WO2021121410A1 - 螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒 - Google Patents

螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒 Download PDF

Info

Publication number
WO2021121410A1
WO2021121410A1 PCT/CN2020/137774 CN2020137774W WO2021121410A1 WO 2021121410 A1 WO2021121410 A1 WO 2021121410A1 CN 2020137774 W CN2020137774 W CN 2020137774W WO 2021121410 A1 WO2021121410 A1 WO 2021121410A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
nut
bolt
deformation sensor
fiber deformation
Prior art date
Application number
PCT/CN2020/137774
Other languages
English (en)
French (fr)
Inventor
张建平
黄春华
陈涛
谢建毫
刘东昌
Original Assignee
奥动新能源汽车科技有限公司
飞巽传感技术(上海)有限公司
深圳伊讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 飞巽传感技术(上海)有限公司, 深圳伊讯科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2021121410A1 publication Critical patent/WO2021121410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed

Definitions

  • This application relates to the technology of monitoring the state of adjacent fixed bolts or nuts, and in particular to a bolt or nut looseness monitoring device and system, an optical fiber deformation sensor, and a wind turbine tower.
  • the existing displacement sensor can only detect a single bolt or nut, for example, can only detect the looseness of a single bolt group.
  • the application document uses an optical fiber to measure multiple bolts and adopts a time-division multiplexing method, but it is still impossible to find the looseness of a certain bolt in time.
  • a specific device such as a wind turbine tower, includes a row of multiple bolt groups, it is costly and inefficient to inspect a single bolt group separately.
  • the technical problem to be solved by this application is to overcome the defect of bolt or nut looseness monitoring in the prior art and overcome the problems of high cost and low efficiency of the existing displacement sensor for single monitoring of the bolt group or nut group, and to provide a bolt Or nut looseness monitoring device and system, optical fiber deformation sensor and wind turbine tower.
  • a device for monitoring looseness of bolts or nuts wherein the number of bolts or nuts is at least two and both are used for fastening on a base, and the device for monitoring looseness includes:
  • the optical fiber deformation sensor has a deformation sensing section, and the deformation sensing section of the optical fiber deformation sensor is arranged between two bolts or nuts, so that the deformation sensing section rotates on any one of the two bolts or nuts. Deformation occurs when.
  • the two ends of the deformation sensing section of the optical fiber deformation sensor are respectively arranged between two adjacent or non-adjacent two bolts or nuts.
  • the looseness monitoring device further includes a supporting device, the supporting device is arranged on the base and used to support the optical fiber deformation sensor;
  • the supporting device is arranged on two adjacent or non-adjacent bolts or nuts, and the optical fiber deformation sensor is arranged between the supporting devices of the two adjacent or non-adjacent bolts or nuts to make the deformation When any one of the two adjacent or non-adjacent bolts or nuts rotates, the sensing section is deformed by the relative force of the two supporting devices.
  • the looseness monitoring device further includes a profiled nut
  • the profiling nut is fixedly sleeved on the head of the bolt or nut; the supporting device is fixed on the profiling nut.
  • the opposite ends of the profiling nut are respectively provided with a protruding piece
  • the protruding sheet is provided with grooves, the two ends of the optical fiber deformation sensor are provided with limiting components, and the two ends of the optical fiber deformation sensor are respectively fixedly arranged on the concaves on different ends of the adjacent profiling nut.
  • the limiting portion is attached to the outer side wall of the groove of the protruding sheet; or, the protruding sheet is provided with an engaging portion, and both ends of the optical fiber deformation sensor are fixedly provided with connecting portions, so The connecting parts at both ends of the optical fiber deformation sensor are respectively engaged in the engaging parts on different ends of the adjacent profiling nut.
  • the optical fiber deformation sensor includes an optical fiber and a base member, the optical fiber has a deformation sensing section, the optical fiber is accommodated in the base member, and the deformation sensing section is located in the base member;
  • the optical fiber deformation sensor is respectively connected to the two bolts or nuts through the two ends of the base member.
  • the looseness monitoring device further includes a nut button
  • the nut buckle is fixedly sleeved on the bolt or nut head; the end of the optical fiber deformation sensor is connected to the bolt or nut through the nut buckle.
  • the nut buckle includes a body, the body is provided with a mounting hole for mating connection with the bolt or nut, and a tooth-shaped groove is protrudingly provided on the body.
  • An optical fiber deformation sensor including:
  • optical fiber the optical fiber having a deformation sensing section
  • the base member, the optical fiber is accommodated in the base member, the deformation sensing section is located in the base member; the base member is set to be connected to two bolts or nuts at both ends, or the base member The piece is set to be fixed at one end and connected to a bolt or nut at the other end; the bolt or nut is used to be fastened to a base; the deformation sensing section generates deformation when the bolt or nut connected to it rotates .
  • the base member includes:
  • the first connecting portion is located at one end of the base member
  • the second connecting part is located at the other end of the base member
  • the base member is connected to the two bolts or nuts through the first connecting portion and the second connecting portion; or the base member is connected to the two bolts or nuts through the first connecting portion and the second connecting portion.
  • One of the connecting parts is fixed, and the other connecting part is connected to the bolt or nut.
  • the base member further includes:
  • a third connecting portion is connected between the first connecting portion and the second connecting portion, the third connecting portion has an optical fiber groove, and the optical fiber is accommodated in the optical fiber groove, and The deformation sensing section is located in the optical fiber groove, and one end of the optical fiber penetrates the first connecting portion or the second connecting portion.
  • the first connecting portion and/or the second connecting portion include a snap-fit structure
  • the engaging structure is used for snap-fitting with a nut sleeved on the bolt or nut, so that the first connecting portion and/or the second connecting portion can be detachably connected to the bolt or nut.
  • the engaging structure includes two engaging pillars, one end of the two engaging pillars is connected, and a deformation gap is formed between the two engaging pillars.
  • two opposite sides of the two engagement columns are respectively provided with tenons protruding outward, and the engagement structure is respectively engaged with the tooth-shaped grooves on the nut buckle through the tenons on both sides. Engaged, so that the first connecting portion and/or the second connecting portion can be detachably connected to the bolt or nut.
  • the top of the engaging structure has a dispensing groove
  • the optical fiber penetrates the dispensing groove
  • the optical fiber is embedded and fixed in the dispensing groove and the optical fiber groove by filling the glue in the dispensing groove and the optical fiber groove.
  • the base piece In the base piece.
  • a grating is provided on the deformation sensing section.
  • the grating is a Bragg grating.
  • a bolt or nut looseness monitoring system includes at least one of the aforementioned bolt or nut looseness monitoring devices, and the looseness monitoring system further includes a signal analysis device and a laser emitting device;
  • the signal analysis device and the laser emitting device are respectively communicatively connected with the optical fiber deformation sensor in the looseness monitoring device;
  • the laser emitting device is used to emit laser light to the optical fiber deformation sensor;
  • the signal analysis device is used to receive and analyze the optical signal returned by the optical fiber deformation sensor, and determine the loose bolt or nut according to the analysis result.
  • a first corresponding relationship between the number of the optical fiber deformation sensor and the number of the bolt or nut, and a second corresponding relationship between the number of the optical fiber deformation sensor and the sensitive wavelength band are pre-stored in the signal analysis device;
  • the signal analysis device is used to analyze the central wavelength of the optical signal returned by the optical fiber deformation sensor, determine the number of the optical fiber deformation sensor according to the central wavelength of the optical signal and the second correspondence, and then determine the number of the optical fiber deformation sensor according to the optical fiber
  • the number of the deformation sensor and the first corresponding relationship determine the number of the bolt or nut corresponding to the optical signal.
  • the signal analysis device is also used to calculate the loosening angle of the loose bolt or nut according to the result of the analysis;
  • the signal analysis device also prestores a third correspondence between the number of the optical fiber deformation sensor and the standard center wavelength of the sensitive wavelength band;
  • the signal analysis device determines the standard center wavelength of the optical fiber deformation sensor according to the number of the optical fiber deformation sensor and the third correspondence, and then compares the center wavelength of the optical signal returned by the optical fiber deformation sensor to the standard center. The wavelength is compared, and the looseness angle of the bolt or nut corresponding to the optical signal is calculated.
  • the looseness monitoring system further includes an alarm device; the alarm device and the signal analysis device are in communication connection;
  • the alarm device is used to receive data uploaded by the signal analysis device.
  • the data includes the number of the bolt or nut and the loosening angle generated by the bolt or nut. When the loosening angle exceeds a threshold, it generates and Describe the alarm signal corresponding to the number of the bolt or nut.
  • the looseness monitoring system further includes an alarm device; the alarm device and the signal analysis device are in communication connection;
  • the alarm device is used for when the data uploaded by the signal analysis device is not received within a preset time period, the data includes the number of the bolt or nut, and the number of the bolt or nut that has not been received is generated. The corresponding alarm signal.
  • a wind turbine tower includes a wind turbine tower main body, at least two bolts or nuts installed on the wind turbine tower main body, and the bolt assembly tightness monitoring device according to any one of the above embodiments.
  • the positive progress effect of this application lies in the fact that the bolt or nut looseness monitoring device and system provided by this application realize the bolt or nut looseness monitoring, and can detect the looseness and fracture of the bolt or nut in time, so as to facilitate timely maintenance and improve wind power generation.
  • the scientificity and reliability of machine inspection and maintenance have realized the automatic monitoring function of the state of the adjacent fixed bolts or nuts of the wind turbine; the number of sensors in the bolt or nut looseness monitoring device is the same as the number of bolts or nuts to be tested, but it can make A bolt or nut is monitored by two sensors at the same time to ensure that the normal operation of the monitoring can still be guaranteed in the special case of a sensor failure, and the purpose of using a smaller number of sensors to improve the accuracy and reliability of the test is achieved.
