WO2021121334A1 - 一种发光二极管 - Google Patents

一种发光二极管 Download PDF

Info

Publication number
WO2021121334A1
WO2021121334A1 PCT/CN2020/137282 CN2020137282W WO2021121334A1 WO 2021121334 A1 WO2021121334 A1 WO 2021121334A1 CN 2020137282 W CN2020137282 W CN 2020137282W WO 2021121334 A1 WO2021121334 A1 WO 2021121334A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
electrode
semiconductor layer
emitting diode
Prior art date
Application number
PCT/CN2020/137282
Other languages
English (en)
French (fr)
Inventor
闫春辉
蒋振宇
Original Assignee
深圳第三代半导体研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳第三代半导体研究院 filed Critical 深圳第三代半导体研究院
Publication of WO2021121334A1 publication Critical patent/WO2021121334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer

Definitions

  • This application relates to the field of semiconductors, especially a light-emitting diode.
  • Light-emitting diodes are solid-state components that convert electrical energy into light. Light-emitting diodes have the advantages of small size, high efficiency, and long life, and are widely used in traffic indications, outdoor full-color displays and other fields. In particular, the use of high-power light-emitting diodes can realize semiconductor solid-state lighting, causing a revolution in human lighting history, and has gradually become a research hotspot in the current electronics field.
  • the current of the light-emitting diode is generally injected into the active light-emitting layer by a lateral diffusion method, and this lateral diffusion method has a natural non-uniform current distribution characteristic, resulting in excessive current density in a local area. Excessive current density in a local area can easily cause two problems:
  • the present application provides a light emitting diode that can improve the uniformity of current distribution, so that the light emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light emitting diode, and reducing the lumen cost.
  • the present application provides a light-emitting diode, including: a substrate; a light-emitting epitaxial layer, including a first semiconductor layer, an active light-emitting layer, and a second semiconductor layer that are sequentially stacked on the substrate; A second electrode, the first electrode and the plurality of second electrodes are located on the same side of the light emitting diode, the first electrode is electrically connected to one of the first semiconductor layer and the second semiconductor layer, and the plurality of second electrodes are connected to the first semiconductor layer Is electrically connected to the other of the second semiconductor layer; wherein, the first electrode is a surface electrode, and the projections of a plurality of second electrodes on the substrate fall inside the projections of the first electrode on the substrate and are spaced apart from each other.
  • the shortest distance between two adjacent second electrodes is not more than 80 microns, the ratio between the effective light-emitting area of the light-emitting epitaxial layer and the total area is not more than 65%, and the first semiconductor layer and the second semiconductor layer are both used A material based on the aluminum gallium nitride system.
  • the present application provides a light-emitting diode, including: a substrate; a light-emitting epitaxial layer, including a first semiconductor layer, an active light-emitting layer, and a second semiconductor layer stacked on the substrate in sequence; a first electrode and A plurality of second electrodes, the first electrode is electrically connected to one of the first semiconductor layer and the second semiconductor layer, and the plurality of second electrodes are electrically connected to the other of the first semiconductor layer and the second semiconductor layer; wherein, the first electrode is electrically connected to one of the first semiconductor layer and the second semiconductor layer;
  • One electrode is a surface electrode, the projections of the multiple second electrodes on the substrate fall inside the projections of the first electrode on the substrate and are arranged at intervals.
  • Any light-emitting point in at least part of the light-emitting area of the light-emitting epitaxial layer is on the substrate.
  • the sum of the shortest distance between the projection on the bottom and the projection of the two adjacent second electrodes on the substrate is not more than 80 microns, and the ratio between the effective light-emitting area of the light-emitting epitaxial layer and the total area is not more than 65%, and
  • Both the first semiconductor layer and the second semiconductor layer are made of materials based on the aluminum gallium nitride system.
  • the present application provides a light emitting diode, including: a substrate; a light emitting epitaxial layer, including a first semiconductor layer, an active light emitting layer, and a second semiconductor layer stacked on the substrate in sequence; a first electrode and A plurality of second electrodes, the first electrode is electrically connected to one of the first semiconductor layer and the second semiconductor layer, and the plurality of second electrodes are electrically connected to the other of the first semiconductor layer and the second semiconductor layer; wherein, the first electrode is electrically connected to one of the first semiconductor layer and the second semiconductor layer;
  • One electrode is a surface electrode, the projections of multiple second electrodes on the substrate fall within the projections of the first electrodes on the substrate and are spaced apart from each other, and the shortest separation distance between two adjacent second electrodes is not greater than 80 microns, the ratio of the effective light-emitting area of the light-emitting epitaxial layer to the total area is not more than 65%, and the first semiconductor layer and the second semiconductor layer are both made of materials based
  • the beneficial effect of this application is that it is different from the state of the art.
  • This application sacrifices the effective light-emitting area at the expense of the operating voltage VF at different working currents depending on any light-emitting point in at least part of the light-emitting area of the light-emitting epitaxial layer.
  • the change rule of the sum of the shortest distance between the projection on the substrate, the projection of the first electrode on the substrate and the projection of the second electrode on the substrate, L1+L2 will be based on the light-emitting diode of the aluminum gallium nitride material system.
  • the sum of the shortest separation distances L1+L2 is set to be less than 80 microns, and the ratio between the effective light-emitting area of the light-emitting epitaxial layer and the total area is less than 65%.
  • the uniformity of current distribution can be effectively improved, so that the light-emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light-emitting diode.
  • the life and reliability of the light-emitting diode are high, and no complicated package design is required for heat dissipation, which reduces the lumen cost of the light-emitting diode.
  • Fig. 1 is a top view of a light emitting diode according to a first embodiment of the present application
  • Fig. 2 is a schematic partial cross-sectional view taken along the A1-A1 direction of Fig. 1;
  • FIG. 3 is a schematic diagram for describing the variation of the operating voltage of the blue light emitting diode based on the gallium nitride material system with the structure shown in FIG. 1 as a function of L1+L2 under different operating currents;
  • FIG. 4 is a schematic diagram for describing the photoelectric conversion efficiency of a blue light emitting diode based on a gallium nitride material system with the structure shown in FIG. 1 as a function of L1+L2 under different working currents;
  • Fig. 5 is a top view of a light emitting diode according to a second embodiment of the present application.
  • Fig. 6 is a schematic partial cross-sectional view along the A2-A2 direction of Fig. 5;
  • Fig. 7 is a top view of a light emitting diode according to a third embodiment of the present application.
  • Fig. 8 is a top view of a light emitting diode according to a fourth embodiment of the present application.
  • Fig. 9 is a schematic partial cross-sectional view taken along the direction B1-B1 of Fig. 8;
  • FIG. 10 is a schematic diagram illustrating the variation of the operating voltage of the blue light emitting diode based on the gallium nitride material system with the structure shown in FIG. 8 as a function of M1+M2;
  • Fig. 11 is a top view of a light emitting diode according to a fifth embodiment of the present application.
  • Fig. 12 is a schematic partial cross-sectional view taken along the B2-B2 direction of Fig. 11;
  • Fig. 13 is a top view of a light emitting diode according to a sixth embodiment of the present application.
  • Fig. 14 is a schematic partial cross-sectional view taken along the B3-B3 direction of Fig. 13;
  • Fig. 15 is a top view of a light emitting diode according to a seventh embodiment of the present application.
  • Fig. 16 is a schematic partial cross-sectional view taken along the direction B4-B4 in Fig. 15.
  • the light-emitting diode according to the first embodiment of the present application is a light-emitting diode with a front-mounted structure, and includes a substrate 11, a light-emitting epitaxial layer 12, a first electrode 13 and a second electrode 14.
  • the light-emitting epitaxial layer 12 further sequentially stacks a first semiconductor layer 121, an active light-emitting layer 122 and a second semiconductor layer 123 disposed on the substrate 11.
  • the substrate 11 may be made of, for example, sapphire, SiC, GaN, AlN, silicon or other suitable materials.
  • the first semiconductor layer 121 is an N-type semiconductor layer, and the corresponding first electrode 13 is also called an N-type electrode.
  • the second semiconductor layer 123 is a P-type semiconductor layer, and the corresponding second electrode 14 is also called a P-type electrode.
  • the first semiconductor layer 121 and the second semiconductor layer 123 may be a single-layer or multi-layer structure of any other suitable material having different conductivity types.
  • the first electrode 13 and the second electrode 14 are strip-shaped electrodes, and the projection of the first electrode 13 on the substrate 11 and the second electrode 14 on the substrate The projections on the bottom 11 are staggered from each other.
  • the first electrode 13 and the second electrode 14 are finger electrodes extending along the first direction D1 and spaced apart from each other along the second direction D2 perpendicular to the first direction D1, so that The projections of the two on the substrate 11 are staggered.
  • the first electrode 13 and the second electrode 14 are further connected to the first pad 15 and the second pad 16, and are further connected to an external circuit through the first pad 15 and the second pad 16.
  • a trench 124 is provided on the second semiconductor layer 123 and the active light emitting layer 122, and the trench 124 divides the second semiconductor layer 123 and the active light emitting layer 122 into the first direction D1 and the second direction D2 which are more spaced from each other.
  • a mesa structure (Mesa) 125 arranged in an array, and a part of the first semiconductor layer 121 is exposed.
  • the first electrode 13 and the second electrode 14 are respectively disposed in the trenches 124 on both sides of the mesa structure 125.
