requires motorization pressure supplied by an engine gas supplied at sufficient pressure.
  • This motive gas can be compressed air requiring the presence of a compressed air circuit.
  • the compressed air supply comes from an energy consuming compressor.
  • This driving gas can also be gas taken from the upstream network.
  • the expansion of the engine gas when the pneumatic valve is actuated lowers its pressure to an insufficient pressure to allow its reinjection into the downstream network.
  • this motive gas is usually released into the atmosphere.
  • the release of gases into the atmosphere poses an environmental problem.
  • the release of methane into the atmosphere in particular is problematic because methane is a powerful greenhouse gas, which contributes to global warming.
  • the gas conveyed by the network discharged after its use as a driving gas is not recovered, which represents an economic loss.
  • the present invention aims to remedy all or part of these drawbacks.
  • the present invention relates to a station for regulating the circulation of a gas from a so-called “upstream” network transporting the gas to a pressure P a to a so-called “downstream” gas network transporting the gas at a pressure Pb such that P a is strictly greater than Pb, which comprises:
  • a compression device comprising a piston actuated by the expansion of gas supplied by the upstream network and configured to compress a gas called "engine gas",
  • a pneumatic valve configured to control the gas flow from the upstream network circulating to the downstream network, actuated by the engine gas.
  • the gas expansion energy from the upstream network is used to compress a motive gas actuating the pneumatic valve.
  • the control station of the invention makes it possible to avoid the use of a compressor and therefore to save energy in its operation, while avoiding the release of greenhouse gases into the atmosphere.
  • the driving gas is atmospheric air supplied to the compression device by a suction means.
  • the gas expansion energy from the upstream network is used to compress atmospheric air.
  • This embodiment advantageously replaces known devices using compressed air supplied by an electric air compressor as the driving gas. The power consumption of the air compressor is thus saved.
  • This embodiment advantageously replaces the known devices which implement actuation of a pneumatic regulating valve by pressurized gas coming from the upstream network.
  • the control station of the invention allows the gas from the upstream network to be compressed again and then to be injected into the downstream network. This helps prevent the release of harmful gases into the atmosphere.
  • the compression device is a pneumatic booster
  • the piston is a free piston between an expansion chamber and a compression chamber
  • the regulation station comprises:
  • the regulating station which is the subject of the invention uses, in order to use the energy of expansion of a gas to compress an engine gas, a free piston booster.
  • the compression device makes it possible, by recovering the expansion energy of a gas coming from a gas network at pressure Pa and going into a gas network at pressure Pb, where Pa is greater than Pb, therefore without expenditure energy, to compress the engine gas.
  • the free piston comprises an expansion head and a compression head connected by a shaft, a through opening opening out, on the one hand, into the expansion head on the side opposite the compression head and, on the other hand, into a side wall of the tree,
  • the outlet of the expansion chamber to which the second pipe is connected is located on a side face of the expansion chamber and is not obstructed by the expansion head until the through opening does not open into the pressure chamber. relaxation.
  • the free piston booster operates without an external moving part as long as there is a pressure difference between the first pipe and the second pipe.
  • the regulation station comprises a heat exchanger configured to transfer heat from the driving gas compressed by the compression device to the gas of the upstream network intended to actuate the compression device.
  • the drop in temperature of the gas from the upstream network actuating the compression device can be at least partially compensated by the heat supplied by the driving gas compressed by the compression device.
  • the flow of the driving gas at the level of the compression device can be decoupled from the flow of the driving gas at the level of the pneumatic control valve.
  • the reservoir acts as a buffer capacity by regulating the maximum pressure at the valve pilot level.
  • the regulating station includes a filter drier positioned between the suction means and the compression device.
  • the invention relates to a method for regulating the circulation of a gas from a so-called “upstream” network transporting the gas at a pressure P a to a so-called “downstream” gas network transporting the gas at a pressure.
  • Pb such that P a is strictly greater than Pb, which comprises the following steps:
  • engine gas of a pneumatic control valve configured to control the gas flow from the upstream network flowing to the downstream network
  • a compression device comprising a piston actuated by the expansion of gas supplied by the upstream network
  • the driving gas is atmospheric air compressed by the compression device.
  • the driving gas is the gas transported by the upstream network and the driving gas expanded upon actuation of the pneumatic control valve is compressed before being discharged to the downstream network.
  • FIG. 1 shows, schematically, a first particular embodiment of the control station object of the present invention
  • FIG. 2 represents, schematically, the first particular embodiment of the regulation station object of the present invention
  • FIG. 3 represents, schematically, a second particular embodiment of the regulation station object of the present invention
  • FIG. 4 represents , schematically, the second particular embodiment of the regulating station which is the subject of the present invention
  • FIG. 5 shows, schematically, a first particular embodiment of a compression device comprising a free piston implemented in different embodiments of the device which is the subject of the invention
  • FIG. 6 represents, schematically, a first operating phase of a second particular embodiment of a compression device comprising a free piston with a through-opening
  • FIG. 1 shows, schematically, a first particular embodiment of the control station object of the present invention
  • FIG. 2 represents, schematically, the first particular embodiment of the regulation station object of the present invention
  • FIG. 3 represents, schematically, a second particular embodiment of the regulation station object of the present invention
  • FIG. 4 represents
  • FIG. 7 represents, schematically, a second operating phase of a second particular embodiment of a coding device mpression comprising a free piston with through opening
  • FIG. 8 represents, schematically, a third operating phase of a second particular embodiment of a compression device comprising a free piston with through opening
  • FIG. 9 represents, schematically, a fourth operating phase of a second particular embodiment of a compression device comprising a free piston with a through opening
  • FIG. 10 represents, schematically and in the form of a flowchart, a particular succession of steps of a particular embodiment of the regulation method object of the present invention
  • FIG. 11 represents, schematically and in the form of a flowchart, a particular succession of steps of a particular embodiment of the regulation method object of the present invention .
  • Figures 1 and 2 are not to scale, schematic views of a first embodiment of a control station 100 object of the present invention.
  • Figure 1 is a simplified diagram of the control station 100 and
  • Figure 2 is a more complete diagram of the control station 100.
  • the regulating station 100 is positioned at the interface of a gas transport network called “upstream network” and a gas transport network called “downstream network”.
  • the upstream network 101 transports the gas at a pressure P a to the downstream network 102 which transports the gas at a pressure Pb such that P a is strictly greater than Pb.
  • a pneumatic valve 110 regulates the flow of gas circulating from the upstream network 101 to the downstream network 102.
  • the gas flow from the upstream network 101 to the downstream network 102 is controlled to correspond to a determined flow rate value or to maintain a predetermined pressure in the upstream network 101 or in the downstream network 102.
  • the pneumatic valve 110 requires for its operation to be supplied by a pressurized gas called "engine gas".
  • engine gas a pressurized gas
  • the driving gas is supplied to the pneumatic valve at a pressure between 1 and 10 bar.
  • the driving gas is supplied to the pneumatic valve at a pressure of 2 bar.
  • the driving gas is atmospheric air 190 collected by a suction means (not shown).
  • a piston 11 creates the suction.
  • the regulating station 100 includes a compression device 70 configured to compress the engine gas.
  • the regulating station which is the subject of the invention uses, in order to use the expansion energy of a fluid to compress a second, a compression device 70.
  • the compression device 70 is a booster comprising a free piston. .
  • the compression device 70 comprising a free piston which is shown in Figures 1 to 4. It is recalled that, in a free piston booster, the movement of the piston responds only to the pressure of the gas, without a connecting rod. do not operate or hold it back. Those skilled in the art can easily replace this free piston with a pneumatic membrane booster, for example.
  • the particular embodiments of the compression device 70 will be better understood on reading the description of FIGS. 5 to 9.
  • the compression device 70 comprises a piston 11 actuated by the expansion of gas in an expansion chamber 17. Gas is supplied to the expansion chamber 17. via a pipe 31 supplied by the upstream network 101. The gas from the upstream network 101, once expanded in the expansion chamber 17, is discharged to the downstream network 102 via a pipe 32.
  • the compression device 70 comprises a compression chamber 23.
  • the compression chamber 23 is supplied by the engine gas, that is to say by atmospheric air.
  • the driving gas is conveyed to the compression chamber 23 through the gas line 33.
  • the pressure applied by the piston 11 in the compression chamber 23 makes it possible to compress the driving gas.
  • the driving gas is supplied to the regulating valve 110 for its actuation, via the control means 112.
  • a gas line 34 conveys the driving gas from the compression device 70 to the pilot means 112.
  • the pneumatic control valves and their piloting means are well known from the prior art and are not described in detail here.
  • the driving gas is then released into the atmosphere through a discharge line 166.
  • the compression device 70 is that illustrated by one of Figures 6 to 9. In embodiments, the compression device 70 is the pneumatic booster illustrated in Figure 5.
  • the regulating station 100 comprises a reservoir 180 of driving gas positioned between the pneumatic valve 110 and the compression device 70.
  • the reservoir 180 is also called “capacity”.
  • the reservoir 180 is, for example, a cylinder configured to store the driving gas at a determined pressure.
  • the reservoir 180 is formed from several cylinders.
  • the supply of gas to the compression device 70 from the upstream network is controlled as a function of the pressure of the motive gas in the reservoir 180.
  • a pressure switch 174 measures the pressure of the motive gas in the reservoir 180. and actuates the opening of a valve 176 positioned between the upstream network 101 and the compression device 70 when the measured pressure is below a determined threshold.
  • the valve 176 is closed when the pressure measured in the reservoir 180 is greater than a predetermined threshold.
  • a pressure regulator 173 is positioned on the line connecting the compression device 70 to the reservoir 180.
  • a pressure regulator 171 is positioned on the line connecting the reservoir 180 to the pilot 112 of the pneumatic valve 110.
