WO2021121442A1 - Power generation machine - Google Patents

Power generation machine Download PDF

Info

Publication number
WO2021121442A1
WO2021121442A1 PCT/CO2020/000017 CO2020000017W WO2021121442A1 WO 2021121442 A1 WO2021121442 A1 WO 2021121442A1 CO 2020000017 W CO2020000017 W CO 2020000017W WO 2021121442 A1 WO2021121442 A1 WO 2021121442A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
transmission system
flywheel
power generation
machine
Prior art date
Application number
PCT/CO2020/000017
Other languages
Spanish (es)
French (fr)
Original Assignee
Global Energy G.E S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy G.E S.A.S. filed Critical Global Energy G.E S.A.S.
Publication of WO2021121442A1 publication Critical patent/WO2021121442A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/60Motors or generators having rotating armatures and rotating excitation field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P11/00Arrangements for controlling dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P11/00Arrangements for controlling dynamo-electric converters
    • H02P11/06Arrangements for controlling dynamo-electric converters for controlling dynamo-electric converters having an ac output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention is framed in the field of engineering, particularly in machines for the generation of electrical energy.
  • Document US20020167234A1 describes a standby power generating system, in which a load L is fed from a main power source P, such as a utility or the like, through a load line LL.
  • a load L receives all its energy through the load line LL from the source P.
  • the level of The power of the source P falls below a value that can safely power the equipment represented by the load L. This value can be preset according to the equipment represented by the load L.
  • the generator system will take over and supply the necessary power to charge L through the LL line.
  • the power generating system disclosed in document US20020167234A1 comprises a frame (12) that supports the entire system as a single unit.
  • a motor (14) mounted on the frame (12) is coupled to a motor / generator (16) through a coupling unit (18) to drive the motor / generator (16) as a generator during use of the power system. energy for load L.
  • a flywheel (20) is also mounted on the frame (1) and coupled to both the motor (14) and the motor / generator (16) via the coupling unit ( 18).
  • the flywheel (20) is mounted to rotate in a horizontal plane, so large flywheels that rotate at high speeds can be used.
  • the rotation of the horizontal plane of the steering wheel (20) is indicated by direction indicators.
  • the motor (14) has an output shaft (16) that is horizontally oriented and rotates in a vertical plane, as indicated by the rotation indicators 28 and 30, and is coupled to a shaft 32 by a clutch 34.
  • the motor (14) and the motor / generator (16) are connected to each other with the flywheel (20) by means of a bevel gear mechanism that allows changing the direction of rotation.
  • the machine is limited to using an inertia flywheel (20) coupled to both the motor (4) and the motor / generator (16) via the coupling unit (18).
  • Document US4460834A describes a system for providing an uninterruptible power supply to an external load comprising: a flywheel generator, a first motor, a standby generator and a transfer controller.
  • the system includes a utility line as an external power source.
  • a first motor (14) is adapted to receive power from the external power source (12).
  • the first motor (14) is an AC three-phase induction squirrel cage motor that has high torque, low slip, heavy duty windings, NEMA, class F insulation, and reconnectable terminals for different line voltages. Lines 30, 31, and 32 are connected to motor (14) by stator windings 34, 35, and 36, respectively.
  • the backup generator of the uninterruptible power system comprises the backup motor (18) and the backup generator (20).
  • the standby engine (18) is of the diesel type that typically has a water-cooled radiator and a water pre-heater, along with protection against low oil pressure and high water temperature. The diesel engine (18) regulates its speed automatically.
  • Generator 20 has stator windings 74, 75, and 76, which are connected to lines 77, 78, and 79, respectively.
  • Lines 77, 78, and 79 extend from generator (20) to transfer controller (22).
  • Lines 77, 78 and 79 are arranged within transfer controller (22) to be in switchable position with respect to lines (30), (31) and (32) of the first motor (14).
  • a contactor (95) within the transfer controller (22) is closed to allow power to pass from the external power source (12) to the first motor (14).
  • the supply line supplies normal operating power to the AC induction motor (14).
  • the motor (14) causes the common shaft (38) and associated main parts (the motor rotor, the generator rotors and the flywheel) to constantly rotate at or near synchronous speed (typically 50 or 60 Hz).
  • the rotation of the shaft (38) causes the generator (16) to supply power to the external load (24).
  • the energy passes from the generator (16) through lines 50, 51 and 52 to the external load (24).
  • the external load (24) is any device that requires constant uninterrupted power. This can include computers, communications equipment, warning devices, etc.
  • the generator (16) is the only source of energy for the load.
  • the main line of services associated with the external power source (12) is isolated from the external load (24). As long as the flywheel rotates at or near synchronous speed and the generator continues to produce power, as required by the external load, achieving a continuous supply of power.
  • the system is limited to using two engines, where the second engine is a standby engine and is a diesel engine that has an electric starter. In accordance with the foregoing, there is a need to develop machines that allow generating and enhancing the energy received from a source type public network and delivering it to the consumer.
  • the present invention corresponds to a machine for power generation that comprises a first engine, a first power transmission system connected to the engine and a flywheel or hydraulic system connected to the first power transmission system. Additionally, the machine according to the invention comprises an electric speed motor connected to the flywheel and a generator connected to the speed wheel.
  • FIG. 1 corresponds to a top view of an embodiment of the invention that includes a third power transmission system.
  • FIG. 2 corresponds to an embodiment of the invention in top view, in which the third engine and the third power transmission system are not included.
  • FIG. 3 corresponds to an embodiment of the invention of the different elements of the machine as a whole generation.
  • FIG. 4 corresponds to an electrical plan of the machine for power generation.
  • FIG. 5 corresponds to the electrical diagram of the electronic card.
  • FIG. 6 corresponds to the electrical diagram of the generator and how it is connected. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention corresponds to a machine for the generation of electrical energy (hereinafter machine), which allows converting continuous energy to alternating current when using a battery bank, otherwise only the public network would be used.
  • a current alternates at 220 volts (V) three-phase with one phase at 60 Hertz (Hz).
  • the machine comprises:
  • the machine acquires continuous power at 110V or 220V single phase from a public network or from a battery bank, to then increase its power by means of various mechanical and electrical equipment.
  • the electrical energy coming from the public network or from a battery bank passes to a first motor (1), which is an electric motor that rotates at a few revolutions per minute (RPM, for its acronym in English) in a range between 1000 RPM to 2000 RPM and has a power selected between 0.3 Kilowatts (kW), 0.5 kW, 1 kW, 1.5 kW, 2 kW and 3 kW.
  • RPM revolutions per minute
  • the motor (1) is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with wound auxiliary start, motors with wound auxiliary starter and with capacitor); and direct current motors (e.g. series excitation motors, parallel excitation motors, compound excitation motors).
  • alternating current motors eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with wound auxiliary start, motors with wound auxiliary starter and with capacitor
  • direct current motors e.g. series excitation motors, parallel excitation motors, compound excitation motors.
  • the electrical energy is converted into rotational mechanical energy and this is connects to a first power transmission system (2).
  • the first power transmission system (2) is selected from transmission chains, transmission belts or bands, pulleys, toothed pulleys, gears, pinions, pinion-chain, pinion mechanism and endless screw , rack mechanism, friction wheels, friction discs, keys and rib shafts, universal joints and constant velocity joints, camshaft and other equivalent mechanical transmission elements known in the technical field.
  • the power transmission system (2) comprises a pump (3) connected to the motor (1), a heat exchanger (4) connected to the pump (3) and a hydraulic motor (5) connected to the heat exchanger (4). Additionally, a storage tank (6) connected between the pump (3) and the hydraulic motor (5).
  • the pump (3) is connected to the motor (1) by means of couplings which are selected from chain couplings; Rigid Plate Couplings, Rigid Taper Clamp Couplings, Rigid Sleeve or Stud Couplings, Flexible Couplings, Gear Type Coupling, Steel Grating Coupling, Jaw Coupling, and combinations thereof.
  • the pump (3) is selected from among peripheral impeller centrifugal pumps, gear pumps, vane pumps, screw pumps, progressive cavity pumps, lobe pumps or cam pumps, peristaltic pumps, pumps reciprocating pumps, centrifugal pumps, duplex pump, diaphragm pump, double diaphragm pump or other equivalent pumps known in the technical field.
  • the pump (3) can be a diaphragm, piston, centrifugal single-stage or multi-stage pump and combinations thereof.
  • the pump (3) can have a selected power between 0.3 kW, 0.5 kW, 1 kW, 1.5 kW, 2 kW and 3 kW.
  • the pump (3) has a suction and a discharge, where the diameter for the suction and discharge is selected between 0.0 lm, 0.015m, 0.020m, 0.030m, 0.040m and 0.050m.
  • the suction and discharge piping of the pump (3) is made of a selected material of carbon steel, cast iron, galvanized iron, chromium steels, chromium-nickel steels, chromium-nickel-titanium steels, nickel-chromium-molybdenum-tungsten alloy, ferrous chromium-moly alloys, 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel , 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, manganese alloyed steel, and combinations of the above alloyed steels.
  • the selection of the material of the suction and discharge piping is essential because this material must withstand high temperatures and high pressures.
  • the pump discharge (3) is connected to a heat exchanger (4).
  • the heat exchanger (4) is selected from shell and tube heat exchangers with parallel flow, shell and tube heat exchangers with counter flow, cooling towers, axial condensers, side condensers, bottom condensers, one-pass condensers, two-pass condensers passages, one-body condensers, two-body condensers, coil, double tube exchanger and other elements known in the technical field, or combinations of the above, that allow cooling a viscous fluid.
  • the heat exchanger (4) is located at a medium distance to the storage tank (6) and to the pump (3). This configuration allows a greater heat transfer between the heat exchanger (4) and the environment, since it does not have proximal equipment and allows a natural flow of air between the exchanger.
  • the heat exchanger (4) can be formed by a plurality of pipes connected to each other forming a spiral path or a zigzag path, where the inlet of the exchanger is connected to the discharge of the pump (3 ) and the heat exchanger discharge (4) is connected to a hydraulic motor (5).
  • "zigzag" corresponds to a broken line formed by segments joined forming incoming and outgoing angles.
  • the hydraulic motor (5) has output revolutions per minute between 100 RPM to 1000 RPM.
  • the hydraulic motor (5) is selected from gear motors, vane motor, piston motors (eg axial piston motors and radial piston motor). The liquid that passes through the hydraulic motor (5) increases its temperature where it subsequently passes to the storage tank (6).
  • the storage tank (6) is made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome-nickel-titanium steels, alloy Nickel-Chromium-Molybdenum-Tungsten, Ferrous Chromium-Moly Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel, 442 Stainless Steel, Alloy Steel with manganese and combinations of the above alloyed steels.
  • the material of the storage tank (6) should withstand high temperatures and should be resistant to corrosion.
  • the storage tank (6) should withstand high temperatures and should be resistant to corrosion.
  • the storage tank (6) should withstand high temperatures and should be resistant to corrosion.
  • (6) has a volume to occupy between 50 liters to 500 liters, between 20 liters to 200 liters and between 10 liters to 100 liters.
  • the liquid of the first transmission system (2) has two temperature phases.
  • the first phase is when the pump (3) sucks hot liquid and drives it to a heat exchanger (4) where its temperature drops, later, this liquid drives the hydraulic motor (5) where it rises in temperature again and then returns to the storage tank (6) to restart the cycle.
  • the liquid of the first power transmission system (2) corresponds to a hydraulic fluid which is selected from oil-based hydraulic fluid, synthetic hydraulic fluid, hydraulic fluid with detergent additives or any hydraulic fluid known in the technical field.
  • the hydraulic fluid is a high performance hydraulic fluid.
  • the hydraulic motor (5) is connected to a second power transmission system (7).
  • the output revolutions of the hydraulic motor (5) are delivered to the second power transmission system
  • the second power transmission system (7) comprises a first gear (8) connected to the output shaft of the hydraulic motor (5), a second gear (10) located distally to the gear (8 ) and this second gear (10) is connected to a shaft (16). Additionally, a first chain (9) that connects the first gear (8) and the second gear (10).
  • the first gear (8) is the driving gear, that is, it is in charge of transmitting the power to the second gear (10) because the hydraulic motor (5) confers a certain torque at certain revolutions per minute.
  • the first gear (8) has only one direction of rotation, that is, in the event that the first gear (8) changes its rotation, it cannot do so because it comprises inside , and proximal to the axis of the hydraulic motor (5), a ratchet-type locking system (ratchet, by its name in English).
  • the first gear (8) and the second gear (10) are selected from the group of spur gears, bevel gears, helical gears, hypoid gears, trapezoidal gears, and combinations of the foregoing.