  • the first electrode 13 is disposed on the first semiconductor layer 121 and is electrically connected to the first semiconductor layer 121.
  • the first electrode 13 and the first semiconductor layer 121 are electrically connected by direct contact.
  • the mesa structure 125 and the first semiconductor layer 121 exposed by the first electrode 13 are further covered with an insulating layer 17.
  • the insulating layer 17 extends along the sidewalls of the mesa structure 125 to the top of the mesa structure 125 and at least partially exposes the top of the mesa structure 125
  • the second semiconductor layer 123, the current diffusion layer 18 and the second semiconductor layer 123 are electrically connected.
  • the current diffusion layer 18 further extends into the trench 124 and is electrically isolated from the first semiconductor layer 121 and the active light emitting layer 122 by the insulating layer 17.
  • the second electrode 14 is disposed on the current diffusion layer 18 in the trench 124 and is electrically connected to the second semiconductor layer 123 through the current diffusion layer 18.
  • first electrode 13 and the second electrode 14 may also be electrically connected to the first semiconductor layer 121 and the second semiconductor layer 123 in other ways, including but not limited to the other ways described below.
  • the current formed by electrons is injected from the first electrode 13 into the first semiconductor layer 121, diffuses laterally along the first semiconductor layer 121 and injected into the active light-emitting layer 122, and the current formed by holes passes through the second electrode 14
  • the current diffusion layer 18 is injected into the second semiconductor layer 123, diffuses laterally along the current diffusion layer 18 and the second semiconductor layer 123 and injected into the active light emitting layer 122.
  • the electrons and holes undergo radiative recombination in the active light-emitting layer 122 and generate photons, thereby forming light emission. Furthermore, as shown in FIG.
  • the cross section of the mesa structure 125 along the second direction D2 is arranged in a trapezoid shape, so that the light generated by the active light-emitting layer 122 can be emitted from the inclined sidewall of the mesa structure 125 to improve the light extraction efficiency.
  • the insulating layer 17 uses a transparent dielectric material (for example, SiO 2 ), and the current diffusion layer 18 uses a transparent conductive material (for example, ITO). The insulating layer 17 further protects and electrically isolates the mesa structure 125 from water and oxygen.
  • the distance that the current in the light-emitting epitaxial layer 12 spreads laterally is determined by the lateral distance between the first electrode 13 and the second electrode 14.
  • the lateral distance between the first electrode 13 and the second electrode 14 is set too large, resulting in poor uniformity of the current density distribution of the current injected into the active light-emitting layer 122, thereby resulting in the above background technology The problem described in.
  • the shortest distance between the projection of any light-emitting point A in at least part of the light-emitting area of the light-emitting epitaxial layer 12 on the substrate 11 and the projection of the first electrode 13 on the substrate 11 is L1, which is The shortest distance between the projections of the two electrodes 14 on the substrate 11 is L2.
  • the sum of the two shortest separation distances is L1+L2, and the sum of the shortest separation distances L1+L2 is determined by the lateral distance between the first electrode 13 and the second electrode 14.
  • the effective light-emitting area of the light-emitting epitaxial layer 12 is smaller than the total area of the light-emitting epitaxial layer 12, and the gap between the first electrode 13 and the second electrode 14
  • the lateral distance between the two electrodes 14 is set as large as possible, usually greater than the lateral diffusion length of the current.
  • the applicant of this application through a large number of experiments, by reasonably setting the sum of the shortest separation distance L1+L2 and the effective light-emitting area loss, so that the reduction in the lateral spacing improves the performance of the light-emitting diode and the benefit is far greater than the sacrifice of the effective light-emitting area.
  • it can ensure that the first electrode 13 and the second electrode 14 can withstand a relatively large working current, which in turn makes the performance of the light-emitting diode a huge improvement.
  • the variation of the working voltage VF and the photoelectric conversion efficiency WPE with the sum of the shortest separation distance L1+L2 under different working currents will be used to determine the sum of the shortest separation distance L1+L2 and the light-emitting epitaxial layer.
  • a reasonable setting between the effective light-emitting area Se and the ratio Se/Sa of the total area Sa will be explained.
  • the effective light-emitting area Se is equal to the total area Sa minus the non-light-emitting area due to the existence of the trench 124, the first electrode 13 and/or the second electrode 14, and the pad.
  • FIG. 3 shows the variation curve of the operating voltage of the light emitting diode with L1+L2 under different operating currents when the first semiconductor layer and the second semiconductor layer are made of blue light emitting diodes based on gallium nitride system materials.
  • the so-called blue light emitting diode refers to a light emitting diode with a peak wavelength between 440 nm and 480 nm during operation.
  • the so-called gallium nitride material system means that in the material system, the molar proportion of nitrogen in anions is not less than 90%, and the molar proportion of gallium in cations is not less than 90%.
  • an existing light-emitting diode with L1+L2 being 100 microns and Se/Sa being 85% is used as a reference sample, where the size of the light-emitting diode chip is 425 microns * 750 microns, and the first electrode 13 and the second electrode 14 extends along the length of 750 microns, and uses the light-emitting diodes with L1+L2 of 72, 60, 50, 40, 30, and 20 microns respectively as the comparative samples, fitting the working voltage VF and photoelectric conversion efficiency WPE with L1+L2 The law of change.
  • each The Se/Sa of the comparative sample was set to 75%, 67%, 60%, 55%, 40%, and 25%, respectively.
  • the normalized working voltage VF decreases slowly with the decrease of L1+L2, and after reducing to 72 microns, the normalized working voltage VF decreases significantly, and The greater the current, the greater the falling slope.
  • FIG. 4 shows the variation curve of the photoelectric conversion efficiency WPE of the blue light emitting diode with L1+L2 under different working currents.
  • the normalized photoelectric conversion efficiency WPE shows a downward trend with the decrease of L1+L2, and only at a large operating current, the normalized photoelectric conversion efficiency As L1+L2 decreases, it shows a slow upward trend. After decreasing to 72 microns, the normalized photoelectric conversion efficiency showed an upward trend with the decrease of L1+L2 at each operating current, and the larger the current, the greater the rising slope.
  • the sum of the shortest separation distances L1+L2 is set to be no more than 60 microns, and the ratio Se/Sa between the effective light-emitting area of the light-emitting epitaxial layer 12 and the total area is set to be no more than 67% .
  • the uniformity of current distribution can be effectively improved, so that the light-emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light-emitting diode.
  • the life and reliability of the light-emitting diode are high, and no complicated package design is required for heat dissipation, which reduces the lumen cost of the light-emitting diode.
  • the sum of the shortest separation distances L1+L2 can be set to be between 30 microns and 60 microns, and the ratio Se/Sa between the effective light-emitting area of the light-emitting epitaxial layer and the total area can be set to be between 40%- Between 67%. Further, the sum of the shortest separation distances L1+L2 can be set to be between 30 microns and 50 microns, and the ratio Se/Sa between the effective light-emitting area of the light-emitting epitaxial layer and the total area can be set to be between 40%- Between 60%.
  • the sum of the shortest separation distances L1+L2 can be set to be less than 20 microns according to actual needs, and the ratio Se/Sa between the effective light-emitting area of the light-emitting epitaxial layer and the total area can be set to be less than 25%, or Set the sum of the shortest separation distance L1+L2 to be between 20 microns and 30 microns, and set the ratio of the effective light-emitting area of the light-emitting epitaxial layer to the total area Se/Sa to be between 25% and 40%, or Set the sum of the shortest separation distance L1+L2 to be between 30 micrometers and 40 micrometers, and set the ratio of the effective light-emitting area of the light-emitting epitaxial layer to the total area Se/Sa to be between 40% and 55% , Or set the sum of the shortest separation distance L1+L2 to be between 40 microns and 50 microns, and set the ratio of the effective light-emitting area of the light-emitting
  • At least part of the light-emitting area constrained by the above-mentioned size and ratio covers all the light-emitting area of the light-emitting epitaxial layer 12, that is, all the mesa structures 125.
  • at least part of the above-mentioned light-emitting area may be configured to include one or more mesa structures 125.
  • the area ratio of the set of all at least part of the light-emitting regions that meet the above constraint conditions to the total light-emitting regions on the light-emitting epitaxial layer 12 may be further not less than 50%, 60%, 70%, 80%, 90%. .
  • the constraining method of the present embodiment regarding the sum of the shortest separation distances L1+L2 and the ratio Se/Sa between the effective light-emitting area and the total area is particularly suitable for high-power light-emitting diodes.
  • the average current density J during operation of the light emitting diode is set to be not less than 0.5 A/mm 2 .
  • the average current density J during operation of the light-emitting diode can be further set to not less than 0.75, 1, 1.5, 2, 3, 5, 10, 20 A/mm 2.
  • the total number of the first electrode 13 and the second electrode 14 is set to not less than 5, 7, 9 or 11.
  • the above size and ratio limitations are also applicable to light-emitting diodes based on other peak wavelengths of the gallium nitride material system, such as 365nm-400nm, 400nm-440nm, 440nm-480nm, 480nm-540nm, 540nm-560nm, 560nm -600nm or 600nm-700nm.
  • the sum of the shortest separation distance L1+L2 in this embodiment is actually limited by the shortest separation distance between the projections of the first electrode 13 and the second electrode 14 on the substrate 11. Therefore, in this embodiment And in other embodiments, the shortest separation distance between the projections of the first electrode 13 and the second electrode 14 on the substrate 11 can be restricted by using the above-mentioned size limitation. Specifically, the shortest separation distance between the projections of the first electrode 13 and the second electrode 14 on the substrate 11 can be set to not greater than 60, 50, 40, 30, and 20 microns according to actual needs.
