WO2021121476A1 - Container and method for separating individual plies of a multi-ply composite body - Google Patents

Container and method for separating individual plies of a multi-ply composite body Download PDF

Info

Publication number
WO2021121476A1
WO2021121476A1 PCT/DE2020/101055 DE2020101055W WO2021121476A1 WO 2021121476 A1 WO2021121476 A1 WO 2021121476A1 DE 2020101055 W DE2020101055 W DE 2020101055W WO 2021121476 A1 WO2021121476 A1 WO 2021121476A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
layer
substances
different
fractions
Prior art date
Application number
PCT/DE2020/101055
Other languages
German (de)
French (fr)
Inventor
Bernd Robertz
Original Assignee
PKG Schürfeld GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PKG Schürfeld GmbH filed Critical PKG Schürfeld GmbH
Priority to EP20824064.8A priority Critical patent/EP4076953A1/en
Publication of WO2021121476A1 publication Critical patent/WO2021121476A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0224Screens, sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • B29B2017/0296Dissolving the materials in aqueous alkaline solutions, e.g. NaOH or KOH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/04Cellulosic particles, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/20Particles characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a container consisting of a multi-layer, in particular coextruded, materially bonded composite, adjacent layers consisting of the same or different polymers and optionally at least one of the outer layers being colored.
  • the invention also relates to a method for separating individual layers of a multi-layer composite material.
  • Plastics are indispensable materials for packaging, especially for liquids of different viscosities or solids. Examples of this are plastic bottles made of transparent, white or colored PE or PET, HDPE bottles as squeeze bottles in the cosmetics industry, cans and jars. Transparent bottles or slightly colored bottles for the beverage industry are mostly used as reusable bottles, the product and other manufacturer information often being printed on a label that is either stuck on or, in the embodiment, shrink film. The reusable plastic bottles returned after use are stripped of the label, washed, refilled and labeled before they are returned to the consumer cycle. Disposable plastic containers are first sorted according to the material, then often shredded and sent to a recycling process in order to recover the plastic as a raw material.
  • plastic packaging mixtures which for example consist of PET and PE, have to be separated from one another, because the objects, which each consist of a uniform material, can be subjected to a so-called swim-sink process due to their different densities, in which, for example, the PE due to the low density of 0.92 g / cm 3 to 0.97 g / cm 3 in water floats, while PET sinks with a density of, for example, 1.38 g / cm 3 and can accordingly be easily separated.
  • WO 2018/055088 A1 describes a method for reversible coloring of polymer material with a disperse dye.
  • the polymer material contains an additive for at least one dye.
  • the polymer material is heated to an activation temperature below the softening temperature and brought into contact with an aqueous dye dispersion heated to a similar temperature, the dyes migrating into the polymer material and being embedded in the additive.
  • Mixtures can be used as additive, for example, which consist of a first terpolymer, composed of ethylene, acrylic or methacrylic esters and maleic anhydride with an anhydride content of at least 2%, and a second terpolymer made of ethylene, acrylic or methacrylic ester and glycidyl (meth) acrylate a glycidyl content of at least 7% and mixtures thereof, and an amine-terminated polyamide or polyether amide.
  • a first terpolymer composed of ethylene, acrylic or methacrylic esters and maleic anhydride with an anhydride content of at least 2%
  • a second terpolymer made of ethylene, acrylic or methacrylic ester and glycidyl (meth) acrylate a glycidyl content of at least 7% and mixtures thereof, and an amine-terminated polyamide or polyether amide.
  • Such additives offer the possibility of allowing dyes to diffuse only in a thin area close to the surface through migration.
  • a potential decolorization of a multi-layer plastic consisting of a first colored layer (skin), which contains the above-mentioned additive and a second layer (body) made of the same plastic but without the dye-affine additive and thus without the dye, leads to a dramatic loss of efficiency in decolorizing systems , because in these processes, instead of just the colored layer, the entire plastic structure has to be subjected to the process.
  • a possible Separation of the colored layer (skin) from the non-colored layer (body) would lead to a considerable increase in efficiency (higher throughput).
  • multilayer films or containers are also known in which the individual layers are made of different materials, in particular different polymers, in particular from the group of PE, PET, PA and / or PP.
  • the individual layers each consisting of a single polymer and, if necessary, other functional additives such as UV and oxidation stabilizers, antistatic agents or inorganic fillers, are processed into a material bond as part of a coextrusion. In order to ensure sufficient adhesion, so-called binding layers are often co-extruded.
  • multilayer composite materials are known in which the layers of polyamide, ethylene-vinyl alcohol copolymer (EVOH) and polyethylene are connected to one another by adhesive layers (so-called tie-layers), for example made of maleic anhydride-grafted polyethylene, which are connected to one another between the PA and EVOH or between EVOH and PE are arranged.
  • adhesive layers for example made of maleic anhydride-grafted polyethylene, which are connected to one another between the PA and EVOH or between EVOH and PE are arranged.
  • tie-layers for example made of maleic anhydride-grafted polyethylene
  • DE 19831 118 B4 describes a method for separating the components of a multi-layer material, which comprises at least one layer made of a basic raw material (e.g. from one or more polyolefins, selected from homopolymers and copolymers of ethylene or propylene), and a layer made of a second plastic, for example a barrier polymer such as a polyamide or a copolymer of ethylene and vinyl alcohol, which are connected to one another by a layer of an adhesive which can consist, for example, of a polyolefin grafted with maleic anhydride.
  • a basic raw material e.g. from one or more polyolefins, selected from homopolymers and copolymers of ethylene or propylene
  • a second plastic for example a barrier polymer such as a polyamide or a copolymer of ethylene and vinyl alcohol
  • This composite material is heated to a temperature between the crystallization temperature of the second plastic (barrier polymer) Tc and Tc-20 ° C, after which the material is comminuted by subjecting it to a shear stress approximately at subjected to the same temperature, thereby causing delamination and converting the material into particles of smaller dimensions of two types, one of the particles being composed essentially of the former plastic (polyolefin) and the other particles being composed essentially of the second plastic (barrier polymer ) and the adhesive are built up. Subsequently, all particles are to be separated by electrostatic separation, after which the particles to be separated are electrically charged by being brought into contact with a mobile device, which essentially consists of a plastic analogous to the adhesive, at least on the surface.
  • a concrete example describes the separation of a 5-layer fuel tank of the type PEHD / PE-gMSA / EVOH / PE-g-MSA / PEHD.
  • the object of the present invention is to create a container of the type mentioned at the outset in which there is an improved separation of the individual layers in the context of recycling.
  • the film or the container should be designed in such a way that, by recycling, different layers of polymers can be separated cleanly, essentially without the use of exclusively organic solvents, and any colored layers can be cleanly separated from other layers that are not "contaminated" with a dye .
  • a separation method should also be specified.
  • a layer is arranged between adjacent layers made of different polymers, in particular between an outer colored layer and the adjacent layer, which, due to its material composition, becomes detached from the adjacent layer or layers when physical and / or chemical and / or mechanical treatment is used .
  • separating layers are deliberately incorporated within the scope of the present invention, which on the one hand ensure sufficient adhesion of the layers in the application, but on the other hand ensure that the individual layers are separated after use.
  • the outer layer or layers of a container are colored and the layers in between are dye-free, it can be advantageous if the separating layer remains on the colored layer when the layers are separated due to different bonding effects and separated from a separation process, e.g. by sinking deposition or floating becomes.
  • the separation of colored layers (plies) from non-colored layers (plies) can take place, whereby cross-contamination of the uncolored plastics in a decolorizing bath can be avoided.
  • a plastic discoloration that is not 100% successful cannot therefore lead to contamination of an uncolored plastic when the plastic is melted and regranulated.
  • this can be, for example, treatments by shearing, stretching, bending and / or impact, from a physical point of view, treatments such as temperature changes due to heating or cooling, with and without pressure change, irradiation, in particular with IR, UV, beta or gamma Radiation, special treatments of the separating layers to create layer structures, porosity, embedded particles as spacers (D (particles)> D (separating layer) or particles with D (particles) ⁇ D (separating layer), which only occur in the recycling process, e.g. through Contact with water swell and greatly increase its diameter) or the like.
  • Chemical treatments are, for example, the use of water, steam, other not exclusively organic solvents or their vapors, bases, acids, plasticizers, complexing agents, salts, surfactants, oxidizing or reducing agents, in particular in a solution at different temperatures and / or pressures, as well the addition of reactants (e.g. citric acid and sodium hydrogen carbonate), which thereby ensure the adhesion of the layers to one another in particular increase the separating layer and / or the solubility or swellability to reduce the mechanical strength of the separating layer in the surrounding medium (reduction of the adhesion and / or cohesion of the separating layer).
  • reactants e.g. citric acid and sodium hydrogen carbonate
  • An embrittlement of individual layers is also conceivable, e.g. through cooling or the addition of additives to the separating layer, which through irradiation lead to chain cleavage and thus to polymer degradation, which in turn reduces the adhesion.
  • An example here is the degradation of polypropylene by exposure to beta or gamma radiation.
  • the separation layers can also be selected in a targeted manner by using separation layers which have a lower or a significantly higher melting temperature compared to the melting temperature which the respective polymers of the different layers have.
  • Targeted melting of the separating layer is also possible, which is reinforced by radiation agents and correspondingly suitable additives, i.e. additives absorbing in the wavelength range of the radiation agent, diffusion of separating agents or selective pyrolysis.
  • the core idea of the present invention is that the action of mechanical, physical and / or chemical treatments on the separating layers brings about a separation of the individual layers of uniform or different polymers, which can then be further processed separately, in particular recycled.
  • the separating force acting on the multilayer object is greater than the adhesion of the layers to one another and / or the cohesion of a single or multiple layers.
  • the separating layer can also be selected in such a way that it simultaneously forms a barrier layer for migrating dyes, so that when the container is colored, dyes only diffuse in layers beyond the barrier layer, so that after separation of the colored or an insufficiently bleached outer layer, "color-free" layers can be obtained as a pure recyclable product.
  • an inner layer made of pure PE or PP can form a barrier for dyes, which preferably have an affinity for polar plastics.
  • Wax, silicone, water-swellable or water-soluble polymers, demolition additives i.e. substances that swell strongly in certain media), substances with a melting point between 50 ° C and 120 ° C; substances that can be heated by UV or IR radiation; Substances which are soluble or swellable in solvents or acids or bases or mixtures thereof and in which the polymer layers are resistant; from the polymer layers in terms of the coefficient of thermal expansion significantly different substances; Substances that become brittle under the influence of temperature changes, in particular cooling or under beta, gamma, X-ray, UV or IR radiation; Substances that become detached from polymer layers due to reactions of functional groups due to a change in mechanical properties, in particular strength, such as anhydrides, amines, bases and acids or polyelectrolytes.