  • FIG. 1 is a schematic structural diagram of a bolt looseness monitoring device of Embodiment 1 of the application.
  • FIGS. 2a and 2b are schematic diagrams of the structure of the profiling nut of Example 1 of the present application.
  • FIG. 3 is a schematic diagram of the bolt rotation angle and the stretched length of the sensor sensing section of Embodiment 1 of the application.
  • FIG. 4 is a schematic structural diagram of a monitoring device for loosening multiple bolts according to Embodiment 1 of the application.
  • FIG. 5 is a schematic structural diagram of a bolt looseness monitoring device of Embodiment 2 of the application.
  • FIG. 6 is a schematic diagram of the overall structure of the optical fiber deformation sensor according to Embodiment 3 of the application installed on a bolt or nut at a first angle.
  • FIG. 7 is a schematic diagram of the overall structure of the optical fiber deformation sensor according to Embodiment 3 of the application installed on a bolt or nut at a second angle.
  • FIG. 8 is an enlarged schematic diagram of the structure where the engaging structure at A in FIG. 7 is engaged with the nut buckle in Embodiment 3 of the application.
  • FIG. 9 is a schematic structural diagram of a third angle where the nut buckle is sleeved on the bolt or the nut in the optical fiber deformation sensor of Embodiment 3 of the application.
  • FIG. 10 is a schematic structural diagram of a fourth angle of the nut buckle sleeved on the bolt or nut in the optical fiber deformation sensor of Embodiment 3 of the application.
  • FIG. 11 is a schematic view of a fifth angle structure of the base member of the optical fiber deformation sensor according to Embodiment 3 of the application.
  • FIG. 12 is a schematic view of a sixth angle structure of the base member of the optical fiber deformation sensor according to Embodiment 3 of the application.
  • FIG. 13 is a schematic structural diagram of a bolt or nut looseness monitoring system according to Embodiment 4 of the application.
  • the bolt looseness monitoring device includes an optical fiber deformation sensor 1 and a supporting device 3.
  • the optical fiber deformation sensor 1 has a deformation sensing section 12, and the monitored bolt The number is multiple and they are all used to fasten on the base by threads.
  • the monitored bolt is a hexagonal bolt with a hexagonal head.
  • the deformation sensing sections 12 of the optical fiber deformation sensor are arranged on two adjacent ones. In the middle of the six hexagon bolts, the deformation sensing section 12 of the optical fiber deformation sensor is close to one side of the hexagon head of the hexagon bolt at the same time.
  • the hexagon head rotates, so that The deformation sensing section 12 of the optical fiber deformation sensor generates deformation, and the optical fiber deformation sensor 1 outputs a deformation signal to detect the loosening of the bolt.
  • fastened in this application means that a bolt or a nut is fastened and connected to the base through threads in a loosely and detachable manner.
  • the "bolt or nut” is not limited to itself.
  • the present application also includes all the mechanisms that can be connected to the base in a rotationally connected and fastened manner, such as threads.
  • the head of the bolt to be monitored in the bolt looseness monitoring device of this embodiment may also be quadrangular or any other non-circular shape.
  • the number and arrangement of the optical fiber deformation sensors 1 in the bolt looseness monitoring device of this embodiment are not limited to this embodiment. Any method that monitors the bolt looseness by the deformation sensing section 12 of the optical fiber deformation sensor is essentially The scope of protection of this application.
  • the looseness monitoring device also includes a profiling nut 8.
  • the profiling nut 8 is fixedly sleeved on the head of the bolt to be tested, and the profiling nut 8 is sleeved on the head of all the bolts to be tested.
  • a profiled nut 8 and 8L are sleeved on the head of the adjacent bolt to be tested;
  • the supporting device 3 is fixed on the profiling nut 8, and the structure of the profiling nut sleeved on the heads of all the bolts to be tested is the same as that of the profiling nut 8.
  • a protruding piece 9 is respectively provided at opposite ends of the profile nut 8;
  • the protruding piece 9 is provided with grooves 10, the two ends of the optical fiber deformation sensor are provided with limiting parts 11, and the two ends of the optical fiber deformation sensor are respectively fixedly arranged on the grooves on different ends of the adjacent profiled nut 8 and 8L.
  • the limiting portion 11 is attached to the outer side wall of the groove 10 on the protruding piece.
  • the protruding piece 9 of this embodiment may also be provided with a clamping part, and the two ends of the optical fiber deformation sensor may also be fixedly provided with connecting parts, and the connecting parts at both ends of the optical fiber deformation sensor are respectively clamped to the adjacent profiling screws.
  • the cap 8 is in the engaging parts on the different ends.
  • the profiling nut 8 is used as the sensor mounting bracket and the strain sensing point.
  • the sensor mounting bracket is hung on both sides of the profiling nut 8.
  • the nut 8 rotates together, and when the copy nut 8 rotates, the deformation sensing section of the optical fiber deformation sensor fixed on it is pulled to make a stretching action, so that the optical fiber deformation sensor sends a deformation signal.
  • the profiling nut 8 and the supporting device 3 are integrally formed into a structure (injected part or thermoformed part), which is moulded by pouring or moulded by hot pressing.
  • the optical fiber deformation sensors are staggered and fixedly arranged on the adjacent profiled nut.
  • FIG. 2a a schematic diagram of the structure of the profiling nut of Example 1 of the present application.
  • a protruding piece 9 is provided on the opposite ends of the profiling nut.
  • the protruding lobe 9 is provided with a groove 10, and the middle of the protruding nut is provided with a through hole 13 for sleeved fixing bolt heads.
  • FIG. 2b a schematic diagram of the structure of the profiling nut of Example 1 of the present application.
  • the profiling nut has a snap structure to prevent the profiling nut from slipping.
  • FIG 3 a schematic diagram of the bolt rotation angle and the tensile length of the sensor sensing section in Example 1 of the present application.
  • the bolt under test When the bolt under test is loosened, it rotates and drives the profiling nut to rotate. The bolt looseness is reversed. The hour hand turns.
  • the profiling nut rotates 30°, so that the deformation sensing section of the optical fiber deformation sensor is stretched and deformed by 2.63mm; when the bolt continues to rotate, the deformation sensing section of the optical fiber deformation sensor is continuously elongated , And even been pulled off.
  • FIG. 4 a schematic structural diagram of a monitoring device for loosening of multiple bolts in Embodiment 1 of the present application.
  • the profiling nut 8 is sleeved on the head of the bolt to be tested.
  • the profiling nut 8 is provided with an installation position for the optical fiber deformation sensor.
  • two adjacent profiling nuts 8 and the optical fiber deformation sensor 1 on 8L are provided. Directly hang each other in pairs, check each other, and judge the position of the loose bolt through the strain point.
  • the deformation sensing section of the optical fiber deformation sensor 1 is not stressed, and only slightly expands and contracts due to temperature. At this time, the deformation signal output by the optical fiber deformation sensor is none or outputs a weak deformation signal.
  • the bolt under test When the bolt under test is loosened, the bolt makes a rotating movement, which drives the profile nut 8 to make a rotating movement, and when the bolt is loosened, it rotates counterclockwise. For example, when the bolt under test is loosened, the bolt is loosened and turned counterclockwise. If the rotation is calculated by 30°, the deformation sensing section of the optical fiber deformation sensor 1 is elongated by 2.6mm. If two adjacent bolts are loose at the same time, the deformation sensing of the sensor The segment is stretched larger and even broken. At this time, the optical fiber deformation sensor outputs a large deformation signal or the output signal of the optical fiber deformation sensor is missing, indicating that the bolt is loose.
  • the deformation sensing section of the optical fiber deformation sensor 1 can be deformed or broken. At this time, it is necessary to check the optical fiber deformation sensors 1L and 1L adjacent to the left and right of the optical fiber deformation sensor 1 at the same time. In the case of 1R, if the optical fiber deformation sensor 1L on the adjacent left outputs a deformation signal or the signal is missing, and the optical fiber deformation sensor 1R on the adjacent right does not output a deformation signal or the signal is missing, it is determined that the optical fiber deformation sensor 1 and the adjacent left optical fiber deformation sensor The bolts of the profiled nut 8L between 1L are loose.
  • the bolt looseness monitoring device of Embodiment 1 of the present application uses two fiber optic deformation sensors to monitor the same bolt at the same time, and simultaneously monitors the sensing points on both sides of the bolt. If the deformation signal changes output by two adjacent fiber optic deformation sensors are the same or the signal is missing, it indicates If the tested bolt is loose, it can be analyzed in the background to make the test result more reliable. If the continuous three fiber optic deformation sensors all output large deformation signals or the signal is missing, it indicates that the two consecutive bolts are loose.
  • the number of sensors in the bolt looseness monitoring device of this embodiment is only one more than the number of bolts to be tested, but a bolt can be monitored by two sensors at the same time, so as to ensure that the monitoring can still be guaranteed in the special case of a sensor failure.
  • the normal operation of the sensor achieves the purpose of improving the accuracy and reliability of the test by using a smaller number of sensors.
  • the bolt looseness monitoring device of this embodiment is also suitable for nut looseness monitoring.
  • FIG. 5 it is a schematic structural diagram of a bolt looseness monitoring device of Embodiment 2 of the present application.
  • the bolt to be tested wraps around the edge of the circular base 25, and the supporting device 20 is arranged on the same side of the profiling nut 23.
  • the structure of the supporting device 20 is the same as that of the supporting device 3 in the first embodiment.
  • the structure is the same.
  • the two ends of the optical fiber deformation sensor 21 are respectively fixedly arranged on the supporting devices on the adjacent profiled nut 23 and the profiled nut 24, and the optical fiber deformation sensor 21 is arranged around the edge of the base 25.
  • the optical fiber deformation sensor 21 on the two adjacent profiled nuts 23 and 24 is simultaneously restrained by the profiled nuts 23 and 24, and the rotation of any one of the profiled nuts 23 and 24 can make the optical fiber deformation sensor 21
  • the deformation sensing section of the sensor is deformed or broken. At this time, it is necessary to check the condition of the optical fiber deformation sensor adjacent to the left and right of the optical fiber deformation sensor 21 at the same time.
  • the adjacent left optical fiber deformation sensor outputs a deformation signal or the signal is missing, the adjacent right fiber is deformed at the same time If the sensor does not output a deformation signal or the signal is missing, it is determined that the bolt on which the profile nut is located between the optical fiber deformation sensor 21 and the adjacent left optical fiber deformation sensor is loose.