  • the uniformity of the current distribution is effectively improved, so that the light-emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light-emitting diode.
  • the life and reliability of the light-emitting diode are high, and no complicated package design is required for heat dissipation, which reduces the lumen cost of the light-emitting diode.
  • the above design ideas can be applied to light emitting diodes using other material systems of the above structure, such as aluminum gallium nitride material system, indium gallium nitride material system, aluminum gallium indium phosphide material system.
  • the so-called aluminum gallium nitride material system means that in the material system, the molar proportion of nitrogen in the anion is not less than 90%, and the molar proportion of aluminum and gallium in the cation is not less than 90%, and aluminum The molar ratio of the element in the cation is not less than 10%.
  • indium gallium nitride material system means that in the material system, the molar proportion of nitrogen in the anion is not less than 90%, the molar proportion of indium and gallium in the cation is not less than 90%, and the indium is in The molar ratio of the cations is not less than 10%.
  • aluminum gallium indium phosphide system means that in the material system, the molar proportion of phosphorus in the anion is not less than 90%, and the molar proportion of aluminum, indium and gallium in the cation is not less than 90%.
  • the sum of the shortest separation distances L1+L2 is set to be no more than 80 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be no more than 72%. Further, the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 67% .
  • the sum of the shortest separation distance L1+L2 is set to be between 60 microns and 80 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 67% and 72% .
  • the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 50 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 60% between.
  • the sum of the shortest separation distances L1+L2 is set to be less than 20 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be less than 25%.
  • the sum of the shortest separation distances L1+L2 is set to be between 20 ⁇ m and 30 ⁇ m, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 25% and 40%.
  • the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 55% .
  • the sum of the shortest separation distances L1+L2 is set to be between 40 microns and 50 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 55% and 60% .
  • the sum of the shortest separation distances L1+L2 is set to be between 50 ⁇ m and 60 ⁇ m, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 60% and 67%.
  • the peak wavelength of the light emitting diode based on the indium gallium nitride material system during operation can be between 400nm-440nm, 440nm-480nm, 480nm-540nm, 540nm-560nm, 560nm-600nm, 600nm-700nm or 700nm-850nm.
  • the sum of the shortest separation distances L1+L2 is set to be no more than 100 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be no more than 75%. Further, the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 67% .
  • the sum of the shortest separation distance L1+L2 is set to be between 60 microns and 80 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 67% and 72% .
  • the sum of the shortest separation distances L1+L2 is set to be between 80 microns and 100 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 72% and 75%
  • the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 50 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 60% between.
  • the sum of the shortest separation distances L1+L2 is set to be less than 20 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be less than 25%.
  • the sum of the shortest separation distances L1+L2 is set to be between 20 ⁇ m and 30 ⁇ m, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 25% and 40%.
  • the sum of the shortest separation distances L1+L2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 40% and 55% .
  • the sum of the shortest separation distances L1+L2 is set to be between 40 microns and 50 microns, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 55% and 60% .
  • the sum of the shortest separation distances L1+L2 is set to be between 50 ⁇ m and 60 ⁇ m, and the ratio Se/Sa of the effective light-emitting area Se of the light-emitting epitaxial layer to the total area Sa is set to be between 60% and 67%.
  • the peak wavelength of the light emitting diode based on the aluminum indium gallium phosphide material system can be between 560nm-600nm, 600nm-700nm, 700nm-850nm, 850nm-980nm, 980nm-1300nm or 1300nm-1600nm during operation.
  • the light-emitting diode according to the second embodiment of the present application is a modification of the front-mounted structure shown in FIGS. 1 and 2, and includes a substrate 21, a light-emitting epitaxial layer 22, a first electrode 23, and a first electrode 23. Two electrodes 24.
  • the light-emitting epitaxial layer 22 further sequentially stacks a first semiconductor layer 221, an active light-emitting layer 222, and a second semiconductor layer 223 disposed on the substrate 21.
  • a trench 224 is provided on the second semiconductor layer 223 and the active light emitting layer 222, and the trench 224 divides the second semiconductor layer 223 and the active light emitting layer 222 into a second direction D2' spaced apart from each other and integrated along the first direction D1'
  • a plurality of mesa structures 225 are provided, and a portion of the first semiconductor layer 221 is exposed.
  • the first direction D1 ′ is the extending direction of the first electrode 23 and the second electrode 24, and the second direction D2 ′ is the separation direction of the first electrode 23 and the second electrode 24.
  • the first electrode 23 and the second electrode 24 are further connected to the pads 25 and 26, respectively.
  • the main difference between the light emitting diode of this embodiment and the light emitting diode shown in FIGS. 1 and 2 is that the second electrode 24 is directly disposed on the second semiconductor layer 123 on the top of the mesa structure 225 and is electrically connected to the second semiconductor layer 124.
  • the second electrode 24 is electrically connected to the second semiconductor layer 223 through the current diffusion layer 27 provided thereunder.
  • the main purpose of the current spreading layer 27 is to improve the uniformity of current spreading of the second semiconductor layer 223, and a transparent material (such as ITO) with a higher conductivity than the second semiconductor layer 223 can be used.
  • the light emitting diode of this embodiment further includes a current blocking layer 28 disposed directly under the second electrode 24 and between the current diffusion layer 27 and the second semiconductor layer 223. Since the first electrode 23 and the second electrode 24 generally use metal materials, the light generated by the light-emitting epitaxial layer 22 cannot pass through the second electrode 24.
  • the function of the current blocking layer 28 is to prevent current from being directly injected from the second electrode 24 into the light-emitting epitaxial layer 22 directly below the second electrode 24, thereby reducing the amount of light blocked by the second electrode 24 and improving the lumen efficiency.
  • the light emitting diode in this embodiment further includes a transparent dielectric layer 29 (for example, SiO 2 ) covering the inclined sidewall of the mesa structure 225.
  • a transparent dielectric layer 29 for example, SiO 2
  • the function of the transparent medium layer 29 is to protect the mesa structure 225 from water and oxygen and electrically isolate it.
  • the difference between the light-emitting diode according to the third embodiment of the present invention and the light-emitting diode shown in FIGS. 5 and 6 is that a part of the second electrode 34 is provided in the trench 324 in the form of a main electrode 341, The other part of the second electrode 34 extends to the top of the mesa structure 325 in the form of a branch electrode 342 and forms an electrical connection with the second semiconductor layer (not shown).
  • the sum of the shortest distance between any light-emitting point A′ of at least a part of the light-emitting area of the light-emitting diode in the second and third embodiments described above and the projection of the first electrode and the second electrode on the substrate L1 '+L2' and the shortest distance between the projections of the first electrode and the second electrode on the substrate are also restricted by the above-mentioned dimensions, and the ratio between the effective light-emitting area and the total area of the light-emitting epitaxial layer is also affected by the above-mentioned ratio Constraints.
  • the light emitting diode includes a substrate 41, a light emitting epitaxial layer 42, a first electrode 43 and a second electrode 44.
  • the light-emitting epitaxial layer 42 further sequentially stacks a first semiconductor layer 421, an active light-emitting layer 422, and a second semiconductor layer 423 disposed on the substrate 41.
  • the substrate 41 may be made of conductive materials such as Si, Ge, Cu, CuW, etc.
  • the first semiconductor layer 421 is a P-type semiconductor layer, and the corresponding first electrode 43 is also referred to as a P-type electrode.
  • the second semiconductor layer 423 is an N-type semiconductor layer, and the corresponding second electrode 44 is also referred to as an N-type electrode.
  • the first semiconductor layer 421 and the second semiconductor layer 423 may be a single-layer or multi-layer structure of any other suitable materials with different conductivity types.
  • the first electrode 43 is a surface electrode
  • the plurality of second electrodes 44 are strip-shaped electrodes
  • the projection on the substrate 41 falls on the first electrode 43 on the substrate 41.
  • the projections are arranged inside and spaced apart from each other.
  • the second electrodes 44 are respectively finger electrodes extending along the first direction D1" and spaced apart from each other along the second direction D2" perpendicular to the first direction D1", so that the second The projections of the electrodes 44 on the substrate 41 are spaced apart from each other along the second direction D2".
  • the first electrode 43 and the second electrode 44 are further connected to a first pad (not shown) and a second pad 46, and are further connected to an external circuit through the first pad and the second pad 46.
  • the light-emitting diode is a vertical light-emitting diode
  • the second electrode 44 and the first electrode 43 are respectively located on opposite sides of the light-emitting epitaxial layer 420.
  • the second electrode 44 is disposed on the side of the second semiconductor layer 423 away from the active light-emitting layer 422, and the second electrode 44 is electrically connected to the second semiconductor layer 423.
  • the second electrode 44 is connected to the second semiconductor layer 423.
  • the two semiconductor layers 423 are electrically connected by direct contact.
  • the first electrode 43 is disposed on the side of the substrate 41 away from the light-emitting epitaxial layer 42, and forms an electrical connection with the first semiconductor layer 421 through the substrate 41. Furthermore, a metal bonding layer 47 and a reflecting mirror 48 may be further provided between the substrate 41 and the first semiconductor layer 421. The reflecting mirror 48 is used to reflect the light generated by the active light-emitting layer 422, and further remove the light from the second semiconductor layer. Light is emitted from the side where the layer 423 is located, and the metal bonding layer 47 is used to improve the adhesion of the light-emitting epitaxial layer 42.