  • the first gear (8) and the second gear (10) have a pitch diameter between 0.10m, 0.15m, 0.20m, 0.25m, 0.30m, 0.40m, 0 , 50m and 0.60m. The diameter of the gears (8) and (10) depends on the preferences of the user.
  • the first gear (8) and the second gear (10) have a thickness between 0.005m, 0.0lm, 0.015m, 0.020m, 0.025m and 0.030m.
  • the first gear (8) and the second gear (10) are made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, stainless steel. Chromium-Nickel-Titanium, Nickel-Chromium-Molybdenum-Tungsten Alloy, Ferrous Chromium-Molybdenum Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel , 442 stainless steel, manganese alloyed steel and combinations of the above alloyed steels.
  • the first gear (8) and the second gear (10) each have between 20 and 100 teeth.
  • the first chain (9) that connects to gears (8) and (10) has a length selected between 0.5 and 4.0 meters. The length of the string depends on the user's preferences.
  • the first chain (9) is selected from the group of fixed bushing chains, bushing chain, roller chain, silent bushing chain or Gale chain, silent chain with half round pin, conveyor chain of fixed bushings, stretch bench chain, Fleyer type load chain, block chain, and any chain known in the technical field. Chain selection depends on how much torque comes from the first power transmission system.
  • the first chain (9) has a pitch selected from 32 to 50.
  • the second gear (10) is connected to the first shaft (16) which receives all the dynamic load from the second power transmission system (7).
  • the first shaft (16) has a diameter selected from 0.010; 0.020; 0.025; 0.035; 0.040; 0.060; 0.070; 0.080; 0.090; and 0.100 meters.
  • the first shaft (16) has a length between 1.0 and 10.0 meters.
  • the first shaft (16) is made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome-nickel-titanium steels, alloy of Nickel-Chromium-Molybdenum-Tungsten, Ferrous Chromium-Molybdenum Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel, 442 Stainless Steel, Alloy Steel with manganese and combinations of the above alloy steels.
  • the second power transmission system (7) and the third power transmission system (11) work in parallel and perpendicular to the first axis (16).
  • the third power transmission system (11) comprises a first pulley (12) connected to one end of the first shaft (16), a second pulley (14) located distally to the first pulley ( 12). Additionally, a transmission belt (13) that connects the first pulley (12) and the second pulley (14).
  • the third power transmission system (11) has its own motor (15) which is connected to the second pulley (14).
  • the first pulley (12) and the second pulley (14) have a diameter selected from 0.050; 0.080; 0.100; 0.015; and 0.025 meters.
  • the first pulley (12) and the second pulley (14) are selected from the group of V-grooved pulleys, circular bottom, flat bottom, and combinations thereof.
  • the first pulley (12) and the second pulley (14) are made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome steels.
  • the thickness of the first pulley (12) and the second pulley (14) are selected between 0.05; 0.08 and 0.010 meters.
  • the first pulley (12) is connected to the first shaft (16) by fixing means selected from screws, bolts, lock washers, keyways, studs, and combinations of the foregoing.
  • the transmission belt (13) is selected from flat belts, special or V belts, round belts, linked belts, toothed belts, ribbed or poly V belts or any belt known to a person who is moderately versed in The matter.
  • the third power transmission system (11) is moved by means of a second motor (15) which is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors. , two-phase motors, wound starter motors, wound starter and capacitor motors) and direct current motors (eg series excitation motors, parallel excitation motors, compound excitation motors).
  • the second motor (15) is an electric motor that rotates at revolutions per minute (RPM) in a range between 1500 RPM to 2000 RPM and has a power selected between 0.3 kW, 0.5 kW, 1 kW, 1.5 kW, 2 kW, 3 kW up to 15KW.
  • RPM revolutions per minute
  • a flywheel (17) is connected to the second power transmission system (7) and to the third power transmission system (11) through the first shaft (16). Having several power transmission systems makes it possible to ensure that the number of revolutions per minute necessary to keep the flywheel (17) rotating is maintained. Additionally, the flywheel allows the storage of kinetic energy, which allows it to continue rotating when the power transmission systems or any motor stops rotating.
  • the flywheel (17) is connected to the first power transmission system (2).
  • the way to connect the first power transmission system (2) with the flywheel (17) is by means of a second power transmission system (7).
  • the flywheel has a weight between 100 and 1000 Kg.
  • the weight of the flywheel (17) and the size of the machine depend on the amount of electrical energy that is desired.
  • the flywheel (17) has a diameter selected between 0.3 and 2.0 meters and a thickness between 0.1 and 0.4 meters.
  • the flywheel (17) comprises vent channels along the perimeter of the thickness, this in order to avoid back flow.
  • the number of channels are selected from 2 to 10.
  • the flywheel (17) is connected to the shaft (16) by means of keyways and / or elements that block the axial movement of the flywheel (17). To ensure that the flywheel (17) does not slide on the surface of the first shaft (16), fasteners are operationally connected as captives.
  • the keyway has a length selected from 0.02, 0.04, 0.06, 0.08, 0.10, 0.15 and 0.20 meters.
  • the length of the keyway depends exclusively on the size of the flywheel (17). Additionally, the keyway has a height selected between 0.002, 0.004, 0.006, 0.008 and 0.010 meters.
  • a speed reducer (20) is connected to the first shaft (16) and proximal to the flywheel (17) by means of a coupling (18).
  • a third motor (19) is connected between the reducer (20) and the coupling (18).
  • the motor (19) is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with wound auxiliary start, motors with wound and capacitor auxiliary starting), and direct current motors (eg series excitation motors, parallel excitation motors, compound excitation motors).
  • the speed reducer (20) is selected from worm gear reducers, gear speed reducers, cycloidal reducers, planetary speed reducers, and combinations of the foregoing.
  • the selection of speed reducers is important, because you need a speed reducer that can deliver high torque to a generator (21).
  • the speed reducer (20) is a torque multiplier.
  • the coupling (18) is selected from chain couplings; Rigid Plate Couplings, Rigid Taper Clamp Couplings, Rigid Sleeve or Stud Couplings, Flexible Couplings, Gear Type Coupling, Steel Grating Coupling, Rigid Coupling jawbone and combinations thereof.
  • the chain coupling is very effective since it allows the first shaft (16) to rotate without vibrations and to obtain large ranges of torque.
  • the third motor (19) has the cooling fan removed so that the first shaft (16) passes through it completely until it reaches the speed reducer (20) where it is connected. This configuration is made because the third motor (19) works to sustain voltage drops in the other motors (1) and (15) and in this way maintain the RPM of the machine.
  • the output of the speed reducer (20) corresponds to a second shaft (22) which is connected to a generator (21).
  • the generator (21) is a permanent magnet generator.
  • the permanent magnet generator is 200 RPM and has a generating output of 220V three phase at 60Hz. Following this configuration, this mode allows converting 2984W of direct current with 50 amps (50A), to 46979W of 220V three-phase alternating current with phase at 60Hz.
  • the machine is fed from a public network and transforms 1 kW of energy up to a range between 2 kW to 0 kW of energy.
  • the machine comprises a control unit that controls the machine.
  • the control unit is selected from the group consisting of computers, industrial computers, microchips, microcontrollers, microprocessors, programmable gate array devices, programmable logic controllers, programmable arithmetic-logic units, or combinations of the foregoing.
  • control unit is selected from control boards.
  • control board works as follows:
  • the generator (21) synchronized with the voltage detectors which are connected to the network analyzer that commands an electronic signal to energize the coil of the force contactor that feeds the compensating motor. This system is released once it has reached the maximum RPM required for its optimal work ramps.
  • the 20 Hp three-phase electric motor that is coupled to the shaft of the flywheel (17) through the pulley system has the function of keeping the inertia constant simultaneously with the hydraulic translation system.
  • the hydraulic system that works at the start of the equipment with a direct current motor (1) that acts as the starter motor, turns a hydraulic pump of a certain amount of gallons, which accumulates the gallons of oil. to be driven by means of a single effect valve with return to the tank (first transmission system (21)).
  • This oil pressure is directed to a hydraulic swing motor with 1 ⁇ 2 ”inlets and 2000 psi - 3000 psi to rotate the hydraulic motor at a speed of 640 RPM with high torque to move the flywheel (17) that it weighs 410 Kilograms and it would take off delivering this power output to be driven by the 20 hp engine and continue its functionality.
  • the machine is connected to a lithium battery bank (29), subsequently, the captured energy passes through an inverter (28) and through electrical breakers (27). Then, it goes through a thermal relay (26), a contactor (25), some fuses (24) and finally the 4Hp electric motor (1).
  • Example 1 Electronic system of the power generating machine.
  • the control unit comprises an electrical control board that controls the starting system of the machine, sensing temperature, frequency, voltage, speed and the cycles that make up the mechanical systems on a timed basis.
  • the electrical control board is made up of: - a network analyzer, which is a display instrument for voltage, amperage, frequency and nominal power, by means of inductive sensors. This instrument can work via satellite with a 4G system, which does not need a constant operator;
  • main totalizer which is an instrument that blocks or transmits the generated voltage
  • timers that control the times of each of the systems that make up the equipment (start, stop, rest and constant);
  • Y - a distribution bus is the circuit that transfers the generated energy
  • an electronic card that takes a voltage generated by the public network or from a battery bank (110 VAC) or a pulsating voltage from the generator (21), regulates it, filters it, suppresses it the peaks, it purifies the sinus sling and maintains the frequency according to your requirement (30HZ - 60HZ).
  • the electronic card includes:
  • a single-phase surge suppressor (30) that is in charge of leveling the current in the events of fluctuations;
  • a sinusoidal wave purifying circuit (31) that ensures that the current reaches the maximum point of the sinusoidal wave until it reaches the center point of the curve to guarantee the stability of the frequency;
  • the electronic card absorbs the pulsating voltage produced by the Generator or the voltage generated by the network, regulates the voltage by filtering each pulse that passes through the ideal torus transformer, making it go through a surge suppressor, to align the voltage voltage, for later amplify the voltage by means of a source called a block oscillator.
  • the electronic card also manages to minimize the harmonics that occur between the coil spaces and Neodymium magnets.
  • Example 2 The machine increases power taken from a battery bank or a public grid.
  • the motor (1) is the one that takes the current from the network or the battery bank, which starts the system, transforming the electrical energy into mechanical energy to transmit the rotary movement towards the inertia wheel (17), which at in turn, it accumulates kinetic energy at high revolutions, to be transmitted to the reduction motor (19 and 20). This achieved torque drives it to the central axis of the magnetic generator (21) at low revolutions.
  • the motor (1) can be disconnected from the original source of energy and the generator (21) feeds the electric motor with what it generates internally, finally producing a closed cycle system, obtaining the electric current with a very high performance .
  • An objective of this generator (21) is that with the flywheel (17) it is to provide kinetic energy (power accumulation) applied to the central axis of the magnetic motor, which breaks the inertia and / or exceeds the torque emitted by the magnetic field of this generator.
  • Example 3 Machine for the generation of electrical energy.
  • a machine for the generation of electrical energy was designed and built.
  • the machine allows converting 110V with single-phase alternating current, to 220V with three-phase alternating current, with the following specifications:
  • the motor (1) is an electric motor of 2.98 kW at 1800 RPM continuous current 72V which is connected to a first power transmission system (2).
  • the first power transmission system (2) is made up of: i. a centrifugal pump (3) with the following specifications:
  • the liquid present in the first power transmission system (2) corresponds to a hydraulic fluid which would be a SHELL TM TELLUS S2 M 68.
  • the second power transmission system (7) is connected to the first power transmission system (2).
  • the second power transmission system (7) is made up of: i.
  • the second gear (10) of the second power transmission system (7) is connected to a first shaft (16) having the following specifications:
  • the third power transmission system (11) is made up of: i.
  • the ratio between the first pulley (12) and the second pulley (14) is 1: 1;
  • the third power transmission system (11) is connected to a second motor (15) which is alternating current at 220V three-phase at 3600 RPM.
  • the first shaft (16), the second gear (10) of the second power transmission system is connected and the first pulley (12) of the third power transmission system has the following characteristics:
  • a flywheel (17) is connected to the first shaft (16), the flywheel has the following characteristics:
  • flywheel (17) is fixed to the first shaft (16) by means of at least one keyway with the following characteristics:
  • the reducer has the following specifications:
  • a third motor (19) is connected to the input of the speed reducer (20).
  • the third motor (19) has the following characteristics: electric motor: 10 hp 1800 Rpm 220 vac.
  • the third motor (19) and the speed reducer (20) are connected to the first shaft (16) through a coupling (18).
  • the coupling has the following specification:
  • the output of the speed reducer (20) is connected to a second shaft (22) which has the same diameter as the first shaft (16).
  • the second shaft (22) is connected to a generator (21) that has the following specifications:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