  • a pipe comprising a non-return valve 170 and a pressure regulator 172 connects the upstream network to the reservoir 180.
  • the driving gas may consist of air compressed by the compression device 70, for example gas coming from the upstream network 101 or by a mixture of compressed air and gas coming from the upstream network 101.
  • the compressed air is used as the driving gas during the normal operation of the regulation station 100.
  • the non-return valve 170 opens allowing the supply of the reservoir 180 with gas from the upstream network 101.
  • the gas coming from the upstream network 101 is not used as gas engine only in the event of a failure of the compressed air supply.
  • the assembly formed by the non-return valve and the pressure regulator is replaced by a valve whose impulse line is placed on the reservoir 180.
  • the regulation station 100 comprises a heat exchanger 150 configured to transfer heat from the driving gas compressed by the compression device 70 to the gas of the upstream network actuating the compression device.
  • the heat exchanger 150 is positioned overlapping between the gas line conveying the compressed air by the compression device to the reservoir 180 and the line conveying the gas from the upstream network 101 intended to actuate the compression device 70.
  • the regulating station 100 includes a filter drier 195 positioned between the atmospheric air suction means and the compression device 70.
  • Figures 3 and 4 are not to scale, schematic views of a second embodiment of a regulating station 200 object of the present invention.
  • Figure 3 shows a simplified diagram of the control station 200 and
  • Figure 4 shows a more complete diagram of the control station 200.
  • the regulating station 200 is positioned at the interface of an upstream gas transport network 201 and a downstream gas transport network 202.
  • a pneumatic valve 210 controls the flow of gas flowing from the upstream network 201 to the downstream network 202.
  • the flow of gas from the upstream network 201 to the downstream network 202 is controlled to be maintained at a flow rate value. determined or as a function of a pressure in the upstream network 201 or in the downstream network 202.
  • the second embodiment of the regulating station 200 differs from the first illustrated in FIGS. 1 and 2 in that the driving gas is gas from the upstream network.
  • the gas from the upstream network is supplied to the pneumatic valve for its actuation, without prior compression. Then, this driving gas is collected and then compressed by the compression device before being discharged to the downstream network.
  • the driving gas is supplied by the upstream network 201 to the regulating valve 210 via the piloting means 212.
  • the regulating valves and their piloting means are well known from the prior art and are not described in detail. here.
  • the regulating station 200 includes a compression device 70 configured to compress the engine gas.
  • the compression device 70 comprises a piston 11 actuated by the expansion of gas coming from the upstream network 201. This gas, distinct from the driving gas, is supplied by a pipe 31 connected to the upstream network 201. The gas from the upstream network 201 expanded in the compression device is evacuated to the downstream network 202 via a gas pipe 32.
  • the compression device 70 comprises a compression chamber 23.
  • the compression chamber 23 is supplied by the engine gas, that is to say by the gas from the upstream network 201, previously relaxed during its use for the actuation of the pneumatic valve 210.
  • the driving gas is conveyed to the compression chamber 23 through the gas line 33.
  • the pressure applied by the piston 11 in the compression chamber 23 makes it possible to compress the driving gas.
  • the driving gas is thus compressed to a pressure sufficient to be reinjected into the downstream network 202.
  • a gas line 34 conveys the driving gas from the compression device to the downstream network.
  • the compression device 70 is that illustrated by one of Figures 6 to 9. In some embodiments, the compression device 70 is the pneumatic booster 60 shown in Figure 5.
  • control station 200 includes a reservoir 280 of driving gas positioned between the pneumatic valve 210 and the compression device 70.
  • the supply of gas to the compression device 70 from the upstream network is controlled as a function of the pressure of the driving gas in the reservoir 280.
  • a pressure switch 274 measures the pressure of the driving gas. in the reservoir 280 and actuates the opening of a valve 276 positioned between the upstream network 201 and the compression device 70 when the measured pressure is greater than a determined threshold.
  • the valve 276 is closed when the pressure measured in the reservoir 280 is below a predetermined threshold.
  • a valve 281 is positioned on the reservoir 280. In the event of failure of the compression device 70, the gas pressure in the reservoir 280 will rise until causing the opening of the valve 281 allowing the operation to be made. relieve the pressure in the reservoir 280 and ensure the proper functioning of the control means 212.
  • a pressure regulator 278 is positioned on the pipe connecting the upstream network 201 and the control means 212 of the pneumatic valve 210.
  • a pressure regulator 277 is positioned on the pipe conveying the driving gas compressed by the compression device 70 to the downstream network 202.
  • the regulation station 200 comprises a heat exchanger 250 configured to transfer heat from the driving gas compressed by the compression device 70 to the gas of the upstream network actuating the compression device.
  • the heat exchanger 250 is positioned overlapping between the pipe conveying the gas from the upstream network compressed by the compression device to the downstream network 202 and the pipe conveying the gas from the upstream network 201 intended to actuate the compression device 70.
  • FIG. 5 shows a particular embodiment of the compression device 60 implemented by the regulating station which is the subject of the invention.
  • the compression device 60 is a booster, that is to say a pair of pressure reducing valve 71, on the left, and compressor 72, on the right, with free piston.
  • the regulator 71 comprises a chamber 75 provided with a high pressure gas inlet coming from the first pipe 31 and a low pressure gas outlet in the second pipe 32.
  • an expansion piston 74 is brought into operation. Movement by the pressure of the gas and transmits this pressure, via a shaft 76 to a compression piston 77 which compresses driving gas in a chamber 78.
  • the set of pistons 74 and 77 and of the shaft 76 constitutes a free piston.
  • Valves 15 and 16 provide the seal and the direction of movement of the fluid from the third line 33 for entering low-pressure engine gas to the fourth high pressure engine gas outlet pipe 34.
  • the system for controlling the entry of gas into the chamber 75 and the outlet of gas from the chamber 75 is not described here, being well known to those skilled in the art.
  • the driving gas is the gas designated as such because it is intended to provide the motorization pressure necessary for controlling the pneumatic valve of the control station which is the subject of the invention.
  • a free piston is moved in a first chamber 75 by the gas and compresses the driving gas in a second chamber 78. It is noted that the pressure of the fluid at the outlet of the compressor can be higher than the pressure of the gas at the inlet. , depending on the ratio of the surfaces of pistons 74 and 77.
  • the free piston is replaced by membranes, as in membrane blowers of known type.
  • the compression device 70 is a free piston booster 11.
  • the arrows in broken lines represent the movements of gas.
  • the arrow in solid lines represents the movements of the free piston.
  • the free piston 11 comprises an expansion head 20 and a compression head 22 connected by a shaft.
  • a through opening 24 opens on the one hand into the expansion head 20 on the side opposite the compression head 22 and, on the other hand, into a side wall of the shaft.
  • the first gas line 31 opens into part 21 of the expansion chamber 17 opposite the shaft.
  • the outlet of the expansion chamber 17 to which the second pipe 32 is connected is located on a side face of the expansion chamber 17 and is not obstructed by the expansion head 20 when the through opening 24 does not open. in the part 21 of the expansion chamber 17. More particularly, the outlet of the expansion chamber is obstructed by the expansion head except in the position of the free piston where the free volume of the compression chamber is minimal.
  • the free volume of the compression chamber is intermediate between its extreme values.
  • the pressure in the part 17 of the expansion chamber opposite to the compression chamber 23 is at the value Pb of the downstream network 13.
  • the gas coming from the first pipe 31 enters the intermediate part 21 of the pressure chamber. expansion, at a pressure Pa.
  • the pressure ratio Pa / Pb is greater than the ratio of the areas of the expansion head 20 in part 17 and in part 21.
  • the free piston 11 therefore moves to the left, as illustrated in Figure 7. This movement of the free piston 11 causes the suction of gaseous fluid from the third pipe 33 through the inlet valve 15.
  • the through opening 24 opens.
  • this free piston booster 11 operates without an external moving part and as long as there is a sufficient pressure difference between the first pipe and the second pipe.
  • FIGS. 10 and 11 we can see schematically and in the form of a flowchart, a set of particular steps of the regulation process 500 and of the regulation process 600.
  • the regulation methods according to the invention make it possible to control the flow rate of circulation of a gas from an upstream network transporting the gas at a pressure P a to a downstream gas network transporting the gas at a pressure Pb such that P a is strictly greater than Pb.
  • the regulation methods according to the invention include a step of actuation by a gas called "engine gas” of a pneumatic regulating valve configured to control the gas flow from the upstream network flowing to the downstream network.
  • the regulation methods according to the invention comprise a step of compressing the engine gas by means of a compression device comprising a piston actuated by the expansion of gas supplied by the upstream network.
  • the regulation methods according to the invention include a step of evacuating the gas expanded to the downstream network during the compression step.
  • the driving gas is atmospheric air compressed by the compression device.
  • the regulation method 500 comprises:
  • a step 515 of actuation by compressed atmospheric air of a pneumatic control valve configured to control the gas flow from the upstream network flowing to the downstream network
  • the driving gas is the gas transported by the upstream network and the driving gas expanded when the pneumatic regulation valve is actuated is compressed before being discharged to the downstream network.
  • the regulation method 600 comprises:
  • step 610 of actuation by gas from the upstream network of a pneumatic control valve configured to control the gas flow from the upstream network flowing to the downstream network
  • the regulation methods which are the subject of the invention are implemented by a regulation station according to the invention.
  • the functions of the different embodiments of the control station described above can be transcribed in the form of process steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne un poste de régulation de la circulation d'un gaz depuis un réseau dit «amont» transportant le gaz à une pression Pa vers un réseau de gaz dit «aval» transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb, qui comporte : - un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont et configuré pour comprimer un gaz dit «gaz moteur», - une évacuation vers le réseau aval du gaz du réseau amont détendu dans le dispositif de compression et - une vanne pneumatique, configurée pour contrôler le débit de gaz du réseau amont circulant vers le réseau aval, actionnée par le gaz moteur. L'invention concerne également un procédé de régulation de la circulation d'un gaz entre un réseau amont et un réseau aval.