  • the water-soluble or water-swellable polymers include, inter alia, uncrosslinked or weakly to strongly crosslinked polyvinyl alcohols and its copolymers and terpolymer polymers such as.
  • B ethylene-vinyl alcohol copolymers with different degrees of saponification, butanediol-vinyl alcohol copolymers, polyacrylic acid and its copolymers, especially in an alkaline medium, polymethacrylic acid and its copolymers, especially in an alkaline medium, other polymerizable acids and their salts, in particular maleic, fumaric, itaconic, vinylsulphonic or 2-acrylamido-2-methylpropanesulphonic acid and their copolymers.
  • hydroxyl-containing esters of polymerizable acids in particular the flydroxyethyl and hydroxypropyl esters of acrylic and methacrylic acid
  • amino-containing and ammonium-containing esters and amides of polymerizable acids such as the dialkylamino esters, in particular the dimethyl and diethylaminoalkyl esters of acrylic and methacrylic acid, as well as the trimethyl and triethylammonium alkyl esters and the corresponding amides.
  • swellable hydrogel-forming polymers are, in particular, polymers made from (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, cross-linked cellulose or starch ethers, cross-linked carboxymethyl cellulose, partially cross-linked polyalkylene oxide or natural products swellable in aqueous liquids such as guar derivatives.
  • a further preferred separation layer configuration can be achieved through the use of explosive additives (disintegration accelerators) made from starch, cellulose and its cellulose derivatives (e.g. based on methyl cellulose (MC), microcrystalline cellulose (MCC), hydroxypropylmethyl cellulose (HPMC), methylhydroxyethyl cellulose (MHEC), Hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), sodium carboxymethyl cellulose (NaCMC)), carboxymethyl cellulose, cross carmellose, cross carmellose sodium, alginic acids, dextrans and cross-linked polyvinylpyrrolidones, as well as weakly to strongly cross-linked polyvinyl alcohol and its copolymers such.
  • explosive additives disintegration accelerators
  • MC methyl cellulose
  • MCC microcrystalline cellulose
  • HPMC hydroxypropylmethyl cellulose
  • MHEC methylhydroxyethyl cellulose
  • HPC Hydroxypropyl cellulose
  • HEC hydroxy
  • ethylene vinyl alcohol copolymers with different degrees of saponification, gas-evolving substance mixtures z.
  • B sodium carbonate and citric or tartaric acid, coprocessed polysaccharide, polyacrylic acid monopolymers, polyacrylamide monopolymers, polyacrylic acid-polyacrylamide copolymers and mixtures thereof.
  • the latter substances are insoluble in water due to their degree of crosslinking and / or a correspondingly high degree of polymerization, but they are very swellable.
  • the swollen polymers point to one has a lower mechanical strength (than in the unswollen state) and increases the distance between the layers to be separated, so that the penetration of the release agent is promoted.
  • WO 2018/055088 A1 discloses a method for the reversible coloring of polymers or polymer layers by immersion in a heated aqueous dye bath containing a disperse dye. By changing the ambient conditions, the dye can be removed again from the polymers by migration.
  • the layer which can be colored in this way contains a binder additive for at least one dye, the binder additive consisting of
  • This outer colored layer is followed by the separating layer, followed by a layer made of a recyclable polyolefin.
  • the colored layer with the separating layer is preferably separated and removed from the process by means of methods known in principle from the prior art, so that the remaining polyolefin layer can be separated as a pure layer and can be reprocessed.
  • the composite workpiece be shredded into granules with a maximum grain size D100 ⁇ 10 mm, preferably ⁇ 5 mm, further preferably ⁇ 3 mm and further preferably ⁇ 1 mm in order to achieve the effective To enlarge the surface for a chemical treatment, which is preferably carried out in an alkaline manner.
  • the grain size distribution of the fractions is preferably chosen to be narrow, in particular such that the deviation from a mean Wherein D10 and D90 respectively designate particle size Dm to D10 to Dm and / or D90 to D m at most 1 mm is the diameter at which 10% and 90% of the granules are below the value D10 and D90.
  • the index "m” stands for the mean grain size, which in a specific embodiment, 10 mm, 5 mm,
  • the grain size distribution 0 mm to 2 mm, 2 mm to 4 mm, 4 mm to 6 mm and higher fractions between 6 mm and 11 mm can be obtained by sieving.
  • the different fractions can be “washed” for different lengths of time in suitable baths, especially in order to wash out the color components from the outermost layer. If the treatment is continued or renewed, the individual layers can be separated using an aqueous alkaline heat bath. In this way it is possible to optimally determine the treatment duration for the individual fractions.
  • the alkaline treatment is carried out in stages at different temperatures between 40 ° C and 80 ° C, preferably between 60 ° C and 80 ° C, with different adhesion promoters being dissolved per separation stage in order to obtain different fractions for separate further negotiations.
  • thermoplastic polyvinyl alcohols are suitable for this, such as the Mowiflex M05 (solvent temperature 50 ° C.) or Mowiflex C15 (solvent temperature 70 ° C.) known from the prior art.
  • the individual layers adhere sufficiently to one another due to the 3D shape of the container.
  • the container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions.
  • the mean size of the plastic flakes of the two fractions is ⁇ 6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
  • both fractions are placed in a water bath at 75 ° C., 2% NaOFI, the concentration of the flakes in the washing solution is 5% by weight.
  • the layers of flakes separate after a short time, the polyethylene floats while the Mowiflex dissolves. The layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
  • the flakes are sieved and dried. A thickness measurement and a GPC of the remaining plastic parts show that the Mowiflex has completely detached from the polyethylene.
  • Example 2 The experiment from Example 1 is repeated, with a further layer C each consisting of a mixture of (C) polyethylene Hostalen ACP 5531 B and the adhesion promoter Licocene PE MA 4351 (Clariant, PE graft) between the layers A // B // A -MSA) is arranged so that a layer structure according to A // C // B // C // A results.
  • Example 1 the container is shredded and sieved using a commercially available 12-piece sieve and separated into individual size fractions.
  • the mean size of the plastic flakes of the two fractions is ⁇ 6 mm or 6 - 8 mm.
  • no layer separation is observed due to the purely mechanical action during shredding.
  • Both fractions are placed in a drum in a water bath at 75 ° C., 2% NaOH and agitated for about 30 minutes.
  • the concentration of the flakes in the washing solution is 25% by weight (based on the amount of water).
  • a further 25% by weight of ceramic beads D 10 mm are added added added. The layers of the flakes separate after a short time, despite the adhesive layers, the Mowiflex dissolves.
  • the container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions.
  • the mean size of the plastic flakes of the two fractions is ⁇ 6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
  • both fractions are placed in a water bath at 75 ° C., 2% NaOH, with vigorous stirring; the concentration of the flakes in the washing solution is 5% by weight.
  • concentration of the flakes in the washing solution is 5% by weight.
  • the polypropylene floats while the mixture of layer C z. T. goes into solution, z. T. floats as gel particles in the solution.
  • the layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
  • the container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions.
  • the mean size of the plastic flakes of the two fractions is ⁇ 6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
  • both fractions are placed in a water bath at 75 ° C. with vigorous stirring; the concentration of the flakes in the washing solution is 5% by weight.
  • the concentration of the flakes in the washing solution is 5% by weight.
  • gas bubbles form between the layers and, as a result, the flakes increase in volume, followed by a rapid separation of the layers.
  • the polyethylene floats while the mixture of layer C z. T. goes into solution, z. T. floats as gel particles in the solution.
  • the layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
  • the flakes are sieved and dried. A thickness measurement and a GPC of the remaining plastic parts show a pure polyethylene.
  • Example 6 As in Example 1, but using Mitsubishi BVE 8049P butanediol-vinyl alcohol copolymer instead of Kuraray / Mowiflex C 17 polyvinyl alcohol. The layers separate more quickly than in Example 1, and a pure polyethylene is obtained.
  • Example 6 Example 6:
  • the middle layer (separating layer (B)) consists of Mowiflex H 15 or a material that is soluble in hot water (75 ° C).
  • the present invention also includes those embodiments in which two layers such.
  • B. HDPE and PA lie directly next to each other in a composite material, which have little or no adhesion to each other.
  • the HDPE layer can be separated from the neighboring PA layer by shredding. In this case, the aforementioned layers can also be separated without washing solutions or other chemical aids.
  • the composite is unrolled and passed at 3 m / min through a pair of heated steel rollers imitating a calender at 150 ° C. and 3 bar contact pressure and then held at 100 ° C. for about 1 min, so that the shell of the core-shell products bursts and the mineral oil comes out.
  • the film composite is stored again for 48 hours at room temperature, so that, on the one hand, the laminating adhesive has sufficient time to crystallize and a solid bond results.
  • the adhesion of samples (1) of the original assembly (before the destruction of the core-shell products) and samples (2) after the thermal treatment (after the destruction of the core-shell products) are tested on a tensile testing machine from Zwick / Roell tested. It can be seen that the bond strength of sample 1 to sample 2 has decreased by more than 1/3.
  • a multi-layer container A // D // B // D // C (from inside to outside; // labeling of the individual layers) is produced on a blow molding machine by coextruding (A) polyethylene LyondellBasell / Hostalen ACP 5531 B,
  • an adhesion promoter layer a mixture of polyethylene Hostalen ACP 5531 B and the adhesion promoter Licocene PE MA 4351 (Clariant, PEpfropf-MSA) with layer thicknesses of 700pm for A, 70pm for C, 25pm for B and 5pm for D.
  • the container is colored blue in an immersion bath as described in WO 2018/055088 A1.
  • Example 1 the container is shredded and sieved using a commercially available 12-gauge sieve and separated into individual size fractions.
  • the mean size of the plastic flakes of the two fractions is ⁇ 6 mm or 6 - 8 mm.
  • Example 1 no layer separation is observed due to the purely mechanical action during shredding.
  • Both fractions are placed in a drum in a water bath of 75 ° C., 2% NaOH and 0.2% Oakite RC 7A (mixture of nonionic and anionic surfactants) and agitated for about 30 minutes.
  • the concentration of the flakes in the washing solution is 10% by weight (based on the amount of water).
  • a further 10% by weight of ceramic beads D 10 mm are added.
  • the layers of the flakes separate after a short time, and the Mowiflex dissolves in spite of the adhesion promoter layers.
  • Last smaller gel particles presumably caused by the crosslinking of the Adhesion promoter layer through the addition of Licocene PE MA 4351 are removed during the filtering and washing of the plastic flakes.
  • the colorless and colored flakes are separated using a process common in recycling processes. For this purpose, these are placed on a conveyor belt.
  • the flakes are differentiated by means of a camera system for the detection of colors in the wavelength range 300 - 700 nm, the flakes are separated by compressed air nozzles, in which the identified colored flakes are specifically blown out.
  • the colored flakes are completely decolorized for 30 minutes in an aqueous solution containing 4 g / L NaOH, 5 g / L formamidinesulfonic acid (e.g. Redulit F from CHT) and 4 mL of a mixture of aromatic carboxylic acid esters such as benzyl benzoate (decolorizing accelerator) and can the fraction of the uncolored flakes are fed back.
  • a thickness measurement after drying and a GPC recording show that the Mowiflex has completely detached from the polyethylene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The invention relates to a container consisting of a multi-ply bonded composite, wherein adjacent plies consist of the same or different polymers, and optionally at least one of the outer plies is colored. According to the invention, a layer is arranged between adjacent plies, said layer, as a result of its material composition, being released from the adjacent ply or adjacent plies (adhesive failure) or breaking up (cohesive failure) when mechanical, physical, and/or chemical treatments are used. In order to separate individual plies, the composite workpiece is shredded in order to form a granular material with a maximum grain size D100 of ≤ 10 mm.