The present invention relates to a power generation machine, which comprises a first motor, a first power transmission system connected to the motor, and a flywheel connected to the first power transmission system. The machine also comprises a speed reducer connected to the flywheel, and a generator connected to the speed reducer. In particular, the machine comprises a first DC motor, powered by a source of energy stored in a bank of batteries, the motor being coupled to a hydraulic unit system that transmits starting torque to move the flywheel, which stores kinetic energy, transmitting same by means of a power multiplier, it being applied to the central shaft of the generator at low revolutions.

Description

MÁQUINA PARA LA GENERACIÓN DE ENERGÍA MACHINE FOR ENERGY GENERATION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se enmarca en el campo de la ingeniería, particularmente en máquinas para la generación de energía eléctrica. The present invention is framed in the field of engineering, particularly in machines for the generation of electrical energy.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA DESCRIPTION OF THE STATE OF THE ART
El estado de la técnica describe diferentes tipos de máquinas para la generación de energía, entre ellas las divulgadas en los documentos de patente US20020167234A1, US4460834A y US20030137196A1. The state of the art describes different types of machines for power generation, including those disclosed in patent documents US20020167234A1, US4460834A and US20030137196A1.
El documento US20020167234A1 describe un sistema generador de energía de reserva, en el que una carga L se alimenta de una fuente de alimentación principal P, como una utilidad o similar, a través de una línea de carga LL. Durante el funcionamiento normal de la fuente de energía P, la carga L recibe toda su energía a través de la línea de carga LL de la fuente P. En ciertas situaciones como tormentas, fallas del equipo o similares, hay momentos en que el nivel de energía de la fuente P cae por debajo de un valor que puede alimentar de forma segura el equipo representado por la carga L. Este valor puede preestablecerse de acuerdo con el equipo representado por la carga L. Cuando el nivel de potencia de la fuente P cae por debajo de este nivel preestablecido, el sistema generador se hará cargo y suministra la potencia necesaria para cargar L a través de la línea LL. Document US20020167234A1 describes a standby power generating system, in which a load L is fed from a main power source P, such as a utility or the like, through a load line LL. During the normal operation of the power source P, the load L receives all its energy through the load line LL from the source P. In certain situations such as storms, equipment failure or the like, there are times when the level of The power of the source P falls below a value that can safely power the equipment represented by the load L. This value can be preset according to the equipment represented by the load L. When the power level of the source P falls below this preset level, the generator system will take over and supply the necessary power to charge L through the LL line.
El sistema generador de energía divulgado en el documento US20020167234A1 comprende un marco (12) que admite todo el sistema como una sola unidad. Un motor (14) montado sobre e marco (12) está acoplado a un motor/generador (16) a través de una unidad de acoplamiento (18) para conducir el motor/generador (16) como un generador durante el uso del sistema de energía para la carga L. Durante las interrupciones o tiempos de inactividad para la fuente P, una volante de inercia (20) también está montada sobre el bastidor (1) y acoplado tanto al motor (14) como al motor/generador (16) mediante la unidad de acoplamiento (18). La volante (20) está montada para girar en un plano horizontal, por lo que se pueden usar grandes volantes que giran a altas velocidades. La rotación del plano horizontal del volante (20) se indica mediante indicadores de dirección. The power generating system disclosed in document US20020167234A1 comprises a frame (12) that supports the entire system as a single unit. A motor (14) mounted on the frame (12) is coupled to a motor / generator (16) through a coupling unit (18) to drive the motor / generator (16) as a generator during use of the power system. energy for load L. During interruptions or idle times for the source P, a flywheel (20) is also mounted on the frame (1) and coupled to both the motor (14) and the motor / generator (16) via the coupling unit ( 18). The flywheel (20) is mounted to rotate in a horizontal plane, so large flywheels that rotate at high speeds can be used. The rotation of the horizontal plane of the steering wheel (20) is indicated by direction indicators.
El motor (14) tiene un eje de salida (16) que está orientado horizontalmente y gira en un plano vertical, como se indica por los indicadores de rotación 28 y 30, y está acoplado a un eje 32 por un embrague 34. El motor (14) y el motor/generador (16) se conectan entre sí con la volante (20) por medio de un mecanismo de engranajes cónicos que permiten cambiar la dirección de rotación. Sin embargo, la máquina está limitada a utilizar una volante de inercia (20) acoplado tanto al motor (4) como al motor/generador (16) mediante la unidad de acoplamiento (18). The motor (14) has an output shaft (16) that is horizontally oriented and rotates in a vertical plane, as indicated by the rotation indicators 28 and 30, and is coupled to a shaft 32 by a clutch 34. The motor (14) and the motor / generator (16) are connected to each other with the flywheel (20) by means of a bevel gear mechanism that allows changing the direction of rotation. However, the machine is limited to using an inertia flywheel (20) coupled to both the motor (4) and the motor / generator (16) via the coupling unit (18).
El documento US4460834A describe un sistema para proporcionar una fuente de alimentación ininterrumpida a una carga extema que comprende: un generador de volante, un primer motor, un generador de reserva y un controlador de transferencia. El sistema incluye una línea de los servicios públicos como fuente de alimentación externa. Un primer motor (14) está adaptado para recibir energía de la fuente de energía externa (12). Document US4460834A describes a system for providing an uninterruptible power supply to an external load comprising: a flywheel generator, a first motor, a standby generator and a transfer controller. The system includes a utility line as an external power source. A first motor (14) is adapted to receive power from the external power source (12).
El primer motor (14) es un motor de jaula de ardilla de inducción trifásico A.C. que tiene un alto par, bajo deslizamiento, bobinados reforzados, N.E.M.A., aislamiento clase F y terminales reconectables para diferentes voltajes de línea. Las líneas 30, 31 y 32 están conectadas al motor (14) por los devanados del estator 34, 35 y 36, respectivamente. A través de esta disposición, la fuente de alimentación externa (12) hace que el motor de inducción (14) cree un par en el eje (38). El generador de reserva del sistema de energía ininterrumpible comprende el motor de reserva (18) y el generador de reserva (20). El motor de reserva (18) es del tipo diésel que normalmente tiene un radiador enfriado por agua y un pre calentador de agua, junto con protección contra baja presión de aceite y alta temperatura del agua. El motor diesel (18) se regula automáticamente la velocidad. El generador (20) tiene bobinados de estator (74), (75) y (76), los cuales están conectados a las líneas (77), (78) y (79), respectivamente. Las líneas 77, 78 y 79 se extienden desde el generador (20) hasta el controlador de transferencia (22). Las líneas 77, 78 y 79 se disponen dentro del controlador de transferencia (22) para estar en posición conmutable con respecto a las líneas (30), (31) y (32) del primer motor (14). The first motor (14) is an AC three-phase induction squirrel cage motor that has high torque, low slip, heavy duty windings, NEMA, class F insulation, and reconnectable terminals for different line voltages. Lines 30, 31, and 32 are connected to motor (14) by stator windings 34, 35, and 36, respectively. Through this arrangement, the external power source (12) causes the induction motor (14) to create torque on the shaft (38). The backup generator of the uninterruptible power system comprises the backup motor (18) and the backup generator (20). The standby engine (18) is of the diesel type that typically has a water-cooled radiator and a water pre-heater, along with protection against low oil pressure and high water temperature. The diesel engine (18) regulates its speed automatically. Generator 20 has stator windings 74, 75, and 76, which are connected to lines 77, 78, and 79, respectively. Lines 77, 78, and 79 extend from generator (20) to transfer controller (22). Lines 77, 78 and 79 are arranged within transfer controller (22) to be in switchable position with respect to lines (30), (31) and (32) of the first motor (14).
Inicialmente, un contactor (95) dentro del controlador de transferencia (22), está cerrado para permitir que la energía pase de la fuente de energía externa (12) al primer motor ( 14). De esta manera, la línea de suministro suministra energía de funcionamiento normal al motor de inducción de CA (14). El motor (14) hace que el eje común (38) y las partes principales asociadas (el rotor del motor, los rotores del generador y el volante) giren constantemente a la velocidad síncrona o cerca de ella (típicamente 50 o 60 Hz). El giro del eje (38) hace que el generador (16) suministre energía a la carga extema (24). Initially, a contactor (95) within the transfer controller (22) is closed to allow power to pass from the external power source (12) to the first motor (14). In this way, the supply line supplies normal operating power to the AC induction motor (14). The motor (14) causes the common shaft (38) and associated main parts (the motor rotor, the generator rotors and the flywheel) to constantly rotate at or near synchronous speed (typically 50 or 60 Hz). The rotation of the shaft (38) causes the generator (16) to supply power to the external load (24).
La energía pasa del generador (16) a través de las líneas 50, 51 y 52 a la carga externa (24). La carga externa (24) es cualquier dispositivo que requiere energía constante ininterrumpida. Esto puede incluir computadoras, equipos de comunicaciones, dispositivos de advertencia, etc. El generador (16) es la única fuente de energía para la carga. The energy passes from the generator (16) through lines 50, 51 and 52 to the external load (24). The external load (24) is any device that requires constant uninterrupted power. This can include computers, communications equipment, warning devices, etc. The generator (16) is the only source of energy for the load.
La línea principal de servicios asociados con la fuente de energía externa (12) está aislada de la carga externa (24). Mientras el volante gire a velocidad síncrona, o cerca de ella, y el generador continúa produciendo la energía, según lo requiera la carga extema, logrando un suministro continuo de energía. Sin embargo, el sistema está limitado a utilizar dos motores, donde el segundo motor es un motor de reserva y es un motor diésel que tiene un arranque eléctrico. De acuerdo con lo anterior, existe la necesidad de desarrollar máquinas que permitan generar y potenciar la energía recibida de una fuente tipo red pública y entregarla al consumidor. The main line of services associated with the external power source (12) is isolated from the external load (24). As long as the flywheel rotates at or near synchronous speed and the generator continues to produce power, as required by the external load, achieving a continuous supply of power. However, the system is limited to using two engines, where the second engine is a standby engine and is a diesel engine that has an electric starter. In accordance with the foregoing, there is a need to develop machines that allow generating and enhancing the energy received from a source type public network and delivering it to the consumer.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención corresponde a una máquina para la generación de energía que comprende un primer motor, un primer sistema de transmisión de potencia conectado al motor y una volante de inercia o sistema hidráulico conectado al primer sistema de transmisión de potencia. Adicionalmente, la máquina de acuerdo con la invención comprende un motor eléctrico de velocidad conectado al volante de inercia y un generador conectado al de velocidad. The present invention corresponds to a machine for power generation that comprises a first engine, a first power transmission system connected to the engine and a flywheel or hydraulic system connected to the first power transmission system. Additionally, the machine according to the invention comprises an electric speed motor connected to the flywheel and a generator connected to the speed wheel.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La FIG. 1 corresponde a una vista superior de una modalidad de la invención que incluye un tercer sistema de transmisión de potencia. FIG. 1 corresponds to a top view of an embodiment of the invention that includes a third power transmission system.
La FIG. 2 corresponde a una modalidad de la invención en vista superior, en la cual no se incluye el tercer motor y el tercer sistema de trasmisión de potencia. FIG. 2 corresponds to an embodiment of the invention in top view, in which the third engine and the third power transmission system are not included.
La FIG. 3 corresponde a una modalidad de la invención de los diferentes elementos de la máquina en conjunto de generación. FIG. 3 corresponds to an embodiment of the invention of the different elements of the machine as a whole generation.
La FIG: 4 corresponde a un plano eléctrico de la máquina para la generación de energía. La FIG. 5 corresponde al esquema eléctrico de la tarjeta electrónica. FIG: 4 corresponds to an electrical plan of the machine for power generation. FIG. 5 corresponds to the electrical diagram of the electronic card.
La FIG. 6 corresponde al esquema eléctrico del generador y como se conecta. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN FIG. 6 corresponds to the electrical diagram of the generator and how it is connected. DETAILED DESCRIPTION OF THE INVENTION
La presente invención corresponde a una máquina para la generación de energía eléctrica (en adelante máquina), la cual permite convertir energía continua a corriente alterna cuando se utiliza un banco de batería, de lo contrario solo se utilizaría la red pública. A comente alterna a 220 voltios (V) trifásico con una fase a 60 Hertz (Hz). The present invention corresponds to a machine for the generation of electrical energy (hereinafter machine), which allows converting continuous energy to alternating current when using a battery bank, otherwise only the public network would be used. A current alternates at 220 volts (V) three-phase with one phase at 60 Hertz (Hz).
Haciendo referencia la FIG. 1, a la FIG: 2 y a la FIG. 3, la máquina comprende: Referring to FIG. 1, FIG: 2 and FIG. 3, the machine comprises:
- un primer motor ( 1 ) ; - a first motor (1);
- un primer sistema de transmisión de potencia (2) conectado al motor (1);- a first power transmission system (2) connected to the engine (1);
- una volante de inercia (17) conectado al primer sistema de transmisión de potencia (2); - a flywheel (17) connected to the first power transmission system (2);
- un reductor de velocidad (20) conectado a la volante de inercia (17); - a speed reducer (20) connected to the flywheel (17);
- un generador (21) conectado al reductor de velocidad (20). - a generator (21) connected to the speed reducer (20).