  • the projection of the second electrode 44 on the substrate 41 and the projection of the first electrode 43 on the substrate 41 overlap each other, and then fall within the projection of the first electrode 43 on the substrate 41.
  • the inside of the projection of the first electrode 43 on the substrate 41 referred to in the present application includes both the overlap with the projection of the first electrode 43 on the substrate 41 shown in FIG. 9 and the subsequent The one shown in Figures 15-16 is surrounded by the projection of the first electrode on the substrate.
  • the current formed by holes is directly injected into the active light-emitting layer 42 from the first electrode 43 through the substrate 41, the metal bonding layer 47 and the mirror 48 along the stacking direction, and the current formed by electrons is from the second
  • the electrode 44 is injected into the second semiconductor layer 43, and is laterally diffused along the second semiconductor layer 423 and injected into the active light emitting layer 422.
  • the electrons and holes undergo radiative recombination in the active light-emitting layer 422 and generate photons, thereby forming light emission.
  • the distance at which the current in the light-emitting epitaxial layer 42 spreads laterally is determined by the lateral distance between adjacent second electrodes 44.
  • the lateral spacing between adjacent second electrodes 44 is set too large, resulting in poor uniformity of the current density distribution of the current injected into the active light-emitting layer 422, which in turn results in the above-mentioned background art. Describe the problem.
  • the shortest distance between the projection of any light-emitting point B in at least part of the light-emitting area of the light-emitting epitaxial layer 42 on the substrate 41 and the projection of the two adjacent second electrodes 44 on the substrate 41 are M1 and M2 respectively.
  • the sum of the two shortest separation distances is M1+M2.
  • Fig. 10 shows that the structure shown in Fig. 8 and Fig. 9 and the first semiconductor layer and the second semiconductor layer are both blue light emitting diodes based on gallium nitride system materials.
  • the working voltage of the light emitting diode increases with M1 under different working currents. +M2 change curve.
  • the Se/Sa of each of the above-mentioned comparative samples is set to 70. %, 65%, 63% and 45%.
  • the 230 micron size sample saturates prematurely under high current and cannot be normalized, the actual voltage is used to represent it. It can be seen from the figure that under the high-power current injection of 1A/mm 2 and 2A/mm 2 , when the size is reduced to about 100 microns, the voltage drops sharply. Under the super current injection of 5A/mm 2 , the 230-micron size sample has already saturated and failed, while the 105-micron, 50-micron and 30-micron sizes can still work. Under the super current injection of 10A/mm 2 , the 230 and 105 micron size samples have already saturated and failed, while the 50 micron and 30 micron sizes can still work.
  • the sum of the shortest separation distances M1+M2 is set to be not greater than 100 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is not greater than 70%.
  • the uniformity of current distribution can be effectively improved, so that the light-emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light-emitting diode.
  • the life and reliability of the light-emitting diode are high, and no complicated package design is required for heat dissipation, which reduces the lumen cost of the light-emitting diode.
  • the sum of the shortest separation distances M1+M2 can be further set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa can be set to be between 45% and 60%. between.
  • the sum of the shortest separation distance M1+M2 is further set to be between 60 microns and 100 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 60% and 70%
  • the sum of the shortest separation distances M1+M2 is set to be less than 20 microns, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be less than 38%, or the sum of the shortest separation distances M1+M2 is set to be medium Between 20 ⁇ m and 30 ⁇ m, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 38% and 45%.
  • the sum of the shortest separation distances M1+M2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 45% and 55%.
  • the sum of the shortest separation distances M1+M2 is set to be between 40 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 55% and 60%.
  • the sum of the shortest separation distances M1+M2 is set to be between 60 microns and 80 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 60% and 65%.
  • the sum of the shortest separation distances M1+M2 is set to be between 80 microns and 100 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 65% and 70%.
  • the area ratio of the set of all at least part of the light-emitting regions satisfying the above constraint conditions to the total light-emitting regions on the light-emitting epitaxial layer 32 may be further not less than 50%, 60%, 70%, 80%, 90%.
  • the average current density J during operation of the light emitting diode is set to be not less than 0.5 A/mm 2 .
  • the average current density J during operation of the light-emitting diode can be further set to be not less than 1, 1.5, 2, 3, 5, 10, 20 A /mm 2.
  • the total number of the second electrodes 34 is set to not less than 5, 7, 9 or 11.
  • the sum of the shortest separation distances M1+M2 in this embodiment is actually limited by the shortest separation distances between the projections of two adjacent second electrodes 44 on the substrate 41. Therefore, in this embodiment and other embodiments In the above-mentioned size, the shortest separation distance between the projections of two adjacent second electrodes 44 on the substrate 41 can be constrained. Specifically, the shortest distance between the projections of two adjacent second electrodes 44 on the substrate 41 is set to be no more than 100 microns.
  • the constraints of the aluminum gallium nitride material system, the indium gallium nitride material system and the aluminum gallium indium phosphide material system can be given.
  • the sum of the shortest separation distances M1+M2 is set to be no more than 80 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be no more than 65%.
  • the sum of the shortest separation distances M1+M2 can be further set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa can be set to be between 45% and 60%. between.
  • the sum of the shortest separation distances M1+M2 is further set to be between 60 microns and 80 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 60% and 65%.
  • the sum of the shortest separation distances M1+M2 is set to be less than 20 microns, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be less than 38%, or the sum of the shortest separation distances M1+M2 is set to be medium Between 20 ⁇ m and 30 ⁇ m, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 38% and 45%.
  • the sum of the shortest separation distances M1+M2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 45% and 55%.
  • the sum of the shortest separation distances M1+M2 is set to be between 40 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 55% and 60%.
  • the sum of the shortest separation distances L1+L2 is set to be no more than 120 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be no more than 72%.
  • the sum of the shortest separation distances M1+M2 can be further set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa can be set to be between 45% and 60%. between.
  • the sum of the shortest separation distances M1+M2 is further set to be between 60 microns and 80 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 60% and 65%.
  • the sum of the shortest separation distances M1+M2 is further set to be between 80 microns and 120 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 65% and 72%.
  • the sum of the shortest separation distances M1+M2 is set to be less than 20 microns, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be less than 38%, or the sum of the shortest separation distances M1+M2 is set to be medium Between 20 ⁇ m and 30 ⁇ m, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 38% and 45%.
  • the sum of the shortest separation distances M1+M2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 45% and 55%.
  • the sum of the shortest separation distances M1+M2 is set to be between 40 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 55% and 60%.
  • the sum of the shortest separation distances L1+L2 is set to be no more than 150 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be no more than 75%.
  • the sum of the shortest separation distances M1+M2 can be further set to be between 30 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa can be set to be between 45% and 60%. between.
  • the sum of the shortest separation distances M1+M2 is further set to be between 60 microns and 100 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 60% and 70%.
  • the sum of the shortest separation distances M1+M2 is further set to be between 100 microns and 150 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 65% and 75%.
  • the sum of the shortest separation distances M1+M2 is set to be less than 20 microns, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be less than 38%, or the sum of the shortest separation distances M1+M2 is set to be medium Between 20 ⁇ m and 30 ⁇ m, the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 38% and 45%.
  • the sum of the shortest separation distances M1+M2 is set to be between 30 microns and 40 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 45% and 55%.
  • the sum of the shortest separation distances M1+M2 is set to be between 40 microns and 60 microns, and the ratio Se/Sa of the effective light-emitting area Se to the total area Sa is set to be between 55% and 60%.
  • the peak wavelength of the above-mentioned aluminum gallium nitride-based vertical light-emitting diodes is between 220nm-260nm, 260nm-300nm, 300nm-320nm or 320nm-365nm.
  • the peak wavelengths of other material systems are the same as those described above.
  • the formally mounted light-emitting diodes are the same, so I won’t repeat them here.
  • the uniformity of the current distribution is effectively improved, so that the light-emitting diode can withstand a higher working current, thereby improving the lumen efficiency and lumen density of the light-emitting diode.
  • the life and reliability of the light-emitting diode are high, and no complicated package design is required for heat dissipation, which reduces the lumen cost of the light-emitting diode.
  • the light emitting diode according to the second embodiment of the present application is a modification of the vertical structure light emitting diode shown in FIGS. 8 and 9.
  • the light-emitting diode also includes a first electrode 53, a substrate 51, a metal bonding layer 57, a mirror 58, a first semiconductor layer 521, and an active material similar to the light-emitting diode shown in FIG. 8 and FIG.
  • the light emitting layer 522, the second semiconductor layer 523, and the second electrode 54 is:
  • the first semiconductor layer 521, the second semiconductor layer 523, and the active light emitting layer 522 are provided with trenches 524.
  • the trenches 524 arrange the first semiconductor layer 521, the second semiconductor layer 523, and the active light emitting layer 522 at intervals.
  • An insulating layer 591 and a current diffusion layer 592 are formed in the sidewall of the mesa structure 525 and the exposed area of the mesa structure 525.
  • Two adjacent second electrodes 54 are respectively disposed in the trenches 524 on both sides of the mesa structure 525, and are electrically connected to the second semiconductor layer 523 through the current diffusion layer 592.