  • the optical fiber deformation sensor is arranged around the edge of the base 25 according to the arrangement of the optical fiber deformation sensor 21 and the optical fiber deformation sensor 22 in the figure.
  • the bolt looseness monitoring device of Embodiment 2 of the present application uses two fiber optic deformation sensors to monitor the same bolt at the same time, and simultaneously monitors the sensing points on both sides of the bolt. If the deformation signals output by the two adjacent fiber optic deformation sensors have the same amount of change or the signal is missing, it indicates If the tested bolt is loose, it can be analyzed in the background to make the test result more reliable. If the continuous three fiber optic deformation sensors all output large deformation signals or the signal is missing, it indicates that the two consecutive bolts are loose.
  • the number of sensors in the bolt looseness monitoring device of this embodiment is only one more than the number of bolts to be tested, but a bolt can be monitored by two sensors at the same time, so as to ensure that the monitoring can still be guaranteed in the special case of a sensor failure.
  • the normal operation of the sensor achieves the purpose of improving the accuracy and reliability of the test by using a smaller number of sensors.
  • the bolt looseness monitoring device of this embodiment is also suitable for nut looseness monitoring.
  • Embodiment 3 of the present application discloses a bolt or nut looseness monitoring device.
  • the looseness monitoring device mainly includes Optical fiber deformation sensor 1 and nut buckle 54.
  • the nut buckle 54 is fixedly sleeved on the bolt or nut head, and the end of the optical fiber deformation sensor 1 is connected to the bolt or nut through the nut buckle 54 so that the optical fiber deformation sensor 1 can be conveniently installed on the bolt or nut.
  • the optical fiber deformation sensor 1 used in this embodiment includes an optical fiber 4 and a base member 5, as shown in FIG. 11.
  • the optical fiber 4 has a deformation sensing section 12, the optical fiber 4 is accommodated in the base member 5, the deformation sensing section 12 is located in the base member 5, and the deformation sensing section 12 is provided with a grating. Specifically, a Bragg grating can be selected.
  • the optical fiber deformation sensor 1 is connected to two bolts or nuts through the two ends of the base member 5, respectively.
  • the base member 5 can protect the optical fiber 4 to a certain extent, so as to prevent the optical fiber 4 from being damaged during the installation process, or to slow down the aging degree of the optical fiber 4 in the open environment. , Extend the service life of optical fiber 4.
  • the base member 5 includes a first connecting portion 50 and a second connecting portion 51.
  • the first connecting portion 50 is located at one end of the base member 5; the second connecting portion 51 is located at the other end of the base member 5.
  • the base member 5 is connected to two bolts or nuts through the first connecting portion 50 and the second connecting portion 51, respectively.
  • the two bolts or nuts described here may be adjacent or non-adjacent, but for ease of installation and maintenance considerations, it is preferable that the base member 5 is connected to the base member 5 through the first connecting portion 50 and the second connecting portion 51, respectively. On two adjacent bolts or nuts.
  • the number of fiber optic deformation sensors 1 is the same as the number of bolts or nuts, it can be ensured that two fiber optic deformation sensors 1 are connected to each bolt or nut. Even if one of the fiber optic deformation sensors 1 is damaged, there is another fiber.
  • the deformation sensor 1 can be used to reduce the probability of failure.
  • the base member 5 is fixed by one of the first connecting portion 50 and the second connecting portion 51, and the other is connected to a bolt or a nut. That is, one of the first connecting portion 50 and the second connecting portion 51 of the base member 5 is fixed to the base 2, and the other of the first connecting portion 50 and the second connecting portion 51 is The connecting part is connected to the bolt or nut.
  • the optical fiber deformation sensor 1 is arranged in a one-to-one correspondence with the bolts or nuts. Once the bolts or nuts are loose, the loose bolts or nuts can be quickly, directly and accurately determined according to the corresponding relationship.
  • the base member 5 further includes: a third connecting portion 52, which is connected between the first connecting portion 50 and the second connecting portion 51, and the third connecting portion 52 There is an optical fiber groove 553, the optical fiber 4 is accommodated in the optical fiber groove 553, and the deformation sensing section 12 is located in the optical fiber groove 553, and one end of the optical fiber 4 penetrates the first connecting portion 50 or the second connecting portion 51.
  • one end of the third connecting portion 52 is connected to the first connecting portion 50, and the other end of the third connecting portion 52 is connected to the second connecting portion 51.
  • the optical fiber 4 passes through the first connecting portion 50, the third connecting portion 52, and the second connecting portion 51 in sequence, and the optical fiber 4 is placed in the optical fiber groove 553, the deformation sensing section 12 is also located in the optical fiber groove 553, and the two ends of the optical fiber 4 are respectively It is placed in the first connecting portion 50 and the second connecting portion 51.
  • the first connecting portion 50 and the second connecting portion 51 are provided with an engaging structure 55, and the engaging structure 55 can be connected with The nut buckle 54 sleeved on the bolt or nut cooperates.
  • Such a configuration is preferably applied to the connection between the optical fiber deformation sensor 1 and the connection between two bolts or nuts.
  • only one end of the optical fiber deformation sensor 1 needs to be connected with a bolt or a nut, and the other end is fixed on the base 2
  • only one of the first connecting portion 50 and the second connecting portion 51 that is connected to the bolt or nut is provided. It is sufficient to engage the structural member 55, and the other one is directly fixed on the base 2.
  • the engaging structure 55 includes two engaging pillars 550, one end of the two engaging pillars 550 is connected, and a deformation gap is formed between the two engaging pillars 550.
  • the setting of the deformation gap is used to provide a space for the two locking posts 550 to deform.
  • the locking column 550 extends vertically outward from the bottom of the locking structure member 55.
  • the top of the engaging structure 55 also has a dispensing groove 555, the optical fiber 4 penetrates the dispensing groove 555, and the optical fiber 4 is embedded and fixed in the base member 5 by filling the glue in the dispensing groove 555 and the optical fiber groove 553.
  • the nut buckle 54 includes a main body.
  • the main body is provided with a mounting hole for mating connection with a bolt or a nut.
  • the main body is also provided with a toothed groove 540 for engaging with the structural member. Matching, it is convenient to adjust the connection distance between the two ends of the optical fiber, and also prevents the free movement of the optical fiber connection end.
  • a specific structure of the toothed groove 540 is shown in FIG. 9.
  • the toothed groove 540 includes an external gear 542 and an internal gear 541 that are concentric with the mounting hole.
  • the internal gear 541 surrounds the external gear 542, and is located between the external gear 542 and the internal gear 542 Tooth-shaped grooves 540 are formed therebetween.
  • the opposite sides of the two engagement posts 550 are respectively provided with tenons protruding outward, and the engagement structure 55 is engaged with the internal gear 541 and the external gear 542 on the nut buckle 54 through the tenons on both sides, respectively.
  • the first connecting portion 50 and/or the second connecting portion 51 can be detachably connected to the bolt or nut.
  • the arrangement of the internal gear 541 and the external gear 542 makes the engagement connection between the nut catch 54 and the engagement structure 55 closer.
  • the tenon includes a first tenon 551, a second tenon 552, a third tenon 553, and a fourth tenon 554, the first tenon 551 and the second tenon 552 is connected to one of the two locking posts 550, the third tenon 553 and the fourth tenon 554 are connected to the other one of the two locking posts 550, the first tenon There are grooves between the 551 and the second tenon 552 and between the third tenon 553 and the fourth tenon 554.
  • the first tenon 551 and the second tenon 552 are engaged with the internal gear 541, and the third tenon 553 and the fourth tenon 554 are engaged with the external gear 542.
  • the protruding part of the groove 540 is accommodated in the groove, and the engaging column 550 is accommodated in the tooth-shaped groove 540 formed between the concentric external gear 542 and the internal gear 541.
  • the nut buckle 54 is installed on a bolt or nut, and then the optical fiber deformation sensor 1 is buckled and installed with the nut buckle 54 through the base member 5, which makes installation and maintenance more convenient.
  • an optical fiber deformation sensor can be installed on one or more bolts or nuts, so that each bolt or nut can be monitored, and there are many monitoring points, and each bolt or nut can be accurately positioned. Parallel installation is adopted between adjacent bolts or nuts to increase the reliability of installation and monitoring.
  • FIG. 13 it is a schematic structural diagram of a bolt or nut looseness monitoring system according to Embodiment 4 of the present application.
  • the bolt or nut looseness monitoring system of this embodiment includes several bolt or nut looseness monitoring devices 100 of the above-mentioned embodiments.
  • the looseness monitoring system also includes a signal analysis device 200 and a laser emitting device 300.
  • the laser emitting device 300 is communicatively connected with the optical fiber deformation sensor in the looseness monitoring device 100; the laser emitting device 300 is used to emit laser light to the optical fiber deformation sensor.
  • the signal analysis device 200 is communicatively connected with the optical fiber deformation sensor in the looseness monitoring device 100; the signal analysis device 200 is used to receive and analyze the optical signal returned by the optical fiber deformation sensor, and determine the loose bolt or nut according to the analysis result. That is, the signal analysis device 200 is used to receive and analyze the reflected light change generated by the laser passing through the deformation sensing section of the optical fiber deformation sensor, and determine the tightness of the bolt or nut according to the analysis result.
  • the communication connection between the signal analysis device 200 and the optical fiber deformation sensor may be a wired communication connection.
  • the signal analysis device 200 includes a controller (not shown in the figure), and the controller is connected to the optical fiber 4 through an optical cable.
  • the bolt looseness monitoring system in this embodiment further includes a host (not shown in the figure), which is connected to the controller through a network cable, and is used to receive the detection result sent by the controller.
  • the signal analysis device 200 prestores the first corresponding relationship between the number of the optical fiber deformation sensor and the number of the bolt, the second corresponding relationship between the number of the optical fiber deformation sensor and the sensitive wavelength band, and the number of the optical fiber deformation sensor and the first corresponding relationship of the standard center wavelength of the sensitive wavelength band. Three correspondences.