Se entenderá en la presente invención que la máquina adquiere energía continua a 110V o 220V monofásica de una red pública o de un banco de baterías, para luego aumentar su potencia por medio de varios equipos mecánicos y eléctricos. La energía eléctrica proveniente de la red pública o de un banco de baterías pasa a un primer motor (1), el cual es un motor eléctrico que gira a unas revoluciones por minuto (RPM, por sus siglas en inglés) en un rango entre 1000 RPM a 2000 RPM y tiene una potencia seleccionada entre 0,3 Kilovatios (kW), 0,5 kW, 1 kW, 1,5 kW, 2 kW y 3 kW. It will be understood in the present invention that the machine acquires continuous power at 110V or 220V single phase from a public network or from a battery bank, to then increase its power by means of various mechanical and electrical equipment. The electrical energy coming from the public network or from a battery bank passes to a first motor (1), which is an electric motor that rotates at a few revolutions per minute (RPM, for its acronym in English) in a range between 1000 RPM to 2000 RPM and has a power selected between 0.3 Kilowatts (kW), 0.5 kW, 1 kW, 1.5 kW, 2 kW and 3 kW.
En una modalidad de la invención, el motor (1) se selecciona entre motores de corriente alterna (v.g. motores sincrónicos trifásicos, motores asincronos sincronizados, motores con un rotor de imán permanente, motores monofásicos, motores bifásicos, motores con arranque auxiliar bobinado, motores con arranque auxiliar bobinado y con condensador); y motores de corriente continua (v.g. motores de excitación en serie, motores de excitación en paralelo, motores de excitación compuesta). In one embodiment of the invention, the motor (1) is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with wound auxiliary start, motors with wound auxiliary starter and with capacitor); and direct current motors (e.g. series excitation motors, parallel excitation motors, compound excitation motors).
Posteriormente a que la energía de la red pública haya comenzado a mover el rotor del motor (1), la energía eléctrica se convierte en energía mecánica rotacional y esta se conecta a un primer sistema de transmisión de potencia (2). En una modalidad de la invención, el primer sistema de transmisión de potencia (2) se selecciona entre cadenas de transmisión, correas o bandas de transmisión, poleas, poleas dentadas, engranajes, piñones, piñón-cadena, mecanismo de piñón y tomillo sin fin, mecanismo de cremallera, ruedas de fricción, discos de fricción, chavetas y ejes nervados, juntas cardán y juntas homocinéticas, árbol de levas y otros elementos de transmisión mecánica equivalentes conocidos en el campo técnico. After the energy from the public network has begun to move the rotor of the motor (1), the electrical energy is converted into rotational mechanical energy and this is connects to a first power transmission system (2). In one embodiment of the invention, the first power transmission system (2) is selected from transmission chains, transmission belts or bands, pulleys, toothed pulleys, gears, pinions, pinion-chain, pinion mechanism and endless screw , rack mechanism, friction wheels, friction discs, keys and rib shafts, universal joints and constant velocity joints, camshaft and other equivalent mechanical transmission elements known in the technical field.
La selección del primer sistema de trasmisión de potencia (2) es muy importante, debido a que este permite bajar las revoluciones provenientes del primer motor (1) y aumentar el torque final en la salida del primer sistema de transmisión de potencia (2). En una modalidad de la invención y haciendo referencia a la FIG. 1 y a la FIG. 2, el sistema de transmisión de potencia (2) comprende una bomba (3) conectada al motor (1), un intercambiador de calor (4) conectado a la bomba (3) y un motor hidráulico (5) conectado al intercambiador de calor (4). Adicionalmente, un tanque de almacenamiento (6) conectado entre la bomba (3) y el motor hidráulico (5). The selection of the first power transmission system (2) is very important, because it allows lowering the revolutions from the first engine (1) and increasing the final torque at the output of the first power transmission system (2). In one embodiment of the invention and referring to FIG. 1 and FIG. 2, the power transmission system (2) comprises a pump (3) connected to the motor (1), a heat exchanger (4) connected to the pump (3) and a hydraulic motor (5) connected to the heat exchanger (4). Additionally, a storage tank (6) connected between the pump (3) and the hydraulic motor (5).
En una modalidad de la invención no ilustrada, la bomba (3) se conecta al motor (1) por medio de acoples los cuales se selecciona entre acoples de cadena; acoplamientos rígidos de platillos, acoplamientos rígidos por sujeción cónica, acoplamientos rígidos de manguito o con prisionero, acoplamientos flexibles, acoplamiento del tipo de engranaje, acoplamiento de rejilla de acero, acoplamiento de quijada y combinaciones de las mismas. En una modalidad de la invención, la bomba (3) se selecciona entre bomba centrífuga de rodete periférico, bombas de engranes, bombas de aspa, bombas de tornillo, bombas de cavidad progresiva, bombas de lóbulo o bomba de levas, bombas peristálticas, bombas reciprocantes, bombas centrífugas, bomba dúplex, bomba de diafragma, bomba de doble diafragma u otras bombas equivalentes conocidas en el campo técnico. Por ejemplo, la bomba (3) puede ser una bomba de diafragma, de pistones, centrífuga de una etapa o de múltiples etapas y combinaciones de las mismas. La bomba (3) puede tener una potencia seleccionada entre 0,3 kW, 0,5 kW, 1 kW, 1,5 kW, 2 kW y 3 kW. In an embodiment of the invention not illustrated, the pump (3) is connected to the motor (1) by means of couplings which are selected from chain couplings; Rigid Plate Couplings, Rigid Taper Clamp Couplings, Rigid Sleeve or Stud Couplings, Flexible Couplings, Gear Type Coupling, Steel Grating Coupling, Jaw Coupling, and combinations thereof. In one embodiment of the invention, the pump (3) is selected from among peripheral impeller centrifugal pumps, gear pumps, vane pumps, screw pumps, progressive cavity pumps, lobe pumps or cam pumps, peristaltic pumps, pumps reciprocating pumps, centrifugal pumps, duplex pump, diaphragm pump, double diaphragm pump or other equivalent pumps known in the technical field. For example, the pump (3) can be a diaphragm, piston, centrifugal single-stage or multi-stage pump and combinations thereof. The pump (3) can have a selected power between 0.3 kW, 0.5 kW, 1 kW, 1.5 kW, 2 kW and 3 kW.
En una modalidad de la invención, la bomba (3) tiene una succión y una descarga, donde el diámetro para la succión y la descarga se selecciona entre 0,0 lm, 0,015m, 0,020m, 0,030m, 0,040m y 0,050m. La tubería de succión y de descarga de la bomba (3) es de un material seleccionado de acero al carbono, fundiciones de hierro, hierro galvanizado, aceros al cromo, aceros al cromo-níquel, aceros al cromo-níquel-titanio, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso y combinaciones de los anteriores aceros aleados. La selección del material de la tubería de succión y descarga es esencial debido a que este material debe resistir altas temperaturas y altas presiones. In an embodiment of the invention, the pump (3) has a suction and a discharge, where the diameter for the suction and discharge is selected between 0.0 lm, 0.015m, 0.020m, 0.030m, 0.040m and 0.050m. The suction and discharge piping of the pump (3) is made of a selected material of carbon steel, cast iron, galvanized iron, chromium steels, chromium-nickel steels, chromium-nickel-titanium steels, nickel-chromium-molybdenum-tungsten alloy, ferrous chromium-moly alloys, 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel , 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, manganese alloyed steel, and combinations of the above alloyed steels. The selection of the material of the suction and discharge piping is essential because this material must withstand high temperatures and high pressures.
En una modalidad de la invención y haciendo referencia a la FIG. 1 y a la FIG. 2, la descarga de la bomba (3) se conecta a un intercambiador de calor (4). El intercambiador de calor (4) se selecciona entre intercambiadores de coraza y tubos con flujo paralelo, intercambiadores de calor de coraza y tubos con contraflujo, torres de enfriamiento, condensadores axiales, condensadores laterales, condensadores inferiores, condensadores de un paso, condensadores de dos pasos, condensadores de un cuerpo, condensadores de dos cuerpos, serpentín, intercambiador de doble tubo y otros elementos conocidos en el campo técnico, o combinaciones de los anteriores, que permitan enfriar un fluido viscoso. In one embodiment of the invention and referring to FIG. 1 and FIG. 2, the pump discharge (3) is connected to a heat exchanger (4). The heat exchanger (4) is selected from shell and tube heat exchangers with parallel flow, shell and tube heat exchangers with counter flow, cooling towers, axial condensers, side condensers, bottom condensers, one-pass condensers, two-pass condensers passages, one-body condensers, two-body condensers, coil, double tube exchanger and other elements known in the technical field, or combinations of the above, that allow cooling a viscous fluid.
El intercambiador de calor (4) se ubica a una distancia media al tanque de almacenamiento (6) y a la bomba (3). Esta configuración permite una mayor transferencia de calor entre el intercambiador de calor (4) y el medio ambiente, ya que no tiene equipos proximales y permite un flujo natural del aire entre el intercambiador. The heat exchanger (4) is located at a medium distance to the storage tank (6) and to the pump (3). This configuration allows a greater heat transfer between the heat exchanger (4) and the environment, since it does not have proximal equipment and allows a natural flow of air between the exchanger.
En una modalidad de la invención, el intercambiador de calor (4) puede conformarse por una pluralidad de tuberías conectadas entre sí formando una trayectoria en espiral o un recorrido de zigzag, donde la entrada del intercambiador se conecta a la descarga de la bomba (3) y la descarga del intercambiador de calor (4) se conecta a un motor hidráulico (5). Se entenderá, para efectos de la presente invención que “zigzag” corresponde a una línea quebrada formada por segmentos unidos formando ángulos entrantes y salientes. Posterior a que la bomba (3) haya succionado liquido calentado proveniente del tanque de almacenamiento (6) y lo haya pasado a través del intercambiador de calor (4), el líquido enfriado pasa por un motor hidráulico (5) el cual aprovecha el caudal proveniente de la salida del intercambiador para convertirla en energía mecánica rotacional. En una modalidad de la invención, el motor hidráulico (5) tiene revoluciones por minuto de salida entre 100 RPM a 1000 RPM. En una modalidad de la invención, el motor hidráulico (5) se selecciona entre motores de engranajes, motor de paletas, motores de pistones (v.gr. motores de pistones axiales y motor de pistones radiales). El líquido que pasa por el motor hidráulico (5) aumenta su temperatura donde posteriormente pasa al tanque de almacenamiento (6). In one embodiment of the invention, the heat exchanger (4) can be formed by a plurality of pipes connected to each other forming a spiral path or a zigzag path, where the inlet of the exchanger is connected to the discharge of the pump (3 ) and the heat exchanger discharge (4) is connected to a hydraulic motor (5). It will be understood, for the purposes of the present invention, that "zigzag" corresponds to a broken line formed by segments joined forming incoming and outgoing angles. After the pump (3) has sucked heated liquid from the storage tank (6) and passed it through the heat exchanger (4), the cooled liquid passes through a hydraulic motor (5) which takes advantage of the flow coming from the outlet of the exchanger to convert it into rotational mechanical energy. In one embodiment of the invention, the hydraulic motor (5) has output revolutions per minute between 100 RPM to 1000 RPM. In one embodiment of the invention, the hydraulic motor (5) is selected from gear motors, vane motor, piston motors (eg axial piston motors and radial piston motor). The liquid that passes through the hydraulic motor (5) increases its temperature where it subsequently passes to the storage tank (6).
En una modalidad de la invención, el tanque de almacenamiento (6) es de un material seleccionado de acero al carbono, fundiciones de hierro, hierro galvanizado, aceros al cromo, aceros al cromo-níquel, aceros al cromo-níquel-titanio, aleación de níquel-cromo- molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso y combinaciones de los anteriores aceros aleados. Preferiblemente, el material del tanque de almacenamiento (6) debe resistir altas temperaturas y debe ser resistente a la corrosión. En una modalidad de la invención, el tanque de almacenamientoIn one embodiment of the invention, the storage tank (6) is made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome-nickel-titanium steels, alloy Nickel-Chromium-Molybdenum-Tungsten, Ferrous Chromium-Moly Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel, 442 Stainless Steel, Alloy Steel with manganese and combinations of the above alloyed steels. Preferably, the material of the storage tank (6) should withstand high temperatures and should be resistant to corrosion. In one embodiment of the invention, the storage tank
(6) tiene un volumen a ocupar entre 50 litros a 500 litros, entre 20 litros a 200 litros y entre 10 litros a 100 litros. (6) has a volume to occupy between 50 liters to 500 liters, between 20 liters to 200 liters and between 10 liters to 100 liters.
De acuerdo con lo anterior, el líquido del primer sistema de transmisión (2) tiene dos fases de temperatura. La primera fase es cuando la bomba (3) succiona liquido caliente y lo impulsa a un intercambiador de calor (4) en donde baja su temperatura, posteriormente, este líquido impulsa el motor hidráulico (5) en donde vuelve a elevarse de temperatura y luego retorna al tanque de almacenamiento (6) para reiniciar el ciclo. According to the above, the liquid of the first transmission system (2) has two temperature phases. The first phase is when the pump (3) sucks hot liquid and drives it to a heat exchanger (4) where its temperature drops, later, this liquid drives the hydraulic motor (5) where it rises in temperature again and then returns to the storage tank (6) to restart the cycle.
En una modalidad de la invención, el líquido del primer sistema de transmisión de potencia (2) corresponde a un fluido hidráulico el cual se selecciona entre fluido hidráulico basado en aceite, fluido hidráulico sintético, fluido hidráulico con aditivos detergentes o cualquier fluido hidráulico conocido en el campo técnico. Preferiblemente, el fluido hidráulico es un fluido hidráulico de alto rendimiento. In one embodiment of the invention, the liquid of the first power transmission system (2) corresponds to a hydraulic fluid which is selected from oil-based hydraulic fluid, synthetic hydraulic fluid, hydraulic fluid with detergent additives or any hydraulic fluid known in the technical field. Preferably, the hydraulic fluid is a high performance hydraulic fluid.
Haciendo referencia a la FIG. 2, y en una modalidad de la invención, el motor hidráulico (5) se conecta a un segundo sistema de transmisión de potencia (7). Las revoluciones de salida del motor hidráulico (5) se entregan al segundo sistema de trasmisión de potenciaReferring to FIG. 2, and in an embodiment of the invention, the hydraulic motor (5) is connected to a second power transmission system (7). The output revolutions of the hydraulic motor (5) are delivered to the second power transmission system