  • any light-emitting point B′ in at least a part of the light-emitting region of the light-emitting epitaxial layer formed by the first semiconductor layer 521, the second semiconductor layer 523 and the active light-emitting layer 522 is on the substrate 51
  • the shortest distance between the projection on the upper surface and the projection of the two adjacent second electrodes 54 on the substrate 51 are respectively M1' and M2'.
  • the sum of the two shortest separation distances is M1'+M2'.
  • the light emitting diode according to the sixth embodiment of the present application is a further modification of the vertical structure light emitting diode shown in FIGS. 11 and 12.
  • the light-emitting diode also includes a first electrode 63, a substrate 61, a metal bonding layer 67, a mirror 68, a first semiconductor layer 621, and an active material similar to the light-emitting diode shown in FIG. 11 and FIG.
  • the light emitting layer 622, the second semiconductor layer 623, and the second electrode 64 are examples of the light emitting diode according to the sixth embodiment of the present application.
  • the light-emitting diode also includes a first electrode 63, a substrate 61, a metal bonding layer 67, a mirror 68, a first semiconductor layer 621, and an active material similar to the light-emitting diode shown in FIG. 11 and FIG.
  • the light emitting layer 622, the second semiconductor layer 623, and the second electrode 64 are examples of the light emitting
  • first semiconductor layer 621, the active light emitting layer 622, and the second semiconductor layer 623 are also divided into mesa structures 625 spaced from each other by the trenches 624, and are formed on the sidewalls of the mesa structure 625 and the exposed area of the mesa structure 625 There is an insulating layer 691.
  • the difference between this embodiment and the light emitting diode shown in FIG. 11 and FIG. 12 is:
  • a part of the second electrode 64 is provided in the trench 624 in the form of a main electrode 643, and another part of the second electrode 64 is extended to the top of the mesa structure 625 in the form of a branch electrode 644, and is in contact with the second semiconductor layer 623 and formed Electric connection.
  • the branch electrode 644 realizes point injection of current into the second semiconductor layer 623. As shown in FIG.
  • the projection of any light-emitting point B" in at least part of the light-emitting area of the light-emitting epitaxial layer formed by the first semiconductor layer 621, the second semiconductor layer 623 and the active light-emitting layer 622 on the substrate 61 The shortest distances between the projections of the two adjacent second electrodes 64 on the substrate 61 are M1" and M2', respectively. The sum of the two shortest separation distances is M1"+M2".
  • the light-emitting diode according to the seventh embodiment of the present application is a flip-chip light-emitting diode, which includes a substrate 71, a light-emitting epitaxial layer 72, a first electrode 73 and a second electrode 74.
  • the first electrode 73 is a surface electrode
  • the number of the second electrode 74 is multiple, and the two are located on the same side of the light emitting diode.
  • the light-emitting epitaxial layer 72 further sequentially stacks a first semiconductor layer 721, an active light-emitting layer 722, and a second semiconductor layer 723 disposed on the substrate 71.
  • the first electrode 73 is disposed on a side of the second semiconductor layer 723 away from the substrate 71 and is electrically connected to the second semiconductor layer 723.
  • a mirror 79 is further provided between the first electrode 73 and the second semiconductor layer 723 to reflect the light generated by the active light-emitting layer 722, and then emit light from the side where the substrate 71 is located.
  • a plurality of grooves 724 are provided on the surface of the first electrode 73, and the grooves 724 extend to the first semiconductor layer 721 via the reflector 79, the second semiconductor layer 723 and the active light emitting layer 722.
  • the plurality of second electrodes 74 are respectively disposed in the corresponding grooves 724 and are electrically connected to the first semiconductor layer 721.
  • the first semiconductor layer 421 is an N-type semiconductor layer (for example, N-type GaN), and the corresponding second electrode 74 is also referred to as an N-type electrode.
  • the second semiconductor layer 723 is a P-type semiconductor layer (for example, P-type GaN), and the corresponding first electrode 73 is also referred to as a P-type electrode.
  • the first semiconductor layer 721 and the second semiconductor layer 723 may be a single-layer or multi-layer structure of any other suitable materials with different conductivity types.
  • the projection of any light-emitting point B"' in at least part of the light-emitting area of the light-emitting epitaxial layer 72 on the substrate 71 and the projection of the two adjacent second electrodes 74 on the substrate 71 are the shortest
  • the separation distances are respectively M1"' and M2"'.
  • the sum of the two shortest separation distances is M1"'+M2"'.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种发光二极管,包括:衬底(11);发光外延层(12),包括依次层叠设置于衬底(11)上的第一半导体层(121)、有源发光层(122)以及第二半导体层(123);第一电极(13)和第二电极(14),分别与第一半导体层(121)和第二半导体层(123)电连接。第一电极(13)和第二电极(14)在衬底(11)上的投影彼此错开,发光外延层(12)的至少部分发光区域内的任意一发光点(A)在衬底(11)上的投影与第一电极(13)在衬底(11)上的投影和第二电极(14)在衬底(11)上的投影的最短间隔距离之和(L1+L2)不大于80微米,发光外延层(12)的有效发光面积(Se)与总面积(Sa)之间的比例(Se/Sa)不大于65%,且第一半导体层(121)和第二半导体层(123)均是采用基于氮化铝镓体系的材料。该发光二极管能够有效改善电流分布的均匀性,进而提升发光二极管的流明密度和流明效率,降低流明成本。