Description

Behälter und Verfahren zur Trennung einzelner Lagen eines mehrlagigenContainer and method for separating individual layers of a multilayer
Verbundkörpers Composite body
Die Erfindung betrifft einen Behälter, bestehend aus einem mehrlagigen, insbesondere durch Coextrusion hergestellten stoffschlüssigen Verbund, wobei benachbarte Lagen aus gleichen oder unterschiedlichen Polymeren bestehen und ggf. mindestens eine der äußeren Lagen eingefärbt ist. Die Erfindung betrifft ferner ein Verfahren zur Trennung einzelner Lagen eines mehrlagigen Verbundwerkstoffes. The invention relates to a container consisting of a multi-layer, in particular coextruded, materially bonded composite, adjacent layers consisting of the same or different polymers and optionally at least one of the outer layers being colored. The invention also relates to a method for separating individual layers of a multi-layer composite material.
Kunststoffe gehören zu den unverzichtbaren Werkstoffen für Verpackungen, insbesondere für Flüssigkeiten unterschiedlicher Viskosität oder auch Feststoffen. Beispiele hierfür sind Kunststoffflaschen aus transparentem, weißem oder eingefärbtem PE oder PET, HDPE-Flaschen als Quetschflaschen in der Kosmetikindustrie, Dosen und Tiegel. Klarsichtflaschen oder auch leicht eingefärbte Flaschen für die Getränkeindustrie werden zumeist als Mehrwegflaschen verwendet, wobei die Produkt- und sonstigen Herstellerinformationen häufig auf ein Etikett aufgedruckt sind, das entweder aufgeklebt oder in der Ausführungsform Schrumpffolie aufgeschrumpft ist. Die nach Gebrauch zurückgegebenen Mehrweg- Kunststoffflaschen werden vom Etikett befreit, gewaschen, neu gefüllt und etikettiert, bevor sie wieder in den Verbraucherkreislauf gelangen. Einweg-Kunststoffbehälter werden zunächst materialspezifisch sortiert, dann häufig geschreddert und einem Recyclingprozess zugeführt, um den Kunststoff als Rohstoff zurück zu gewinnen. Plastics are indispensable materials for packaging, especially for liquids of different viscosities or solids. Examples of this are plastic bottles made of transparent, white or colored PE or PET, HDPE bottles as squeeze bottles in the cosmetics industry, cans and jars. Transparent bottles or slightly colored bottles for the beverage industry are mostly used as reusable bottles, the product and other manufacturer information often being printed on a label that is either stuck on or, in the embodiment, shrink film. The reusable plastic bottles returned after use are stripped of the label, washed, refilled and labeled before they are returned to the consumer cycle. Disposable plastic containers are first sorted according to the material, then often shredded and sent to a recycling process in order to recover the plastic as a raw material.
Soweit solche Kunststoffflaschen aus einem einheitlichen Polymerwerkstoff wie Polyethylen bestehen, bereitet das Recyceln keine größeren Probleme, weil nach der genannten werkstofflichen Sortierung keine weiteren Trennvorgänge unterschiedlicher Werkstoffe vorzunehmen sind. Dies gilt auch, sofern Kunststoffverpackungsgemische, die beispielsweise aus PET und aus PE bestehen, voneinander separiert werden müssen, weil die jeweils aus einem einheitlichen Werkstoff bestehenden Gegenstände aufgrund ihrer unterschiedlichen Dichten einem sogenannten Schwimm-Sinkverfahren unterzogen werden können, bei dem z.B. das PE aufgrund der geringen Dichte vom 0,92 g/cm3 bis 0,97 g/cm3 im Wasser aufschwimmt, während PET mit einer Dichte von beispielsweise 1,38 g/cm3 absinkt und sich entsprechend leicht separieren lassen. Insofar as such plastic bottles consist of a uniform polymer material such as polyethylene, recycling does not cause any major problems because after the material sorting mentioned, no further separation processes of different materials have to be carried out. This also applies if plastic packaging mixtures, which for example consist of PET and PE, have to be separated from one another, because the objects, which each consist of a uniform material, can be subjected to a so-called swim-sink process due to their different densities, in which, for example, the PE due to the low density of 0.92 g / cm 3 to 0.97 g / cm 3 in water floats, while PET sinks with a density of, for example, 1.38 g / cm 3 and can accordingly be easily separated.
Problematischer ist jedoch das Recyceln von coextrudierten unterschiedlichen Kunststoffen wie bei mehrlagigen Folien und Containern, sowie coextrudierten gleichen Kunststoffen, bei denen aber nur einzelne Lagen, in der Regel die äußere, eingefärbt sind. Das Wiedereinschmelzen dieser mehrlagigen, teilweise eingefärbten Kunststoffe führt dazu, dass der vormals nicht eingefärbte Kunststoff nun ebenfalls eingefärbt ist, d.h. durch den Farbstoff „kontaminiert“ ist. More problematic, however, is the recycling of different coextruded plastics, such as multilayer films and containers, as well as coextruded plastics of the same type, but in which only individual layers, usually the outer one, are colored. The remelting of these multi-layered, partially colored plastics means that the previously uncolored plastic is now also colored, i.e. is "contaminated" by the dye.
Die WO 2018/055088 A1 , beschreibt ein Verfahren zum reversiblen Einfärben von Polymermaterial mit einem Dispersionsfarbstoff. Das Polymermaterial enthält ein Additiv für wenigstens einen Farbstoff. Das Polymermaterial wird auf eine Aktivierungstemperatur unterhalb der Erweichungstemperatur erwärmt und mit einer auf eine ähnliche Temperatur erwärmten, wässrigen Farbstoffdispersion in Kontakt gebracht, wobei die Farbstoffe in das Polymermaterial einmigrieren und sich im Additiv einlagern. Als Additiv können beispielsweise Mischungen verwendet werden, die aus einem ersten Terpolymer bestehen, aufgebaut aus Ethylen, acrylischen oder methacrylischen Estern und Maleinsäureanhydrid mit einem Anhydridgehalt von wenigstens 2 %, und einem zweiten Terpolymer aus Ethylen, Acryl oder Methacrylester und Glycidyl(meth)acrylat mit einer Glycidylanteil von wenigstens 7 % und Mischungen hiervon, und einem aminterminierten Polyamid oder Polyetheramid. WO 2018/055088 A1 describes a method for reversible coloring of polymer material with a disperse dye. The polymer material contains an additive for at least one dye. The polymer material is heated to an activation temperature below the softening temperature and brought into contact with an aqueous dye dispersion heated to a similar temperature, the dyes migrating into the polymer material and being embedded in the additive. Mixtures can be used as additive, for example, which consist of a first terpolymer, composed of ethylene, acrylic or methacrylic esters and maleic anhydride with an anhydride content of at least 2%, and a second terpolymer made of ethylene, acrylic or methacrylic ester and glycidyl (meth) acrylate a glycidyl content of at least 7% and mixtures thereof, and an amine-terminated polyamide or polyether amide.
Solche Additive bieten die Möglichkeit, Farbstoffe nur in einem dünnen, oberflächennahen Bereich durch Migration eindiffundieren zu lassen. Such additives offer the possibility of allowing dyes to diffuse only in a thin area close to the surface through migration.
Ein potentielles Entfärben eines mehrlagigen Kunststoffes bestehend aus einer ersten eingefärbten Schicht (Skin), die das oben genannte Additiv enthält und einer zweiten Schicht (Body) aus dem gleichen Kunststoff aber ohne das farbstoffaffine Additiv und damit ohne den Farbstoff führt zu einem dramatischen Effizienzverlust in Entfärbeanlagen, da in diesen Prozessen anstelle nur der eingefärbten Schicht der gesamte Kunststoffaufbau dem Prozess unterzogen werden muß. Eine mögliche Separierung der eingefärbten Schicht (Skin) von der nicht eingefärbten Schicht (Body) würde zu einer erheblichen Effizienzsteigerung (höherer Durchsatz) führen. A potential decolorization of a multi-layer plastic consisting of a first colored layer (skin), which contains the above-mentioned additive and a second layer (body) made of the same plastic but without the dye-affine additive and thus without the dye, leads to a dramatic loss of efficiency in decolorizing systems , because in these processes, instead of just the colored layer, the entire plastic structure has to be subjected to the process. A possible Separation of the colored layer (skin) from the non-colored layer (body) would lead to a considerable increase in efficiency (higher throughput).
Nach dem Stand der Technik bekannt sind weiterhin mehrlagige Folien oder Behälter, bei denen die einzelnen Lagen aus unterschiedlichen Werkstoffen, insbesondere unterschiedlichen Polymeren, insbesondere aus der Gruppe PE, PET, PA und/oder PP bestehen. Die einzelnen, jeweils nur aus einem einzigen Polymer und ggf. weiteren funktionalen Additiven wie UV- und Oxidations-Stabilisatoren, Antistatika oder anorganischen Füllstoffen bestehenden Lagen, werden im Rahmen einer Coextrusion zu einer stoffschlüssigen Verbindung verarbeitet. Um eine ausreichende Haftung zu gewährleisten, werden häufig sogenannte Bindungsschichten mitextrudiert. Nach dem Stand der Technik sind z.B. mehrlagige Verbundwerkstoffe bekannt, bei denen die Schichten aus Polyamid, Ethylen- Vinylalkohol-Copolymer (EVOH) und Polyethylen durch Klebeschichten (sog. tie- layer), z.B. aus Maleinsäureanhydrid gepropftem Polyethylen miteinander verbunden sind, die zwischen dem PA und EVOH bzw. zwischen EVOH und PE angeordnet sind. Solche oder ähnliche Schichtaufbauten werden zu Folien mit einer ausreichenden Dicke extrudiert und beispielsweise zu Schalen, Bechern, Deckeln oder sonstigen Körpern tiefgezogen oder als Schlauch extrudiert und abschließend zu Hohlkörpern wie Flaschen oder Containern geblasen. According to the prior art, multilayer films or containers are also known in which the individual layers are made of different materials, in particular different polymers, in particular from the group of PE, PET, PA and / or PP. The individual layers, each consisting of a single polymer and, if necessary, other functional additives such as UV and oxidation stabilizers, antistatic agents or inorganic fillers, are processed into a material bond as part of a coextrusion. In order to ensure sufficient adhesion, so-called binding layers are often co-extruded. According to the prior art, for example, multilayer composite materials are known in which the layers of polyamide, ethylene-vinyl alcohol copolymer (EVOH) and polyethylene are connected to one another by adhesive layers (so-called tie-layers), for example made of maleic anhydride-grafted polyethylene, which are connected to one another between the PA and EVOH or between EVOH and PE are arranged. Such or similar layer structures are extruded into films with a sufficient thickness and, for example, deep-drawn into bowls, cups, lids or other bodies or extruded as a hose and finally blown into hollow bodies such as bottles or containers.
Die DE 19831 118 B4 beschreibt ein Verfahren zur Trennung der Komponenten eines mehrlagigen Materials, das mindestens eine Lage aus einem Basisgrundstoff (z.B. aus einem oder mehreren Polyolefinen, ausgewählt aus Homopolymeren und Copolymeren von Ethylen oder Prophylen), und eine Lage aus einem zweiten Kunststoff, z.B. ein Sperrschichtpolymer wie ein Polyamid oder Copolymer aus Ethylen und Vinylalkohol, enthält, die durch eine Lage aus einem Klebstoff miteinander verbunden sind, der beispielsweise aus einem mit Maleinsäureanhydrid gepropftem Polyolefin bestehen kann. Dieses Verbundmaterial wird auf eine Temperatur erwärmt, die zwischen der Kristallisationstemperatur des zweiten Kunststoffes (Sperrschichtpolymers) Tc und Tc-20°C liegt, danach das Material zerkleinert wird, indem man es bei einer Scherbeanspruchung ungefähr bei der gleichen Temperatur unterzieht, um dadurch eine Delaminierung hervorzurufen und das Material in Teilchen mit geringeren Dimensionen von zweierlei Arten umzuwandeln, wobei die einen Teilchen im Wesentlichen aus dem erstgenannten Kunststoff (Polyolefin) aufgebaut sind, und die anderen Teilchen im Wesentlichen aus dem zweiten Kunststoff (Sperrschichtpolymer) und dem Klebstoff aufgebaut sind. Anschließend sollen alle Teilchen durch elektrostatische Trennung aufgetrennt werden, wobei nach der Zerkleinerung die aufzutrennenden Teilchen elektrisch geladen werden, indem sie mit einer mobilen Einrichtung in Kontakt gebracht werden, die im Wesentlichen zumindest an der Oberfläche aus einem zu dem Klebstoff analogen Kunststoff bestehen. In einem konkreten Beispiel wird die Trennung eines 5-lagigen Kraftstoffbehälters der Art PEHD/PE-gMSA/EVOH/PE-g- MSA/PEHD beschrieben. DE 19831 118 B4 describes a method for separating the components of a multi-layer material, which comprises at least one layer made of a basic raw material (e.g. from one or more polyolefins, selected from homopolymers and copolymers of ethylene or propylene), and a layer made of a second plastic, for example a barrier polymer such as a polyamide or a copolymer of ethylene and vinyl alcohol, which are connected to one another by a layer of an adhesive which can consist, for example, of a polyolefin grafted with maleic anhydride. This composite material is heated to a temperature between the crystallization temperature of the second plastic (barrier polymer) Tc and Tc-20 ° C, after which the material is comminuted by subjecting it to a shear stress approximately at subjected to the same temperature, thereby causing delamination and converting the material into particles of smaller dimensions of two types, one of the particles being composed essentially of the former plastic (polyolefin) and the other particles being composed essentially of the second plastic (barrier polymer ) and the adhesive are built up. Subsequently, all particles are to be separated by electrostatic separation, after which the particles to be separated are electrically charged by being brought into contact with a mobile device, which essentially consists of a plastic analogous to the adhesive, at least on the surface. A concrete example describes the separation of a 5-layer fuel tank of the type PEHD / PE-gMSA / EVOH / PE-g-MSA / PEHD.