(7). Haciendo referencia a la FIG. 3 y en una modalidad de la invención, el segundo sistema de trasmisión de potencia (7) comprende un primer engranaje (8) conectado al eje de salida del motor hidráulico (5), un segundo engranaje (10) localizado distalmente al engranaje (8) y este segundo engranaje (10) se conecta a un eje (16). Adicionalmente, una primera cadena (9) que conecta al primer engranaje (8) y al segundo engranaje (10). (7). Referring to FIG. 3 and in one embodiment of the invention, the second power transmission system (7) comprises a first gear (8) connected to the output shaft of the hydraulic motor (5), a second gear (10) located distally to the gear (8 ) and this second gear (10) is connected to a shaft (16). Additionally, a first chain (9) that connects the first gear (8) and the second gear (10).
En una modalidad de invención, el primer engranaje (8) es el engranaje conductor, es decir, es el encargado de transmitir la potencia al segundo engranaje (10) debido a que el motor hidráulico (5) le confiere cierto torque a ciertas revoluciones por minuto. En una modalidad de la invención, el primer engranaje (8) tiene un solo sentido de giro, es decir, en el eventual caso que el primer engranaje (8) cambie de giro, este no lo puede hacer debido a que comprende en su interior, y proximal al eje del motor hidráulico (5), un sistema de bloqueo tipo trinquete (ratchet, por su nombre en inglés). In one embodiment of the invention, the first gear (8) is the driving gear, that is, it is in charge of transmitting the power to the second gear (10) because the hydraulic motor (5) confers a certain torque at certain revolutions per minute. In one embodiment of the invention, the first gear (8) has only one direction of rotation, that is, in the event that the first gear (8) changes its rotation, it cannot do so because it comprises inside , and proximal to the axis of the hydraulic motor (5), a ratchet-type locking system (ratchet, by its name in English).
En una modalidad de la invención, el primer engranaje (8) y el segundo engranaje (10) se seleccionan del grupo de engranajes rectos, engranajes cónicos, engranajes helicoidales, engranajes hipoidales, engranajes trapezoidales y combinaciones de los anteriores. En una modalidad de la invención, el primer engranaje (8) y el segundo engranaje (10) tiene un diámetro primitivo entre 0,10m, 0,15m, 0,20m, 0,25m, 0,30m, 0,40m, 0,50m y 0,60m. El diámetro de los engranajes (8) y (10) depende de las preferencias del usuario. En una modalidad de la invención, el primer engranaje (8) y el segundo engranaje (10) tienen un espesor entre 0,005m, 0,0 lm, 0,015m, 0,020m, 0,025m y 0,030m. In one embodiment of the invention, the first gear (8) and the second gear (10) are selected from the group of spur gears, bevel gears, helical gears, hypoid gears, trapezoidal gears, and combinations of the foregoing. In one embodiment of the invention, the first gear (8) and the second gear (10) have a pitch diameter between 0.10m, 0.15m, 0.20m, 0.25m, 0.30m, 0.40m, 0 , 50m and 0.60m. The diameter of the gears (8) and (10) depends on the preferences of the user. In one embodiment of the invention, the first gear (8) and the second gear (10) have a thickness between 0.005m, 0.0lm, 0.015m, 0.020m, 0.025m and 0.030m.
En una modalidad de la invención, el primer engranaje (8) y el segundo engranaje (10) son de un material que seleccionado de acero al carbono, fundiciones de hierro, hierro galvanizado, aceros al cromo, aceros al cromo-níquel, aceros al cromo-níquel-titanio, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso y combinaciones de los anteriores aceros aleados. In one embodiment of the invention, the first gear (8) and the second gear (10) are made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, stainless steel. Chromium-Nickel-Titanium, Nickel-Chromium-Molybdenum-Tungsten Alloy, Ferrous Chromium-Molybdenum Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel , 442 stainless steel, manganese alloyed steel and combinations of the above alloyed steels.
En una modalidad de la invención, el primer engranaje (8) y el segundo engranaje (10) tienen cada uno entre 20 y 100 dientes. En una modalidad de la invención, la primera cadena (9) que conecta a los engranajes (8) y (10) tiene una longitud seleccionada entre 0,5 y 4,0 metros. La longitud de la cadena depende de las preferencias del usuario. In one embodiment of the invention, the first gear (8) and the second gear (10) each have between 20 and 100 teeth. In one embodiment of the invention, the first chain (9) that connects to gears (8) and (10) has a length selected between 0.5 and 4.0 meters. The length of the string depends on the user's preferences.
En una modalidad de la invención, la primera cadena (9) se selecciona del grupo de cadenas de casquillos fijos, cadena de bujes, cadena de rodillos, cadena silenciosa de casquillos o cadena Gale, cadena silenciosa con pasador de media caña, cadena transportadora de casquillos fijos, cadena de banco de estirar, cadena de carga tipo Fleyer, cadena de bloques, y cualquier cadena conocida en el campo técnico. La selección de la cadena depende de que cantidad de torque provenga del primer sistema de transmisión de potencia. En otra modalidad de la invención, la primera cadena (9) tiene un paso seleccionado entre 32 a 50. In one embodiment of the invention, the first chain (9) is selected from the group of fixed bushing chains, bushing chain, roller chain, silent bushing chain or Gale chain, silent chain with half round pin, conveyor chain of fixed bushings, stretch bench chain, Fleyer type load chain, block chain, and any chain known in the technical field. Chain selection depends on how much torque comes from the first power transmission system. In another embodiment of the invention, the first chain (9) has a pitch selected from 32 to 50.
Haciendo referencia a la FIG. 1 y FIG. 2, el segundo engranaje (10) se conecta al primer eje (16) el cual recibe toda la carga dinámica proveniente del segundo sistema de transmisión de potencia (7). En una modalidad de la invención, el primer eje (16) tiene un diámetro seleccionado entre 0,010; 0,020; 0,025; 0,035; 0,040; 0,060; 0.070; 0.080; 0,090; y 0,100 metros. En una modalidad de la invención, el primer eje (16) tiene una longitud entre 1,0 y 10,0 metros. Referring to FIG. 1 and FIG. 2, the second gear (10) is connected to the first shaft (16) which receives all the dynamic load from the second power transmission system (7). In one embodiment of the invention, the first shaft (16) has a diameter selected from 0.010; 0.020; 0.025; 0.035; 0.040; 0.060; 0.070; 0.080; 0.090; and 0.100 meters. In one embodiment of the invention, the first shaft (16) has a length between 1.0 and 10.0 meters.
En una modalidad de la invención, el primer eje (16) es de un material seleccionado de acero al carbono, fundiciones de hierro, hierro galvanizado, aceros al cromo, aceros al cromo-níquel, aceros al cromo-níquel-titanio, aleación de níquel-cromo-molibdeno- tungsteno, aleaciones ferrosas al cromo -molibdeno, acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso y combinaciones de los anteriores aceros aleados. In one embodiment of the invention, the first shaft (16) is made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome-nickel-titanium steels, alloy of Nickel-Chromium-Molybdenum-Tungsten, Ferrous Chromium-Molybdenum Alloys, 301 Stainless Steel, 302 Stainless Steel, 304 Stainless Steel, 316 Stainless Steel, 405 Stainless Steel, 410 Stainless Steel, 430 Stainless Steel, 442 Stainless Steel, Alloy Steel with manganese and combinations of the above alloy steels.
Haciendo referencia a la FIG: 1, el primer eje (16), además de conectarse al segundo engranaje (10) del segundo sistema de transmisión de potencia (7), se conecta un tercer sistema de transmisión de potencia (11) con la finalidad de que este compense la caída de tensión de la red pública o de un banco de baterías y mantenga las revoluciones por minuto en el primer eje (16). En una modalidad de la invención, el segundo sistema de transmisión de potencia (7) y el tercer sistema de transmisión de potencia (11) trabajan en paralelo y perpendicular al primer eje (16). Haciendo referencia a la FIG. 1, en una modalidad de la invención, el tercer sistema de trasmisión de potencia (11) comprende una primera polea (12) conectado a un extremo del primer eje (16), una segunda polea (14) localizado distalmente a la primera polea (12). Adicionalmente, una banda de transmisión (13) que conecta a la primera polea (12) y a la segunda polea (14). Referring to FIG: 1, the first shaft (16), in addition to being connected to the second gear (10) of the second power transmission system (7), a third power transmission system (11) is connected for the purpose that it compensates for the voltage drop of the public network or of a battery bank and maintains the revolutions per minute in the first axis (16). In one embodiment of the invention, the second power transmission system (7) and the third power transmission system (11) work in parallel and perpendicular to the first axis (16). Referring to FIG. 1, in an embodiment of the invention, the third power transmission system (11) comprises a first pulley (12) connected to one end of the first shaft (16), a second pulley (14) located distally to the first pulley ( 12). Additionally, a transmission belt (13) that connects the first pulley (12) and the second pulley (14).
En una modalidad de la invención, el tercer sistema de transmisión de potencia (11) cuenta con su propio motor (15) el cual se conecta a la segunda polea (14). En una modalidad de la invención, la primera polea (12) y la segunda polea (14) tienen un diámetro seleccionado entre 0,050; 0,080; 0,100; 0,015; y 0,025 metros. In one embodiment of the invention, the third power transmission system (11) has its own motor (15) which is connected to the second pulley (14). In one embodiment of the invention, the first pulley (12) and the second pulley (14) have a diameter selected from 0.050; 0.080; 0.100; 0.015; and 0.025 meters.
En una modalidad de la invención, la primera polea (12) y la segunda polea (14) se seleccionan del grupo de poleas acanaladas en V, de fondo circular, de fondo plano, y combinaciones de los mismos. En una modalidad de la invención, la primera polea (12) y la segunda polea (14) son de un material seleccionado de acero al carbono, fundiciones de hierro, hierro galvanizado, aceros al cromo, aceros al cromo-níquel, aceros al cromo- níquel-titanio, aleación de níquel-cromo-molibdeno-tungsteno, aleaciones ferrosas al cromo-molibdeno, acero inoxidable 301, acero inoxidable 302, acero inoxidable 304, acero inoxidable 316, acero inoxidable 405, acero inoxidable 410, acero inoxidable 430, acero inoxidable 442, acero aleado con manganeso y combinaciones de los anteriores aceros aleados. In one embodiment of the invention, the first pulley (12) and the second pulley (14) are selected from the group of V-grooved pulleys, circular bottom, flat bottom, and combinations thereof. In one embodiment of the invention, the first pulley (12) and the second pulley (14) are made of a material selected from carbon steel, cast iron, galvanized iron, chrome steels, chrome-nickel steels, chrome steels. - nickel-titanium, nickel-chromium-molybdenum-tungsten alloy, ferrous chromium-moly alloys, 301 stainless steel, 302 stainless steel, 304 stainless steel, 316 stainless steel, 405 stainless steel, 410 stainless steel, 430 stainless steel, 442 stainless steel, manganese alloyed steel, and combinations of the above alloyed steels.
En una modalidad de la invención, el espesor de la primera polea (12) y de la segunda polea (14) se seleccionan entre 0,05; 0,08 y 0,010 metros. En una modalidad de la invención, la primera polea (12) se conecta al primer eje (16) por medios de fijación seleccionados entre tornillos, pernos, arandelas de presión, cuñeros, prisioneros y combinaciones de los anteriores. In one embodiment of the invention, the thickness of the first pulley (12) and the second pulley (14) are selected between 0.05; 0.08 and 0.010 meters. In one embodiment of the invention, the first pulley (12) is connected to the first shaft (16) by fixing means selected from screws, bolts, lock washers, keyways, studs, and combinations of the foregoing.
En una modalidad de la invención, la banda de transmisión (13) se selecciona entre bandas planas, bandas especiales o en V, bandas redondas, bandas eslabonadas, bandas dentadas, bandas nervadas o poli V o cualquiera banda conocida por una persona medianamente versada en la materia. El tercer sistema de transmisión de potencia (11) se mueve por medio de un segundo motor (15) el cual se selecciona entre motores de corriente alterna (v.g. motores sincrónicos trifásicos, motores asincronos sincronizados, motores con un rotor de imán permanente, motores monofásicos, motores bifásicos, motores con arranque auxiliar bobinado, motores con arranque auxiliar bobinado y con condensador) y motores de comente continua (v.g. motores de excitación en serie, motores de excitación en paralelo, motores de excitación compuesta). En una modalidad de la invención, el segundo motor (15) es un motor eléctrico que gira a unas revoluciones por minuto (RPM) en un rango entre 1500 RPM a 2000 RPM y tiene una potencia seleccionada entre 0,3 kW, 0,5 kW, 1 kW, 1,5 kW, 2 kW, 3 kW hasta 15KW. In one embodiment of the invention, the transmission belt (13) is selected from flat belts, special or V belts, round belts, linked belts, toothed belts, ribbed or poly V belts or any belt known to a person who is moderately versed in The matter. The third power transmission system (11) is moved by means of a second motor (15) which is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors. , two-phase motors, wound starter motors, wound starter and capacitor motors) and direct current motors (eg series excitation motors, parallel excitation motors, compound excitation motors). In one embodiment of the invention, the second motor (15) is an electric motor that rotates at revolutions per minute (RPM) in a range between 1500 RPM to 2000 RPM and has a power selected between 0.3 kW, 0.5 kW, 1 kW, 1.5 kW, 2 kW, 3 kW up to 15KW.
Haciendo referencia a la FIG. 1 y en una modalidad de la invención, una volante de inercia (17) se conecta al segundo sistema de transmisión de potencia (7) y al tercer sistema de transmisión de potencia (11) a través del primer eje (16). El disponer de varios sistemas de transmisión de potencia permite asegurarse de conservar la cantidad de revoluciones por minuto necesarias para mantener girando la volante de inercia (17). Adicionalmente, la volante de inercia permite almacenar energía cinética, lo que permite seguir girando cuando los sistemas de transmisión de potencia o algún motor deje de girar. Referring to FIG. 1 and in an embodiment of the invention, a flywheel (17) is connected to the second power transmission system (7) and to the third power transmission system (11) through the first shaft (16). Having several power transmission systems makes it possible to ensure that the number of revolutions per minute necessary to keep the flywheel (17) rotating is maintained. Additionally, the flywheel allows the storage of kinetic energy, which allows it to continue rotating when the power transmission systems or any motor stops rotating.
En una modalidad no ilustrada de la invención, la volante de inercia (17) se conecta al primer sistema de transmisión de potencia (2). La manera de conectar el primer sistema de transmisión de potencia (2) con la volante de inercia (17) es por medio de un segundo sistema de trasmisión de potencia (7). In a non-illustrated embodiment of the invention, the flywheel (17) is connected to the first power transmission system (2). The way to connect the first power transmission system (2) with the flywheel (17) is by means of a second power transmission system (7).