Description

一种发光二极管 【技术领域】
本申请涉及半导体领域,特别是一种发光二极管。
【背景技术】
发光二极管是将电能转换为光的固态元件,发光二极管具有体积小、效率高和寿命长等优点,在交通指示、户外全色显示等领域有着广泛的应用。尤其是利用大功率发光二极管可以实现半导体固态照明,引起人类照明史的革命,从而逐渐成为目前电子学领域的研究热点。
目前,发光二极管的电流一般采用横向扩散方式注入至有源发光层,而这种横向扩散方式具有天然的电流非均匀分布的特性,导致局部区域的电流密度过大。局部区域的电流密度过大容易引起两方面问题:
1.局部电流过大容易引起电光转换效率下降,导致流明效率和流明密度的下降;
2.局部电流过大容易引起局部过热,导致发光二极管的使用寿命和可靠性的下降,并需要通过复杂的封装设计来实现散热,提高了流明成本。
【发明内容】
本申请提供一种发光二极管,能够改善电流分布均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度,并降低流明成本。
一方面,本申请提供了一种发光二极管,包括:衬底;发光外延层,包括依次层叠设置于衬底上的第一半导体层、有源发光层以及第二半导体层;第一电极和多个第二电极,第一电极与多个第二电极位于发光二极管的同一侧,第一电极与第一半导体层和第二半导体层中的一个电连接,多个第二电极与第一半导体层和第二半导体层中的另一个电连接;其中,第一电极为面电极,多个第二电极在衬底上的投影落在第一电极在衬底上的投影内部且彼此间隔设置,相邻的两个第二电极之间的最短间隔距离不大于80微米,发光外延层的有效发光面积与总面积之间的比例不大于65%,且第一半导体层和第二半导体层均是采用基于氮化铝镓体系的材料。
另一方面,本申请提供了一种发光二极管,包括:衬底;发光外延层,包括依次层叠设置于衬底上的第一半导体层、有源发光层以及第二半导体层;第一电极和多个第二电极,第一电极与第一半导体层和第二半导体层中的一个电连接,多个第二电极与第一半导体层和第二半导体层中的另一个电连接;其中,第一电极为面电极,多个第二电极在衬底上的投影落在第一电极在衬底上的投影内部且彼此间隔设置,发光外延层的至少部分发光区域内的任意一发光点在衬底上的投影与相邻的两个第二电极在衬底上的投影的最短间隔距离之和不大于80微米,发光外延层的有效发光面积与总面积之间的比例不大于65%,且第一半导体层和第二半导体层均是采用基于氮化铝镓体系的材料。
又一方面,本申请提供了一种发光二极管,包括:衬底;发光外延层,包括依次层叠设置于衬底上的第一半导体层、有源发光层以及第二半导体层;第一电极和多个第二电极,第一电极与第一半导体层和第二半导体层中的一个电连接,多个第二电极与第一半导体层和第二半导体层中的另一个电连接;其中,第一电极为面电极,多个第二电极在衬底上的投影落在第一电极在衬底上的投影内部且彼此间隔设置,相邻的两个第二电极之间的最短间隔距离不大于80微米,发光外延层的有效发光面积与总面积之间的比例不大于65%,且第一半导体层和第二半导体层均是采用基于氮化铝镓体系的材料。
本申请的有益效果是:区别于现有技术的情况,本申请以牺牲有效发光面积为代价,根据在不同工作电流下工作电压VF随发光外延层的至少部分发光区域内的任意一发光点在衬底上的投影与第一电极在衬底上的投影和第二电极在衬底上的投影的最短间隔距离之和L1+L2的变化规律,将基于氮化铝镓材料体系的发光二极管的最短间隔距离之和L1+L2设置成小于80微米,并将发光外延层的有效发光面积与总面积之间的比例小于65%。在该尺寸和比例范围下,可有效改善电流分布的均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度。同时,发光二极管的寿命和可靠性高,不需要复杂的封装设计来进行散热,降低了发光二极管的流明成本。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是根据本申请第一实施例的发光二极管的俯视图;
图2是沿图1的A1-A1方向的局部截面示意图;
图3是用于描述采用图1所示结构的基于氮化镓材料体系的蓝光发光二极管在不同工作电流下工作电压随L1+L2变化的曲线示意图;
图4是用于描述采用图1所示结构的基于氮化镓材料体系的蓝光发光二极管在不同工作电流下光电转换效率随L1+L2变化的曲线示意图;
图5是根据本申请第二实施例的发光二极管的俯视图;
图6是沿图5的A2-A2方向的局部截面示意图;
图7是根据本申请第三实施例的发光二极管的俯视图;
图8是根据本申请第四实施例的发光二极管的俯视图;
图9是沿图8的B1-B1方向的局部截面示意图;
图10是描述采用图8所示结构的基于氮化镓材料体系的蓝光发光二极管的工作电压随M1+M2变化的曲线示意图;
图11是根据本申请第五实施例的发光二极管的俯视图;
图12是沿图11的B2-B2方向的局部截面示意图;
图13是根据本申请第六实施例的发光二极管的俯视图;
图14是沿图13的B3-B3方向的局部截面示意图;
图15是根据本申请第七实施例的发光二极管的俯视图;
图16是沿图15的B4-B4方向的局部截面示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1和图2所示,根据本申请第一实施例的发光二极管为正装结构的发光二极管,并包括衬底11、发光外延层12、第一电极13和第二电极14。发光外延层12进一步依次层叠设置于衬底11上的第一半导体层121、有源发光层122以及第二半导体层123。在本实施例中,衬底11可以采用例如蓝宝石、SiC、GaN、AlN、硅或其他适当材料。第一半导体层121为N型半导体层,对应的第一电极13也称为N型电极。第二半导体层123为P型半导体层,对应的第二电极14也称为P型电极。在其他实施例中,第一半导体层121和第二半导体层123可以是具有不同导电类型的其他任意适当材料的单层或多层结构。
进一步,如图1和图2所示,在本实施例中,第一电极13和第二电极14为条形电极,且第一电极13在衬底11上的投影和第二电极14在衬底11上的投影彼此错开。具体而言,在本实施例中,第一电极13和第二电极14分别为沿第一方向D1延伸且沿垂直于第一方向D1的第二方向D2彼此间隔设置的指状电极,进而使得二者在衬底11上的投影彼此错开设置。第一电极13和第二电极14进一步连接第一焊盘15和第二焊盘16,进而通过第一焊盘15和第二焊盘16与外部电路进行连接。
进一步,第二半导体层123和有源发光层122上设置有沟槽124,沟槽124将第二半导体层123和有源发光层122划分成第一方向D1和第二方向D2彼此间隔的多个阵列排布的台面结构(Mesa)125,并暴露部分第一半导体层121。
在本实施例中,第一电极13和第二电极14分别设置在台面结构125两侧的沟槽124内。第一电极13设置在第一半导体层121上,并与第一半导体层121电连接,例如在本实施例中,第一电极13与第一半导体层121通过直接接触的方式形成电连接。
台面结构125和第一电极13所外露的第一半导体层121上进一步覆盖绝缘层17,绝缘层17沿台面结构125的侧壁延伸至台面结构125的顶部,并至少部分暴露台面结构125的顶部的第二半导体层123,电流扩散层18与第二半导体层123电连接。电流扩散层18进一步延伸至沟槽124内,并通过绝缘层17与第一半导体层121和有源发光层122电性隔离。第二电极14设置在位于沟槽124内的电流扩散层18上,通过电流扩散层18电连接至第二半导体层123。
在其他实施例中,第一电极13和第二电极14也可以通过其他方式电连接至第 一半导体层121和第二半导体层123,包括并不限于下文所描述的其他方式。
通过上述结构,由电子形成的电流从第一电极13注入第一半导体层121,沿第一半导体层121横向扩散并注入有源发光层122,而由空穴形成的电流从第二电极14经电流扩散层18注入第二半导体层123,沿电流扩散层18和第二半导体层123横向扩散并注入有源发光层122。电子和空穴在有源发光层122内进行辐射复合,并产生光子,进而形成发光。进一步,如图2所示,台面结构125沿第二方向D2的横截面呈梯形设置,进而使得有源发光层122所产生的光能够从台面结构125的倾斜侧壁出射,提高出光效率。在本实施例中,绝缘层17采用透明介质材料(例如,SiO 2),而电流扩散层18采用透明导电材料(例如,ITO)。绝缘层17还进一步对台面结构125进行水氧保护和电性隔离。
如上述结构可知,发光外延层12内的电流进行横向扩散的距离由第一电极13和第二电极14之间的横向间距决定。在现有技术中,第一电极13和第二电极14之间的横向间距设置得过大,导致注入有源发光层122的电流的电流密度分布的均匀性较差,进而产生上文背景技术中所描述的问题。
在本实施例中,发光外延层12的至少部分发光区域内的任意一发光点A在衬底11上的投影与第一电极13在衬底11上的投影的最短间隔距离为L1,与第二电极14在衬底11上的投影的最短间隔距离为L2。两个最短间隔距离之和为L1+L2,最短间隔距离之和L1+L2由第一电极13和第二电极14之间的横向间距决定。
由于沟槽124、第一电极13和/或第二电极14的存在,导致发光外延层12的有效发光面积小于发光外延层12的总面积,而第一电极13和第二电极14之间的横向间距越小,同样的芯片面积下需要铺设的第一电极和第二电极的数量越多,有效发光面积的损失越大,因此业界为了确保有效发光面积最大化,将第一电极13和第二电极14之间的横向间距设置得尽可能大,通常大于电流的横向扩散长度。然而,本申请的申请人通过大量的实验,通过合理地设置最短间隔距离之和L1+L2和有效发光面积损失,使得横向间距减小对发光二极管的性能提升收益远大于有效发光面积牺牲所造成的损失,同时确保第一电极13和第二电极14能够承受相对较大的工作电流,进而使得发光二极管的性能得到一个巨大的提升。
下面将在不同的材料体系下,结合在不同工作电流下工作电压VF和光电转换效率WPE随最短间隔距离之和L1+L2的变化规律来对最短间隔距离之和L1+L2和发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa之间的合理设置进行说明。其中,有效发光面积Se等于总面积Sa减去由于沟槽124、第一电极13和/或第二电极14以及焊盘等的存在所产生的非发光面积。
首先,图3显示了第一半导体层和第二半导体层均是采用基于氮化镓体系材料的蓝光发光二极管在不同的工作电流下发光二极管的工作电压随着L1+L2的变化曲线。
在本申请中,所谓蓝光发光二极管是指在工作时峰值波长介于440nm-480nm之间的发光二极管。所谓氮化镓材料体系是指在该材料体系中,氮元素在阴离子中的摩尔占比不小于90%,镓元素在阳离子中的摩尔占比不小于90%。
在本申请中,以L1+L2为100微米且Se/Sa为85%的现有发光二极管为参考样本,其中该发光二极管芯片的尺寸为425微米*750微米,第一电极13和第二电极14沿长度750微米方向延伸,并以L1+L2分别为72、60、50、40、30和20微米的发光二极管为比较样本,拟合出工作电压VF和光电转换效率WPE随L1+L2的变化规律。其中,为了确保第一电极13和第二电极14具有足够的线宽,以使得第一电极13和第二电极14能够承受足够大的工作电流,进一步以牺牲有效发光面积为代价,将上述各比较样本的Se/Sa分别设置为75%、67%、60%、55%、40%和25%。
在图3中,为了更明显地显示工作电压的变化效果,在L1+L2=100微米处对各工作电流下的工作电压进行归一化处理,并体现L1+L2从100微米逐渐减小的过程中,归一化工作电压VF的变化规律。
如图3所示,从100微米开始,归一化工作电压VF随L1+L2的减小而缓慢降低,并在减小到72微米之后,归一化工作电压VF的下降趋势明显增强,并且电流越大下降斜率越大。
随着L1+L2进一步减小到60微米之后,归一化工作电压VF的下降趋势变缓,并在减小到50微米之后下降趋势进一步变缓。随着L1+L2进一步减小到40微米之后,部分工作电流下的归一化工作电压VF由下降趋势变为上升趋势,并在减小到30微米之后全部变为上升趋势。随着L1+L2进一步减小到20微米之后,虽然归一化工作电压VF相较于30微米位置处有所上升,但整体仍低于72微米和100微米位置处的归一化工作电压VF。