Description

POSTE DE RÉGULATION DE LA CIRCULATION D’UN GAZ ENTRE DEUX
RÉSEAUX DE GAZ
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention vise un poste de régulation de la circulation d’un gaz entre deux réseaux de gaz. Plus particulièrement, la présente invention vise un poste de régulation d’un gaz depuis un réseau dit « amont » transportant le gaz à une pression Pa vers un réseau de gaz dit « aval » transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb.
ÉTAT DE LA TECHNIQUE
Le débit de circulation d’un gaz depuis un réseau amont de transport de gaz vers un réseau aval transportant le gaz à une pression plus basse que la pression de gaz du réseau amont est régulé par une vanne. Dans le cas d’une régulation par une vanne pneumatique, l’actionnement de la vanne nécessite une pression de motorisation apportée par un gaz moteur fourni à une pression suffisante.
Ce gaz moteur peut être de l’air comprimé nécessitant la présence d’un circuit d’air comprimé. Dans ce cas, l’alimentation en air comprimé provient d’un compresseur consommant de l’énergie.
Ce gaz moteur peut également être du gaz prélevé sur le réseau amont. Dans ce cas, la détente du gaz moteur lors de l’actionnement de la vanne pneumatique abaisse sa pression à une pression insuffisante pour permettre sa réinjection dans le réseau aval. Ainsi, ce gaz moteur est habituellement rejeté dans l’atmosphère.
Le rejet de gaz dans l’atmosphère pose un problème environnemental. Le rejet de méthane dans l’atmosphère en particulier est problématique, car le méthane est un puissant gaz à effet de serre, qui contribue au réchauffement climatique. En outre, le gaz véhiculé par le réseau rejeté après son utilisation comme gaz moteur n’est pas valorisé, ce qui représente une perte économique.
EXPOSÉ DE L’INVENTION
La présente invention vise à remédier à tout ou partie de ces inconvénients.
À cet effet, selon un premier aspect, la présente invention vise un poste de régulation de la circulation d’un gaz depuis un réseau dit « amont » transportant le gaz à une pression Pa vers un réseau de gaz dit « aval » transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb, qui comporte :
- un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont et configuré pour comprimer un gaz dit « gaz moteur »,
- une évacuation vers le réseau aval du gaz du réseau amont détendu dans le dispositif de compression et
- une vanne pneumatique, configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval, actionnée par le gaz moteur.
Grâce à ces dispositions, l’énergie de détente du gaz provenant du réseau amont est exploitée pour comprimer un gaz moteur actionnant la vanne pneumatique. Le poste de régulation de l’invention permet d’éviter l’utilisation d’un compresseur et donc d’économiser l’énergie de son fonctionnement, tout en évitant le rejet de gaz à effet de serre dans l’atmosphère.
Dans des modes de réalisation, le gaz moteur est de l’air atmosphérique fourni au dispositif de compression par un moyen d’aspiration.
Grâce à ces dispositions, l’énergie de détente du gaz provenant du réseau amont est exploitée pour comprimer de l’air atmosphérique. Ce mode de réalisation se substitue avantageusement aux dispositifs connus utilisant comme gaz moteur de l’air comprimé fourni par un compresseur d'air électrique. La consommation électrique du compresseur d’air est ainsi économisée.
Dans des modes de réalisation, le gaz moteur est du gaz du réseau amont actionnant la vanne pneumatique puis comprimé par le dispositif de compression avant d’être évacué vers le réseau aval.
Ce mode de réalisation se substitue avantageusement aux dispositifs connus qui mettent en oeuvre un actionnement d’une vanne pneumatique de régulation par du gaz sous pression provenant du réseau amont. Le poste de régulation de l’invention permet de comprimer à nouveau le gaz du réseau amont puis de l’injecter dans le réseau aval. Cela permet d’éviter le rejet de gaz nocifs dans l’atmosphère.
Dans des modes de réalisation, le dispositif de compression est un surpresseur pneumatique, le piston est un piston libre entre une chambre de détente et une chambre de compression et le poste de régulation comporte :
- une première conduite de gaz entre le réseau amont et une entrée de la chambre de détente,
- une deuxième conduite d’évacuation de gaz entre une sortie de la chambre de détente et le réseau aval,
- une troisième conduite d’alimentation en gaz moteur à comprimer débouchant sur une entrée de la chambre de compression et
- une quatrième conduite d’évacuation du gaz moteur comprimé reliée à une sortie de la chambre de compression.
Grâce à ces dispositions, le poste de régulation objet de l’invention met en oeuvre, pour utiliser l’énergie de détente d’un gaz pour comprimer un gaz moteur, un surpresseur à piston libre. Le dispositif de compression permet, en récupérant l’énergie de détente d’un gaz provenant d’un réseau de gaz à la pression Pa et allant dans un réseau de gaz à la pression Pb, où Pa est supérieure à Pb, donc sans dépense d’énergie, de comprimer le gaz moteur.
Dans des modes de réalisation :
- le piston libre comporte une tête de détente et une tête de compression reliées par un arbre, une ouverture traversante débouchant d’une part, dans la tête de détente du côté opposé à la tête de compression et, d’autre part, dans une paroi latérale de l’arbre,
- la première conduite de gaz débouche dans la chambre de détente en regard de l’arbre et
- la sortie de la chambre de détente à laquelle est reliée la deuxième conduite se trouve sur une face latérale de la chambre de détente et n’est pas obstruée par la tête de détente que lorsque l’ouverture traversante ne débouche pas dans la chambre de détente.
Grâce à ces dispositions, le surpresseur à piston libre fonctionne sans partie mobile externe tant qu’il y a une différence de pression entre la première conduite et la deuxième conduite.
Dans des modes de réalisation, le poste de régulation comporte un échangeur de chaleur configuré pour transférer de la chaleur depuis le gaz moteur comprimé par le dispositif de compression vers le gaz du réseau amont destiné à actionner le dispositif de compression.
Grâce à ces dispositions, la chute de température du gaz du réseau amont actionnant le dispositif de compression peut être au moins en partie compensée par la chaleur apportée par le gaz moteur comprimé par le dispositif de compression Dans des modes de réalisation, le poste de régulation comporte un réservoir de gaz moteur positionné entre la vanne pneumatique et le dispositif de compression et l’alimentation du dispositif de compression en gaz du réseau amont est commandée en fonction de la pression du gaz moteur dans le réservoir.
Grâce à ces dispositions, le débit du gaz moteur au niveau du dispositif de compression peut être découplé du débit de gaz moteur au niveau de la vanne de régulation pneumatique. En d’autres termes, le réservoir tient le rôle de capacité tampon en régulant la pression maximum au niveau du pilotage de la vanne.
Dans des modes de réalisation, le poste de régulation comporte un filtre sécheur positionné entre le moyen d’aspiration et le dispositif de compression.
Selon un deuxième aspect, l’invention vise un procédé de régulation de la circulation d’un gaz depuis un réseau dit « amont » transportant le gaz à une pression Pa vers un réseau de gaz dit « aval » transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb, qui comporte les étapes suivantes :
- l’actionnement par un gaz dit « gaz moteur » d’une vanne de régulation pneumatique configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval,
- la compression du gaz moteur au moyen d’un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont et