En una modalidad de la invención, la volante de inercia tiene un peso entre 100 y 1000 Kg. El peso de la volante de inercia (17) y el tamaño de la máquina, depende de la cantidad de energía eléctrica que se desee. En una modalidad de la invención, la volante de inercia (17) tiene un diámetro seleccionado entre 0,3 y 2,0 metros y un espesor entre 0,1 y 0,4 metros. In one embodiment of the invention, the flywheel has a weight between 100 and 1000 Kg. The weight of the flywheel (17) and the size of the machine depend on the amount of electrical energy that is desired. In one embodiment of the invention, the flywheel (17) has a diameter selected between 0.3 and 2.0 meters and a thickness between 0.1 and 0.4 meters.
En una modalidad de la invención, la volante de inercia (17) comprende canales de venteo a lo largo del perímetro del espesor, esto con la finalidad de evitar contraflujo. La cantidad de canales se seleccionan entre 2 a 10. En una modalidad de la invención, la volante de inercia (17) se conecta al eje (16) por medio de cuñeros y/o elementos que bloquen el movimiento axial de la volante de inercia (17). Para asegurar que la volante de inercia (17) no se deslice sobre la superficie del primer eje (16) se conectan operacionalmente elementos de sujeción como prisioneros. In one embodiment of the invention, the flywheel (17) comprises vent channels along the perimeter of the thickness, this in order to avoid back flow. The number of channels are selected from 2 to 10. In one embodiment of the invention, the flywheel (17) is connected to the shaft (16) by means of keyways and / or elements that block the axial movement of the flywheel (17). To ensure that the flywheel (17) does not slide on the surface of the first shaft (16), fasteners are operationally connected as captives.
En una modalidad de la invención, el cuñero tiene un largo seleccionado entre 0,02, 0,04, 0,06, 0,08, 0,10, 0,15 y 0,20 metros. La longitud del cuñero depende exclusivamente del tamaño de la volante de inercia (17). Adicionalmente, el cuñero tiene una altura seleccionada entre 0,002, 0,004, 0,006, 0,008 y 0,010 metros. In one embodiment of the invention, the keyway has a length selected from 0.02, 0.04, 0.06, 0.08, 0.10, 0.15 and 0.20 meters. The length of the keyway depends exclusively on the size of the flywheel (17). Additionally, the keyway has a height selected between 0.002, 0.004, 0.006, 0.008 and 0.010 meters.
En una modalidad de la invención y haciendo referencia a la FIG. 2, se conecta un reductor de velocidad (20) al primer eje (16) y proximal a la volante de inercia (17) por medio de un acople (18). In one embodiment of the invention and referring to FIG. 2, a speed reducer (20) is connected to the first shaft (16) and proximal to the flywheel (17) by means of a coupling (18).
En una modalidad de la invención y haciendo referencia a la FIG. 1, se conecta un tercer motor (19) entre el reductor (20) y el acople (18). En una modalidad de la invención, el motor (19) se selecciona entre motores de corriente alterna (v.g. motores sincrónicos trifásicos, motores asincronos sincronizados, motores con un rotor de imán permanente, motores monofásicos, motores bifásicos, motores con arranque auxiliar bobinado, motores con arranque auxiliar bobinado y con condensador), y motores de corriente continua (v.g. motores de excitación en serie, motores de excitación en paralelo, motores de excitación compuesta). In one embodiment of the invention and referring to FIG. 1, a third motor (19) is connected between the reducer (20) and the coupling (18). In one embodiment of the invention, the motor (19) is selected from alternating current motors (eg three-phase synchronous motors, synchronized asynchronous motors, motors with a permanent magnet rotor, single-phase motors, two-phase motors, motors with wound auxiliary start, motors with wound and capacitor auxiliary starting), and direct current motors (eg series excitation motors, parallel excitation motors, compound excitation motors).
En una modalidad de la invención, el reductor de velocidad (20) se selecciona entre reductores de velocidad de sin fin corona, reductores de velocidad de engranajes, reductores cicloidales, reductores de velocidad planetarios y combinaciones de los anteriores. La selección de reductores de velocidad es importante, debido a que se necesita un reductor de velocidad que pueda entregar alto torque a un generador (21). En una modalidad de la invención, el reductor de velocidad (20) es un multiplicador de torque. In one embodiment of the invention, the speed reducer (20) is selected from worm gear reducers, gear speed reducers, cycloidal reducers, planetary speed reducers, and combinations of the foregoing. The selection of speed reducers is important, because you need a speed reducer that can deliver high torque to a generator (21). In one embodiment of the invention, the speed reducer (20) is a torque multiplier.
En una modalidad de la invención, el acople (18) se selecciona entre acoples de cadena; acoplamientos rígidos de platillos, acoplamientos rígidos por sujeción cónica, acoplamientos rígidos de manguito o con prisionero, acoplamientos flexibles, acoplamiento del tipo de engranaje, acoplamiento de rejilla de acero, acoplamiento de quijada y combinaciones de las mismas. El acople de cadena es muy efectivo ya que permite al primer eje (16) girar sin vibraciones y obtener grandes rangos de torque. In one embodiment of the invention, the coupling (18) is selected from chain couplings; Rigid Plate Couplings, Rigid Taper Clamp Couplings, Rigid Sleeve or Stud Couplings, Flexible Couplings, Gear Type Coupling, Steel Grating Coupling, Rigid Coupling jawbone and combinations thereof. The chain coupling is very effective since it allows the first shaft (16) to rotate without vibrations and to obtain large ranges of torque.
En una modalidad de la invención, al tercer motor (19) se le suprime el ventilador de refrigeración para que el primer eje (16) lo atraviese completamente hasta llegar al reductor de velocidad (20) donde se conecta. Se hace esta configuración debido a que el tercer motor (19) funciona para sustentar caídas de tensión en los demás motores (1) y (15) y de esta manera mantener las RPM de la máquina. In one embodiment of the invention, the third motor (19) has the cooling fan removed so that the first shaft (16) passes through it completely until it reaches the speed reducer (20) where it is connected. This configuration is made because the third motor (19) works to sustain voltage drops in the other motors (1) and (15) and in this way maintain the RPM of the machine.
La salida del reductor de velocidad (20) corresponde a un segundo eje (22) el cual se conecta a un generador (21). En una modalidad de la invención, el generador (21) es un generador de imanes permanentes. El generador de imanes permanentes es de 200 RPM y tiene una salida de generación de 220V trifásico a 60Hz. Siguiendo esta configuración, esta modalidad permite convertir 2984W de corriente directa con amperaje de 50 amperios (50A), a 46979W de 220V corriente alterna trifásico con fase a 60Hz. The output of the speed reducer (20) corresponds to a second shaft (22) which is connected to a generator (21). In one embodiment of the invention, the generator (21) is a permanent magnet generator. The permanent magnet generator is 200 RPM and has a generating output of 220V three phase at 60Hz. Following this configuration, this mode allows converting 2984W of direct current with 50 amps (50A), to 46979W of 220V three-phase alternating current with phase at 60Hz.
En una modalidad de la invención, la máquina se alimenta de una red pública y transforma 1 kW de energía hasta un rango entre 2 kW alO kW de energía. In one embodiment of the invention, the machine is fed from a public network and transforms 1 kW of energy up to a range between 2 kW to 0 kW of energy.
En una modalidad de la invención, la máquina comprende una unidad de control que controla la máquina. En una modalidad de la invención, la unidad de control se selecciona del grupo compuesto por computadoras, computadoras industriales, microchips, microcontroladores, microprocesadores, dispositivos de arreglo de compuertas programables, controladores lógicos programables, unidades aritmético-lógicas programables o combinaciones de los anteriores. In one embodiment of the invention, the machine comprises a control unit that controls the machine. In one embodiment of the invention, the control unit is selected from the group consisting of computers, industrial computers, microchips, microcontrollers, microprocessors, programmable gate array devices, programmable logic controllers, programmable arithmetic-logic units, or combinations of the foregoing.
Así mismo, la unidad de control se selecciona entre tableros de control. Also, the control unit is selected from control boards.
En una modalidad de la invención y haciendo referencia a la FIG. 6, el tablero de control funciona de la siguiente manera: In one embodiment of the invention and referring to FIG. 6, the control board works as follows:
1. El motor eléctrico de 10 hp trifásico (tercer motor (19)) que se acopla al eje del reductor de velocidad (20), este se enciende para compensar las pérdidas de revoluciones por minuto. Al momento que haya una carga inesperada al generador (21), sincronizado con los detectores de tensión los cuales van conectadas al analizador de redes que comanda una señal electrónica para energizar la bobina del contactor de fuerza que alimenta al motor compensador. Este sistema se desprende una vez haya alcanzado las máximas RPM requeridas para sus óptimas rampas de trabajo. 1. The 10 hp three-phase electric motor (third motor (19)) that is coupled to the shaft of the speed reducer (20), this turns on to compensate for the loss of revolutions per minute. When there is an unexpected load to the generator (21), synchronized with the voltage detectors which are connected to the network analyzer that commands an electronic signal to energize the coil of the force contactor that feeds the compensating motor. This system is released once it has reached the maximum RPM required for its optimal work ramps.
2. El motor eléctrico de 20 Hp trifásico que se acopla al eje de la volante de inercia (17) a través del sistema de poleas tiene la función de mantener constante la inercia simultáneamente con el sistema de traslación hidráulica. 2. The 20 Hp three-phase electric motor that is coupled to the shaft of the flywheel (17) through the pulley system has the function of keeping the inertia constant simultaneously with the hydraulic translation system.
3. El sistema hidráulico que trabaja al inicio de arranque de equipo con un motor de corriente continua (1) quien hace las veces de motor de arranque, le da el giro a una bomba hidráulica de cierta cantidad de galones quien acumula los galones de aceite para hacer conducido por medio de una el ectr oválvula de un solo efecto con retorno al tanque (primer sistema de transmisión (21)). Esta presión de aceite va dirigida a un motor de giro hidráulico con entradas de ½” y 2000 psi - 3000 psi para hacer girar el motor hidráulico a una velocidad de 640 RPM con un alto torque para hacer mover la volante de inercia (17) que pesa 410 Kilogramos y esta alcanzaría a despegar entregando esta potencia de salida para ser conducción por el motor de 20 hp y seguir su funcionalidad. Para transmitir estas RPM y par torsional hacia el reductor de velocidad (20) y esta a su vez conduce acoplándose al eje del generador (21). 3. The hydraulic system that works at the start of the equipment with a direct current motor (1) that acts as the starter motor, turns a hydraulic pump of a certain amount of gallons, which accumulates the gallons of oil. to be driven by means of a single effect valve with return to the tank (first transmission system (21)). This oil pressure is directed to a hydraulic swing motor with ½ ”inlets and 2000 psi - 3000 psi to rotate the hydraulic motor at a speed of 640 RPM with high torque to move the flywheel (17) that it weighs 410 Kilograms and it would take off delivering this power output to be driven by the 20 hp engine and continue its functionality. To transmit these RPM and torsional torque to the speed reducer (20) and this in turn leads, coupling to the generator shaft (21).
En una modalidad de la invención y haciendo referencia a la FIG. 4, la máquina se conecta a un banco de baterías de litio (29), posteriormente, la energía capturada pasa por un inversor (28) y por unos breakers eléctricos (27). Luego, pasa por un relee térmico (26), un contactor (25), unos fusibles (24) y finalmente al motor (1) eléctrico de 4Hp. In one embodiment of the invention and referring to FIG. 4, the machine is connected to a lithium battery bank (29), subsequently, the captured energy passes through an inverter (28) and through electrical breakers (27). Then, it goes through a thermal relay (26), a contactor (25), some fuses (24) and finally the 4Hp electric motor (1).
Los siguientes ejemplos ilustran la invención, sin estar el concepto inventivo restringido a los mismos. The following examples illustrate the invention, without being the inventive concept restricted thereto.
Ejemplo 1. Sistema electrónico de la máquina generadora de energía. Example 1. Electronic system of the power generating machine.
En una modalidad de la invención, la unidad de control comprende un tablero de control eléctrico que controla el sistema de arranque de la máquina, sensando temperatura, frecuencia, voltaje, velocidad y los ciclos que conforman temporizadamente los sistemas mecánicos. El tablero de control eléctrico se conforma por: - un analizador de redes, que es un instrumento visualizador del voltaje, amperaje, frecuencia y potencia nominal, por medio de sensores inductivos. Este instrumento puede funcionar vía satelital con un sistema 4G, que no necesita operario constante; In one embodiment of the invention, the control unit comprises an electrical control board that controls the starting system of the machine, sensing temperature, frequency, voltage, speed and the cycles that make up the mechanical systems on a timed basis. The electrical control board is made up of: - a network analyzer, which is a display instrument for voltage, amperage, frequency and nominal power, by means of inductive sensors. This instrument can work via satellite with a 4G system, which does not need a constant operator;
- un totalizador principal, que es un instrumento que bloquea o transmite el voltaje generado; - a main totalizer, which is an instrument that blocks or transmits the generated voltage;
- ocho temporizadores que controlan los tiempos de cada uno de los sistemas que compone el equipo (arranque, parada, reposo y constante); - eight timers that control the times of each of the systems that make up the equipment (start, stop, rest and constant);
- cuatro contactores de control que transmiten voltaje interno para accionar el tablero de control eléctrico; - four control contactors that transmit internal voltage to drive the electrical control board;
- dos Relee falla fase trifásica que vigilan las caídas de tensión dentro del circuito para proteger artefactos que se le suministren al equipo, desactivando los contactores de fuerza y evitando la salida de voltaje; - two three-phase phase failure relays that monitor the voltage drops within the circuit to protect devices supplied to the equipment, deactivating the force contactors and preventing the voltage output;
- un inversor que convierte la corriente continua a corriente alterna para el sistema de circuito alterno; - an inverter that converts direct current to alternating current for the alternating circuit system;
- tres señalizadores o luz piloto que resaltan cada fase activa en el tablero; - three markers or pilot light that highlight each active phase on the board;
- switch de muletilla que acciona el arranque del sistema; - toggle switch that starts the system;