进一步,图4显示了在不同的工作电流下上述蓝光发光二极管的光电转化效率WPE随着L1+L2的变化曲线。其中,为更明显地显示光电转化效率WPE的变化效果,在L1+L2=100微米处对各工作电流下的光电转化效率WPE进行归一化处理,并测量L1+L2从100微米逐渐减小的过程中,归一化光电转化效率WPE的变化规律。
如图4所示,从100微米开始,在小工作电流下,归一化光电转化效率WPE随L1+L2的减小而呈现下降趋势,而仅在大工作电流下,归一化光电转化效率随L1+L2的减小而呈现缓慢上升趋势。在减小到72微米之后,归一化光电转化效率在各工作电流下均随L1+L2的减小呈现上升趋势,并且电流越大,上升斜率越大。
随着L1+L2进一步减小到60微米之后,归一化光电转化效率的上升趋势减弱,并在50微米之后,归一化光电转化效率开始缓慢下降。随着L1+L2进一步减小到40微米之后,归一化光电转化效率的下降趋势加剧,并在30微米之后,归一化光电转化效率的下降区域进一步加剧,但整体仍大于73微米位置处的归一化光电转化效率。随着L1+L2进一步减小到20微米之后,部分大工作电流下的归一化光电转化效率仍大于100微米位置处的归一化光电转化效率。
从图3和4中可以看出,随着L1+L2下降到60微米以下,虽然发光二极管的有效发光面积Se与总面积Sa的比例Se/Sa下降到67%,但工作电压明显低于现有发光二极管,且光电转化效率明显高于现有发光二极管。由此可见,在L1+L2下降到60微米以下,L1+L2下降对发光二极管的性能提升收益远大于有效发光面积牺牲 所造成的损失,LED芯片的性能得到了巨大的提升。
因此,在一具体实施方式中,将最短间隔距离之和L1+L2设置为不大于60微米,将发光外延层12的有效发光面积与总面积之间的比例Se/Sa设置成不大于67%。在该尺寸和比例范围下,可有效改善电流分布的均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度。同时,发光二极管的寿命和可靠性高,不需要复杂的封装设计来进行散热,降低了发光二极管的流明成本。
进一步地,可以将最短间隔距离之和L1+L2设置成介于30微米-60微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于40%-67%之间。进一步地,可以将最短间隔距离之和L1+L2设置成介于30微米-50微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于40%-60%之间。
更进一步地,还可以根据实际使用需要将最短间隔距离之和L1+L2设置成小于20微米,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成小于25%,或者将最短间隔距离之和L1+L2设置成介于20微米-30微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于25%-40%,或者将最短间隔距离之和L1+L2设置成介于30微米-40微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于40%-55%之间,或者将最短间隔距离之和L1+L2设置成介于40微米-50微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于55%-60%之间;或者将最短间隔距离之和L1+L2设置成介于50微米-60微米之间,将发光外延层的有效发光面积与总面积之间的比例Se/Sa设置成介于60%-67%。值得注意的是,本申请所提得到“介于某两个端值之间”包括该两个端值。
在本实施例中,受上述尺寸和比例约束的至少部分发光区域涵盖了发光外延层12的全部发光区域,即所有台面结构125。在其他实施例中,上述至少部分发光区域可以设置成包括一个或一个以上的台面结构125。在其他具体实施方式中,满足上述约束条件的所有至少部分发光区域的集合与发光外延层12上的全部发光区域的面积比可以进一步不小于50%、60%、70%、80%、90%。
进一步,如图3和图4所示,工作电流越大,发光二极管性能的改善效果越明显。因此,本实施例的针对最短间隔距离之和L1+L2和有效发光面积与总面积之间的比例Se/Sa的约束方式特别适用于大功率发光二极管。在一具体实施方式中,发光二极管工作时的平均电流密度J设置成不小于0.5A/mm 2。在其他具体实施方式中,发光二极管工作时的平均电流密度J可以进一步设置成不小于0.75、1、1.5、2、3、5、10、20A/mm 2。进一步,为了适应大功率发光二极管的大发光面积的需要,将第一电极13和第二电极14的数量总和设置成不小于5、7、9或11个。
需要注意的是,在上述尺寸和比例限定同样适用于基于氮化镓材料体系的其他峰值波长的发光二极管,例如365nm-400nm、400nm-440nm、440nm-480nm、480nm-540nm、540nm-560nm、560nm-600nm或600nm-700nm。
需要注意的是,本实施例中的最短间隔距离之和L1+L2实际上受第一电极13 和第二电极14在衬底11的投影之间的最短间隔距离的限制,因此在本实施例以及其他实施例中,可以通过利用上述尺寸限定对第一电极13和第二电极14在衬底11的投影之间的最短间隔距离进行约束。具体来说,可以根据实际需要将第一电极13和第二电极14在衬底11的投影之间的最短间隔距离设置成不大于60、50、40、30和20微米。
综上,通过上述设置方式,有效改善电流分布的均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度。同时,发光二极管的寿命和可靠性高,不需要复杂的封装设计来进行散热,降低了发光二极管的流明成本。
进一步地,上述设计思路可以适用于采用上述结构的其他材料体系的发光二极管,例如氮化铝镓材料体系、氮化铟镓材料体系、磷化铝镓铟材料体系。其中,所谓氮化铝镓材料体系是指在该材料体系中,氮元素在阴离子中的摩尔占比不小于90%,铝元素和镓元素在阳离子中的摩尔占比不小于90%,同时铝元素在阳离子中的摩尔占比不小于10%。所谓氮化铟镓材料体系是指在该材料体系中,氮元素在阴离子中的摩尔占比不小于90%,铟元素和镓元素在阳离子中的摩尔占比不小于90%,同时铟元素在阳离子中的摩尔占比不小于10%。所谓磷化铝镓铟体系是指在该材料体系中,磷元素在阴离子中的摩尔占比不小于90%,铝元素、铟元素和镓元素在阳离子中的摩尔占比不小于90%。
下面将给出基于氮化铟镓材料体系、磷化铝镓铟材料体系并采用上述结构的发光二极管的L1+L2以及Se/Sa的具体设计参数。
在氮化铟镓材料体系下,最短间隔距离之和L1+L2设置成不大于80微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成不大于72%。进一步,最短间隔距离之和L1+L2设置成介于30微米-60微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-67%之间。或者,最短间隔距离之和L1+L2设置成介于60微米-80微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于67%-72%之间。
更进一步地,最短间隔距离之和L1+L2设置成介于30微米-50微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-60%之间。
再进一步地,可以根据实际情况进行以下设置:最短间隔距离之和L1+L2设置成小于20微米,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成小于25%。或者,最短间隔距离之和L1+L2设置成介于20微米-30微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于25%-40%。或者,最短间隔距离之和L1+L2设置成介于30微米-40微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-55%之间。或者,最短间隔距离之和L1+L2设置成介于40微米-50微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于55%-60%之间。或者,最短间隔距离之和L1+L2设置成介于50微米-60微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-67%。
基于氮化铟镓材料体系的发光二极管在工作时的峰值波长可以介于400nm-440nm、440nm-480nm、480nm-540nm、540nm-560nm、560nm-600nm、600nm-700nm或700nm-850nm。
在磷化铝铟镓材料体系下,最短间隔距离之和L1+L2设置成不大于100微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成不大于75%。进一步,最短间隔距离之和L1+L2设置成介于30微米-60微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-67%之间。或者,最短间隔距离之和L1+L2设置成介于60微米-80微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于67%-72%之间。或者,最短间隔距离之和L1+L2设置成介于80微米-100微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于72%-75%之间
更进一步地,最短间隔距离之和L1+L2设置成介于30微米-50微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-60%之间。
再进一步地,可以根据实际情况进行以下设置:最短间隔距离之和L1+L2设置成小于20微米,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成小于25%。或者,最短间隔距离之和L1+L2设置成介于20微米-30微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于25%-40%。或者,最短间隔距离之和L1+L2设置成介于30微米-40微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于40%-55%之间。或者,最短间隔距离之和L1+L2设置成介于40微米-50微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于55%-60%之间。或者,最短间隔距离之和L1+L2设置成介于50微米-60微米之间,发光外延层的有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-67%。
基于磷化铝铟镓材料体系的发光二极管在工作时的峰值波长可以介于560nm-600nm、600nm-700nm、700nm-850nm、850nm-980nm、980nm-1300nm或1300nm-1600nm。
值得注意的是,基于氮化铟镓材料体系和磷化铝铟镓材料体系的正装发光二极管的其他参数可以参照基于氮化镓材料体系的正装发光二极管进行设置。此外,各种材料体系下的尺寸和比例限定同样适用于其他正装结构的发光二极管。
如图5和图6所示,根据本申请第二实施例的发光二极管为图1和2所示的正装结构的一种变型,包括衬底21、发光外延层22、第一电极23和第二电极24。发光外延层22进一步依次层叠设置于衬底21上的第一半导体层221、有源发光层222以及第二半导体层223。第二半导体层223和有源发光层222上设置有沟槽224,沟槽224将第二半导体层223和有源发光层222划分成第二方向D2′彼此间隔且沿第一方向D1′一体设置的多个台面结构225,并暴露部分第一半导体层221。其中,第一方向D1′为第一电极23和第二电极24的延伸方向,第二方向D2′为第一电极23和第二电极24的间隔方向。第一电极23和第二电极24进一步分别与焊盘25和26连接。
本实施例的发光二极管与图1和2所示的发光二极管的主要区别在于,第二电极24直接设置于台面结构225的顶部的第二半导体层123上并电连接至第二半导体层124。
在本实施例中,第二电极24通过其下方设置的电流扩散层27电连接至第二半导体层223。电流扩散层27的主要目的是提高第二半导体层223的电流扩散的均匀性,可以采用电导率大于第二半导体层223的透明材质(例如ITO)。