- l’évacuation vers le réseau aval du gaz détendu lors de l’étape de compression. Dans des modes de réalisation, le gaz moteur est de l’air atmosphérique comprimé par le dispositif de compression.
Dans des modes de réalisation, le gaz moteur est le gaz transporté par le réseau amont et le gaz moteur détendu lors de l’actionnement de la vanne de régulation pneumatique est comprimé avant d’être évacué vers le réseau aval.
Les buts, avantages et caractéristiques particulières du procédé objet de la présente invention étant similaires à ceux du poste de régulation objet de la présente invention, ils ne sont pas rappelés ici.
BRÈVE DESCRIPTION DES FIGURES
D’autres avantages, buts et caractéristiques particulières de l’invention ressortiront de la description non limitative qui suit d’au moins un mode de réalisation particulier du poste de régulation et du procédé objets de la présente invention, en regard des dessins annexés, dans lesquels :
- la figure 1 représente, schématiquement, un premier mode de réalisation particulier du poste de régulation objet de la présente invention, la figure 2 représente, schématiquement, le premier mode de réalisation particulier du poste de régulation objet de la présente invention, la figure 3 représente, schématiquement, un deuxième mode de réalisation particulier du poste de régulation objet de la présente invention, la figure 4 représente, schématiquement, le deuxième mode de réalisation particulier du poste de régulation objet de la présente invention, la figure 5 représente, schématiquement, un premier mode de réalisation particulier d’un dispositif de compression comportant un piston libre mis en oeuvre dans différents modes de réalisation du dispositif objet de l’invention, la figure 6 représente, schématiquement, une première phase de fonctionnement d’un deuxième mode de réalisation particulier d’un dispositif de compression comportant un piston libre à ouverture traversante, la figure 7 représente, schématiquement, une deuxième phase de fonctionnement d’un deuxième mode de réalisation particulier d’un dispositif de compression comportant un piston libre à ouverture traversante, la figure 8 représente, schématiquement, une troisième phase de fonctionnement d’un deuxième mode de réalisation particulier d’un dispositif de compression comportant un piston libre à ouverture traversante, la figure 9 représente, schématiquement, une quatrième phase de fonctionnement d’un deuxième mode de réalisation particulier d’un dispositif de compression comportant un piston libre à ouverture traversante, la figure 10 représente, schématiquement et sous forme d’un logigramme, une succession d’étapes particulière d’un mode de réalisation particulier du procédé de régulation objet de la présente invention et la figure 11 représente, schématiquement et sous forme d’un logigramme, une succession d’étapes particulière d’un mode de réalisation particulier du procédé de régulation objet de la présente invention.
DESCRIPTION DES MODES DE RÉALISATION La présente description est donnée à titre non limitatif, chaque caractéristique d’un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse.
On note dès à présent que les figures ne sont pas à l’échelle.
On note que le terme « gaz » fait référence, par exemple, à du méthane. On observe, sur les figures 1 et 2, qui ne sont pas à l’échelle, des vues schématiques d’un premier mode de réalisation d’un poste de régulation 100 objet de la présente invention. La figure 1 est un schéma simplifié du poste de régulation 100 et la figure 2 est un schéma plus complet du poste de régulation 100.
En référence à la figure 1 , le poste de régulation 100 se positionne à l’interface d’un réseau de transport de gaz dit « réseau amont » et d’un réseau de transport de gaz dit « réseau aval ». Le réseau amont 101 transporte le gaz à une pression Pa vers le réseau aval 102 qui transporte le gaz à une pression Pb telle que Pa est strictement supérieure à Pb. Une vanne pneumatique 110 régule le débit de gaz circulant depuis le réseau amont 101 vers le réseau aval 102. Le débit de gaz depuis le réseau amont 101 vers le réseau aval 102 est commandé pour correspondre à une valeur de débit déterminée ou pour maintenir une pression prédéterminée dans le réseau amont 101 ou dans le réseau aval 102.
La vanne pneumatique 110 nécessite pour son fonctionnement d’être alimentée par un gaz sous pression dit « gaz moteur ». Par exemple, le gaz moteur est fourni à la vanne pneumatique à une pression comprise entre 1 et 10 bar. Par exemple, le gaz moteur est fourni à la vanne pneumatique à une pression de 2 bar.
Dans les modes de réalisation illustrés aux figures 1 et 2, le gaz moteur est de l’air atmosphérique 190 collecté par un moyen d’aspiration (non représenté). Dans des modes de réalisation, un piston 11 crée l’aspiration.
Le poste de régulation 100 comporte un dispositif de compression 70 configuré pour comprimer le gaz moteur.
Le poste de régulation objet de l’invention met en oeuvre, pour utiliser l’énergie de détente d’un fluide pour en comprimer un second, un dispositif de compression 70. Par exemple le dispositif de compression 70 est un surpresseur comportant un piston libre. C’est le dispositif de compression 70 comportant un piston libre qui est représentée dans les figures 1 à 4. On rappelle que, dans un surpresseur à piston libre, le mouvement du piston répond uniquement à la pression du gaz, sans qu'une bielle ne l’actionne ou le retienne. L’homme du métier sait aisément remplacer ce piston libre par un surpresseur pneumatique à membranes, par exemple. Les modes de réalisation particuliers du dispositif de compression 70 seront mieux compris à la lecture de la description des figures 5 à 9.
Le dispositif de compression 70 comporte un piston 11 actionné par la détente de gaz dans une chambre de détente 17. Du gaz est fourni à la chambre de détente 17 par une conduite 31 alimentée par le réseau amont 101. Le gaz du réseau amont 101 , une fois détendu dans la chambre de détente 17, est évacué vers le réseau aval 102 par une conduite 32.
Le dispositif de compression 70 comporte une chambre de compression 23. La chambre de compression 23 est alimentée par le gaz moteur, c’est-à-dire par de l’air atmosphérique. Le gaz moteur est acheminé à la chambre de compression 23 par la conduite de gaz 33. La pression appliquée par le piston 11 dans la chambre de compression 23 permet de comprimer le gaz moteur.
Le gaz moteur est fourni à la vanne de régulation 110 pour son actionnement, par l’intermédiaire du moyen de pilotage 112. Une conduite de gaz 34 achemine le gaz moteur du dispositif de compression 70 au moyen de pilotage 112. Les vannes de régulation pneumatiques et leurs moyens de pilotage sont bien connus de l’art antérieur et ne sont pas décrits en détail ici. Le gaz moteur est ensuite rejeté dans l’atmosphère par une conduite de refoulement 166.
Dans des modes de réalisation, le dispositif de compression 70 est celui illustré par l’une des figures 6 à 9. Dans des modes de réalisation, le dispositif de compression 70 est le surpresseur pneumatique illustré en figure 5.
En référence à la figure 2, dans des modes de réalisation, le poste de régulation 100 comporte un réservoir 180 de gaz moteur positionné entre la vanne pneumatique 110 et le dispositif de compression 70. Le réservoir 180 est aussi appelé « capacité ». Le réservoir 180 est, par exemple, une bombonne configurée pour stocker le gaz moteur selon une pression déterminée. Dans des variantes, le réservoir 180 est formé de plusieurs bombonnes.