- una parada de emergencia, que desactiva el sistema a necesidad del operador;- an emergency stop, which deactivates the system at the operator's need;
- un barraje de distribución es el circuito que transfiere la energía generada; y- a distribution bus is the circuit that transfers the generated energy; Y
- un secuenciador que permite verificar horas de trabajo continua, de reposo, de arranque y de parada del equipo. - a sequencer that allows to verify hours of continuous work, rest, start and stop of the equipment.
Adicionalmente y haciendo referencia a la FIG: 5, una tarjeta electrónica que toma un voltaje generado por la red pública o de un banco de baterías (110 VAC) o un voltaje pulsante del generador (21), lo regula, lo filtra, le suprime los picos, le purifica la honda senosoidal y mantiene la frecuencia según su requerimiento (30HZ — 60HZ). La tarjeta electrónica comprende: Additionally and referring to FIG: 5, an electronic card that takes a voltage generated by the public network or from a battery bank (110 VAC) or a pulsating voltage from the generator (21), regulates it, filters it, suppresses it the peaks, it purifies the sinus sling and maintains the frequency according to your requirement (30HZ - 60HZ). The electronic card includes:
- una AVR para regular el voltaje del generador (21); - an AVR to regulate the voltage of the generator (21);
- un circuito electrónico para regular la sobretensión de entrada del motor (1);- an electronic circuit to regulate the input overvoltage of the motor (1);
- un supresor de picos monofásico (30) que se encarga de nivelar la corriente en los eventos que se presentes fluctuaciones; - un circuito purificador de onda senosoidal (31) que se encarga de que la corriente alcance el punto máximo de la onda senosoidal hasta llegar al punto centro de la curva para garantizar la estabilidad de la frecuencia; - a single-phase surge suppressor (30) that is in charge of leveling the current in the events of fluctuations; - a sinusoidal wave purifying circuit (31) that ensures that the current reaches the maximum point of the sinusoidal wave until it reaches the center point of the curve to guarantee the stability of the frequency;
- un oscilador de bloque. - a block oscillator.
La tarjeta electrónica absorbe el voltaje pulsante que produce el Generador o el voltaje generado por la red, regula el voltaje filtrando cada pulso que pasa por el transformador toro ideal, haciéndolo atravesar por un supresor de picos, para alinear la tensión del voltaje, para posteriormente amplificar el voltaje por medio de una fuente llamada oscilador de bloque. Cuando el voltaje corresponde al generado por el Generador, la tarjeta electrónica logra además minimizar los armónicos que se producen entre los espacios de bobina e imanes de Neodimio. The electronic card absorbs the pulsating voltage produced by the Generator or the voltage generated by the network, regulates the voltage by filtering each pulse that passes through the ideal torus transformer, making it go through a surge suppressor, to align the voltage voltage, for later amplify the voltage by means of a source called a block oscillator. When the voltage corresponds to that generated by the Generator, the electronic card also manages to minimize the harmonics that occur between the coil spaces and Neodymium magnets.
Ejemplo 2. La máquina incrementa potencia tomada de un banco de baterías o una red pública. Example 2. The machine increases power taken from a battery bank or a public grid.
El motor (1) es el que toma de la red o del banco de baterías la corriente, el cual inicia el sistema, transformando la energía eléctrica en energía mecánica para transmitir el movimiento giratorio hacia la volanta de inercia (17), el que a su vez acumula energía cinética a altas revoluciones, para ser transmitida a motor reductor (19 y 20). Este torque alcanzado lo conduce al eje central del generador magnético (21) a bajas revoluciones. The motor (1) is the one that takes the current from the network or the battery bank, which starts the system, transforming the electrical energy into mechanical energy to transmit the rotary movement towards the inertia wheel (17), which at in turn, it accumulates kinetic energy at high revolutions, to be transmitted to the reduction motor (19 and 20). This achieved torque drives it to the central axis of the magnetic generator (21) at low revolutions.
La energía pulsante que sale del campo magnético del estator del generador (21), llega a un circuito oscilador único en la tarjeta electrónica la cual retorna el voltaje en el núcleo del Generador, provocando que se produzca una resonancia. Una vez que el núcleo alcanza esta resonancia puede producir el aumento de potencia en KW, esta potencia es absorbida a través de un inversor que alimenta al motor del generador (21) para hacer girar el eje. The pulsating energy that leaves the magnetic field of the generator stator (21), reaches a single oscillator circuit in the electronic card which returns the voltage in the generator core, causing a resonance to occur. Once the core reaches this resonance it can produce the increase in power in KW, this power is absorbed through an inverter that feeds the generator motor (21) to rotate the shaft.
Posteriormente se puede desconectar el motor (1) de la fuente original de energía y el generador (21) alimenta al motor eléctrico con lo que el genera internamente, produciendo finalmente, un sistema de ciclo cerrado, obteniendo la corriente eléctrica con un rendimiento muy alto. Un objetivo de este generador (21) es que con la volante de inercia (17) es proporcionarle energía cinética (acumulación de potencia) aplicada al eje central del motor magnético, el cual rompe la inercia y/o supera la par torsión que emite el campo magnético de este generador. Subsequently, the motor (1) can be disconnected from the original source of energy and the generator (21) feeds the electric motor with what it generates internally, finally producing a closed cycle system, obtaining the electric current with a very high performance . An objective of this generator (21) is that with the flywheel (17) it is to provide kinetic energy (power accumulation) applied to the central axis of the magnetic motor, which breaks the inertia and / or exceeds the torque emitted by the magnetic field of this generator.
Ejemplo 3. Máquina para la generación de energía eléctrica. Example 3. Machine for the generation of electrical energy.
Se diseñó y se construyó una máquina para la generación de energía eléctrica. La máquina permite convertir 110V con comente alterna monofásico, a 220V con comente alterna trifásico, con las siguientes especificaciones: A machine for the generation of electrical energy was designed and built. The machine allows converting 110V with single-phase alternating current, to 220V with three-phase alternating current, with the following specifications:
El motor (1) es un motor eléctrico de 2,98 kW a 1800 RPM comente continua 72V el cual se conecta a un primer sistema de transmisión de potencia (2). El primer sistema de transmisión de potencia (2) se conforma de: i. una bomba centrífuga (3) con las siguientes especificaciones: The motor (1) is an electric motor of 2.98 kW at 1800 RPM continuous current 72V which is connected to a first power transmission system (2). The first power transmission system (2) is made up of: i. a centrifugal pump (3) with the following specifications:
- Caudal de 0,001009 m3/s (16 gal/min); - Flow rate of 0.001009 m 3 / s (16 gal / min);
- Diámetro de descarga: 0,0127; - Discharge diameter: 0.0127;
- Diámetro de succión: 0,0905; - Suction diameter: 0.0905;
- Material de la tubería de succión y descarga: galvanizado. ii. un intercambiador de calor (4) con las siguientes especificaciones: - Material of the suction and discharge pipe: galvanized. ii. a heat exchanger (4) with the following specifications:
- tipo de intercambiador: serpentín. iii. un motor hidráulico con las siguientes especificaciones: - type of exchanger: coil. iii. a hydraulic motor with the following specifications:
- Revoluciones por minuto de salida (RPM): 646 RPM; - Output Revolutions Per Minute (RPM): 646 RPM;
- Tipo de motor hidráulico: Motor de Giro Hidráulico de alto torque. iv. un tanque de almacenamiento para 227 litros con las siguientes especificaciones: - Hydraulic motor type: High torque Hydraulic Swing Motor. iv. a storage tank for 227 liters with the following specifications:
- Material: acero inoxidable 304; - Material: 304 stainless steel;
- El líquido presente en el primer sistema de transmisión de potencia (2) corresponde a un fluido hidráulico el cual sería un SHELL™ TELLUS S2 M 68. El segundo sistema de transmisión de potencia (7) se conecta al primer sistema de transmisión de potencia (2). El segundo sistema de transmisión de potencia (7) se conforma de: i. Un primer engranaje (8) con las siguientes especificaciones: - The liquid present in the first power transmission system (2) corresponds to a hydraulic fluid which would be a SHELL ™ TELLUS S2 M 68. The second power transmission system (7) is connected to the first power transmission system (2). The second power transmission system (7) is made up of: i. A first gear (8) with the following specifications:
- Tipo de engranaje: recto; - Gear type: straight;
- Espesor: 0,019 metros; - Thickness: 0.019 meters;
Material: AISI 4340; Material: AISI 4340;
- Número de dientes: 72; ii. Un segundo engranaje (10) con las siguientes especificaciones: - Number of teeth: 72; ii. A second gear (10) with the following specifications:
- Tipo de engranaje: recto; - Gear type: straight;
- Espesor: 0.19m; - Thickness: 0.19m;
- Material: AISI 4340; - Material: AISI 4340;
- Número de dientes: 72; iii. Una primera cadena (9) con las siguientes especificaciones: - Number of teeth: 72; iii. A first chain (9) with the following specifications:
- Tipo de cadena: Doble Traslación. - Chain type: Double Translation.
- Longitud: 1 a 3 metros; - Length: 1 to 3 meters;
- Paso: 40. - Step: 40.
El segundo engranaje (10) del segundo sistema de transmisión de potencia (7) se conecta a un primer eje (16) que tiene las siguientes especificaciones: The second gear (10) of the second power transmission system (7) is connected to a first shaft (16) having the following specifications:
- Diámetro: 0.031 metros - Diameter: 0.031 meters
- Longitud: Eje de diámetro 2” ¾” - Length: 2 ”¾” diameter shaft
- Material: 41-40. - Material: 41-40.
El primer eje (16) además de conectarse con el segundo engranaje (10) del primer sistema de transmisión de potencia (7), también se conecta a un tercer sistema de transmisión de potencia (11). El tercer sistema de transmisión de potencia (11) se conforma de: i. Una primera polea (12) con las siguientes especificaciones: The first shaft (16) in addition to connecting with the second gear (10) of the first power transmission system (7), also connects to a third power transmission system (11). The third power transmission system (11) is made up of: i. A first pulley (12) with the following specifications:
- Diámetro externo: 0,1016 metros; - Tipo de acanalado de la polea: 2 canales tipo “B”. - External diameter: 0.1016 meters; - Type of grooving of the pulley: 2 channels type "B".
- Espesor: 0,0762. ii. Una segunda polea (14) con las siguientes especificaciones: - Thickness: 0.0762. ii. A second pulley (14) with the following specifications:
- Diámetro externo:0,1016 metros. - External diameter: 0.1016 meters.
- Tipo de acanalado de la polea: 2 canales tipo “B”. - Type of grooving of the pulley: 2 channels type "B".
- Espesor: 0,0762. iii. Una banda de transmisión (13) con las siguientes especificaciones: - Thickness: 0.0762. iii. A transmission band (13) with the following specifications:
- Tipo de correa: B 67; - Belt type: B 67;
- Longitud: 1,0 a3,0 metros. - Length: 1.0 to 3.0 meters.
La relación entre la primera polea (12) y la segunda polea (14) es 1:1; The ratio between the first pulley (12) and the second pulley (14) is 1: 1;
El tercer sistema de transmisión de potencia (11) se conecta a un segundo motor (15) el cual es de corriente alterna a 220V trifásico a 3600 RPM. The third power transmission system (11) is connected to a second motor (15) which is alternating current at 220V three-phase at 3600 RPM.
El primer eje (16), se conecta el segundo engranaje (10) del segundo sistema de transmisión de potencia y a la primera polea (12) del tercer sistema de transmisión de potencia tiene las siguientes características: The first shaft (16), the second gear (10) of the second power transmission system is connected and the first pulley (12) of the third power transmission system has the following characteristics:
- Longitud: 0,3 metros; - Length: 0.3 meters;
- Diámetro: 0,06985 metros - Diameter: 0.06985 meters
- Material: 41-40. - Material: 41-40.
Una volante de inercia (17) se conecta al primer eje (16), la volante de inercia tiene las siguientes características: A flywheel (17) is connected to the first shaft (16), the flywheel has the following characteristics:
- Peso: 450kg; - Weight: 450kg;
- Diámetro: 1,2 metros; - Diameter: 1.2 meters;
- Canales: 6 unidades; - Channels: 6 units;
- Espesor: 0,3048 metros. Adicionalmente, la volante de inercia (17) se fija al primer eje (16) por medio de al menos un cuñero con las siguientes características: - Thickness: 0.3048 meters. Additionally, the flywheel (17) is fixed to the first shaft (16) by means of at least one keyway with the following characteristics:
- Largo: 0,12 metros; - Length: 0.12 meters;
- Alto: 0,006 metros. - Height: 0.006 meters.
Un reductor de velocidad (20) conectado al primer eje (16). El reductor tiene las siguientes especificaciones: A speed reducer (20) connected to the first shaft (16). The reducer has the following specifications:
- Tipo de reductor: Multiplicador NM; - Type of reducer: NM multiplier;
- Relación: 50-1. - Ratio: 50-1.
Se conecta un tercer motor (19) a la entrada del reductor de velocidad (20). El tercer motor (19) tiene las siguientes características: motor eléctrico: 10 hp 1800 Rpm 220 vac. A third motor (19) is connected to the input of the speed reducer (20). The third motor (19) has the following characteristics: electric motor: 10 hp 1800 Rpm 220 vac.
El tercer motor (19) y el reductor de velocidad (20) se conectan al primer eje (16) a través de un acople (18). El acople tiene la siguiente especificación: The third motor (19) and the speed reducer (20) are connected to the first shaft (16) through a coupling (18). The coupling has the following specification:
- Tipo de acople: acople de cadena con el mismo diámetro del primer eje (16). - Coupling type: chain coupling with the same diameter as the first shaft (16).
La salida del reductor de velocidad (20) se conecta a un segundo eje (22) el cual tiene el mismo diámetro que el primer eje (16). El segundo eje (22) se conecta a un generador (21) que tiene las siguientes especificaciones: The output of the speed reducer (20) is connected to a second shaft (22) which has the same diameter as the first shaft (16). The second shaft (22) is connected to a generator (21) that has the following specifications:
- Tipo de generador: generador de imanes permanentes a 200RPM con una salida de generación de 220V trifásico a 60 Hz. La presente invención no se halla limitada a las modalidades descritas e ilustradas, ni limitadas a maquinas generadoras y multiplicadoras de energía, pues como será evidente para cualquier persona versada en la materia, existen posibles variaciones que no se apartan del espíritu de la invención. - Generator type: permanent magnet generator at 200RPM with a generation output of 220V three-phase at 60 Hz. The present invention is not limited to the modalities described and illustrated, nor limited to power generating and multiplying machines, since as will be evident to any person skilled in the art, there are possible variations that do not depart from the spirit of the invention.