Nach dem Stand ebenso bekannt ist die separate Extrusion zweier Folien und eine anschließende Kaschierung dieser Folien mittels Klebstoffen. Dieses Verfahren wird häufig dann eingesetzt, wenn eine der Folien bedruckt ist und der Druck zwischen zwei Folien kaschiert werden soll, um einen direkten Kontakt mit der Druckfarbe bei Außenberührung zu vermeiden, sowie eine hinreichende Kratzfestigkeit gegeben sein soll oder auch besondere Effekte wie ein optischer Glanz erzielt werden sollen. Die bisherigen Bemühungen bestanden im Wesentlichen darin, einen haltbaren Folien-Verbund unter Einschluss bedruckter Zwischenlagen zu schaffen. Eine solche Zielsetzung steht jedoch im Gegensatz zu der Recyclefähigkeit der Kunststoffe, wenn sich die einzelnen Lagen unterschiedlicher Polymere nicht ohne weiteres separieren lassen. Also known from the prior art is the separate extrusion of two foils and a subsequent lamination of these foils by means of adhesives. This method is often used when one of the foils is printed and the print is to be laminated between two foils in order to avoid direct contact with the printing ink when it comes into contact with the outside, as well as sufficient scratch resistance or special effects such as an optical gloss should be achieved. Efforts to date have essentially consisted of creating a durable film composite including printed intermediate layers. However, such an objective is in contrast to the recyclability of plastics if the individual layers of different polymers cannot be easily separated.
Prinzipiell denkbar ist zwar die selektive Auflösung einzelner Polymer-Arten oder des Klebstoffs durch Verwendung spezieller Lösungsmittel, die unter bestimmten Temperaturen und einem Druck zur Auflösung eines einzelnen Polymers im Sinne eines „Herauslösens“ verwendet werden, wonach das gelöste Polymer abgeführt wird und anschließend ggf. bei einer höheren Temperatur und einem höheren Druck ein neues Lösungsmittel zum Herauslösen einerweiteren Polymer-Komponente verwendet wird. Allerdings besitzt ein solches Verfahren den Nachteil, dass die aufgelösten Polymere nicht chemisch rein sind sowie die Verwendung organischer Lösemittel auch bei deren Rückgewinnung und Aufbereitung dem Grundgedanken der Nachhaltigkeit widerspricht. Bekannte Verfahren sind die Verfahren PureCycle entwickelt von Procter & Gamble oder das Verfahren CreaSolv des Fraunhofer Instituts. In principle, the selective dissolution of individual types of polymer or the adhesive is conceivable by using special solvents that are used under certain temperatures and pressure to dissolve an individual polymer in the sense of "dissolving", after which the dissolved polymer is removed and then, if necessary, a new solvent is used to dissolve out another polymer component at a higher temperature and pressure. However, such a method has the disadvantage that the dissolved polymers are not chemically pure and the use of organic solvents, even when recovering and processing them, contradicts the basic idea of sustainability. Well-known processes are the PureCycle process developed by Procter & Gamble or the CreaSolv process developed by the Fraunhofer Institute.
Es ist Aufgabe der vorliegenden Erfindung, einen Behälter der eingangs genannten Art zu schaffen, bei dem eine verbesserte Trennung der einzelnen Lagen im Rahmen des Recyclings gegeben ist. Insbesondere soll die Folie oder der Behälter so beschaffen sein, dass sich im Wege des Recyclens unterschiedliche Lagen von Polymeren im Wesentlichen ohne den Einsatz ausschließlich organischer Lösemittel sauber trennen lassen und etwaige eingefärbte Lagen von anderen, nicht mit einem Farbstoff „kontaminierten“ Lagen sauber trennbar sind. Ferner soll ein Trennverfahren angegeben werden. The object of the present invention is to create a container of the type mentioned at the outset in which there is an improved separation of the individual layers in the context of recycling. In particular, the film or the container should be designed in such a way that, by recycling, different layers of polymers can be separated cleanly, essentially without the use of exclusively organic solvents, and any colored layers can be cleanly separated from other layers that are not "contaminated" with a dye . A separation method should also be specified.
Diese Aufgabe wird durch einen Behälter nach Anspruch 1 gelöst. Weiterbildungen des Behälters werden in den Unteransprüchen beschrieben. Erfindungsgemäß ist zwischen benachbarten Lagen aus unterschiedlichen Polymeren, insbesondere zwischen einer äußeren eingefärbten Lage und der hierzu benachbarten Lage eine Schicht angeordnet, die sich aufgrund ihrer Materialzusammensetzung bei Anwendung physikalischer und/oder chemischer und/oder mechanischer Behandlung von der benachbarten Lage oder den benachbarten Lagen ablöst. Anstelle der nach dem Stand der Technik vornehmlich eingesetzten Klebstoffschichten als Zwischenschichten werden im Rahmen der vorliegenden Erfindung bewusst Trennschichten eingebaut, die zum einen eine Haftung der Lagen in der Anwendung ausreichend sicherstellen, zum anderen aber ein Separieren der einzelnen Lagen nach der Anwendung gewährleisten. Soweit die äußere Lage oder die äußeren Lagen eines Behälters eingefärbt sind und die dazwischenliegenden Lagen farbstofffrei sind, kann es von Vorteil sein, wenn durch unterschiedliche Bindungswirkungen die Trennschicht an der eingefärbten Schicht bei der Lagentrennung verbleibt und aus einem Trennprozess, z.B. durch Sinkabscheidung oder Aufschwimmen separiert wird. Im Rahmen der vorliegenden Erfindung kann insbesondere die Trennung eingefärbter Schichten (Lagen) von nicht eingefärbten Schichten (Lagen) erfolgen, womit eine Kreuzkontamination der uneingefärbten Kunststoffe in einem Entfärbebad vermeidbar ist. Eine Kunststoffentfärbung, die nicht zu 100 % gelingt, kann somit nicht zu einer Kontamination eines uneingefärbten Kunststoffs beim Schmelzen und Regranulieren des Kunststoffs führen. This object is achieved by a container according to claim 1. Further developments of the container are described in the subclaims. According to the invention, a layer is arranged between adjacent layers made of different polymers, in particular between an outer colored layer and the adjacent layer, which, due to its material composition, becomes detached from the adjacent layer or layers when physical and / or chemical and / or mechanical treatment is used . Instead of the adhesive layers primarily used as intermediate layers according to the prior art, separating layers are deliberately incorporated within the scope of the present invention, which on the one hand ensure sufficient adhesion of the layers in the application, but on the other hand ensure that the individual layers are separated after use. If the outer layer or layers of a container are colored and the layers in between are dye-free, it can be advantageous if the separating layer remains on the colored layer when the layers are separated due to different bonding effects and separated from a separation process, e.g. by sinking deposition or floating becomes. In the context of the present invention, in particular, the separation of colored layers (plies) from non-colored layers (plies) can take place, whereby cross-contamination of the uncolored plastics in a decolorizing bath can be avoided. A plastic discoloration that is not 100% successful cannot therefore lead to contamination of an uncolored plastic when the plastic is melted and regranulated.
Bei der Trennung der einzelnen Lagen wird eine Akkumulation von Fremdstoffen in der gesamten Kunststoffmasse vermieden, womit das Recycling von mehrlagigen Kunststoffen unterschiedlicher Kunststoffe oder unterschiedlich additivierter Kunststoffe durch Trennung der einzelnen Fraktionen mit einem hohen Reinheitsgehalt möglich wird. Ansonsten auftretende Wechselwirkungen und Wechselreaktionen unterschiedlicher Störstoffe lassen sich ebenfalls vermeiden. Unter chemischen, physikalischen und mechanischen Behandlungen werden alle Verfahren verstanden, die geeignet oder zur Unterstützung geeignet sind, die Trennung der wertstoffhaltigen Lagen, welche recycelt werden sollen, zu verbessern. Aus mechanischer Sicht können dies beispielsweise Behandlungen durch Scherung, Dehnen, Biegen und/oder Schlageinwirkung sein, aus physikalischer Sicht Behandlungen wie beispielsweise Temperaturänderungen durch Erwärmen oder Abkühlen, mit und ohne Druckänderung, Bestrahlungen, insbesondere mit IR-, UV-, Beta oder Gamma-Strahlung, besondere Behandlungen der Trennschichten zur Erzeugung von Schichtstrukturen, Porosität, eingebetteter Partikel als Abstandshalter (D(Partikel) > D(Trennschicht) oder Partikel mit D(Partikel) < D(Trennschicht), die erst im im Recyclingprozess z. B. durch Kontakt mit Wasser quellen und ihren Durchmesser stark vergrößern) oder ähnliches sein. Chemische Behandlungen sind beispielsweise der Einsatz von Wasser, Wasserdampf, anderen nicht ausschließlich organischen Lösemitteln oder deren Dämpfen, Basen, Säuren, Weichmachern, Komplexbildnern, Salzen, Tensiden, Oxidations- oder Reduktionsmittel insbesondere jeweils in einer Lösung bei unterschiedlichen Temperaturen und/oder Drucken, sowie die Zugabe von Reaktionspartnern (z. B. Zitronensäure und Natriumhydrogencarbonat), die die Haftung der Schichten untereinander dabei insbesondere der Trennschicht und/oder die Löslichkeit oder Quellbarkeit zur Reduktion der mechanischen Festigkeit der Trennschicht im umgebenden Medium erhöhen (Reduktion der Adhäsion und/oder Kohäsion der Trennschicht). When the individual layers are separated, the accumulation of foreign substances in the entire plastic mass is avoided, which means that multi-layer plastics of different plastics or plastics with different additives can be recycled by separating the individual fractions with a high degree of purity. Otherwise occurring interactions and reciprocal reactions of different contaminants can also be avoided. Chemical, physical and mechanical treatments are understood to mean all processes that are suitable or suitable for helping to improve the separation of the layers containing valuable substances which are to be recycled. From a mechanical point of view, this can be, for example, treatments by shearing, stretching, bending and / or impact, from a physical point of view, treatments such as temperature changes due to heating or cooling, with and without pressure change, irradiation, in particular with IR, UV, beta or gamma Radiation, special treatments of the separating layers to create layer structures, porosity, embedded particles as spacers (D (particles)> D (separating layer) or particles with D (particles) <D (separating layer), which only occur in the recycling process, e.g. through Contact with water swell and greatly increase its diameter) or the like. Chemical treatments are, for example, the use of water, steam, other not exclusively organic solvents or their vapors, bases, acids, plasticizers, complexing agents, salts, surfactants, oxidizing or reducing agents, in particular in a solution at different temperatures and / or pressures, as well the addition of reactants (e.g. citric acid and sodium hydrogen carbonate), which thereby ensure the adhesion of the layers to one another in particular increase the separating layer and / or the solubility or swellability to reduce the mechanical strength of the separating layer in the surrounding medium (reduction of the adhesion and / or cohesion of the separating layer).
Denkbar ist auch eine Versprödung einzelner Lagen z.B. durch Abkühlung oder Zusatz von Additiven zur Trennschicht, die durch Bestrahlung zur Kettenspaltung und damit zum Polymerabbau führen was wiederum die Haftung reduziert. Als Beispiel ist hier die Degradation von Polypropylen durch Bestrahlung mit Beta- oder Gamma-Strahlung. An embrittlement of individual layers is also conceivable, e.g. through cooling or the addition of additives to the separating layer, which through irradiation lead to chain cleavage and thus to polymer degradation, which in turn reduces the adhesion. An example here is the degradation of polypropylene by exposure to beta or gamma radiation.
Die Auswahl der Trennschichten kann auch gezielt erfolgen, indem Trennschichten verwendet werden, die eine geringere oder eine deutlich höhere Schmelztemperatur im Vergleich zu der Schmelztemperatur haben, welche die jeweiligen Polymere der unterschiedlichen Lagen besitzen. Gleiches gilt in chemischer Sicht hinsichtlich der Auswahl bestimmter nicht ausschließlich organischer Lösungsmittel, Basen oder Säuren, die, ggf. nach einer Perforation der äußeren Lagen oder der benachbarten Lage ausschließlich die Trennschicht angreifen und mit diesen Reaktionen eingehen. Möglich ist auch ein gezieltes Aufschmelzen der Trennschicht, die durch Strahlungsmittel und entsprechend geeignete, d.h. im Wellenlängenbereich des Strahlungsmittels absorbierende Additive in der Trennschicht verstärkt werden, Diffusion von Trennmitteln oder selektive Pyrolyse. Der Kerngedanke der vorliegenden Erfindung besteht jedenfalls darin, dass durch Einwirkung von mechanischen, physikalischen und/oder chemischen Behandlungen auf die Trennschichten eine Separation der einzelnen Lagen von einheitlichen oder unterschiedlichen Polymeren herbeigeführt wird, die dann getrennt weiterverarbeitet, insbesondere recycelt werden können. The separation layers can also be selected in a targeted manner by using separation layers which have a lower or a significantly higher melting temperature compared to the melting temperature which the respective polymers of the different layers have. The same applies from a chemical point of view with regard to the selection of certain non-exclusively organic solvents, bases or acids which, if necessary after perforation of the outer layers or the adjacent layer, only attack the separating layer and enter into reactions with these. Targeted melting of the separating layer is also possible, which is reinforced by radiation agents and correspondingly suitable additives, i.e. additives absorbing in the wavelength range of the radiation agent, diffusion of separating agents or selective pyrolysis. The core idea of the present invention is that the action of mechanical, physical and / or chemical treatments on the separating layers brings about a separation of the individual layers of uniform or different polymers, which can then be further processed separately, in particular recycled.