  • Each optical fiber deformation sensor has sensitivity corresponding to a specific wavelength of light, and the sensitivity means that the optical fiber deformation sensor reflects or diffracts light energy of a specific wavelength.
  • the signal analysis device 200 uses a frequency sweep laser, which has the function of rapid wavelength scanning, and can work at any optional wavelength, from a specified start wavelength to a specified end wavelength for linear wavelength scanning at a specified speed, and a frequency sweep laser is used Analyzing the optical signal returned by the optical fiber deformation sensor can obtain the central wavelength of the optical signal.
  • the optical fiber deformation sensor receives the laser light emitted by the laser emitting device 300, it reflects or diffracts light of a certain wavelength.
  • the signal analysis device 200 analyzes the received optical signal returned by the optical fiber deformation sensor, and when the center wavelength of the optical signal returned by the optical fiber deformation sensor is scanned, it will search for the second correspondence between the number of the optical fiber deformation sensor and the sensitive wavelength band, and find the center Which sensitive waveband the wavelength is in to determine the number of the optical fiber deformation sensor. Then, the number of the bolt is determined by searching for the first corresponding relationship between the number of the optical fiber deformation sensor and the number of the bolt.
  • the signal analysis device 200 is also used to calculate the loosening angle of the loose bolt according to the optical signal returned by the optical fiber deformation sensor.
  • the signal analysis device 200 compares the center wavelength of the optical signal returned by the optical fiber deformation sensor with the standard center wavelength of the sensitive band according to the center wavelength of the optical signal returned by the optical fiber deformation sensor, calculates the looseness angle of the corresponding bolt, and then searches The third correspondence between the number of the optical fiber deformation sensor and the standard center wavelength of the sensitive waveband determines the number of the optical fiber deformation sensor, and then determines the looseness angle of the corresponding bolt.
  • the bolts are set with numbers during installation, such as L1, L2 to Ln; each optical fiber deformation sensor is also set with numbers, such as T1a, T2a to T(n+1)a; bolt L1 is set between the optical fiber deformation sensors T1a and T2a In the meantime, the bolt L2 is arranged between the optical fiber deformation sensors T2a and T3a, and the bolt Ln is arranged between the optical fiber deformation sensors Tna and T(n+1)a.
  • the optical fiber deformation sensor numbered T1a can reflect or diffract 332nm light, and the optical fiber deformation sensor numbered T2a can reflect or diffract light with a center wavelength of 352nm.
  • the signal analysis device 200 analyzes that the center wavelength of the optical signal returned by the received optical fiber deformation sensor is 332nm, find the sensitive wavelength band of the 332nm, and then through the first correspondence relationship, it can be determined that it is the optical fiber deformation sensor numbered T1a. This determines the number of the optical fiber deformation sensor, and then uses the same method to determine the optical fiber deformation sensor numbered T2a.
  • the fiber optic deformation sensors numbered T1a and T2a simultaneously monitor the loosening of the bolt numbered L1
  • the fiber optic deformation sensors numbered T2a and T3a simultaneously monitor the loosening of the bolt numbered L2
  • the numbered Tna and T(n+ 1) A fiber optic deformation sensor simultaneously monitors the loosening of the bolt numbered Ln.
  • the center wavelength of the optical signal reflected by it will shift, but the center wavelength of the optical signal reflected by each optical fiber deformation sensor will shift by Limitedly, in this embodiment, it is ensured that the center wavelength of the optical signal reflected by each optical fiber deformation sensor does not coincide when the maximum deviation occurs. Therefore, when the center wavelength of the optical signal returned by the optical fiber deformation sensor received by the signal analysis device 200 is shifted, the number of the optical fiber deformation sensor that reflects the light can also be determined; for example, the number of the optical fiber deformation sensor received by the signal analysis device 200 can be determined.
  • the central wavelength of the optical signal is 334nm.
  • the wavelength of 334nm is the maximum deviation range of the central wavelength of the optical signal reflected by the optical fiber deformation sensor numbered T1a.
  • the optical fiber deformation sensor numbered T1a is deformed.
  • the standard central wavelength of the sensitive wavelength band of the optical fiber deformation sensor numbered T1a is 332nm, and the central wavelength of the optical signal returned by the optical fiber deformation sensor numbered T1a is subtracted from the standard of the sensitive wavelength band of 334nm.
  • the center wavelength of 332nm results in a 2nm deformation of the optical fiber deformation sensor and a 5° looseness of the bolt.
  • the bolts numbered L2 or L3 are predicted to loosen. At this time, it is necessary to determine which bolt is loosened according to the situation of the adjacent optical fiber deformation sensor number. If the number is T2a If the fiber optic deformation sensor numbered T4a has no deformation or signal loss, the bolt numbered L2 is determined to be loose; if the fiberoptic deformation sensor numbered T2a has no deformation or signal loss, At the same time, if the optical fiber deformation sensor numbered T4a is deformed and the signal is missing, it is determined that the bolt numbered L3 is loosened, so as to determine which bolt is loosened.
  • this application uses a swept frequency laser to achieve continuous and short-time frequency division detection, and locates the corresponding optical fiber deformation sensor through the center wavelength to determine the position of the loose bolt. It is not restricted by the time interval of time-sharing multiplexing, has high efficiency, and can find problems in time.
  • the bolt looseness monitoring system in this embodiment also includes an alarm device 400, which is wirelessly connected to the signal analysis device 200; the data analyzed by the signal analysis device 200 includes the number of the bolt and the looseness angle generated by the bolt; the signal analysis device The data parsed by 200 is uploaded to the alarm device 400.
  • the alarm device 400 determines whether the loosening angle of the bolt exceeds a preset threshold. If it exceeds the preset threshold, the alarm device 400 generates an alarm signal corresponding to the bolt number; If the alarm device 400 does not receive the data uploaded by the signal analysis device 200 within the preset time period, assuming that the preset time is 10 seconds, it will generate an alarm signal corresponding to the number of the bolt that has not been received.
  • the deformation sensing section of the optical fiber deformation sensor does not break and deforms.
  • the signal analysis device 200 receives the deformation signal output by the optical fiber deformation sensor, and when the bolt rotates 30°, the optical fiber deformation sensor is deformed.
  • the sensing section is stretched and deformed by 2.6mm; when the bolt continues to rotate, the deformation sensing section of the optical fiber deformation sensor is continuously elongated or even broken.
  • the preset bolt looseness angle threshold is 5°. When the looseness angle received by the alarm device 400 is greater than 5°, the bolt is considered to be loose, the alarm device 400 will generate an alarm signal and send it to the operator, and the operator will issue maintenance Instruction, while monitoring the subsequent loosening situation.
  • the deformation sensing sections of the optical fiber deformation sensor on both sides of the bolt will be stretched and deformed.
  • the limit of the deformation sensing section of the stretched optical fiber deformation sensor is that the deformation sensing section of the sensor is broken.
  • the signal source signal is lost.
  • the signal analysis device 200 detects that the signal is lost. If the signal analysis device 200 detects that the signal output by the optical fiber deformation sensor is missing, that is, the deformation sensing section of the optical fiber deformation sensor is broken, it means that the corresponding bolt is loosened, and the sensor should be repaired and replaced.
  • the signal analysis device 200 Determine the number of the normal optical fiber deformation sensor according to the optical signal returned by the received optical fiber deformation sensor to determine the number of the broken optical fiber deformation sensor, and then determine that a specific bolt or bolts of a certain number are loose, and the alarm device 400 An early warning is issued to the operator, and the operator issues maintenance instructions. Under normal circumstances, the loosening of a bolt will continue, and the optical fiber deformation sensor will continue to detect the deformation data, so when the bolt looseness angle is detected to be small, you can also do the maintenance record first and continue the monitoring. Moreover, the loosening of one bolt will cause the other bolts to be loosened at the same time. At this time, the signal analysis device 200 can fully record the loosening information of all the bolts.
  • the key bolts such as the fan blades and the fixed base are added with an optical fiber deformation sensor that is one more than the number of bolts to be tested, and the optical fiber deformation sensor is arranged between two adjacent bolts.
  • a copying cap or a copying nut is installed on the two bolts to monitor the loosening of the bolts.
  • the nut profiling cap or profiling nut rotates with the loosening of the bolt, so that the deformation sensing section of the optical fiber deformation sensor on both sides of the tested bolt is deformed or even broken.
  • the optical fiber deformation sensor transmits the deformation signal to the signal analysis device 200, and the signal is analyzed.
  • the device 200 transmits the signal of each point through Wi-Fi (Wireless Fidelity, mobile hotspot) signals to the wind turbine operator for data analysis, discovers problems in time, and repairs after warning, without blind or purposeful maintenance.
  • Wi-Fi Wireless Fidelity, mobile hotspot
  • the number of sensors in the bolt looseness monitoring device of this embodiment is only one more than the number of bolts to be tested, but a bolt can be monitored by two sensors at the same time, so as to ensure that the monitoring can still be guaranteed in the special case of a sensor failure.
  • the normal operation of the sensor achieves the purpose of improving the accuracy and reliability of the test by using a smaller number of sensors.
  • Embodiment 5 of the present application discloses a wind turbine tower, including a wind turbine tower main body, at least two bolts or nuts installed on the wind turbine tower main body, and the bolts or nuts described in any of the above embodiments Loosening monitoring device to realize real-time monitoring of the delivery of bolts or nuts on the wind turbine tower and improve the scientificity and reliability of wind turbine inspection and maintenance.
  • the looseness monitoring device of the present application can be installed in the fan blades, fixed bases, tower flange connections, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种螺栓或螺母的松动监测装置及系统,螺栓或螺母的数量为至少两个并均被用于紧固在一基座(25)上,松动监测装置包括:光纤形变传感器(1);光纤形变传感器(1)具有形变感应段(12),光纤形变传感器(1)的形变感应段(12)被设置成位于两个螺栓或螺母之间,以使得形变感应段(12)在两个螺栓或螺母中任一个转动时产生形变。螺栓或螺母的松动监测装置及系统能及时发现相邻固定螺栓或螺母的松动及断裂情况,以便及时维修;同时减少了传感器数量,提高了测量准确度。