Claims

REIVINDICACIONES
1. Una máquina para la generación de energía que comprende: 1. A machine for power generation comprising:
- un primer motor ( 1 ) ; - a first motor (1);
- un primer sistema de transmisión de potencia (2) conectado al motor (1);- a first power transmission system (2) connected to the engine (1);
- una volante de inercia (17) conectado al primer sistema de transmisión de potencia (2); - a flywheel (17) connected to the first power transmission system (2);
- un reductor de velocidad (20) conectado al volante de inercia (17); - a speed reducer (20) connected to the flywheel (17);
- un generador (21) conectado al reductor de velocidad (20). - a generator (21) connected to the speed reducer (20).
2. La máquina para la generación de energía de la Reivindicación 1, donde la máquina se alimenta de una red pública y transforma 1 kW de energía hasta un rango de entre 2 Kw a 10 kW. 2. The power generation machine of Claim 1, wherein the machine is fed from a public grid and transforms 1 kW of energy up to a range of 2 kW to 10 kW.
3. La máquina para la generación de energía de la Reivindicación 1 , donde la volante de inercia (17) se conecta al primer sistema de transmisión de potencia (2) por medio de un segundo sistema de transmisión de potencia (7). The power generation machine of Claim 1, wherein the flywheel (17) is connected to the first power transmission system (2) by means of a second power transmission system (7).
4. La máquina para la generación de energía de la Reivindicación 1, caracterizada porque se conecta un tercer motor (19) al reductor de velocidad (20) y el tercer motor (19) se conecta a la volante de inercia (17) a través del segundo eje (16). 4. The power generation machine of Claim 1, characterized in that a third motor (19) is connected to the speed reducer (20) and the third motor (19) is connected to the flywheel (17) through of the second shaft (16).
5. La máquina para la generación de energía de la Reivindicación 4, donde el segundo eje (16), que se conecta al tercer motor (19) y a la volante de inercia (17), se conecta por medio de un acople (18). 5. The power generation machine of Claim 4, wherein the second shaft (16), which is connected to the third motor (19) and the flywheel (17), is connected by means of a coupling (18) .
6. La máquina para la generación de energía de la Reivindicación 1, caracterizada porque se dispone de un tercer sistema de transmisión de potencia (11), conectado al segundo eje (16), que conecta la volante de inercia (17) con el segundo sistema de transmisión (7). 6. The power generation machine of Claim 1, characterized in that it has a third power transmission system (11), connected to the second shaft (16), which connects the flywheel (17) with the second transmission system (7).
7. La máquina para la generación de energía de la Reivindicación 1, caracterizada porque el generador (21) es un generador de imanes permanentes. 7. The power generation machine of Claim 1, characterized in that the generator (21) is a permanent magnet generator.
8. La máquina para la generación de energía de la Reivindicación 1, caracterizada porque el primer sistema de transmisión (2) se conforma de: 8. The power generation machine of Claim 1, characterized in that the first transmission system (2) is made up of:
- una bomba (3) conectada al motor (1); - a pump (3) connected to the motor (1);
- un intercambiador de calor (4) conectado a la bomba (3); - a heat exchanger (4) connected to the pump (3);
- un motor hidráulico (5) conectado al intercambiador de calor (4); y - a hydraulic motor (5) connected to the heat exchanger (4); Y
- un tanque de almacenamiento (6) conectado entre la bomba (3) y el motor hidráulico (5). - a storage tank (6) connected between the pump (3) and the hydraulic motor (5).
9. La máquina para la generación de energía de la Reivindicación 1, caracterizada porque comprende una unidad de control que controla la máquina. 9. The power generation machine of Claim 1, characterized in that it comprises a control unit that controls the machine.
10. La máquina para la generación de energía de la Reivindicación 9, caracterizada porque la unidad de control se selecciona del grupo compuesto por computadoras, computadoras industriales, microchips, microcontroladores, microprocesadores, dispositivos de arreglo de compuertas programables, controladores lógicos programables, unidades aritmético-lógicas programables o combinaciones de los anteriores. The power generation machine of Claim 9, characterized in that the control unit is selected from the group consisting of computers, industrial computers, microchips, microcontrollers, microprocessors, programmable gate array devices, programmable logic controllers, arithmetic units. -programmable logic or combinations of the above.
11. Un sistema electrónico para controlar la máquina para la generación de energía que comprende: 11. An electronic system to control the power generation machine comprising:
- un analizador de redes; - a network analyzer;
- un totalizador principal; - a main totalizer;
- al menos ocho temporizadores; - at least eight timers;
- al menos cuatro contactores de control; - at least four control contactors;
- al menos dos relee falla fase trifásica; - at least two three-phase phase fault relays;
- un inversor; - an investor;
- al menos un switch que acciona el arranque del sistema; - at least one switch that triggers the system startup;
- una parada de emergencia; y - an emergency stop; Y
- una barra de distribución. - a busbar.
PCT/CO2020/000017 2019-12-19 2020-12-16 Power generation machine WO2021121442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2019/0014395A CO2019014395A1 (en) 2019-12-19 2019-12-19 Machine for power generation
CONC2019/0014395 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021121442A1 true WO2021121442A1 (en) 2021-06-24

Family

ID=71093252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2020/000017 WO2021121442A1 (en) 2019-12-19 2020-12-16 Power generation machine

Country Status (3)

Country Link
BR (1) BR102020016664A2 (en)
CO (1) CO2019014395A1 (en)
WO (1) WO2021121442A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3137208A1 (en) * 2020-10-29 2022-04-29 Start & Go LLC Self-contained engine block heater power supply system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477013A (en) * 1967-06-05 1969-11-04 Dynamics Corp America Hydrostatic transmission coupled standby power supply
US3675112A (en) * 1970-07-09 1972-07-04 Dynamics Corp America Standby power system
WO2008076972A2 (en) * 2006-12-18 2008-06-26 Regen Technologies, Llc Electrical power generation system
CN203742913U (en) * 2014-03-21 2014-07-30 李志洋 Inertia idle wheel energy storage device
US20150084567A1 (en) * 2012-04-30 2015-03-26 Isentropic Ltd. The transmission of energy
US20190242368A1 (en) * 2017-01-22 2019-08-08 Shandong University Of Science And Technology Multi-buffering energy storage device and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477013A (en) * 1967-06-05 1969-11-04 Dynamics Corp America Hydrostatic transmission coupled standby power supply
US3675112A (en) * 1970-07-09 1972-07-04 Dynamics Corp America Standby power system
WO2008076972A2 (en) * 2006-12-18 2008-06-26 Regen Technologies, Llc Electrical power generation system
US20150084567A1 (en) * 2012-04-30 2015-03-26 Isentropic Ltd. The transmission of energy
CN203742913U (en) * 2014-03-21 2014-07-30 李志洋 Inertia idle wheel energy storage device
US20190242368A1 (en) * 2017-01-22 2019-08-08 Shandong University Of Science And Technology Multi-buffering energy storage device and application thereof

Also Published As

Publication number Publication date
BR102020016664A2 (en) 2021-06-29
CO2019014395A1 (en) 2020-06-19

Similar Documents

Publication Publication Date Title
US7782015B1 (en) Electric power system
US20090228149A1 (en) Environmental control and power system
US20170205103A1 (en) Thermal hydraulic heat pump for hvac
AU2011267543A1 (en) Energy storage type wind-power generating system
US11008997B2 (en) Hydroelectric system in a plant
WO2021121442A1 (en) Power generation machine
ES2385555T3 (en) Installation of energy with means of transmission of energy without contact to the rotor
KR101581405B1 (en) Wind power generation system
KR20050044609A (en) Marine propulsion unit
CN103147955A (en) Water-feeding pump system driven by high-speed synchronous motor
CN113517801B (en) Stepless speed change magnetic gear
US20230412108A1 (en) Variable frequency drive system, variable frequency speed regulation integrated machine, pump system, and well site layout
JP4922110B2 (en) Power generator
RU192315U1 (en) AUTONOMOUS ELECTRIC UNIT
RU178735U1 (en) AUTONOMOUS ELECTRIC UNIT
BR112019016484A2 (en) electric power generator system
US20150042186A1 (en) Electrical system and method for sustaining an external load
RU2516861C1 (en) Compensated system of power supply for electric energy consumers
WO2016068846A1 (en) An electrical system and method for sustaining an external load
CN212616118U (en) Transmission device capable of running at variable speed or constant speed and having external oil supply function and transmission system
KR101966466B1 (en) Turbine generating device and System of recycling exhaust heat from internal combustion engine having the same
JP6621896B1 (en) High efficiency power generation system and control method thereof
CN201221596Y (en) Speed-adjustable coupling machine gearbox for oil field
CN108487946A (en) A kind of radial turbines high-speed power generation unit
CN202047743U (en) Driving system of machinery/ compound drilling machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903852

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20903852

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.03.2023)