Dans des modes de réalisation, l’alimentation du dispositif de compression 70 en gaz du réseau amont est commandée en fonction de la pression du gaz moteur dans le réservoir 180. Par exemple, un pressostat 174 mesure la pression du gaz moteur dans le réservoir 180 et actionne l’ouverture d’une vanne 176 positionnée entre le réseau amont 101 et le dispositif de compression 70 lorsque la pression mesurée est inférieure à un seuil déterminé. Au contraire, la vanne 176 est fermée lorsque la pression mesurée dans le réservoir 180 est supérieure à un seuil prédéterminé.
Dans des modes de réalisation, un régulateur de pression 173 est positionné sur la conduite reliant le dispositif de compression 70 au réservoir 180.
Dans des modes de réalisation, un régulateur de pression 171 est positionné sur la conduite reliant le réservoir 180 au pilotage 112 de la vanne pneumatique 110. Dans des modes de réalisation, une conduite comportant un clapet antiretour 170 et un régulateur de pression 172 relie le réseau amont au réservoir 180. Dans ces modes de réalisation le gaz moteur peut être constitué d’air comprimé par le dispositif de compression 70, par du gaz provenant du réseau amont 101 ou par un mélange d’air comprimé et de gaz provenant du réseau amont 101. Avantageusement, l’air comprimé est utilisé comme gaz moteur lors du fonctionnement habituel du poste de régulation 100. En cas de défaillance de l’alimentation en air comprimé par le dispositif de compression 70, le clapet antiretour 170 s’ouvre permettant l’alimentation du réservoir 180 par du gaz du réseau amont 101. Ainsi, le gaz provenant du réseau amont 101 n’est utilisé comme gaz moteur que dans le cas d’une défaillance de l’alimentation en air comprimé.
Dans une variante (non représentée), l’ensemble formé par le clapet antiretour et par le régulateur de pression est remplacé par une soupape dont la ligne d’impulsion est placée sur le réservoir 180.
Dans des modes de réalisation, le poste de régulation 100 comporte un échangeur de chaleur 150 configuré pour transférer de la chaleur depuis le gaz moteur comprimé par le dispositif de compression 70 vers le gaz du réseau amont actionnant le dispositif de compression. L’échangeur de chaleur 150 est positionné chevauchant entre la conduite de gaz acheminant l’air comprimé par le dispositif de compression vers le réservoir 180 et la conduite acheminant le gaz du réseau amont 101 destiné à actionner le dispositif de compression 70.
Dans des modes de réalisation, le poste de régulation 100 comporte un filtre sécheur 195 positionné entre le moyen d’aspiration d’air atmosphérique et le dispositif de compression 70.
On observe, sur les figures 3 et 4, qui ne sont pas à l’échelle, des vues schématiques d’un deuxième mode de réalisation d’un poste de régulation 200 objet de la présente invention. La figure 3 présente un schéma simplifié du poste de régulation 200 et la figure 4 présente un schéma plus complet du poste de régulation 200.
En référence à la figure 3, le poste de régulation 200 se positionne à l’interface d’un réseau de transport de gaz amont 201 et d’un réseau de transport de gaz aval 202 . Une vanne pneumatique 210 commande le débit de gaz circulant depuis le réseau amont 201 vers le réseau aval 202. La circulation de gaz depuis le réseau amont 201 vers le réseau aval 202 est commandée pour être maintenue à une valeur de débit déterminée ou en fonction d’une pression dans le réseau amont 201 ou dans le réseau aval 202.
Le deuxième mode de réalisation du poste de régulation 200 se distingue du premier illustré en figures 1 et 2 en ce que le gaz moteur est du gaz du réseau amont. Le gaz du réseau amont est fourni à la vanne pneumatique pour son actionnement, sans compression préalable. Ensuite, ce gaz moteur est collecté puis comprimé par le dispositif de compression avant d’être évacué vers le réseau aval.
Le gaz moteur est fourni par le réseau amont 201 à la vanne de régulation 210 par l’intermédiaire du moyen de pilotage 212. Les vannes de régulation et leurs moyens de pilotage sont bien connus de l’art antérieur et ne sont pas décrits en détail ici.
Le poste de régulation 200 comporte un dispositif de compression 70 configuré pour comprimer le gaz moteur. Le dispositif de compression 70 comporte un piston 11 actionné par la détente de gaz provenant du réseau amont 201. Ce gaz, distinct du gaz moteur, est fourni par une conduite 31 raccordée au réseau amont 201. Le gaz du réseau amont 201 détendu dans le dispositif de compression est évacué vers le réseau aval 202 par une conduite de gaz 32.
Le dispositif de compression 70 comporte une chambre de compression 23. La chambre de compression 23 est alimentée par le gaz moteur, c’est-à-dire par du gaz du réseau amont 201 , préalablement détendu lors de son utilisation pour l’actionnement de la vanne pneumatique 210. Le gaz moteur est acheminé à la chambre de compression 23 par la conduite de gaz 33. La pression appliquée par le piston 11 dans la chambre de compression 23 permet de comprimer le gaz moteur. Le gaz moteur est ainsi comprimé à une pression suffisante pour être réinjecté dans le réseau aval 202. Une conduite de gaz 34 achemine le gaz moteur du dispositif de compression vers le réseau aval.
Dans des modes de réalisation, le dispositif de compression 70 est celui illustré par l’une des figures 6 à 9. Dans des modes de réalisation, le dispositif de compression 70 est le surpresseur pneumatique 60 illustré en figure 5.
En référence à la figure 4, dans des modes de réalisation, le poste de régulation 200 comporte un réservoir 280 de gaz moteur positionné entre la vanne pneumatique 210 et le dispositif de compression 70.
Dans des modes de réalisation, l’alimentation du dispositif de compression 70 en gaz du réseau amont est commandée en fonction de la pression du gaz moteur dans le réservoir 280. Par exemple, un pressostat 274 mesure la pression du gaz moteur dans le réservoir 280 et actionne l’ouverture d’une vanne 276 positionnée entre le réseau amont 201 et le dispositif de compression 70 lorsque la pression mesurée est supérieure à un seuil déterminé. Au contraire, la vanne 276 est fermée lorsque la pression mesurée dans le réservoir 280 est inférieure à un seuil prédéterminé.
Dans des modes de réalisation, une soupape 281 est positionnée sur le réservoir 280. En cas de défaillance du dispositif de compression 70, la pression de gaz dans le réservoir 280 va monter jusqu’à provoquer l’ouverture de la soupape 281 permettant de faire retomber la pression dans le réservoir 280 et d’assurer le bon fonctionnement du moyen de pilotage 212.
Dans des modes de réalisation, un régulateur de pression 278 est positionné sur la conduite reliant le réseau amont 201 et le moyen de pilotage 212 de la vanne pneumatique 210.
Dans des modes de réalisation, un régulateur de pression 277 est positionné sur la conduite acheminant le gaz moteur comprimé par le dispositif de compression 70 au réseau aval 202.
Dans des modes de réalisation, le poste de régulation 200 comporte un échangeur de chaleur 250 configuré pour transférer de la chaleur depuis le gaz moteur comprimé par le dispositif de compression 70 vers le gaz du réseau amont actionnant le dispositif de compression. L’échangeur de chaleur 250 est positionné chevauchant entre la conduite acheminant le gaz du réseau amont comprimé par le dispositif de compression vers le réseau aval 202 et la conduite acheminant le gaz du réseau amont 201 destiné à actionner le dispositif de compression 70.