Description

螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒
本申请要求申请日为2019年12月20日的中国专利申请CN201911321671.7的优先权。本申请引用上述中国专利申请的全文。
技术领域
本申请涉及相邻固定螺栓或螺母状态监控技术,尤其涉及一种螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒。
背景技术
目前风力发电行业在全世界达到大力推广,由于设置地点多为海上或沿海偏远山区等,日常维护极为不便。而且大型风力发电机固定用螺栓或螺母极多(一台大型风力发电机上固定螺栓多达500个以上),由于环境特别恶劣,风力发电机上通过螺纹紧固的螺栓或螺母极易产生松动,而螺栓或螺母松动将会导致风力发电机损坏甚至倒塌。风力发电机组正常运行期间,高强螺栓的巡检周期一般为半年至一年,巡检周期间隔较长,螺栓出现松动或断裂的情况不能够及时发现,且每次巡检耗费大量的时间、人力、物力,尤其对于海上风电机组,深入海岸线以内数公里,机组巡检不方便,巡检费用较高等问题比较突出。
现有的位移传感器只能对单个的螺栓或螺母进行检测,例如只能针对单个螺栓组的松动进行检测。例如,在公开号为CN110220682A的专利申请文件中,该申请文件用一根光纤测量多个螺栓,且采用了分时复用的方式,但是仍然无法及时发现某个螺栓的松动情况。当特定设备,例如风机塔筒中包括一排多个螺栓组,分别进行单个螺栓组的检测成本高昂,效率低下。
发明内容
本申请要解决的技术问题是为了克服现有技术中螺栓或螺母的松动监测的缺陷以及克服现有的位移传感器对待螺栓组或螺母组进行单个监测成本高昂、效率低下的问题,提供一种螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒。
本申请是通过下述技术方案来解决上述技术问题:
一种螺栓或螺母的松动监测装置,所述螺栓或螺母的数量为至少两个并均被用于紧固在一基座上,所述松动监测装置包括:
光纤形变传感器;
所述光纤形变传感器具有形变感应段,所述光纤形变传感器的形变感应段被设置成位于两个螺栓或螺母之间,以使得所述形变感应段在所述两个螺栓或螺母中任一个转动时产生形变。
较佳地,所述光纤形变传感器的形变感应段的两端分别设于两个相邻或不相邻的两个螺栓或螺母之间。
较佳地,所述松动监测装置还包括支撑装置,所述支撑装置设于所述基座上并用于支撑所述光纤形变传感器;
所述支撑装置设在两个相邻或不相邻螺栓或螺母上,所述光纤形变传感器设置在所述两个相邻或不相邻螺栓或螺母的支撑装置之间,以使得所述形变感应段在所述两个相邻或不相邻螺栓或螺母中任一个转动时受到两个支撑装置的相对作用力而产生形变。
较佳地,所述松动监测装置还包括仿形螺帽;
所述仿形螺帽固定套设在所述螺栓或螺母头部上;所述支撑装置固设在所述仿形螺帽上。
较佳地,所述仿形螺帽的相对两端分别设有一凸出片;
所述凸出片上设有凹槽,所述光纤形变传感器的两端设有限位部件,所述光纤形变传感器的两端分别固定设置在相邻所述仿形螺帽上的不同端上的凹槽内,所述限位部与所述凸出片的凹槽的外侧壁贴合;或,所述凸出片上设置有卡合部,所述光纤形变传感器两端固设有连接部,所述光纤形变传感器两端的连接部分别卡合在相邻所述仿形螺帽上的不同端上的卡合部内。
较佳地,所述光纤形变传感器包括光纤和基件,所述光纤具有形变感应段,所述光纤容置于所述基件内,所述形变感应段位于所述基件内;
所述光纤形变传感器通过所述基件的两端被分别连接于所述两个螺栓或螺母上。
较佳地,所述松动监测装置还包括螺母扣;
所述螺母扣固定套设在所述螺栓或螺母头部上;所述光纤形变传感器的端部通过所述螺母扣连接于所述螺栓或螺母上。
较佳地,所述螺母扣包括本体,所述本体上开设有与所述螺栓或螺母相配合连接的安装孔,所述本体上凸设有齿形槽。
一种光纤形变传感器,包括:
光纤,所述光纤具有形变感应段;
基件,所述光纤容置于所述基件内,所述形变感应段位于所述基件内;所述基件被设置为两端分别连接于两个螺栓或螺母上,或者所述基件被设置为一端固定、另一端连接于螺栓或螺母上;所述螺栓或螺母用于被紧固于一基座上;所述形变感应段在与其连接的所述螺栓或螺母转动时产生形变。
较佳地,所述基件包括:
第一连接部,位于所述基件一端;
第二连接部,位于所述基件另一端;
所述基件通过所述第一连接部和所述第二连接部分别连接于两个所述螺栓或螺母上;或者所述基件通过所述第一连接部和所述第二连接部中的一个连接部进行固定,另一个连接部连接于所述螺栓或螺母上。
较佳地,所述基件还包括:
第三连接部,所述第三连接部连接于所述第一连接部和第二连接部之间,所述第三连接部具有光纤槽,所述光纤容置于所述光纤槽中,且所述形变感应段位于所述光纤槽内,所述光纤一端贯穿所述 第一连接部或者第二连接部。
较佳地,所述第一连接部和/或第二连接部包括卡合结构件;
所述卡合结构件用于和套设在所述螺栓或螺母上的螺母扣配合,以使所述第一连接部和/或第二连接部可拆卸连接于所述螺栓或螺母上。
较佳地,所述卡合结构件包括两个卡合柱,两个所述卡合柱的一端部相连,且两个卡合柱之间形成形变间隙。
较佳地,两个所述卡合柱相背的两侧面分别设有向外凸起的卡榫,所述卡合结构件通过两侧的卡榫分别与所述螺母扣上的齿形槽啮合,使得所述第一连接部和/或第二连接部可拆卸连接于所述螺栓或螺母上。
较佳地,所述卡合结构件顶部具有点胶槽,所述光纤贯穿所述点胶槽,并通过在所述点胶槽和所述光纤槽中填充胶体将所述光纤埋设固定于所述基件中。
较佳地,所述形变感应段上设有光栅。
较佳地,所述光栅为布拉格光栅。
一种螺栓或螺母的松动监测系统,所述松动监测系统包括至少一个上述所述的螺栓或螺母的松动监测装置,所述松动监测系统还包括信号解析装置和激光发射装置;
所述信号解析装置和所述激光发射装置分别与所述松动监测装置中的所述光纤形变传感器通信连接;
所述激光发射装置用于向所述光纤形变传感器发射激光;所述信号解析装置用于接收并解析所述光纤形变传感器返回的光信号,并根据解析的结果判断出产生松动的螺栓或螺母。
较佳地,所述信号解析装置中预存有所述光纤形变传感器的编号与所述螺栓或螺母的编号的第一对应关系,以及所述光纤形变传感器的编号与敏感波段的第二对应关系;
所述信号解析装置用于解析所述光纤形变传感器返回的光信号的中心波长,根据所述光信号的中心波长和所述第二对应关系确定所述光纤形变传感器的编号,再根据所述光纤形变传感器的编号和所述第一对应关系,确定所述光信号对应的螺栓或螺母的编号。
较佳地,所述信号解析装置还用于根据所述解析的结果计算出所述产生松动的螺栓或螺母的松动角度;
所述信号解析装置中还预存有所述光纤形变传感器的编号与敏感波段的标准中心波长的第三对应关系;
所述信号解析装置根据所述光纤形变传感器的编号和所述第三对应关系确定所述光纤形变传感器的标准中心波长,再将所述光纤形变传感器返回的光信号的中心波长与所述标准中心波长进行比较,计算出所述光信号对应的螺栓或螺母产生的松动角度。
较佳地,所述松动监测系统还包括报警装置;所述报警装置和所述信号解析装置通信连接;
所述报警装置用于接收所述信号解析装置上传的数据,所述数据包括所述螺栓或螺母的编号和所述螺栓或螺母产生的松动角度,当所述松动角度超过阈值时,生成与所述螺栓或螺母的编号相对应的 报警信号。
较佳地,所述松动监测系统还包括报警装置;所述报警装置和所述信号解析装置通信连接;
所述报警装置用于在预设时间段内未接收到所述信号解析装置上传的数据时,所述数据包括所述螺栓或螺母的编号,生成与未接收到的所述螺栓或螺母的编号相对应的报警信号。
一种风机塔筒,包括风机塔筒主体,安装在所述风机塔筒主体上的至少两个螺栓或螺母,以及上述任一实施例所述的螺栓组件松紧监测装置。
本申请的积极进步效果在于:本申请提供的螺栓或螺母的松动监测装置及系统实现了螺栓或螺母的松动监控,能及时发现螺栓或螺母的松动及断裂情况,以便及时维修,提高了风力发电机巡检维护的科学性与可靠性,实现了风力发电机相邻固定螺栓或螺母状态自动监测功能;螺栓或螺母松动监测装置中传感器的数量与被测螺栓或螺母的数量相同,但是可以使得一个螺栓或螺母同时受到两个传感器的监测,以保证出现一个传感器失效的特殊情况下,依然可以保障监测的正常运行,实现了采用较少的传感器数量提高测试准确性和可靠性的目的。
附图说明
图1为本申请的实施例1的螺栓的松动监测装置结构示意图。
图2a和2b为本申请的实施例1的仿形螺帽的结构示意图。
图3为本申请的实施例1的螺栓旋转角度与传感器感应段拉伸长度示意图。
图4为本申请的实施例1的多个螺栓的松动监测装置结构示意图。
图5为本申请的实施例2的螺栓的松动监测装置结构示意图。
图6为本申请的实施例3的光纤形变传感器安装于螺栓或螺母上的第一角度的整体结构示意图。
图7为本申请的实施例3的光纤形变传感器安装于螺栓或螺母上的第二角度的整体结构示意图。
图8为本申请的实施例3中图7中A处的卡合结构件与螺母扣卡合的结构放大示意图。
图9为本申请的实施例3的光纤形变传感器中螺母扣套设于螺栓或螺母上的第三角度的结构示意图。
图10为本申请的实施例3的光纤形变传感器中螺母扣套设于螺栓或螺母上的第四角度的结构示意图。
图11为本申请的实施例3的光纤形变传感器的基件的第五角度的结构示意图。
图12为本申请的实施例3的光纤形变传感器的基件的第六角度的结构示意图。
图13为本申请实施例4的螺栓或螺母的松动监测系统的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本申请,但并不因此将本申请限制在所述的实施例范围之中。
实施例1
如图1所示,本申请的实施例1的螺栓的松动监测装置结构示意图,该螺栓的松动监测装置包括 光纤形变传感器1和支撑装置3,光纤形变传感器1具有形变感应段12,被监测螺栓数量为多个且均被用于通过螺纹紧固在基座上,本实施例中被监测螺栓为六角螺栓,其头部为六角形,光纤形变传感器的形变感应段12被设置在相邻两个六角螺栓的中间,光纤形变传感器的形变感应段12同时紧贴六角螺栓的六角形头部的一条边,在相邻六角螺栓中任意一个螺栓发生松动时其六角形头部做旋转运动,使得光纤形变传感器的形变感应段12产生形变,光纤形变传感器1会输出形变信号,以监测到螺栓产生松动。
本申请中所称“紧固”表示螺栓或螺母通过螺纹与基座可松紧、可拆装地紧固连接。“螺栓或螺母”也不仅限于本身,本申请还包括具有螺纹等所有可以旋转连接、紧固的方式连接到基座上的机构。