Zusammenfassend bedeutet dies: Die auf das mehrschichtige Objekt insb. die Trennschicht einwirkende Trennkraft als Summe aus mechanischer, physikalischer und chemischer Kraft ist größer als die Adhäsion der Schichten untereinander und/oder die Kohäsion einer einzelnen oder mehrerer Schichten. Die Trennschicht kann auch derart gewählt werden, dass sie gleichzeitig eine Barriereschicht für migrierende Farbstoffe bildet, so dass beim Einfärben des Behälters Farbstoffe nur Schichten jenseits der Barriereschicht eindiffundieren, so dass nach der Abtrennung der eingefärbten oder einer nur unzureichend entfärbten äußeren Schicht „farbfreie“ Schichten als reines recylebares Produkt erhalten werden. So kann z.B. eine innere Schicht aus reinen PE oder PP eine Barriere für Farbstoffe bilden, die bevorzugt eine Affinität für polare Kunststoffe haben. In summary, this means: The separating force acting on the multilayer object, in particular the separating layer, as the sum of mechanical, physical and chemical force, is greater than the adhesion of the layers to one another and / or the cohesion of a single or multiple layers. The separating layer can also be selected in such a way that it simultaneously forms a barrier layer for migrating dyes, so that when the container is colored, dyes only diffuse in layers beyond the barrier layer, so that after separation of the colored or an insufficiently bleached outer layer, "color-free" layers can be obtained as a pure recyclable product. For example, an inner layer made of pure PE or PP can form a barrier for dyes, which preferably have an affinity for polar plastics.
Vorzugsweise werden als Beispiele einer Trennschicht zwischen zwei Lagen folgende Stoffe verwendet, aus denen die Trennschicht besteht oder welche die Trennschicht im wesentlichen Anteil enthält (die Aufzählung der Möglichkeiten dient nur der Verdeutlichung und hat keinen Anspruch auf Vollständigkeit): The following substances are preferably used as examples of a separating layer between two layers, of which the separating layer consists or which the separating layer essentially contains (the list of possibilities is only for clarification and does not claim to be exhaustive):
Wachs, Silikon, wasserquellbare oder wasserlösliche Polymere, Sprengadditive (d. h. in bestimmten Medien stark quellende Stoffe), Stoffe mit einem Schmelzpunkt zwischen 50°C und 120°C; durch UV- oder IR-Strahlung aufheizbare Stoffe; in Lösemitteln oder Säuren oder Basen oder Gemischen hiervon lösliche oder quellbare Stoffe, in denen die Polymerlagen resistent sind; durch von den Polymerlagen sich im Hinblick auf den Wärmeausdehnungskoeffizient deutlich unterschiedliche Stoffe; Stoffe, die unter den Einfluss von Temperaturänderungen, insbesondere Abkühlungen oder unter Beta-, Gamma-, Röntgen-, UV- oder IR-Bestrahlung verspröden; Stoffe, die sich von Polymerlagen aufgrund von Reaktionen funktioneller Gruppen aufgrund einer Änderung der mechanischen Eigenschaften, insbesondere der Festigkeit ablösen wie Anhydride, Amine, Basen und Säuren oder Polyelektrolyte. Wax, silicone, water-swellable or water-soluble polymers, demolition additives (i.e. substances that swell strongly in certain media), substances with a melting point between 50 ° C and 120 ° C; substances that can be heated by UV or IR radiation; Substances which are soluble or swellable in solvents or acids or bases or mixtures thereof and in which the polymer layers are resistant; from the polymer layers in terms of the coefficient of thermal expansion significantly different substances; Substances that become brittle under the influence of temperature changes, in particular cooling or under beta, gamma, X-ray, UV or IR radiation; Substances that become detached from polymer layers due to reactions of functional groups due to a change in mechanical properties, in particular strength, such as anhydrides, amines, bases and acids or polyelectrolytes.
Zu den wasserlöslichen bzw. wasserquellbaren Polymeren zählen unter anderem unvernetzte bzw. schwach bis stark vernetzte Polyvinylalkohole und seine Co- und Terpolymerenpolymeren wie z. B. Ethylen-Vinylalkohol-Copolymere mit unterschiedlichen Verseifungsgraden, Butandiol-Vinylalkohol-Copolymere, Polyacrylsäure und seine Copolymeren insbesondere im alkalischen Medium, Polymethacrylsäure und seine Colpolymeren insbesondere im alkalischen Medium, weitere polymerisationsfähige Säuren und ihre Salze, insbesondere Malein- Fumar-, Itacon-, Vinylsulfon- oder 2-Acrylamido-2-methylpropansulfonsäure und deren Copolymere. Ferner können hydroxygruppenhaltige Ester polymerisationsfähiger Säuren, insbesondere die Flydroxyethyl- und Hydroxypropylester der Acryl- und der Methacrylsäure verwendet werden, ebenso aminogruppenhaltige und ammoniumgruppenhaltige Ester und Amide polymerisationsfähiger Säuren, wie die Dialkylaminoester, insbesondere die Dimethyl- und die Diethylaminoalkylester der Acryl- und der Methacrylsäure, sowie die Trimethyl- und die Triethylammoniumalkylester und die entsprechenden Amide. Weitere quellbare Hydrogel bildende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärkeether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. The water-soluble or water-swellable polymers include, inter alia, uncrosslinked or weakly to strongly crosslinked polyvinyl alcohols and its copolymers and terpolymer polymers such as. B. ethylene-vinyl alcohol copolymers with different degrees of saponification, butanediol-vinyl alcohol copolymers, polyacrylic acid and its copolymers, especially in an alkaline medium, polymethacrylic acid and its copolymers, especially in an alkaline medium, other polymerizable acids and their salts, in particular maleic, fumaric, itaconic, vinylsulphonic or 2-acrylamido-2-methylpropanesulphonic acid and their copolymers. Furthermore, hydroxyl-containing esters of polymerizable acids, in particular the flydroxyethyl and hydroxypropyl esters of acrylic and methacrylic acid, can be used, as well as amino-containing and ammonium-containing esters and amides of polymerizable acids, such as the dialkylamino esters, in particular the dimethyl and diethylaminoalkyl esters of acrylic and methacrylic acid, as well as the trimethyl and triethylammonium alkyl esters and the corresponding amides. Further swellable hydrogel-forming polymers are, in particular, polymers made from (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, cross-linked cellulose or starch ethers, cross-linked carboxymethyl cellulose, partially cross-linked polyalkylene oxide or natural products swellable in aqueous liquids such as guar derivatives.
Eine weiterhin bevorzugte Trennschicht-Ausgestaltung lässt sich durch die Verwendung von Sprengadditiven (Zerfallbeschleunigern) aus Stärke, Zellulose und dessen Zellulosederivaten (z. B. auf Basis Methylcellulose (MC) mikrokristalliner Cellulose (MCC), Hydroxypropylmethylcellulose (HPMC), Methylhydroxyethylcellulose (MHEC), Hydroxypropylcellulose (HPC), Hydroxyethylcellulose (HEC), Natriumcarboxymethylcellulose (NaCMC)), Carboxymethylcellulose, Crosscarmellose, Crosscarmellose-Natrium, Alginsäuren, Dextranen und quervernetzten Polyvinylpyrrolidonen, sowie schwach bis stark vernetzten Polyvinylalkohol und seinen Copolymeren wie z. B. Ethylen- Vinylalkohol-Copolymeren mit unterschiedlichen Verseifungsgraden, gasentwickelnden Substanzgemischen z. B. Natriumcarbonat und Zitronen- oder Weinsäure, coprozessiertem Polysaccharid, Polyacrylsäure-Monopolymerisaten, Polyacrylamid-Monopolymerisat, Polyacrylsäure-Polyacrylamid-Copolymerisat und Gemischen hiervon erreichen. Die letztgenannten Stoffe sind aufgrund ihres Vernetzungsgrades und/oder eines entsprechend hohen Polymerisationsgrades in Wasser unlöslich, aber sehr stark quellfähig. Die gequollenen Polymere weisen zum einen eine geringere mechanische Festigkeit auf (als im ungequollenen Zustand) und vergrößern den Abstand der zu trennenden Schichten, so dass das Eindringen des Trennmittels begünstigt wird. A further preferred separation layer configuration can be achieved through the use of explosive additives (disintegration accelerators) made from starch, cellulose and its cellulose derivatives (e.g. based on methyl cellulose (MC), microcrystalline cellulose (MCC), hydroxypropylmethyl cellulose (HPMC), methylhydroxyethyl cellulose (MHEC), Hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), sodium carboxymethyl cellulose (NaCMC)), carboxymethyl cellulose, cross carmellose, cross carmellose sodium, alginic acids, dextrans and cross-linked polyvinylpyrrolidones, as well as weakly to strongly cross-linked polyvinyl alcohol and its copolymers such. B. ethylene vinyl alcohol copolymers with different degrees of saponification, gas-evolving substance mixtures z. B. sodium carbonate and citric or tartaric acid, coprocessed polysaccharide, polyacrylic acid monopolymers, polyacrylamide monopolymers, polyacrylic acid-polyacrylamide copolymers and mixtures thereof. The latter substances are insoluble in water due to their degree of crosslinking and / or a correspondingly high degree of polymerization, but they are very swellable. The swollen polymers point to one has a lower mechanical strength (than in the unswollen state) and increases the distance between the layers to be separated, so that the penetration of the release agent is promoted.
Nach einerweiteren Ausgestaltung der Erfindung ist es auch möglich, aneinander liegende Grenzschichten punktuell, vorzugsweise mittels Laserschweißung zu verkleben. Voraussetzung hierfür ist, dass eine der Schichten, z.B. durch eine opake Ausbildung oder durch Stoffeinschlüsse, die geeignet sind, die durch den Laserstrahl eingebrachte Energie zu absorbieren, vorhanden sind. Die Bestrahlung mittels eines Lasers, z.B. eines Nd:YAG-Lasers ermöglicht eine räumlich begrenzte, punktuelle Materialerwärmung, die beim Abkühlen zur stoffschlüssigen Verbindung führt. Die Beschränkung der Verbindungsstellen auf wenige Punkte erleichtert die mechanische Trennung zweier Lagen, da nur die wenigen Schweißstellen aufgebrochen werden müssen, was unter Umständen bereits über eine mechanische Zerkleinerung (ein Schreddern) bewirkt wird. Bei der Trennung unterschiedlicher Materialien fallen etwa noch haftende Partikel des anderen Materials nicht ins Gewicht. According to a further embodiment of the invention, it is also possible to glue adjacent boundary layers selectively, preferably by means of laser welding. The prerequisite for this is that one of the layers, e.g. due to an opaque design or material inclusions, which are suitable for absorbing the energy introduced by the laser beam, is present. Irradiation by means of a laser, e.g. an Nd: YAG laser, enables spatially limited, punctual material heating, which leads to a material bond when it cools down. The limitation of the connection points to a few points facilitates the mechanical separation of two layers, since only the few weld points have to be broken, which in certain circumstances can already be achieved by mechanical crushing (shredding). When separating different materials, particles of the other material that are still adhering do not matter.
In WO 2018/055088 A1 wird ein Verfahren für das reversible Einfärben von Polymeren bzw. Polymerschichten durch Eintauchen in ein einen Dispersionsfarbstoff enthaltendes, erwärmtes wässriges Färbebad offenbart. Durch Änderung der Umgebungsbedingungen läßt sich der Farbstoff durch Migration wieder aus den Polymeren entfernen. Die derart einfärbbare Schicht enthält ein Binder-Additiv für wenigstens einen Farbstoff, wobei das Binder-Additiv besteht ausWO 2018/055088 A1 discloses a method for the reversible coloring of polymers or polymer layers by immersion in a heated aqueous dye bath containing a disperse dye. By changing the ambient conditions, the dye can be removed again from the polymers by migration. The layer which can be colored in this way contains a binder additive for at least one dye, the binder additive consisting of
- einem ersten Terpolymer aus Ethylen, Acryl- oder Methacrylester und Maleinsäureanhydrid mit einem Maleinsäureanhydrid-Anteil von mindestens 2 Gewichts% und - A first terpolymer of ethylene, acrylic or methacrylic ester and maleic anhydride with a maleic anhydride content of at least 2% by weight and
- einem zweiten Terpolymer aus Ethylen, Acryl- oder Methacrylester und Glycidyl- Methacrylat mit einem Glycidyl-Anteil von wenigstens 7 %, - a second terpolymer made from ethylene, acrylic or methacrylic ester and glycidyl methacrylate with a glycidyl content of at least 7%,
- oder Mischungen hieraus, in Verbindung mit einem Amin-terminierten Polyamid oder Polyetheramid. An diese äußere eingefärbte Schicht schließt sich die Trennschicht an und hieran eine Lage aus einem recyclefähigen Polyolefin. Vorzugsweise wird mittels im Prinzip nach dem Stand der Technik bekannten Verfahren die eingefärbte Schicht mit der Trennschicht abgetrennt und aus dem Prozess entfernt, so dass die verbleibenden Polyolefin-Schicht als reine Schicht separierbar und wieder aufarbeitbar sind. - or mixtures thereof, in connection with an amine-terminated polyamide or polyether amide. This outer colored layer is followed by the separating layer, followed by a layer made of a recyclable polyolefin. The colored layer with the separating layer is preferably separated and removed from the process by means of methods known in principle from the prior art, so that the remaining polyolefin layer can be separated as a pure layer and can be reprocessed.