La figure 5 représente un mode de réalisation particulier du dispositif de compression 60 mis en oeuvre par le poste de régulation objet de l’invention. Le dispositif de compression 60 est un surpresseur, c’est-à-dire un couple détendeur 71 , à gauche, et compresseur 72, à droite, à piston libre. Le détendeur 71 comporte une chambre 75 munie d’une entrée de gaz à haute pression provenant de la première conduite 31 et une sortie de gaz à basse pression dans la deuxième conduite 32. Dans la chambre 75, un piston de détente 74 est mis en mouvement par la pression du gaz et transmet cette pression, par l’intermédiaire d’un arbre 76 à un piston de compression 77 qui comprime du gaz moteur dans une chambre 78. L’ensemble des pistons 74 et 77 et de l’arbre 76 constitue un piston libre.
Des clapets 15 et 16 assurent l’étanchéité et le sens de déplacement du fluide depuis la troisième conduite 33 d’entrée de gaz moteur à basse pression jusqu’à la quatrième conduite 34 de sortie de gaz moteur à haute pression. Le système de commande de l’entrée de gaz dans la chambre 75 et de sortie de gaz de la chambre 75, n’est pas décrit ici, étant bien connu de l’homme du métier.
On rappelle que le gaz moteur est le gaz désigné comme tel car il est destiné à fournir la pression de motorisation nécessaire au pilotage de la vanne pneumatique du poste de régulation objet de l’invention.
Ainsi, un piston libre est mis en déplacement dans une première chambre 75 par le gaz et compresse le gaz moteur dans une deuxième chambre 78. On note que la pression du fluide en sortie du compresseur peut être plus élevée que la pression du gaz en entrée, en fonction du ratio des surfaces des pistons 74 et 77.
En variante, le piston libre est remplacé par des membranes, comme dans les surpresseurs à membranes de type connu.
Dans le mode de réalisation illustré en figures 6 à 10, le dispositif de compression 70 est un surpresseur à piston libre 11. Les flèches en traits discontinus représentent les mouvements de gaz. La flèche en traits continus représente les mouvements du piston libre.
Le piston libre 11 comporte une tête de détente 20 et une tête de compression 22 reliées par un arbre. Une ouverture traversante 24 débouche d’une part, dans la tête de détente 20 du côté opposé à la tête de compression 22 et, d’autre part, dans une paroi latérale de l’arbre. La première conduite de gaz 31 débouche dans la partie 21 de la chambre de détente 17 en regard de l’arbre. En conséquence, l’embouchure de l’ouverture traversante 24 ne se trouve dans la partie 21 que lorsque le volume libre de la chambre de compression 23 est maximum. La sortie de la chambre de détente 17 à laquelle est reliée la deuxième conduite 32 se trouve sur une face latérale de la chambre de détente 17 et n’est pas obstruée par la tête de détente 20 que lorsque l’ouverture traversante 24 ne débouche pas dans la partie 21 de la chambre de détente 17. Plus particulièrement, la sortie de la chambre de détente est obstruée par la tête de détente sauf dans la position du piston libre où le volume libre de la chambre de compression est minimal.
Au début du cycle de fonctionnement du surpresseur, comme illustré en figure 6, le volume libre de la chambre de compression est intermédiaire entre ses valeurs extrêmes. La pression dans la partie 17 de la chambre de détente opposée à la chambre de compression 23 est à la valeur Pb du réseau aval 13. Le gaz provenant de la première conduite 31 pénètre dans la partie intermédiaire 21 de la chambre de détente, à une pression Pa. Le ratio des pressions Pa/Pb est supérieur au ratio des surfaces de la tête de détente 20 dans la partie 17 et dans la partie 21. Le piston libre 11 se déplace donc vers la gauche, comme illustré en figure 7. Ce mouvement du piston libre 11 entraîne l’aspiration de fluide gazeux provenant de la troisième conduite 33 à travers le clapet d’entrée 15. Lorsque le volume libre de la chambre de compression 23 est maximal, l’ouverture traversante 24 débouche sur la partie 21 de la chambre de détente et le gaz provenant de la première conduite 31 traverse la tête de détente. La pression dans la partie 17 de la chambre de détente atteint alors Pa, ce qui provoque le mouvement du piston libre 11 vers la chambre de compression 23, comme illustré en figure 8. Ce mouvement obstrue l’ouverture traversante 24 et comprime le fluide gazeux présent dans la chambre de compression 23. Le fluide gazeux comprimé traverse le clapet de sortie 16 puis la quatrième conduite 34. Lorsque le volume libre de la chambre de compression 23 est minimal, la partie 17 de la chambre de détente est pneumatiquement reliée à la deuxième conduite 32, comme illustré en figure 9. Suite à l’augmentation du volume de la partie 17, la pression dans la partie 17 de la chambre de détente chute pour atteindre la valeur Pb. Le cycle recommence alors.
Comme on le comprend à la lecture de ce qui précède, ce surpresseur à piston libre 11 fonctionne sans partie mobile externe et tant qu’il y a une différence de pression suffisante entre la première conduite et la deuxième conduite.
On observe, sur les figures 10 et 11 , schématiquement et sous forme d’un logigramme, ensemble d’étapes particulières du procédé de régulation 500 et du procédé de régulation 600.
Les procédés de régulation selon l’invention permettent la commande du débit de circulation d’un gaz depuis un réseau amont transportant le gaz à une pression Pa vers un réseau de gaz aval transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb.
Les procédés de régulation selon l’invention comportent une étape d’actionnement par un gaz dit « gaz moteur » d’une vanne de régulation pneumatique configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval.
Les procédés de régulation selon l’invention comportent une étape de compression du gaz moteur au moyen d’un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont. Les procédés de régulation selon l’invention comportent une étape d’évacuation vers le réseau aval du gaz détendu lors de l’étape de compression.
Dans un mode de réalisation particulier du procédé de régulation 500, le gaz moteur est de l’air atmosphérique comprimé par le dispositif de compression.
Le procédé de régulation 500 comporte :
- une étape de compression 505 d’air atmosphérique au moyen d’un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont,
- une étape d’évacuation 510 vers le réseau aval du gaz détendu lors de l’étape de compression,
- une étape 515 d’actionnement par l’air atmosphérique compressé d’une vanne de régulation pneumatique configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval et
- une étape 520 de refoulement dans l’atmosphère de l’air utilisé lors de l’étape d’actionnement de la vanne de régulation pneumatique.
Dans un mode de réalisation particulier du procédé de régulation 600, le gaz moteur est le gaz transporté par le réseau amont et le gaz moteur détendu lors de l’actionnement de la vanne de régulation pneumatique est comprimé avant d’être évacué vers le réseau aval.
Le procédé de régulation 600 comporte :
- une étape 610 d’actionnement par du gaz du réseau amont d’une vanne de régulation pneumatique configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval,
- une étape 615 de compression du gaz du réseau amont utilisé lors de l’étape d’actionnement de la vanne de régulation pneumatique au moyen d’un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont,
- une étape 620 d’évacuation vers le réseau aval du gaz du réseau amont détendu lors de l’étape de compression,
- une étape 625 de refoulement vers le réseau aval du gaz du réseau amont comprimé lors de l’étape de compression.
Les procédés de régulation objets de l’invention sont mis en oeuvre par un poste de régulation selon l’invention. Les fonctions des différents modes de réalisation du poste de régulation décrits précédemment peuvent être retranscrites sous forme d’étapes du procédé.