本实施例的螺栓的松动监测装置中被监测螺栓的头部还可以是四角形或其他任何非圆形形状。本实施例的螺栓的松动监测装置中光纤形变传感器1的数量和设置方式不限于本实施例,任何以光纤形变传感器的形变感应段12产生形变的方式监测螺栓松动的方式,本质上都落入本申请保护的范围。
该松动监测装置还包括仿形螺帽8,仿形螺帽8固定套设在被测螺栓头部上,所有被测螺栓头部上都套设有仿形螺帽8,本实施例中相邻被测螺栓头部上套设有仿形螺帽8和8L;
支撑装置3固设在仿形螺帽8上,所有被测螺栓头部上套设的仿形螺帽结构与仿形螺帽8相同。
仿形螺帽8的相对两端分别设有一凸出片9;
凸出片9上设有凹槽10,光纤形变传感器的两端设有限位部件11,光纤形变传感器的两端分别固定设置在相邻仿形螺帽8和8L上的不同端上的凹槽10内,限位部11与凸出片上的凹槽10的外侧壁贴合。
本实施例的凸出片9上还可以设置有卡合部,光纤形变传感器的两端还可以固设有连接部,光纤形变传感器的两端的连接部分别卡合在相邻所述仿形螺帽8上的不同端上的卡合部内。
本实施例中仿形螺帽8做传感器安装支架和应变感应点,传感器安装支架挂于仿形螺帽8两侧,当被测螺栓松动时会发生旋转,同时带动套设其上的仿形螺帽8一起旋转,仿形螺帽8旋转时恰好拉动固定其上的光纤形变传感器的形变感应段做拉伸动作,从而使光纤形变传感器发出形变信号。仿形螺帽8与支撑装置3一体成型结构(注塑件或热成型件),模具浇筑成型或模具热压成型。
本实施例的螺栓的松动监测装置中光纤形变传感器交错的固定设置在相邻仿形螺帽上。
如图2a所示,本申请的实施例1的仿形螺帽的结构示意图。仿形螺帽的相对两端分别设有一凸出片9,凸出片9上设有凹槽10,仿形螺帽中间设有通孔13,用于套设固定螺栓头部。
如图2b所示,本申请的实施例1的仿形螺帽的结构示意图。仿形螺帽设有卡扣结构,防止仿形螺帽自身打滑。
如图3所示,本申请的实施例1的螺栓旋转角度与传感器感应段拉伸长度示意图,当被测螺栓发生松动时,做旋转运动,带动仿形螺帽做旋转运动,螺栓松动为逆时针转动。当螺栓转动30°时,带动仿形螺帽转动30°,使光纤形变传感的形变感应段被拉伸变形2.63mm;当螺栓继续转动时,光纤形变传感的形变感应段被继续拉长,甚至被拉断。
如图4所示,本申请的实施例1的多个螺栓的松动监测装置结构示意图。
本申请实施例1的螺栓的松动监测装置实现螺栓松动监测的原理如下:
仿形螺帽8套在被测螺栓头部上,仿形螺帽8上设有光纤形变传感器的安装卡位,在螺栓固定后相邻两仿形螺帽8和8L上的光纤形变传感器1直接两两相挂,互相牵制,通过应变点判断松动螺栓的位置。螺栓未发生松动情况下光纤形变传感器1的形变感应段不受力,只受温度影响有微弱的热胀冷缩,此时,光纤形变传感器输出的形变信号为无或是输出微弱的形变信号。
当被测螺栓发生松动时,螺栓做旋转运动,带动仿形螺帽8做旋转运动,螺栓松动为逆时针转动。例如,当被测螺栓发生松动时,螺栓松动逆时针转动,按转动30°计算,则光纤形变传感器1的形变感应段被拉长2.6mm,如果相邻两螺栓同时松动,则传感器的形变感应段被拉长更大,甚至出现拉断情况。此时,光纤形变传感器输出较大形变信号或光纤形变传感器输出信号缺失,表明螺栓发生松动。
由于相邻仿形螺帽8和8L中任意一个转动都可以使光纤形变传感器1的形变感应段发生变形或断裂,此时需要同时检查与光纤形变传感器1的左右相邻的光纤形变传感器1L和1R的情况,若相邻左边的光纤形变传感器1L输出形变信号或信号缺失同时相邻右边的光纤形变传感器1R没有输出形变信号或信号缺失,则确定光纤形变传感器1与相邻左边的光纤形变传感器1L之间的仿形螺帽8L所在的螺栓发生松动。
本申请实施例1的螺栓的松动监测装置同时使用两个光纤形变传感器监测同一螺栓,同时监测螺栓的两侧感应点,如果相邻两光纤形变传感器输出的形变信号变化量相同或信号缺失,表明被测螺栓产生松动,可做后台分析,使测试结果更加可靠。如果连续三光纤形变传感器都输出较大形变信号或信号缺失,则表明连续两个螺栓发生松动。
本实施例的螺栓松动监测装置中传感器的数量仅比被测螺栓的数量多一个,但是可以使得一个螺栓同时受到两个传感器的监测,以保证出现一个传感器失效的特殊情况下,依然可以保障监测的正常运行,实现了采用较少的传感器数量提高测试准确性和可靠性的目的。
本实施例的螺栓的松动监测装置同样适用于螺母的松动监测。
实施例2
如图5所示,为本申请的实施例2的螺栓的松动监测装置结构示意图。
本实施例的螺栓的松动监测装置中,被测螺栓绕圆形基座25边缘一周,支撑装置20设置在仿形螺帽23的同一边,支撑装置20的结构与实施例1中支撑装置3的结构相同。光纤形变传感器21的两端的分别固定设置在相邻仿形螺帽23和仿形螺帽24上的支撑装置上,光纤形变传感器21绕基座25边缘一周设置。在螺栓固定后相邻两仿形螺帽23和24上的光纤形变传感器21同时受仿形螺帽23和24的牵制,仿形螺帽23和24中任意一个转动都可以使光纤形变传感器21的形变感应段发生变形或断裂,此时需要同时检查与光纤形变传感器21的左右相邻的光纤形变传感器情况,若相邻左边的光纤形变传感器输出形变信号或信号缺失同时相邻右边的光纤形变传感器没有输出形变信号或信号缺失,则确定光纤形变传感器21与相邻左边的光纤形变传感器之间的仿形螺帽所在的螺栓发生松动。光纤形变传感器按照图光纤形变传感器21和光纤形变传感器22的设置方式绕基座25边缘一周设置。
本申请实施例2的螺栓的松动监测装置同时使用两个光纤形变传感器监测同一螺栓,同时监测螺栓的两侧感应点,如果相邻两光纤形变传感器输出的形变信号变化量相同或信号缺失,表明被测螺栓产生松动,可做后台分析,使测试结果更加可靠。如果连续三光纤形变传感器都输出较大形变信号或信号缺失,则表明连续两个螺栓发生松动。
本实施例的螺栓松动监测装置中传感器的数量仅比被测螺栓的数量多一个,但是可以使得一个螺栓同时受到两个传感器的监测,以保证出现一个传感器失效的特殊情况下,依然可以保障监测的正常运行,实现了采用较少的传感器数量提高测试准确性和可靠性的目的。
本实施例的螺栓的松动监测装置同样适用于螺母的松动监测。
实施例3
本实施例的螺栓或螺母的松动监测装置与实施例1或实施例2的区别在于,光纤形变传感器1与两个螺栓或螺母之间的连接。
本申请的实施例3公开了一种螺栓或螺母的松动监测装置,如图6-图12所示,为了方便光纤形变传感器1与两个螺栓或螺母之间的连接,该松动监测装置主要包括光纤形变传感器1和螺母扣54。螺母扣54固定套设在螺栓或螺母头部上,光纤形变传感器1的端部通过螺母扣54连接于螺栓或螺母上,可以方便地将光纤形变传感器1安装在螺栓或螺母上。
本实施例所用的光纤形变传感器1包括光纤4和基件5,如图11所示。光纤4具有形变感应段12,光纤4容置于基件5内,形变感应段12位于基件5内,形变感应段12上设有光栅,具体可以选用布拉格光栅。光纤形变传感器1通过基件5的两端被分别连接于两个螺栓或螺母上。这里通过将光纤4容置于基件5内,使得基件5对光纤4起到一定的保护作用,避免光纤4在安装过程中被损坏,或者减缓光纤4在露天的使用环境中的老化程度,延长光纤4的使用寿命。
具体地,基件5包括:第一连接部50和第二连接部51,第一连接部50位于基件5一端;第二连接部51位于基件5另一端。基件5通过第一连接部50和第二连接部51分别连接于两个螺栓或螺母上。这里所述的两个螺栓或螺母可以是相邻的,也可以不相邻的,但是基于便于安装和检修考虑,优选为基件5通过第一连接部50和第二连接部51分别连接于相邻的两个螺栓或螺母上。如此设置,只要光纤形变传感器1的数量和螺栓或螺母的数量相同,就可以确保每个螺栓或螺母上连接有两个光纤形变传感器1,即使其中一个光纤形变传感器1损坏,还有另一个光纤形变传感器1可使用,降低失效的概率。
在其他示例性的实施例中,基件5通过第一连接部50和第二连接部51中的一个进行固定,另一个连接于螺栓或螺母上。即,将基件5的第一连接部50和第二连接部51两者中的其中一个连接部固定在基座2上,第一连接部50和第二连接部51两者中的另一个连接部连接于螺栓或螺母上。本实施例中,光纤形变传感器1与螺栓或螺母一一对应设置,一旦有螺栓或螺母松动,可以根据对应关系快速、直接地准确判断出松动的螺栓或螺母。
为方便将光纤4安装至基件5内,基件5还包括:第三连接部52,第三连接部52连接于第一连 接部50和第二连接部51之间,第三连接部52具有光纤槽553,光纤4容置于光纤槽553中,且形变感应段12位于光纤槽553内,光纤4的一端贯穿第一连接部50或者第二连接部51。具体地,第三连接部52的一端连接第一连接部50,第三连接部52的另一端连接第二连接部51。光纤4依次穿过第一连接部50、第三连接部52和第二连接部51,且光纤4放置于光纤槽553中,形变感应段12也位于光纤槽553内,光纤4的两端分别置于第一连接部50和第二连接部51内。
为了方便地将第一连接部50和第二连接部51与螺母扣54进行连接安装,在第一连接部50和第二连接部51上设置卡合结构件55,卡合结构件55可以和套设在螺栓或螺母上的螺母扣54配合。如此设置,优选应用于将光纤形变传感器1连接于两个螺栓或螺母之间的连接。但是当仅需要光纤形变传感器1的一端与螺栓或螺母连接,而另一端固定于基座2上时,只要在第一连接部50和第二连接部51中与螺栓或螺母连接的一个上设置卡合结构件55即可,另一个直接固定于基座2上。
具体地,卡合结构件55包括两个卡合柱550,两个卡合柱550的一端部相连,且两个卡合柱550之间形成形变间隙。形变间隙的设置,用于提供两个卡合柱550发生形变的空间。而为了使卡合柱550垂直连接于基件5,优选卡合柱550自卡合结构件55底部垂直向外延伸。此外,卡合结构件55顶部还具有点胶槽555,光纤4贯穿点胶槽555,并通过在点胶槽555和光纤槽553中填充胶体将光纤4埋设固定于基件5中。
本实施例中,如图9所示,螺母扣54包括本体,本体上开设有与螺栓或螺母相配合连接的安装孔,本体上还凸设有齿形槽540,用于与卡合结构件相配合,便于调节光纤两端的连接距离,也防止光纤连接端的自由移动。图9中示出了齿形槽540的一种具体结构,齿形槽540包括与安装孔同心的外齿轮542和内齿轮541,内齿轮541环绕外齿轮542,在外齿轮542和内齿轮542之间形成齿形槽540。两个卡合柱550相背的两侧面分别设有向外凸起的卡榫,卡合结构件55通过两侧的卡榫分别与螺母扣54上的内齿轮541和外齿轮542的啮合,使得第一连接部50和/或第二连接部51可拆卸连接于螺栓或螺母上。内齿轮541、外齿轮542的设置,使得螺母扣54和卡合结构件55之间的卡合连接更加紧密。