Zur Trennung der einzelnen Lagen der erfindungsgemäßen Folien oder Behälter wird vorgeschlagen, dass das Verbundwerkstück zu einem Granulat mit einer maximalen Korngröße D100 ^ 10 mm, vorzugsweise < 5 mm, weiterhin vorzugsweise < 3 mm und weiterhin vorzugsweise < 1 mm geschreddert wird, um die effektive Oberfläche für eine chemische Behandlung, die vorzugsweise alkalisch geführt wird, zu vergrößern. To separate the individual layers of the films or containers according to the invention, it is proposed that the composite workpiece be shredded into granules with a maximum grain size D100 ^ 10 mm, preferably <5 mm, further preferably <3 mm and further preferably <1 mm in order to achieve the effective To enlarge the surface for a chemical treatment, which is preferably carried out in an alkaline manner.
Der Gedanke dieses Verfahrens basiert im Wesentlichen darauf, dass die möglichen Trennstellen für die zu separierenden Folien besser erreichbar werden. Durch das Schreddern in kleine Partikel wird die Angriffsfläche zur Trennung der Schichten erheblich vergrößert. Bei derart zerkleinerten Kunststofffolien oder Kunststoffcontainern erfolgt eine chemische Behandlung einer zwischen zwei weiteren Schichten liegenden Trennschicht in der Regel nur über die bzw. an der Schnittkante. Die Gesamtlänge der Schnittkante wird im Verhältnis zur Oberfläche des zerkleinerten Kunststoffes umso größer, desto kleiner die Fläche des zerkleinerten Kunststoffs ist. Daher sollte die Korngröße eines den Trennkräften ausgesetzten Granulates möglichst klein sein. Das Schreddern entspricht einer mechanischen Behandlung der erfindungsgemäßen Folien oder Behälter, das zumindest zu einer „Ermüdung“ der Trennschicht und damit besseren Trennbarkeit führen kann. The idea behind this process is essentially based on the fact that the possible separation points for the films to be separated can be reached more easily. By shredding into small particles, the attack surface for separating the layers is considerably enlarged. In the case of plastic films or plastic containers comminuted in this way, a chemical treatment of a separating layer lying between two further layers generally only takes place over or on the cut edge. The total length of the cutting edge becomes larger in relation to the surface of the shredded plastic, the smaller the area of the shredded plastic. Therefore, the grain size of a granulate exposed to the separating forces should be as small as possible. Shredding corresponds to a mechanical treatment of the films or containers according to the invention, which can at least lead to “fatigue” of the separating layer and thus better separability.
Vorzugsweise werden unterschiedliche Korngrößen-Fraktionen z. B. mittels Sieb getrennt und die einzelnen Fraktionen separiert einem Trennprozess zur Sicherstellung der Trennung der Lagen und der Steigerung der Effektivität unterworfen. Weiterhin vorzugsweise wird die Korngrößenverteilung der Fraktionen eng gewählt, insbesondere derart, dass die Abweichung von einer mittleren Korngröße Dm zu D10 bis Dm und/oder D90 bis Dm maximal 1 mm beträgt, wobei D10 und D90 jeweils den Durchmesser benennen, bei dem 10 % bzw. 90 % des Granulates unterhalb des Wertes D10 und D90 liegen. Der Index „m“ steht für die mittlere Korngröße, die in einem konkreten Ausführungsbeispiel, 10 mm, 5 mm,Preferably, different grain size fractions z. B. separated by means of a sieve and the individual fractions are subjected to a separation process to ensure the separation of the layers and the increase in effectiveness. Furthermore, the grain size distribution of the fractions is preferably chosen to be narrow, in particular such that the deviation from a mean Wherein D10 and D90 respectively designate particle size Dm to D10 to Dm and / or D90 to D m at most 1 mm is the diameter at which 10% and 90% of the granules are below the value D10 and D90. The index "m" stands for the mean grain size, which in a specific embodiment, 10 mm, 5 mm,
3 mm und 1 mm sein kann, so dass durch Siebung beispielsweise die Korngrößenverteilung 0 mm bis 2 mm, 2 mm bis 4 mm, 4 mm bis 6 mm und darüber liegende Fraktionen zwischen 6 mm und 11 mm erhalten werden. Die unterschiedlichen Fraktionen können unterschiedlich lange Zeit in geeigneten Bädern „gewaschen“ werden, insbesondere, um die Farbanteile aus der äußersten Lage auszuwaschen. Bei fortgesetzter oder erneuter Behandlung kann über ein wässrig alkalisches Wärmebad die Trennung der einzelnen Lagen herbeigeführt werden. Auf diese Art und Weise ist es möglich, die Behandlungsdauer für die einzelnen Fraktionen optimal zu bestimmen. 3 mm and 1 mm, so that, for example, the grain size distribution 0 mm to 2 mm, 2 mm to 4 mm, 4 mm to 6 mm and higher fractions between 6 mm and 11 mm can be obtained by sieving. The different fractions can be “washed” for different lengths of time in suitable baths, especially in order to wash out the color components from the outermost layer. If the treatment is continued or renewed, the individual layers can be separated using an aqueous alkaline heat bath. In this way it is possible to optimally determine the treatment duration for the individual fractions.
Nach einerweiteren Ausgestaltung der Erfindung wird die alkalische Behandlung stufenweise bei unterschiedlichen Temperaturen zwischen 40°C und 80°C, vorzugsweise zwischen 60°C und 80°C durchgeführt, wobei pro Trennstufe unterschiedliche Haftvermittler gelöst werden, um unterschiedliche Fraktionen zu separaten Weiterverhandlungen zu erhalten. Beispielsweise eignen sich hierzu thermoplastische Polyvinylalkohole, wie die nach dem Stand der Technik bekannten Mowiflex M05 (Lösungsmitteltemperatur 50°C) oder Mowiflex C15 (Lösungsmitteltemperatur 70°C). According to a further embodiment of the invention, the alkaline treatment is carried out in stages at different temperatures between 40 ° C and 80 ° C, preferably between 60 ° C and 80 ° C, with different adhesion promoters being dissolved per separation stage in order to obtain different fractions for separate further negotiations. For example, thermoplastic polyvinyl alcohols are suitable for this, such as the Mowiflex M05 (solvent temperature 50 ° C.) or Mowiflex C15 (solvent temperature 70 ° C.) known from the prior art.
Des Weiteren wird die vorliegende Erfindung anhand konkreter Ausführungsbeispiele erläutert: Furthermore, the present invention is explained using specific exemplary embodiments:
Beispiel 1: Example 1:
Auf einer Blasformanlage wird ein 3-lagiger Behälter A//B//A ((// = Kennzeichnungen der einzelnen Lagen) hergestellt durch Coextrusion von (A) Polyethylen LyondellBasell/Hostalen ACP 5531 B und (B) Polyvinylalkohol Kuraray/ Mowiflex C 17 mit Schichtdicken von jeweils 250pm für A und 25pm für B. Die einzelnen Schichten haften aufgrund der 3D-Form des Behälters ausreichend aneinander. Der Behälter wird geschreddert und mittels eines handelsüblichen 12er-Siebes gesiebt und in einzelne Größenfraktionen getrennt. Die mittlere Größe der Kunststoffflakes der beiden Fraktionen beträgt < 6 mm bzw. 6 - 8 mm. In einem Teil der Flakes sind die Schichten bereits durch die mechanische Einwirkung beim Schreddern separiert. A 3-layer container A // B // A ((// = identification of the individual layers) is produced on a blow molding machine by coextruding (A) polyethylene LyondellBasell / Hostalen ACP 5531 B and (B) polyvinyl alcohol Kuraray / Mowiflex C 17 with layer thicknesses of 250 pm for A and 25 pm for B. The individual layers adhere sufficiently to one another due to the 3D shape of the container. The container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions. The mean size of the plastic flakes of the two fractions is <6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
Beide Fraktionen werden in ein Wasserbad von 75°C, 2% NaOFI gegeben, die Konzentration der Flakes in der Waschlösung beträgt 5 Gew.%. Bereits nach kurzer Zeit separieren sich die Schichten der Flakes, das Polyethylen schwimmt auf, während das Mowiflex in Lösung geht. Dabei lösen sich die Schichten in der Fraktion mit den kleineren Flakes schneller ab bzw. auf als in der Fraktion mit den größeren Flakes. Both fractions are placed in a water bath at 75 ° C., 2% NaOFI, the concentration of the flakes in the washing solution is 5% by weight. The layers of flakes separate after a short time, the polyethylene floats while the Mowiflex dissolves. The layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
Die Flakes werden gesiebt und getrocknet. Eine Dickenmessung sowie eine GPC der verbliebenen Kunststoffteile zeigt, dass sich das Mowiflex vollständig vom Polyethylen abgelöst hat. The flakes are sieved and dried. A thickness measurement and a GPC of the remaining plastic parts show that the Mowiflex has completely detached from the polyethylene.
Beispiel 2: Example 2:
Der Versuch aus Beispiel 1 wird wiederholt, wobei zwischen den Schichten A//B//A jeweils eine weitere Schicht C bestehend aus einer Mischung aus (C) Polyethylen Hostalen ACP 5531 B und dem Haftvermittler Licocene PE MA 4351 (Clariant, PE- pfropf-MSA) angeordnet ist, so dass sich ein Schichtaufbau gemäß A//C//B//C//A ergibt. Die Schichtdicken betragen A = 250pm, B = 25pm, die Dicken der Haftvermittlerschichten C betragen jeweils 5pm. The experiment from Example 1 is repeated, with a further layer C each consisting of a mixture of (C) polyethylene Hostalen ACP 5531 B and the adhesion promoter Licocene PE MA 4351 (Clariant, PE graft) between the layers A // B // A -MSA) is arranged so that a layer structure according to A // C // B // C // A results. The layer thicknesses are A = 250 pm, B = 25 pm, the thicknesses of the adhesion promoter layers C are each 5 pm.
Wie in Beispiel 1 wird der Behälter geschreddert und mittels eines handelsüblichen 12er-Siebes gesiebt und in einzelne Größenfraktionen getrennt. Die mittlere Größe der Kunststoffflakes der beiden Fraktionen beträgt < 6 mm bzw. 6 - 8 mm. Im Gegensatz zu Beispiel 1 wird durch die rein mechanische Einwirkung beim Schreddern keine Schichtseparierung beobachtet. As in Example 1, the container is shredded and sieved using a commercially available 12-piece sieve and separated into individual size fractions. The mean size of the plastic flakes of the two fractions is <6 mm or 6 - 8 mm. In contrast to Example 1, no layer separation is observed due to the purely mechanical action during shredding.
Beide Fraktionen werden in eine Trommel in ein Wasserbad von 75°C, 2% NaOH gegeben und für ca. 30 min. bewegt. Die Konzentration der Flakes in der Waschlösung beträgt 25 Gew.% (bezogen auf die Wassermenge). Zur Verbesserung der mechanischen Einwirkung werden weitere 25 Gew.% Keramikperlen D = 10mm zugegeben Bereits nach kurzer Zeit separieren sich die Schichten der Flakes, trotz der Haftvermittlerschichten geht das Mowiflex in Lösung. Both fractions are placed in a drum in a water bath at 75 ° C., 2% NaOH and agitated for about 30 minutes. The concentration of the flakes in the washing solution is 25% by weight (based on the amount of water). To improve the mechanical effect, a further 25% by weight of ceramic beads D = 10 mm are added added The layers of the flakes separate after a short time, despite the adhesive layers, the Mowiflex dissolves.
Letzte kleinere Gelpartikel, vermutlich entstanden durch die Vernetzung der Haftvermittlerschicht durch die Zugabe des Licocene PE MA 4351 , werden beim Abfiltrieren und Waschen der Kunststoffflakes abgetrennt. Eine Dickenmessung nach der Trocknung sowie eine GPC-Aufnahme zeigen, dass sich das Mowiflex vollständig vom Polyethylen abgelöst hat. The last smaller gel particles, presumably caused by the crosslinking of the adhesion promoter layer through the addition of Licocene PE MA 4351, are separated off when the plastic flakes are filtered off and washed. A thickness measurement after drying and a GPC recording show that the Mowiflex has completely detached from the polyethylene.
Beispiel 3: Example 3:
Auf einer Blasformanlage wird ein 3-lagiger Behälter A//B//A ((// = Kennzeichnungen der einzelnen Lagen) hergestellt durch Coextrusion von (A) Polypropylen Borealis/RB206MO und (B) eines Gemisches aus 97% Acrylsäure-modifiziertem Polypropylen Addivant/Polybond 1001N und 3% Hydroxyethylcellulose Ashland Natrosol™ 250 HX mit Schichtdicken von jeweils 250pm für A und 25pm für B. A 3-layer container A // B // A ((// = identification of the individual layers) is produced on a blow molding machine by coextruding (A) polypropylene Borealis / RB206MO and (B) a mixture of 97% acrylic acid-modified polypropylene Addivant / Polybond 1001N and 3% hydroxyethyl cellulose Ashland Natrosol ™ 250 HX with layer thicknesses of 250pm for A and 25pm for B.
Der Behälter wird geschreddert und mittels eines handelsüblichen 12er-Siebes gesiebt und in einzelne Größenfraktionen getrennt. Die mittlere Größe der Kunststoffflakes der beiden Fraktionen beträgt < 6 mm bzw. 6 - 8 mm. In einem Teil der Flakes sind die Schichten bereits durch die mechanische Einwirkung beim Schreddern separiert. The container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions. The mean size of the plastic flakes of the two fractions is <6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
Beide Fraktionen werden unter heftigem Rühren in ein Wasserbad von 75°C, 2% NaOH gegeben, die Konzentration der Flakes in der Waschlösung beträgt 5 Gew.%. Unmittelbar nach Eintragung in das alkalische Bad zeigt sich eine deutliche Volumenvergrößerung der Flakes gefolgt von einem schnellen separieren der Schichten. Das Polypropylen schwimmt auf, während die Mischung der Schicht C z. T. in Lösung geht, z. T. als Gelpartikel in der Lösung schwimmt. Auch hier lösen sich die Schichten in der Fraktion mit den kleineren Flakes schneller ab bzw. auf als in der Fraktion mit den größeren Flakes. Both fractions are placed in a water bath at 75 ° C., 2% NaOH, with vigorous stirring; the concentration of the flakes in the washing solution is 5% by weight. Immediately after entry into the alkaline bath, there is a clear increase in volume of the flakes, followed by a rapid separation of the layers. The polypropylene floats while the mixture of layer C z. T. goes into solution, z. T. floats as gel particles in the solution. Here, too, the layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