Claims

REVENDICATIONS
1. Poste de régulation (100, 200) de la circulation d’un gaz depuis un réseau de gaz dit « amont » (101 , 201 ) transportant le gaz à une pression Pa vers un réseau de gaz dit « aval » (102, 202) transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb, caractérisé en ce qu’il comporte :
- un dispositif de compression (60, 70) comportant un piston (11) actionné par la détente de gaz fourni par le réseau amont et configuré pour comprimer un gaz dit « gaz moteur »,
- une évacuation vers le réseau aval du gaz du réseau amont détendu dans le dispositif de compression et
- une vanne pneumatique (110, 210), configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval, actionnée par le gaz moteur.
2. Poste de régulation selon la revendication 1 , dans lequel le gaz moteur est de l’air atmosphérique fourni au dispositif de compression par un moyen d’aspiration.
3. Poste de régulation selon la revendication 1 , dans lequel le gaz moteur est du gaz du réseau amont actionnant la vanne pneumatique puis comprimé par le dispositif de compression avant d’être évacué vers le réseau aval.
4. Poste de régulation selon l’une des revendications 1 à 3, dans lequel le dispositif de compression (60, 70) est un surpresseur pneumatique et le piston (11, 20, 22, 74, 76, 77) est un piston libre entre une chambre de détente (17, 75) et une chambre de compression (23, 78) et qui comporte :
- une première conduite (31) de gaz entre le réseau amont et une entrée de la chambre de détente,
- une deuxième conduite (32) d’évacuation de gaz entre une sortie de la chambre de détente et le réseau aval,
- une troisième conduite (33) d’alimentation en gaz moteur à comprimer débouchant sur une entrée de la chambre de compression et
- une quatrième conduite (34) d’évacuation du gaz moteur comprimé reliée à une sortie de la chambre de compression.
5. Poste de régulation selon la revendication 4, dans lequel :
- le piston libre comporte une tête de détente (20) et une tête de compression (22) reliées par un arbre, une ouverture traversante (24) débouchant d’une part, dans la tête de détente du côté opposé à la tête de compression et, d’autre part, dans une paroi latérale de l’arbre,
- la première conduite de gaz débouche dans la chambre de détente en regard de l’arbre et
- la sortie de la chambre de détente à laquelle est reliée la deuxième conduite se trouve sur une face latérale de la chambre de détente et n’est pas obstruée par la tête de détente que lorsque l’ouverture traversante ne débouche pas dans la chambre de détente.
6. Poste de régulation selon l’une des revendications 1 à 5, qui comporte un échangeur de chaleur (150, 250) configuré pour transférer de la chaleur depuis le gaz moteur comprimé par le dispositif de compression vers le gaz du réseau amont actionnant le dispositif de compression.
7. Poste de régulation selon l’une des revendications 1 à 6, qui comporte un réservoir (180, 280) de gaz moteur positionné entre la vanne pneumatique et le dispositif de compression et dans lequel l’alimentation du dispositif de compression en gaz du réseau amont est commandée en fonction de la pression du gaz moteur dans le réservoir.
8. Procédé (500, 600) de régulation de la circulation d’un gaz depuis un réseau dit « amont » transportant le gaz à une pression Pa vers un réseau de gaz dit « aval » transportant le gaz à une pression Pb telle que Pa est strictement supérieure à Pb, caractérisé en ce qu’il comporte les étapes suivantes :
- l’actionnement (515, 610) par un gaz dit « gaz moteur » d’une vanne de régulation pneumatique configurée pour commander le débit de gaz du réseau amont circulant vers le réseau aval,
- la compression (505, 615) du gaz moteur au moyen d’un dispositif de compression comportant un piston actionné par la détente de gaz fourni par le réseau amont et - l’évacuation (510, 620) vers le réseau aval du gaz détendu lors de l’étape de compression.
9. Procédé de régulation de la circulation d’un gaz selon la revendication 8, dans lequel le gaz moteur est de l’air atmosphérique comprimé par le dispositif de compression.
10. Procédé de régulation de la circulation d’un gaz selon la revendication 8, dans lequel le gaz moteur est le gaz transporté par le réseau amont et dans lequel le gaz moteur détendu lors de l’actionnement de la vanne de régulation pneumatique est comprimé avant d’être évacué vers le réseau aval.
PCT/EP2020/087412 2019-12-20 2020-12-21 Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz WO2021123418A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20833883.0A EP4078016B1 (fr) 2019-12-20 2020-12-21 Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1915368 2019-12-20
FR1915368A FR3105344B1 (fr) 2019-12-20 2019-12-20 Poste de régulation de la circulation d’un gaz entre deux réseaux de gaz