示例性的,如图11-图12所示,卡榫包括第一卡榫551、第二卡榫552、第三卡榫553和第四卡榫554,第一卡榫551和第二卡榫552连接于两个卡合柱550的其中一个卡合柱550上,第三卡榫553和第四卡榫554连接于两个卡合柱550的另外一个卡合柱550上,第一卡榫551和第二卡榫552之间以及第三卡榫553和第四卡榫554之间均设置有沟槽。当螺母扣54与卡合结构件55卡合时,第一卡榫551、第二卡榫552卡合内齿轮541,第三卡榫553、第四卡榫554卡合外齿轮542,齿形槽540凸起的部分容置于沟槽内,卡合柱550容置在同心的外齿轮542和内齿轮541之间形成的齿形槽540内。
本申请通过将螺母扣54安装在螺栓或螺母上,再将光纤形变传感器1通过基件5与螺母扣54扣合安装,使得安装与维护更方便。且可以在一个或多个螺栓或螺母上安装光纤形变传感器,使每个螺栓或螺母都能够监测到,监测点多,精确定位每个螺栓或螺母。在相邻的螺栓或螺母之间采用并联安装,增加安装和监测的可靠性。
实施例4
如图13所示,为本申请实施例4的螺栓或螺母的松动监测系统的结构示意图。
本实施例的螺栓或螺母的松动监测系统包括若干个上述实施例的螺栓或螺母的松动监测装置100。此外,该松动监测系统还包括信号解析装置200和激光发射装置300。激光发射装置300与松动监测装置100中的光纤形变传感器通信连接;激光发射装置300用于向光纤形变传感器发射激光。
信号解析装置200与松动监测装置100中的光纤形变传感器通信连接;信号解析装置200用于接收并解析光纤形变传感器返回的光信号,并根据解析的结果判断出产生松动的螺栓或螺母。即信号解析装置200用于接收并解析激光经过所述光纤形变传感器的形变感应段产生的反射光变化,并根据解析的结果判断螺栓或螺母的松紧情况。
信号解析装置200与光纤形变传感器之间的通信连接可以为有线通信连接。示例性的,信号解析装置200中包括控制器(图中未示出),控制器通过光缆连接所述光纤4。
此外,本实施例中的螺栓的松动监测系统还包括主机(图中未示出),通过网线与所述控制器连接,用于接收所述控制器发送的检测结果。
信号解析装置200中预存有光纤形变传感器的编号与螺栓的编号的第一对应关系、光纤形变传感器的编号与敏感波段的第二对应关系以及光纤形变传感器的编号与敏感波段的标准中心波长的第三对应关系。
每个光纤形变传感器对应特定波长的光具有敏感性,所述敏感性是指光纤形变传感器对某一特定波长的光能发生反射或衍射。
本实施例中信号解析装置200使用扫频激光器,具备波长快速扫描功能,可在任意可选波长上进行工作,从指定起始波长到指定终止波长进行指定速度的线性波长扫描,使用扫频激光器对光纤形变传感器返回的光信号进行分析,能得出该光信号的中心波长。当光纤形变传感器接收到激光发射装置300发射的激光后,对某一特定波长的光发生反射或衍射。信号解析装置200解析接收到的光纤形变传感器返回的光信号,当扫描到光纤形变传感器返回的光信号的中心波长时,会查找光纤形变传感器的编号与敏感波段的第二对应关系,查找该中心波长在哪个敏感波段内以确定出光纤形变传感器的编号。再通过查找光纤形变传感器的编号与螺栓的编号的第一对应关系确定出螺栓的编号。
信号解析装置200还用于根据光纤形变传感器返回的光信号计算出产生松动的螺栓的松动角度。信号解析装置200根据光纤形变传感器返回的光信号的中心波长,将光纤形变传感器返回的光信号的中心波长与敏感波段的标准中心波长进行比较,计算出对应的螺栓产生的松动角度,再通过查找光纤形变传感器的编号与敏感波段的标准中心波长的第三对应关系确定光纤形变传感器的编号,再确定对应的螺栓产生的松动角度。
螺栓在安装时设置有编号,如L1、L2到Ln;每个光纤形变传感器也同样设置有编号,如T1a、T2a到T(n+1)a;螺栓L1设置在光纤形变传感器T1a和T2a之间,螺栓L2设置在光纤形变传感器T2a和T3a之间,螺栓Ln设置在光纤形变传感器Tna和T(n+1)a之间。编号为T1a的光纤形变传 感器可以反射或衍射332nm的光,编号为T2a的光纤形变传感器可以反射或衍射中心波长为352nm的光。因此,当信号解析装置200解析出接收到的光纤形变传感器返回的光信号的中心波长为332nm时,查找332nm在哪个敏感波段,再通过第一对应关系可以确定是编号为T1a的光纤形变传感器,以此确定光纤形变传感器的编号,再以同样的方法确定编号为T2a的光纤形变传感器。编号为T1a,T2a的光纤形变传感器同时监测编号为L1的螺栓的松动,编号为T2a和T3a的光纤形变传感器同时监测编号为L2的螺栓的松动,以此类推,编号为Tna和T(n+1)a的光纤形变传感器同时监测编号为Ln的螺栓的松动。
当某一光纤形变传感器由于对应的螺栓发生松动而受到拉力变形时,其反射回来的光信号的中心波长会发生偏移,但是每个光纤形变传感器反射的光信号的中心波长的偏移量是有限的,本实施例中确保每个光纤形变传感器反射的光信号的中心波长在发生最大偏移时,也不会相重合。因此根据信号解析装置200接收到的光纤形变传感器返回的光信号的中心波长发生偏移时,也能确定反射该光的光纤形变传感器的编号;比如信号解析装置200接收到的光纤形变传感器返回的光信号的中心波长为334nm,该波长334nm在编号为T1a的光纤形变传感器反射的光信号的中心波长的最大偏移范围,通过第一对应关系可以确认是编号为T1a的光纤形变传感器发生了形变。再通过查找第三对应关系,确定编号为T1a的光纤形变传感器的敏感波段的标准中心波长为332nm,通过编号为T1a的将光纤形变传感器返回的光信号的中心波长334nm减去其敏感波段的标准中心波长332nm得出光纤形变传感器发生2nm形变,得出螺栓发生5°松动。当编号为T3a的光纤形变传感器发生形变或信号缺失,预测编号为L2或L3的螺栓发生松动,此时,需要根据编号相邻的光纤形变传感器的情况确定具体哪个螺栓发生松动,若编号为T2a的光纤形变传感器发生形变或信号缺失,同时编号为T4a的光纤形变传感器未发生形变和信号缺失,则确定编号为L2的螺栓发生松动;若编号为T2a的光纤形变传感器未发生形变或信号缺失,同时编号为T4a的光纤形变传感器发生形变和信号缺失,则确定编号为L3的螺栓发生松动,以此确定是哪一个螺栓发生了松动。
与现有技术的分时复用方式相比,本申请通过采用扫频激光器实现连续的、短时的分频式检测,通过中心波长定位对应的光纤形变传感器,以确定发生松动的螺栓位置,不受分时复用的时间间隔限制,效率高,能及时发现问题。
本实施例中的螺栓的松动监测系统还包括报警装置400,报警装置400和信号解析装置200无线通信连接;信号解析装置200解析出的数据包括螺栓的编号和螺栓产生的松动角度;信号解析装置200解析出的数据上传到报警装置400,报警装置400判断螺栓产生的松动角度是否超过预设阀值,若超过预设阀值,则报警装置400会生成与螺栓的编号相对应的报警信号;报警装置400如果在预设时间段内未接收到信号解析装置200上传的数据时,假设预设时间是10秒,将会生成与未接收到的螺栓的编号相对应的报警信号。如果螺栓发生松动较小时,光纤形变传感器的形变感应段不发生断裂而发生变形,此时信号解析装置200接收到光纤形变传感器输出的形变信号,当螺栓转动30°时使光纤形变传感的形变感应段被拉伸变形2.6mm;当螺栓继续转动时,光纤形变传感的形变感应段被继续拉长,甚至被拉断。预设螺栓的松动角度阀值是5°,当报警装置400接收到的松动角度大于5° 时,便认为螺栓产生松动,报警装置400会生成报警信号并发送至运营方,营运方下发维修指令,同时监控后续松动情况。如果一个螺栓松动则带动螺栓两侧的光纤形变传感器的形变感应段均发生拉伸变形,拉伸的光纤形变传感器的形变感应段的极限是传感器的形变感应段断裂,此时信号源信号丢失,信号解析装置200检测到信号丢失。如果信号解析装置200检测到光纤形变传感器输出的信号缺失,既光纤形变传感器的形变感应段被拉断了,表示对应的螺栓出现较大松动,应该进行维修并且更换传感器,此时,信号解析装置200根据收到的光纤形变传感器返回的光信号确定正常的光纤形变传感器的编号,以此确定发生断裂的光纤形变传感器的编号,再确定具体某一个或某一些编号的螺栓发生松动,报警装置400发预警给营运方,营运方下发维修指令。正常情况下一颗螺栓松动会持续,光纤形变传感器会持续检测到形变数据,所以在监测到螺栓松动角度较小时也可先做维修备案,继续进行监测。而且,一颗螺栓松动即会造成其余螺栓同时松动,此时信号解析装置200可全部记录所有螺栓的松动信息。
本实施例的螺栓的松动监测系统,在风机叶片、固定底座等关键螺栓处,加上比被测螺栓数多一个的光纤形变传感器,将该光纤形变传感器布置于相邻两螺栓中间,相邻两螺栓上加装一个与螺母仿形帽或仿形螺帽,进行螺栓的松动监测。螺母仿形帽或仿形螺帽随螺栓松动作转动,使被测螺栓两侧光纤形变传感器的形变感应段发生形变甚至被拉断,光纤形变传感器将形变信号传输给信号解析装置200,信号解析装置200把每一个点的信号通过Wi-Fi(Wireless Fidelity,行动热点)信号传输给风机运营方做数据分析,及时发现问题,预警后维修,无需盲目无目的维护。
本实施例的螺栓松动监测装置中传感器的数量仅比被测螺栓的数量多一个,但是可以使得一个螺栓同时受到两个传感器的监测,以保证出现一个传感器失效的特殊情况下,依然可以保障监测的正常运行,实现了采用较少的传感器数量提高测试准确性和可靠性的目的。
实施例5
本申请实施例5公开了一种风机塔筒,包括风机塔筒主体,安装在所述风机塔筒主体上的至少两个螺栓或螺母,以及如上述任一实施例所述的螺栓或螺母的松动监测装置,以实现实时监测风机塔筒上螺栓或螺母的送到情况,提高风力发电机巡检维护的科学性与可靠性。本申请的松动监测装置可以安装在风机叶片、固定底座、塔筒法兰连接等处。
虽然以上描述了本申请的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本申请的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本申请的保护范围由所附权利要求书限定。