Die Flakes werden gesiebt und getrocknet. Eine Dickenmessung sowie eine GPC der verbliebenen Kunststoffteile zeigt ein reines Polypropylen. Beispiel 4: The flakes are sieved and dried. A thickness measurement and GPC of the remaining plastic parts show a pure polypropylene. Example 4:
Auf einer Blasformanlage wird ein 3-lagiger Behälter A//B//A ((// = Kennzeichnungen der einzelnen Lagen) hergestellt durch Coextrusion von (A) Polyethylen LyondellBasell/Hostalen ACP 5531 und (B) eines Gemisches aus 99% Ethylen- Acrylsäure-Copolymer SK Global Chemical PRIMACOR™ 5980I und 1% eines PE- Masterbatches bestehend aus 37% Mononatriumzitrat, 22,5% Natriumhydrogencarbonat, 0,5% Glyceroimonostearat aufgefüllt zu 100% mit Polyethylen LyondellBasell/Hostalen ACP 5531 mit Schichtdicken von jeweils 250pm für A und 25pm für B. A 3-layer container A // B // A ((// = identification of the individual layers) is produced on a blow molding machine by coextruding (A) polyethylene LyondellBasell / Hostalen ACP 5531 and (B) a mixture of 99% ethylene Acrylic acid copolymer SK Global Chemical PRIMACOR ™ 5980I and 1% of a PE masterbatch consisting of 37% monosodium citrate, 22.5% sodium hydrogen carbonate, 0.5% glycero monostearate filled up to 100% with polyethylene LyondellBasell / Hostalen ACP 5531 with layer thicknesses of 250 μm each for A and 25pm for B.
Der Behälter wird geschreddert und mittels eines handelsüblichen 12er-Siebes gesiebt und in einzelne Größenfraktionen getrennt. Die mittlere Größe der Kunststoffflakes der beiden Fraktionen beträgt < 6 mm bzw. 6 - 8 mm. In einem Teil der Flakes sind die Schichten bereits durch die mechanische Einwirkung beim Schreddern separiert. The container is shredded and sieved using a standard size 12 sieve and separated into individual size fractions. The mean size of the plastic flakes of the two fractions is <6 mm or 6 - 8 mm. In some of the flakes, the layers are already separated by the mechanical action during shredding.
Beide Fraktionen werden unter heftigem Rühren in ein Wasserbad von 75°C gegeben, die Konzentration der Flakes in der Waschlösung beträgt 5 Gew.%. Unmittelbar nach Eintragung in das Wasserbad Bad zeigt sich eine Bildung von Gasblasen zwischen den Schichten und in Folge dessen Volumenvergrößerung der Flakes gefolgt von einem schnellen Separieren der Schichten. Das Polyethylen schwimmt auf, während die Mischung der Schicht C z. T. in Lösung geht, z. T. als Gelpartikel in der Lösung schwimmt. Auch hier lösen sich die Schichten in der Fraktion mit den kleineren Flakes schneller ab bzw. auf als in der Fraktion mit den größeren Flakes. Both fractions are placed in a water bath at 75 ° C. with vigorous stirring; the concentration of the flakes in the washing solution is 5% by weight. Immediately after entry into the water bath, gas bubbles form between the layers and, as a result, the flakes increase in volume, followed by a rapid separation of the layers. The polyethylene floats while the mixture of layer C z. T. goes into solution, z. T. floats as gel particles in the solution. Here, too, the layers in the fraction with the smaller flakes detach or dissolve more quickly than in the fraction with the larger flakes.
Die Flakes werden gesiebt und getrocknet. Eine Dickenmessung sowie eine GPC der verbliebenen Kunststoffteile zeigt ein reines Polyethylen. The flakes are sieved and dried. A thickness measurement and a GPC of the remaining plastic parts show a pure polyethylene.
Beispiel 5: Example 5:
Wie Beispiel 1, allerdings Verwendung von Butandiol-Vinylalkohol-Copolymer Mitsubishi BVE 8049P anstelle Polyvinylalkohol Kuraray/ Mowiflex C 17. Die Schichten trennen sich schneller als in Beispiel 1 , es wird ein reines Polyethylen zurück erhalten. Beispiel 6: As in Example 1, but using Mitsubishi BVE 8049P butanediol-vinyl alcohol copolymer instead of Kuraray / Mowiflex C 17 polyvinyl alcohol. The layers separate more quickly than in Example 1, and a pure polyethylene is obtained. Example 6:
Bei Wahl eines 5-lagigen Schichtaufbaus A//C//B//C//A werden als äußere Lagen (A) Kuraray Mowiflex C 17 (250 pm) und Polyethylen Hostalen ACP 5531 (25 pm) für Lage (C) verwendet. Die mittlere Schicht (Trennschicht (B)) besteht aus Mowiflex H 15 oder einem in heißem Wasser (75°C) löslichen Materials. When choosing a 5-layer structure A // C // B // C // A, Kuraray Mowiflex C 17 (250 pm) and polyethylene Hostalen ACP 5531 (25 pm) for layer (C) are used as the outer layers (A) . The middle layer (separating layer (B)) consists of Mowiflex H 15 or a material that is soluble in hot water (75 ° C).
Beispiel 7: Example 7:
Unter die vorliegende Erfindung fallen auch solche Ausführungsformen, bei denen zwei Lagen wie z. B. HDPE und PA in einem Verbundwerkstoff unmittelbar aneinander liegen, die keine oder nur eine geringe Adhäsion zueinander besitzen. Beispielsweise lässt sich ein Lagensystem HDPE//PA//PA/PE wählen (// = Kennzeichnungen der einzelnen Lagen; PA/PE = Blend der beiden Polymeren PA6 und HDPE). Die HDPE-Lage lässt sich bereits durch Schreddern von der benachbarten PA-Lage trennen. In diesem Fall kann die Trennung der vorgenannten Lagen auch ohne Waschlösungen oder sonstige chemische Hilfsmittel vollzogen werden. The present invention also includes those embodiments in which two layers such. B. HDPE and PA lie directly next to each other in a composite material, which have little or no adhesion to each other. For example, a layer system HDPE // PA // PA / PE can be selected (// = identification of the individual layers; PA / PE = blend of the two polymers PA6 and HDPE). The HDPE layer can be separated from the neighboring PA layer by shredding. In this case, the aforementioned layers can also be separated without washing solutions or other chemical aids.
Beispiel 8 Example 8
Eine (A) 200pm cast Polyamid-Folie (PA 6) der mf-folien GmbH und eine (B) 200pm PET-G-Folie der Folienwerke Wolfen werden (C) mittels Arkema/Platamid HX2544 zu einem Folienverbund A//B//C zusammenkaschiert und aufgewickelt. In das Platamid sind 20Gew.% eines Core-Shell-Produktes enthaltend ein Mineralöl als Core eingearbeitet worden. Der Folienverbund wird 48h bei Raumtemperatur gelagert, so dass der Kaschierklebstoff ausreichend Zeit zur Kristallisation hat und sich ein fester Verbund ergibt. An (A) 200pm cast polyamide film (PA 6) from mf-folien GmbH and a (B) 200pm PET-G film from Folienwerke Wolfen are (C) using Arkema / Platamid HX2544 to form a film composite A // B // C laminated together and wound up. 20% by weight of a core-shell product containing a mineral oil as core has been incorporated into the platamide. The film composite is stored for 48 hours at room temperature so that the laminating adhesive has sufficient time to crystallize and a solid bond results.
Der Verbund wird abgerollt und mit 3 m/min durch ein einen Kalander imitierendes beheiztes Stahlwalzenpaar von 150°C und 3 bar Anpressdruck geführt und anschließend für ca. 1 min bei 100°C gehalten, so dass die Hülle der Core-Shell- Produkte berstet und das Mineralöl austritt. Der Folienverbund wird erneut 48h bei Raumtemperatur gelagert, so dass zum einen der Kaschierklebstoff ausreichend Zeit zur Kristallisation hat und sich ein fester Verbund ergibt. Die Verbundhaftung von Proben (1) des ursprünglichen Verbundes (vor der Zerstörung der Core-Shell-Produkte) und Proben (2) nach der thermischen Behandlung (nach der Zerstörung der Core-Shell-Produkte) werden auf einer Zug- Prüfmaschine der Fa. Zwick/Roell getestet. Es zeigt sich, dass die Verbundhaftung von Probe 1 zu Probe 2 um mehr als 1/3 abgenommen hat. The composite is unrolled and passed at 3 m / min through a pair of heated steel rollers imitating a calender at 150 ° C. and 3 bar contact pressure and then held at 100 ° C. for about 1 min, so that the shell of the core-shell products bursts and the mineral oil comes out. The film composite is stored again for 48 hours at room temperature, so that, on the one hand, the laminating adhesive has sufficient time to crystallize and a solid bond results. The adhesion of samples (1) of the original assembly (before the destruction of the core-shell products) and samples (2) after the thermal treatment (after the destruction of the core-shell products) are tested on a tensile testing machine from Zwick / Roell tested. It can be seen that the bond strength of sample 1 to sample 2 has decreased by more than 1/3.
Beispiel 9 Example 9
Auf einer Blasformanlage wird ein mehrlagiger Behälter A//D//B//D//C (von innen nach außen; // = Kennzeichnungen der einzelnen Lagen) hergestellt durch Coextrusion von (A) Polyethylen LyondellBasell/Hostalen ACP 5531 B, A multi-layer container A // D // B // D // C (from inside to outside; // = labeling of the individual layers) is produced on a blow molding machine by coextruding (A) polyethylene LyondellBasell / Hostalen ACP 5531 B,
(B) Polyvinylalkohol Kuraray / Mowiflex C 17, (C) einem Gemisch aus Polyethylen LyondellBasell/Hostalen ACP 5531 B (90%), einem ersten Terpolymer (3%) bestehend aus Ethylen (82 Gew. %), Methacrylsäureester (15 Gew. %) und Maleinsaureanhydrid (3 Gew.%) und einem zweiten Terpolymer (2 Gew.%) aus Ethylen (85 Gew. %), Methacrylsäureester (10%) und Glycidyl(meth)acrylat (7 Gew.%) sowie einem aminterminierten Polyetheramid (5 Gew.%) und (D) als Haftvermittlerschicht eine Mischung von Polyethylen Hostalen ACP 5531 B und dem Haftvermittler Licocene PE MA 4351 (Clariant, PEpfropf-MSA) mit Schichtdicken von 700pm für A, 70pm für C, 25pm für B und 5pm für D. Der Behälter wird wie in WO 2018/055088 A1 beschrieben in einem Tauchbad blau eingefärbt Wie in Beispiel 1 wird der Behälter geschreddert und mittels eines handelsüblichen 12er-Siebes gesiebt und in einzelne Größenfraktionen getrennt. Die mittlere Größe der Kunststoffflakes der beiden Fraktionen beträgt < 6 mm bzw. 6 - 8 mm. Im Gegensatz zu Beispiel 1 wird durch die rein mechanische Einwirkung beim Schreddern keine Schichtseparierung beobachtet. Beide Fraktionen werden in eine Trommel in ein Wasserbad von 75°C, 2% NaOH und 0,2% Oakite RC 7A (Mischung nichtionischer und anionischer Tenside) gegeben und für ca. 30 min. bewegt. Die Konzentration der Flakes in der Waschlösung betragt 10 Gew.% (bezogen auf die Wassermenge). Zur Verbesserung der mechanischen Einwirkung werden weitere 10 Gew.% Keramikperlen D = 10mm zugegeben Bereits nach kurzer Zeit separieren sich die Schichten der Flakes, trotz der Haftvermittlerschichten geht das Mowiflex in Lösung. Letzte kleinere Gelpartikel, vermutlich entstanden durch die Vernetzung der Haftvermittlerschicht durch die Zugabe des Licocene PE MA 4351 , werden beim Abfiltrieren und Waschen der Kunststoffflakes abgetrennt. Die farblosen und eingefärbten Flakes werden mittels eines in Recyclingverfahren üblichen Verfahrens getrennt. Dazu werden diese auf ein Fließband gegeben. Eine Unterscheidung der Flakes erfolgt mittels eines Kamerasystems zur Erkennung von Farben im Wellenlängenbereich 300 - 700nm, eine Separierung der Flakes durch Pressluftdüsen, bei der die erkannten eingefärbten Flakes gezielt herausgeblasen werden. Die eingefärbten Flakes werden für 30min in einer wässrigen Lösung enthaltend 4g/L NaOH, 5 g/L Formamidinsulfonsäure (z. B. Redulit F der Fa. CHT) und 4 mL eines Gemisches von aromatischen Carbonsäureestern wie Benzylbenoat (Entfärbebeschleuniger) vollständig entfärbt und können der Fraktion der uneingefärbten Flakes wieder zugeführt werden. Eine Dickenmessung nach der Trocknung sowie eine GPC-Aufnahme zeigen, dass sich das Mowiflex vollständig vom Polyethylen abgelöst hat. (B) Kuraray / Mowiflex C 17 polyvinyl alcohol, (C) a mixture of LyondellBasell / Hostalen ACP 5531 B polyethylene (90%), a first terpolymer (3%) consisting of ethylene (82% by weight), methacrylic acid ester (15% by weight). %) and maleic anhydride (3% by weight) and a second terpolymer (2% by weight) made of ethylene (85% by weight), methacrylic acid ester (10%) and glycidyl (meth) acrylate (7% by weight) and an amine-terminated polyether amide (5% by weight) and (D) as an adhesion promoter layer a mixture of polyethylene Hostalen ACP 5531 B and the adhesion promoter Licocene PE MA 4351 (Clariant, PEpfropf-MSA) with layer thicknesses of 700pm for A, 70pm for C, 25pm for B and 5pm for D. The container is colored blue in an immersion bath as described in WO 2018/055088 A1. As in Example 1, the container is shredded and sieved using a commercially available 12-gauge sieve and separated into individual size fractions. The mean size of the plastic flakes of the two fractions is <6 mm or 6 - 8 mm. In contrast to Example 1, no layer separation is observed due to the purely mechanical action during shredding. Both fractions are placed in a drum in a water bath of 75 ° C., 2% NaOH and 0.2% Oakite RC 7A (mixture of nonionic and anionic surfactants) and agitated for about 30 minutes. The concentration of the flakes in the washing solution is 10% by weight (based on the amount of water). To improve the mechanical effect, a further 10% by weight of ceramic beads D = 10 mm are added. The layers of the flakes separate after a short time, and the Mowiflex dissolves in spite of the adhesion promoter layers. Last smaller gel particles, presumably caused by the crosslinking of the Adhesion promoter layer through the addition of Licocene PE MA 4351 are removed during the filtering and washing of the plastic flakes. The colorless and colored flakes are separated using a process common in recycling processes. For this purpose, these are placed on a conveyor belt. The flakes are differentiated by means of a camera system for the detection of colors in the wavelength range 300 - 700 nm, the flakes are separated by compressed air nozzles, in which the identified colored flakes are specifically blown out. The colored flakes are completely decolorized for 30 minutes in an aqueous solution containing 4 g / L NaOH, 5 g / L formamidinesulfonic acid (e.g. Redulit F from CHT) and 4 mL of a mixture of aromatic carboxylic acid esters such as benzyl benzoate (decolorizing accelerator) and can the fraction of the uncolored flakes are fed back. A thickness measurement after drying and a GPC recording show that the Mowiflex has completely detached from the polyethylene.