Publications (1)

Publication Number Publication Date
WO2021123418A1 true WO2021123418A1 (fr) 2021-06-24

Family

ID=70008796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/087412 WO2021123418A1 (fr) 2019-12-20 2020-12-21 Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz

Country Status (3)

Country Link
EP (1) EP4078016B1 (fr)
FR (1) FR3105344B1 (fr)
WO (1) WO2021123418A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3125578B1 (fr) * 2021-07-26 2024-04-19 Grtgaz Dispositif de décompression d’un contenant de gaz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350019A (en) * 1980-12-22 1982-09-21 W. R. Grace & Co. Gas expansion/compression train
DE4416359A1 (de) * 1994-05-09 1995-11-16 Martin Prof Dr Ing Dehli Z-stufige Hochtemperatur-Gas-Expansionsanlage in einem Gasleitungssystem mit nutzbarem Druckgefälle
US5628191A (en) * 1992-11-18 1997-05-13 Energieversorgung Leverkusen Gmbh Natural gas expansion plant
US20080016879A1 (en) * 2002-12-09 2008-01-24 Dresser, Inc. System and method of use of expansion engine to increase overall fuel efficiency
WO2010142698A1 (fr) * 2009-06-11 2010-12-16 Thermonetics Ltd. Système de dépressurisation efficace de fluide
WO2019239083A1 (fr) * 2018-06-15 2019-12-19 Grtgaz Installation de rebours à optimisation énergétique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090812B1 (fr) * 2018-12-21 2022-01-07 Grtgaz Poste de détente d’un gaz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350019A (en) * 1980-12-22 1982-09-21 W. R. Grace & Co. Gas expansion/compression train
US5628191A (en) * 1992-11-18 1997-05-13 Energieversorgung Leverkusen Gmbh Natural gas expansion plant
DE4416359A1 (de) * 1994-05-09 1995-11-16 Martin Prof Dr Ing Dehli Z-stufige Hochtemperatur-Gas-Expansionsanlage in einem Gasleitungssystem mit nutzbarem Druckgefälle
US20080016879A1 (en) * 2002-12-09 2008-01-24 Dresser, Inc. System and method of use of expansion engine to increase overall fuel efficiency
WO2010142698A1 (fr) * 2009-06-11 2010-12-16 Thermonetics Ltd. Système de dépressurisation efficace de fluide
WO2019239083A1 (fr) * 2018-06-15 2019-12-19 Grtgaz Installation de rebours à optimisation énergétique

Also Published As

Publication number Publication date
EP4078016B1 (fr) 2024-01-31
FR3105344B1 (fr) 2021-11-19
FR3105344A1 (fr) 2021-06-25
EP4078016A1 (fr) 2022-10-26

Similar Documents

Publication Publication Date Title
FR3017656A1 (fr) Turboreacteur comportant un systeme de prelevement destine a prelever de l'air dans ledit turboreacteur
EP0798469B1 (fr) Dispositif d'alimentation en eau sous pression de la source d'eau d'un injecteur à vapeur
EP1775441A1 (fr) Dispositif de suralimentation pour moteur à combustion interne, et véhicule automobile équipé d'un tel dispositif
FR2993614A1 (fr) Procede et dispositif de pompage d'une chambre de procedes
EP4078016B1 (fr) Poste de régulation de la circulation d'un gaz entre deux réseaux de gaz
FR2996597A1 (fr) Systeme de ventilation de la chambre de palier d'un moteur d'avion et son procede de mise en oeuvre
FR2958975A1 (fr) Dispositif d'alimentation en carburant d'un moteur aeronautique
EP2738366B1 (fr) Système SCR et méthode pour sa purge
FR3017655A1 (fr) Turboreacteur comportant un systeme de prelevement destine a prelever de l'air dans ledit turboreacteur
EP3161318B1 (fr) Méthode de pompage dans un système de pompes à vide et système de pompes à vide
EP0079255A1 (fr) Dispositif perfectionné de commande de la pression de suralimentation d'un moteur turbocompressé permettant d'améliorer la réponse dynamique
EP1908937A1 (fr) Moteur a combustion interne suralimenté et procédé de suralimentation
EP4078015B1 (fr) Dispositif de compression de gaz
WO2021152052A1 (fr) Dispositif de prévention des fuites de gaz pour compresseur
EP3137771B1 (fr) Méthode de pompage dans un système de pompage et système de pompes à vide
EP2048337A1 (fr) Circuit d'alimentation en carburant d'un moteur d'aéronef
WO2021152037A1 (fr) Dispositif de décompression d'un tronçon de réseau de gaz
EP1346141B1 (fr) Dispositif et methode d'injection d'un carburant gazeux sous forme liquide pour moteur a combustion interne
WO2008015349A2 (fr) Procédé et dispositif d'alimentation en gaz d'une installation
EP0080911B1 (fr) Dispositif de commande pneumatique de la pression de suralimentation d'un moteur turbocompressé
EP3418517A1 (fr) Groupe motopropulseur doté d'un dispositif de dépollution performant et procédé de contrôle associé
EP4435257A1 (fr) Dispositif et procédé de compression
WO2012004254A1 (fr) Dispositif d'evacuation de fuites de gaz dans un dispositif d'alimentation en combustible gazeux d'une turbine à gaz et procede associe
FR3027954A1 (fr) Groupe motopropulseur de vehicule a emissions polluantes reduites
WO2017089679A1 (fr) Systeme de generation d'energie destine a etre monte dans un aeronef.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833883

Country of ref document: EP

Effective date: 20220720