Claims (23)

  1. 一种螺栓或螺母的松动监测装置,所述螺栓或螺母的数量为至少两个并均被用于紧固在一基座上,其特征在于,所述松动监测装置包括:
    光纤形变传感器;
    所述光纤形变传感器具有形变感应段,所述光纤形变传感器的形变感应段被设置成位于两个螺栓或螺母之间,以使得所述形变感应段在所述两个螺栓或螺母中任一个转动时产生形变。
  2. 如权利要求1所述的螺栓或螺母的松动监测装置,其特征在于,所述光纤形变传感器的形变感应段的两端分别设于两个相邻或不相邻的两个螺栓或螺母之间。
  3. 如权利要求1-2中至少一项所述的螺栓或螺母的松动监测装置,其特征在于,所述松动监测装置还包括支撑装置,所述支撑装置设于所述基座上并用于支撑所述光纤形变传感器;
    所述支撑装置设在两个相邻或不相邻螺栓或螺母上,所述光纤形变传感器设置在所述两个相邻或不相邻螺栓或螺母的支撑装置之间,以使得所述形变感应段在所述两个相邻或不相邻螺栓或螺母中任一个转动时受到两个支撑装置的相对作用力而产生形变。
  4. 如权利要求3所述的螺栓或螺母的松动监测装置,其特征在于,所述松动监测装置还包括仿形螺帽;
    所述仿形螺帽固定套设在所述螺栓或螺母头部上;所述支撑装置固设在所述仿形螺帽上。
  5. 如权利要求4所述的螺栓或螺母的松动监测装置,其特征在于,所述仿形螺帽的相对两端分别设有一凸出片;
    所述凸出片上设有凹槽,所述光纤形变传感器的两端设有限位部件,所述光纤形变传感器的两端分别固定设置在相邻所述仿形螺帽上的不同端上的凹槽内,所述限位部与所述凸出片的凹槽的外侧壁贴合;或,所述凸出片上设置有卡合部,所述光纤形变传感器两端固设有连接部,所述光纤形变传感器两端的连接部分别卡合在相邻所述仿形螺帽上的不同端上的卡合部内。
  6. 如权利要求1-5中至少一项所述的螺栓或螺母的松动监测装置,其特征在于,所述光纤形变传感器包括光纤和基件,所述光纤具有形变感应段,所述光纤容置于所述基件内,所述形变感应段位于所述基件内;
    所述光纤形变传感器通过所述基件的两端被分别连接于所述两个螺栓或螺母上。
  7. 如权利要求6所述的螺栓或螺母的松动监测装置,其特征在于,
    所述松动监测装置还包括螺母扣;
    所述螺母扣固定套设在所述螺栓或螺母头部上;所述光纤形变传感器的端部通过所述螺母扣连接于所述螺栓或螺母上。
  8. 如权利要求7所述的螺栓或螺母的松动监测装置,其特征在于,所述螺母扣包括本体,所述本体上开设有与所述螺栓或螺母相配合连接的安装孔,所述本体上凸设有齿形槽。
  9. 一种光纤形变传感器,其特征在于,包括:
    光纤,所述光纤具有形变感应段;
    基件,所述光纤容置于所述基件内,所述形变感应段位于所述基件内;所述基件被设置为两端分别连接于两个螺栓或螺母上,或者所述基件被设置为一端固定、另一端连接于螺栓或螺母上;所述螺栓或螺母用于被紧固于一基座上;所述形变感应段在与其连接的所述螺栓或螺母转动时产生形变。
  10. 如权利要求9所述的光纤形变传感器,其特征在于,所述基件包括:
    第一连接部,位于所述基件一端;
    第二连接部,位于所述基件另一端;
    所述基件通过所述第一连接部和所述第二连接部分别连接于两个所述螺栓或螺母上;或者所述基件通过所述第一连接部和所述第二连接部中的一个连接部进行固定,另一个连接部连接于所述螺栓或螺母上。
  11. 如权利要求10所述的光纤形变传感器,其特征在于,所述基件还包括:
    第三连接部,所述第三连接部连接于所述第一连接部和第二连接部之间,所述第三连接部具有光纤槽,所述光纤容置于所述光纤槽中,且所述形变感应段位于所述光纤槽内,所述光纤一端贯穿所述第一连接部或者第二连接部。
  12. 如权利要求10-11中至少一项所述的光纤形变传感器,其特征在于,所述第一连接部和/或第二连接部包括卡合结构件;
    所述卡合结构件用于和套设在所述螺栓或螺母上的螺母扣配合,以使所述第一连接部和/或第二连接部可拆卸连接于所述螺栓或螺母上。
  13. 如权利要求12所述的光纤形变传感器,其特征在于,所述卡合结构件包括两个卡合柱,两个所述卡合柱的一端部相连,且两个卡合柱之间形成形变间隙。
  14. 如权利要求13所述的光纤形变传感器,其特征在于,两个所述卡合柱相背的两侧面分别设有向外凸起的卡榫,所述卡合结构件通过两侧的卡榫分别与所述螺母扣上的齿形槽啮合,使得所述第一连接部和/或第二连接部可拆卸连接于所述螺栓或螺母上。
  15. 根据权利要求12-14中至少一项所述的光纤形变传感器,其特征在于,所述卡合结构件顶部具有点胶槽,所述光纤贯穿所述点胶槽,并通过在所述点胶槽和所述光纤槽中填充胶体将所述光纤埋设固定于所述基件中。
  16. 根据权利要求9-15中至少一项所述的光纤形变传感器,其特征在于,所述形变感应段上设有光栅。
  17. 根据权利要求16所述的光纤形变传感器,其特征在于,所述光栅为布拉格光栅。
  18. 一种螺栓或螺母的松动监测系统,其特征在于,所述松动监测系统包括至少一个如权利要求1-8中任一项所述的螺栓或螺母的松动监测装置,所述松动监测系统还包括信号解析装置和激光发射装置;
    所述信号解析装置和所述激光发射装置分别与所述松动监测装置中的所述光纤形变传感器通信连接;
    所述激光发射装置用于向所述光纤形变传感器发射激光;所述信号解析装置用于接收并解析所述光纤形变传感器返回的光信号,并根据解析的结果判断出产生松动的螺栓或螺母。
  19. 如权利要求18所述的螺栓或螺母的松动监测系统,其特征在于,
    所述信号解析装置中预存有所述光纤形变传感器的编号与所述螺栓或螺母的编号的第一对应关系,以及所述光纤形变传感器的编号与敏感波段的第二对应关系;
    所述信号解析装置用于解析所述光纤形变传感器返回的光信号的中心波长,根据所述光信号的中心波长和所述第二对应关系确定所述光纤形变传感器的编号,再根据所述光纤形变传感器的编号和所述第一对应关系,确定所述光信号对应的螺栓或螺母的编号。
  20. 如权利要求19所述的螺栓或螺母的松动监测系统,其特征在于,
    所述信号解析装置还用于根据所述解析的结果计算出所述产生松动的螺栓或螺母的松动角度;
    所述信号解析装置中还预存有所述光纤形变传感器的编号与敏感波段的标准中心波长的第三对应关系;
    所述信号解析装置根据所述光纤形变传感器的编号和所述第三对应关系确定所述光纤形变传感器的标准中心波长,再将所述光纤形变传感器返回的光信号的中心波长与所述标准中心波长进行比较,计算出所述光信号对应的螺栓或螺母产生的松动角度。
  21. 如权利要求20所述的螺栓或螺母的松动监测系统,其特征在于,
    所述松动监测系统还包括报警装置;所述报警装置和所述信号解析装置通信连接;
    所述报警装置用于接收所述信号解析装置上传的数据,所述数据包括所述螺栓或螺母的编号和所述螺栓或螺母产生的松动角度,当所述松动角度超过阈值时,生成与所述螺栓或螺母的编号相对应的报警信号。
  22. 如权利要求19-21中至少一项所述的螺栓或螺母的松动监测系统,其特征在于,所述松动监测系统还包括报警装置;所述报警装置和所述信号解析装置通信连接;
    所述报警装置用于在预设时间段内未接收到所述信号解析装置上传的数据时,所述数据包括所述螺栓或螺母的编号,生成与未接收到的所述螺栓或螺母的编号相对应的报警信号。
  23. 一种风机塔筒,其特征在于,包括风机塔筒主体,安装在所述风机塔筒主体上的至少两个螺栓或螺母,以及如权利要求1-8中任一项所述的螺栓或螺母的松动监测装置。
PCT/CN2020/137774 2019-12-20 2020-12-18 螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒 WO2021121410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911321671.7 2019-12-20
CN201911321671.7A CN113008150A (zh) 2019-12-20 2019-12-20 螺栓或螺母的松动监测装置及系统

Publications (1)

Publication Number Publication Date
WO2021121410A1 true WO2021121410A1 (zh) 2021-06-24

Family

ID=76382656

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/130869 WO2021120989A1 (zh) 2019-12-20 2020-11-23 螺栓或螺母的松动监测装置及系统
PCT/CN2020/137774 WO2021121410A1 (zh) 2019-12-20 2020-12-18 螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130869 WO2021120989A1 (zh) 2019-12-20 2020-11-23 螺栓或螺母的松动监测装置及系统

Country Status (2)

Country Link
CN (1) CN113008150A (zh)
WO (2) WO2021120989A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220145848A1 (en) * 2019-03-14 2022-05-12 Wobben Properties Gmbh Flange connection, wind turbine having same, and method for monitoring same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040190A (zh) * 2011-10-11 2014-09-10 安全装饰环球控股有限公司 螺母检测装置
US20140305223A1 (en) * 2013-04-16 2014-10-16 Michael Twerdochlib Method of on-line automatic generator core through-bolt tensioning
CN108981988A (zh) * 2018-08-01 2018-12-11 武汉理工大学 一种基于光纤光栅传感的卡箍松动检测装置及检测方法
CN109058054A (zh) * 2018-07-19 2018-12-21 湖北民族学院 一种风电发电机组的螺栓在线监测系统及方法
CN110220682A (zh) * 2019-05-30 2019-09-10 苏州热工研究院有限公司 用于监测螺栓松动的监测装置和监测方法
CN211042563U (zh) * 2019-11-22 2020-07-17 奥动新能源汽车科技有限公司 用于监测螺栓或螺母松动的联动监测系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618406B2 (ja) * 2010-02-01 2014-11-05 有限会社井出計器 ネジ締付け診断装置及び電動ドライバ
CN102706544A (zh) * 2012-03-28 2012-10-03 上海市电力公司 一种增敏型光纤光栅法兰螺栓松动监测方法及监测装置
TWI510720B (zh) * 2013-06-19 2015-12-01 Jinn Her Entpr Co Ltd 可同步預拉緊光纖光柵與螺栓的感測螺絲裝置
US10066930B2 (en) * 2014-04-04 2018-09-04 Strain Labs Ab Intelligent bolt and system therefor
CN104266786A (zh) * 2014-09-05 2015-01-07 武汉理工光科股份有限公司 基于otdr技术的螺栓紧固程度在线监测系统及方法
CN204495294U (zh) * 2015-04-02 2015-07-22 江苏欧讯能源科技有限公司 一种基于光纤光栅的高强度风电塔筒螺栓监测系统
CN205426056U (zh) * 2016-03-24 2016-08-03 山东科技大学 一种检测高空螺栓松动的预警装置
CN205664964U (zh) * 2016-06-08 2016-10-26 安徽江淮汽车股份有限公司 一种具有螺纹连接松紧状态检测装置
CN107907096B (zh) * 2017-11-27 2020-08-07 北京中元瑞讯科技有限公司 基于应变式原理的螺栓松动在线检测传感装置及其检测方法
CN211042107U (zh) * 2019-11-22 2020-07-17 奥动新能源汽车科技有限公司 螺栓或螺母的松动监测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040190A (zh) * 2011-10-11 2014-09-10 安全装饰环球控股有限公司 螺母检测装置
US20140305223A1 (en) * 2013-04-16 2014-10-16 Michael Twerdochlib Method of on-line automatic generator core through-bolt tensioning
CN109058054A (zh) * 2018-07-19 2018-12-21 湖北民族学院 一种风电发电机组的螺栓在线监测系统及方法
CN108981988A (zh) * 2018-08-01 2018-12-11 武汉理工大学 一种基于光纤光栅传感的卡箍松动检测装置及检测方法
CN110220682A (zh) * 2019-05-30 2019-09-10 苏州热工研究院有限公司 用于监测螺栓松动的监测装置和监测方法
CN211042563U (zh) * 2019-11-22 2020-07-17 奥动新能源汽车科技有限公司 用于监测螺栓或螺母松动的联动监测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220145848A1 (en) * 2019-03-14 2022-05-12 Wobben Properties Gmbh Flange connection, wind turbine having same, and method for monitoring same
US11988189B2 (en) * 2019-03-14 2024-05-21 Wobben Properties Gmbh Flange connection, wind turbine having same, and method for monitoring same

Also Published As

Publication number Publication date
WO2021120989A1 (zh) 2021-06-24
CN113008150A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN214537808U (zh) 螺栓或螺母的松动监测装置和系统、光纤形变传感器及风机塔筒
WO2021120990A1 (zh) 螺栓或螺母的松动监测装置及系统
WO2021098879A1 (zh) 螺栓或螺母的松动监测装置及系统
WO2021098880A1 (zh) 光纤力传感装置及监测螺栓或螺母松动的系统、方法
US9447778B2 (en) Methods and systems for detecting sensor fault modes
CN110220682B (zh) 用于监测螺栓松动的监测装置和监测方法
WO2021121410A1 (zh) 螺栓或螺母的松动监测装置及系统、光纤形变传感器及风机塔筒
DK2112374T4 (en) Breakage detection system
EP2932094B1 (en) A system and method for wind turbine sensor calibration
US20170167857A1 (en) Intelligent bolt and system therefor
CN215726501U (zh) 光纤力传感装置及监测螺栓或螺母松动的系统
EP2374010A1 (en) Turbulence sensor and blade condition sensor system
CN211042563U (zh) 用于监测螺栓或螺母松动的联动监测系统
US10151667B2 (en) Method for monitoring deformation of a rotating element via a monitoring device employing optical fibre, and wind turbine equipped with such a device
KR101325710B1 (ko) 풍력 발전기용 너트 풀림 감지 장치
EP2589943A1 (en) Methods and Systems for Detecting Sensor Fault Modes
US20140239166A1 (en) Optical fibre grating sensor system and method
CN102197285A (zh) 包括对缘向弯曲不敏感的应变传感器系统的风力涡轮机转子叶片
CN211042107U (zh) 螺栓或螺母的松动监测装置
US9064400B2 (en) Fencing
US8149129B2 (en) Signal alignment monitoring system and method of assembling the same
CN214537807U (zh) 螺栓或螺母的松动监测装置
CN211042564U (zh) 光纤力传感装置及监测螺栓或螺母松动的系统
CN114263571A (zh) 一种用于风电机组监控塔筒螺栓松动的系统及方法
JP2010196575A (ja) シーリングファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903275

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20903275

Country of ref document: EP

Kind code of ref document: A1