Claims

Ansprüche Expectations
1. Behälter, bestehend aus einem mehrlagigen, insbesondere durch Coextrusion hergestellten stoffschlüssigen Verbund, wobei benachbarte Lagen im Wesentlichen aus gleichen oder unterschiedlichen Polymeren bestehen und ggf. eine der äußeren Lagen eingefärbt ist, dadurch gekennzeichnet, dass zwischen benachbarten Lagen, insbesondere zwischen einer äußeren ggf. eingefärbten Lage und der hierzu benachbarten Lage eine Trennschicht angeordnet ist, die sich aufgrund ihrer Materialzusammensetzung bei Anwendung mechanischer, physikalischer und/oder chemischer Behandlungen von der benachbarten Lage oder den benachbarten Lagen ablöst (Adhäsionsbruch) oder in sich getrennt wird (Kohäsionsbruch). 1. Container consisting of a multi-layer, in particular coextruded, cohesive composite, with adjacent layers consisting essentially of the same or different polymers and optionally one of the outer layers being colored, characterized in that between adjacent layers, in particular between an outer one, if necessary . The colored layer and the layer adjacent to it a separating layer is arranged which, due to its material composition, becomes detached from the adjacent layer or layers (adhesion break) or is separated (cohesion break) when mechanical, physical and / or chemical treatments are used.
2. Behälter nach Anspruch 1 , dadurch gekennzeichnet, dass die Trennschicht zwischen zwei Lagen aus mindestens einer der nachfolgenden Stoffe besteht oder diesen enthält: 2. Container according to claim 1, characterized in that the separating layer between two layers consists of or contains at least one of the following substances:
Wachs, Silikon, wasserquellbare oder wasserlösliche Polymere, Sprengadditive, Stoffe mit einem Schmelzpunkt zwischen 50°C und 120°C; durch UV- oder IR-Strahlung aufheizbare Stoffe; in Lösungsmitteln oder Säuren oder Basen oder Gemischen hiervon auflösbare Stoffe, in denen Poymerlagen resistent sind; durch von den Polymerlagen sich im Hinblick auf den Wärmeausdehnungskoeffizient deutlich unterschiedliche Stoffe; Stoffe, die unter den Einfluss von Temperaturänderungen, insbesondere Abkühlungen oder unter Beta, Gamma, Röntgen, UV- oder IR-Bestrahlung verspröden; Stoffe, die sich von Polymerlagen aufgrund von Reaktionen funktioneller Gruppen aufgrund einer Änderung der mechanischen Eigenschaften, insbesondere der Festigkeit ablösen wie Anhydride, Amine, Basen und Säuren oder Polyelektrolyte. Wax, silicone, water-swellable or water-soluble polymers, demolition additives, substances with a melting point between 50 ° C and 120 ° C; substances that can be heated by UV or IR radiation; Substances which dissolve in solvents or acids or bases or mixtures thereof and in which polymer layers are resistant; from the polymer layers in terms of the coefficient of thermal expansion significantly different substances; Substances that become brittle under the influence of temperature changes, in particular cooling or under beta, gamma, X-ray, UV or IR radiation; Substances that become detached from polymer layers due to reactions of functional groups due to a change in mechanical properties, in particular strength, such as anhydrides, amines, bases and acids or polyelectrolytes.
3. Behälter nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Sprengadditive aus im Wasser oder Gemischen aus nicht ausschließlich organischen Lösemitteln stark quellenden Stoffen bestehen, vorzugsweise Stärke, Cellulosederivaten, Alginsäuren, Dextranen und quervernetzten Polyvinylpyrrolidonen, gasentwickelnden Substanzgemischen, insbesondere coprozessiertem Polysaccharid, Polyacrylsäure-Monopolymerisaten, Polyacrylamid-Monopolymerisat, Polyacrylsäure-Polyacrylamid-Copolymerisat und Gemischen hiervon bestehen. 3. Container according to one of claims 1 or 2, characterized in that the explosive additives are not exclusively made in water or mixtures organic solvents consist of substances that swell strongly, preferably starch, cellulose derivatives, alginic acids, dextrans and cross-linked polyvinylpyrrolidones, gas-evolving substance mixtures, in particular coprocessed polysaccharide, polyacrylic acid monopolymers, polyacrylamide monopolymers, polyacrylic acid-polyacrylamide copolymers and mixtures thereof.
4. Behälter, bestehend aus einem mehrlagigen, insbesondere durch Coextrusion hergestellten stoffschlüssigen Verbund, wobei benachbarte Lagen im Wesentlichen aus gleichen oder unterschiedlichen Polymeren bestehen und ggf. eine der äußeren Lagen eingefärbt ist, dadurch_gekennzeichnet, dass die aneinander liegenden Grenzschichten punktuell, vorzugsweise mittels Laserschweißung verklebt sind. 4. A container consisting of a multi-layer, in particular coextruded, cohesive composite, with adjacent layers consisting essentially of the same or different polymers and, if necessary, one of the outer layers being colored, characterized in that the adjacent boundary layers are adhesively bonded at points, preferably by means of laser welding are.
5. Verfahren zur Trennung der einzelnen Lagen eines mehrlagigen Verbundwerkstückes nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verbundwerkstück zu einem Granulat mit einer maximalen Korngröße D100 ^ 10 mm, vorzugsweise < 5 mm, weiterhin vorzugsweise < 3 mm und weiterhin vorzugsweise < 1 mm geschreddert wird, um die effektive Oberfläche für eine chemische Behandlung, die alkalisch geführt wird, zu vergrößern. 5. A method for separating the individual layers of a multi-layer composite workpiece according to one of claims 1 to 4, characterized in that the composite workpiece is formed into granules with a maximum grain size D100 ^ 10 mm, preferably <5 mm, further preferably <3 mm and furthermore preferably <1 mm is shredded in order to enlarge the effective surface for a chemical treatment which is carried out under alkaline conditions.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass unterschiedliche Korngrößen-Fraktionen z. B. mittels Sieb getrennt werden, und die einzelnen Fraktionen separiert dem Trennprozess unterworfen werden zur Sicherstellung der Trennung der Lagn und Steigerung der Effektivität. 6. The method according to claim 5, characterized in that different grain size fractions z. B. be separated by means of a sieve, and the individual fractions are separated and subjected to the separation process to ensure the separation of the Lagn and increase the effectiveness.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Korngrößenverteilung der Fraktionen eng gewählt ist, vorzugsweise derart, dass die Abweichung von einer mittleren Korngröße Dm zu D10 bis Dm und/oder Dgo bis Dm maximal 1 mm beträgt, wobei D10 und Dgo jeweils die Durchmesser benennen, bei denen 10 % bzw. 90 % des Granulats unterhalb des Wertes D10 und D90 liegen. 7. The method according to claim 6, characterized in that the grain size distribution of the fractions is selected to be narrow, preferably such that the deviation from a mean grain size Dm to D10 to Dm and / or Dgo to Dm is a maximum of 1 mm, D10 and Dgo respectively the Name diameters where 10% or 90% of the granulate is below the values D10 and D90.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die alkalische Behandlung stufenweise bei unterschiedlichen Temperaturen zwischen 40°C und 80°C durchgeführt wird, wobei pro Trennstufe unterschiedliche Haftvermittler gelöst werden, um verschiedene Fraktionen zur separaten Weiterbehandlung zu erhalten. 8. The method according to any one of claims 5 to 7, characterized in that the alkaline treatment is carried out in stages at different temperatures between 40 ° C and 80 ° C, different adhesion promoters being dissolved per separation stage in order to obtain different fractions for separate further treatment.
PCT/DE2020/101055 2019-12-17 2020-12-14 Container and method for separating individual plies of a multi-ply composite body WO2021121476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20824064.8A EP4076953A1 (en) 2019-12-17 2020-12-14 Container and method for separating individual plies of a multi-ply composite body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019134689.4 2019-12-17
DE102019134689.4A DE102019134689A1 (en) 2019-12-17 2019-12-17 Multi-layer film or container and method for separating individual layers of a multi-layer composite body

Publications (1)

Publication Number Publication Date
WO2021121476A1 true WO2021121476A1 (en) 2021-06-24

Family

ID=74561646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2020/101055 WO2021121476A1 (en) 2019-12-17 2020-12-14 Container and method for separating individual plies of a multi-ply composite body

Country Status (3)

Country Link
EP (1) EP4076953A1 (en)
DE (1) DE102019134689A1 (en)
WO (1) WO2021121476A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193213A2 (en) * 1981-07-08 1986-09-03 RB Kunststoffpatent-Verwertungs AG Laminated sheet
EP0525708A1 (en) * 1991-07-30 1993-02-03 Ems-Inventa Ag Intermediate layer for multilayer articles and process for their dissolution
DE4328016A1 (en) * 1992-08-28 1994-03-03 Alusuisse Lonza Services Ag Packaging material which can be delaminated for recycling - contains layers of plastic, metal foil and/or cellulosic material, sepd. by layer(s) of polymer which is soluble in non-neutral aq. medium
US5419967A (en) * 1992-05-04 1995-05-30 Rohm And Haas Company High gas barrier co-extruded multilayer films
DE19831118A1 (en) 1998-07-11 2000-01-13 Brueckle Christian Automobile identification for theft prevention
WO2003070376A1 (en) * 2002-02-22 2003-08-28 Kuraray Specialities Europe Gmbh Method for recycling coated plastic molded bodies
WO2018055088A1 (en) 2016-09-22 2018-03-29 Tripledatt A method for producing a pigmented polymer material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981876A (en) * 1989-10-13 1991-01-01 Davidson Textron Inc. Method for separating and recovering layered plastics joined at an interface
IT1315461B1 (en) * 1999-08-10 2003-02-11 Giorgio Trani FILMABLE MATERIAL WITH SELECTIVELY CHANGEABLE CHARACTERISTICS.
US7811272B2 (en) * 2003-12-29 2010-10-12 Kimberly-Clark Worldwide, Inc. Nanofabricated gecko-like fasteners with adhesive hairs for disposable absorbent articles
DE102008059054A1 (en) * 2008-11-26 2010-05-27 Otto Bock Pur Life Science Gmbh Polyurethane patch for the transdermal application of active substances and process for its preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193213A2 (en) * 1981-07-08 1986-09-03 RB Kunststoffpatent-Verwertungs AG Laminated sheet
EP0525708A1 (en) * 1991-07-30 1993-02-03 Ems-Inventa Ag Intermediate layer for multilayer articles and process for their dissolution
US5419967A (en) * 1992-05-04 1995-05-30 Rohm And Haas Company High gas barrier co-extruded multilayer films
DE4328016A1 (en) * 1992-08-28 1994-03-03 Alusuisse Lonza Services Ag Packaging material which can be delaminated for recycling - contains layers of plastic, metal foil and/or cellulosic material, sepd. by layer(s) of polymer which is soluble in non-neutral aq. medium
DE19831118A1 (en) 1998-07-11 2000-01-13 Brueckle Christian Automobile identification for theft prevention
WO2003070376A1 (en) * 2002-02-22 2003-08-28 Kuraray Specialities Europe Gmbh Method for recycling coated plastic molded bodies
WO2018055088A1 (en) 2016-09-22 2018-03-29 Tripledatt A method for producing a pigmented polymer material

Also Published As

Publication number Publication date
DE102019134689A1 (en) 2021-06-17
EP4076953A1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
EP2162360B1 (en) Labels with water-soluble uv curable adhesives
DE69733761T2 (en) ADHESIVES AND LAMINATES
EP2933090B1 (en) Laminating method with grid-shaped adhesive application
EP0951004B1 (en) Easily removable label for reusable container
DE102008045547A1 (en) Label, in particular for a reusable container
DE102006017498A1 (en) Washable label
DE102015016840A1 (en) Auxiliary foil for laser cutting
DE102009041341A1 (en) Easy-to-open packaging
EP4139133A1 (en) Transfer product and method for recycling a transfer product
DE102014015960A1 (en) Container precursor, in particular for producing a food container, from a laminate with a gas and aroma barrier made of plastic and a peeled and partially folded on itself edge region
DE102006042074B3 (en) Preparing labels that can be detached from hydrophobic substrates in an aqueous solution, useful e.g. in packaging of food stuffs, comprises completely or partially applying a hot melt pressure sensitive adhesive on the label
DE2644209A1 (en) COMPOSITE FILM
EP4076953A1 (en) Container and method for separating individual plies of a multi-ply composite body
EP1896257B1 (en) Laminate for tube and container structures
DE4221681C2 (en) Process for recycling film waste
DE102015205935A1 (en) Easily removable label without release liner especially for reusable containers
DE102013001263A1 (en) Sheet-like composite with plastic layers of plastics of different damping properties with a layer containing LLDPE
EP2496656B1 (en) Labels removable by washing liquids
DE19522568A1 (en) Adhesive system for wrap-around labels for metal, glass, plastics etc containers
AT522332B1 (en) Capsule board
WO2008037764A1 (en) Use of water-soluble polyvinyl alcohol as an adhesive for plastic labels
EP2758951B1 (en) Self-adhesive label
WO2024133242A1 (en) Recyclable plastic film
DE102021115384A1 (en) Device and method for recycling laminated glass panes
DE102016219119B4 (en) Roll receiving device with an electrical contact for a roll of a sheet-like composite for producing dimensionally stable food containers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20824064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020824064

Country of ref document: EP

Effective date: 20220718