进一步,如图5和图6所示,本实施例的发光二极管进一步包括设置于第二电极24的正下方且位于电流扩散层27与第二半导体层223之间的电流阻挡层28。由于第一电极23和第二电极24一般采用金属材料,因此发光外延层22所产生的光无法透过第二电极24。电流阻挡层28的作用是防止电流从第二电极24直接注入第二电极24正下方的发光外延层22,进而减少第二电极24所遮挡的出光量,提高流明效率。
在本实施例的发光二极管进一步包括覆盖于台面结构225的倾斜侧壁的透明介质层29(例如,SiO 2)。透明介质层29的作用于是对台面结构225进行水氧保护和电性隔离。
如图7所示,根据本发明第三实施例的发光二极管与图5和图6所示的发光二极管的区别在于,第二电极34的一部分以主干电极341的形式设置于沟槽324内,第二电极34的另一部分以分支电极342的形式延伸至台面结构325的顶部,并与第二半导体层(未图示)形成电连接。
上文所述的第二实施例和第三实施例中的发光二极管的至少部分发光区域的任意发光点A′与第一电极和第二电极在衬底上的投影的最短间隔距离之和L1′+L2′以及第一电极和第二电极在衬底上的投影之间的最短间隔距离同样受上述尺寸的约束,同时发光外延层的有效发光面积和总面积之间的比例同样受到上述比例的约束。
进一步,上述基于正装结构的发光二极管的设计思路同样适用于垂直和倒装结构的发光二极管。
如图8和图9所示,根据本申请第三实施例的发光二极管包括衬底41、发光外延层42、第一电极43和第二电极44。发光外延层42进一步依次层叠设置于衬底41上的第一半导体层421、有源发光层422以及第二半导体层423。在本实施例中,衬底41可以采用例如Si、Ge、Cu、CuW等导电材料。第一半导体层421为P型半导体层,对应的第一电极43也称为P型电极。第二半导体层423为N型半导体层,对应的第二电极44也称为N型电极。在其他实施例中,第一半导体层421和第二半导体层423可以是具有不同导电类型的其他任意适当材料的单层或多层结构。
进一步,如图8和图9所示,第一电极43为面电极,多个第二电极44分别为条形电极,并在衬底41上的投影落在第一电极43在衬底41上的投影内部且彼此间隔设置。具体而言,在本实施例中,第二电极44分别为沿第一方向D1″延伸且沿垂直于第一方向D1″的第二方向D2″彼此间隔设置的指状电极,进而使得第二电极44在衬底41上的投影沿第二方向D2″彼此间隔设置。第一电极43和第二电极44进一步连接第一焊盘(未图示)和第二焊盘46,进而通过第一焊盘和第二焊盘46与外 部电路进行连接。
进一步,在本实施中,发光二极管为垂直发光二极管,第二电极44以及第一电极43分别位于发光外延层420的相对两侧。其中,第二电极44设置于第二半导体层423远离有源发光层422的一侧,且第二电极44与第二半导体层423电连接,例如在本实施例中,第二电极44与第二半导体层423通过直接接触的方式形成电连接。
第一电极43设置在衬底41远离发光外延层42的一侧,通过衬底41与第一半导体层421形成电连接。进一步,衬底41与第一半导体层421之间还可以设有金属键合层47和反射镜48,反射镜48用于对有源发光层422所产生的光进行反射,进而从第二半导体层423所在一侧出光,金属键合层47用于提高发光外延层42的附着力。
在本实施例中,第二电极44在衬底41上的投影与第一电极43在衬底41上的投影彼此重叠,进而落在第一电极43在衬底41上的投影内部。此处值得注意的是,本申请所指的落在第一电极43在衬底41上的投影内部既包括图9所示的与第一电极43在衬底41上的投影重叠,也包括后续图15-16所示的被第一电极在衬底上的投影所包围。
通过上述结构,由空穴形成的电流从第一电极43经衬底41、金属键合层47和反射镜48沿其层叠方向直接注入有源发光层42,而由电子形成的电流从第二电极44注入第二半导体层43,并沿第二半导体层423横向扩散并注入有源发光层422。电子和空穴在有源发光层422内进行辐射复合,并产生光子,进而形成发光。
如上述结构可知,发光外延层42内的电流进行横向扩散的距离由相邻的第二电极44之间的横向间距决定。在现有技术中,相邻的第二电极44之间的横向间距设置得过大,导致注入有源发光层422的电流的电流密度分布的均匀性较差,进而产生上文背景技术中所描述的问题。
在本实施例中,发光外延层42的至少部分发光区域内的任意一发光点B在衬底41上的投影与相邻的两个第二电极44在衬底41上的投影的最短间隔距离分别为M1、M2。两个最短间隔距离之和为M1+M2。
图10显示了采用图8和图9所示结构且第一半导体层和第二半导体层均是采用基于氮化镓体系材料的蓝光发光二极管在不同的工作电流下发光二极管的工作电压随着M1+M2的变化曲线。
在本实施例中,以M1+M2为230微米且Se/Sa为75%的垂直发光二极管为参考样本,并以M1+M2分别为105、80、50、和30微米的发光二极管为比较样本,拟合出工作电压VF随M1+M2的变化规律。此外,为了确保第二电极34具有足够的线宽,以使得第二电极34能够承受足够大的工作电流,进一步以牺牲有效发光面积为代价,将上述各比较样本的Se/Sa分别设置为70%、65%、63%和45%。
由于大电流下230微米尺寸的样品过早饱和,无法做归一化,因此采用实际电压来表示。从图中可以看出,在1A/mm 2和2A/mm 2的大功率电流注入下,当尺寸缩小到100微米左右时,电压急剧下降。对于5A/mm 2的超大电流注入下,230微米尺寸的样品早已饱和失效,而105微米、50微米和30微米尺寸仍可工作。对于10A/mm 2 的超大电流注入下,230和105微米尺寸的样品早已饱和失效,而50微米和30微米尺寸仍可工作。
因此,在本实施例中,将最短间隔距离之和M1+M2设置为不大于100微米,将有效发光面积Se与总面积Sa的比例Se/Sa不大于70%。在该尺寸和比例范围下,可有效改善电流分布的均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度。同时,发光二极管的寿命和可靠性高,不需要复杂的封装设计来进行散热,降低了发光二极管的流明成本。
进一步地,可以将最短间隔距离之和M1+M2进一步设置成介于30微米-60微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-60%之间。或者将最短间隔距离之和M1+M2进一步设置成介于60微米-100微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-70%之间
更进一步地,最短间隔距离之和M1+M2设置成小于20微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成小于38%,或者,最短间隔距离之和M1+M2设置成介于20微米-30微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于38%-45%。或者,最短间隔距离之和M1+M2设置成介于30微米-40微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-55%之间。最短间隔距离之和M1+M2设置成介于40微米-60微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于55%-60%之间。最短间隔距离之和M1+M2设置成介于60微米-80微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-65%。或者,最短间隔距离之和M1+M2设置成介于80微米-100微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于65%-70%。
在本实施例中,满足上述约束条件的所有至少部分发光区域的集合与发光外延层32上的全部发光区域的面积比可以进一步不小于50%、60%、70%、80%、90%。
进一步,发光二极管工作时的平均电流密度J设置成不小于0.5A/mm 2。在其他具体实施方式中,发光二极管工作时的平均电流密度J可以进一步设置成不小于1、1.5、2、3、5、10、20A/mm 2。进一步,为了适应大功率发光二极管的大发光面积的需要,将第二电极34的数量总和设置成不小于5、7、9或11个。
同样,本实施例中的最短间隔距离之和M1+M2实际上受相邻两个第二电极44在衬底41的投影之间的最短间隔距离的限制,因此在本实施例以及其他实施例中,可以利用上述尺寸对相邻两个第二电极44在衬底41的投影之间的最短间隔距离进行约束。具体来说,将相邻两个第二电极44在衬底41的投影之间的最短间隔距离设置成不大于100微米。
此外,基于类似的方式可以给出氮化铝镓材料体系、氮化铟镓材料体系和磷化铝镓铟材料体系的约束条件。
在氮化铝镓材料体系下,最短间隔距离之和M1+M2设置成不大于80微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成不大于65%。
进一步地,可以将最短间隔距离之和M1+M2进一步设置成介于30微米-60微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-60%之间。 或者将最短间隔距离之和M1+M2进一步设置成介于60微米-80微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-65%之间。
更进一步地,最短间隔距离之和M1+M2设置成小于20微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成小于38%,或者,最短间隔距离之和M1+M2设置成介于20微米-30微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于38%-45%。或者,最短间隔距离之和M1+M2设置成介于30微米-40微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-55%之间。最短间隔距离之和M1+M2设置成介于40微米-60微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于55%-60%之间。
在氮化铟镓材料体系下,最短间隔距离之和L1+L2设置成不大于120微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成不大于72%。
进一步地,可以将最短间隔距离之和M1+M2进一步设置成介于30微米-60微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-60%之间。或者,将最短间隔距离之和M1+M2进一步设置成介于60微米-80微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-65%之间。或者,将最短间隔距离之和M1+M2进一步设置成介于80微米-120微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于65%-72%之间。
更进一步地,最短间隔距离之和M1+M2设置成小于20微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成小于38%,或者,最短间隔距离之和M1+M2设置成介于20微米-30微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于38%-45%。或者,最短间隔距离之和M1+M2设置成介于30微米-40微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-55%之间。最短间隔距离之和M1+M2设置成介于40微米-60微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于55%-60%之间。
在磷化铝镓铟材料体系下,最短间隔距离之和L1+L2设置成不大于150微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成不大于75%。
进一步地,可以将最短间隔距离之和M1+M2进一步设置成介于30微米-60微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-60%之间。或者,将最短间隔距离之和M1+M2进一步设置成介于60微米-100微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于60%-70%之间。或者,将最短间隔距离之和M1+M2进一步设置成介于100微米-150微米之间,将有效发光面积Se与总面积Sa的比例Se/Sa设置成介于65%-75%之间。
更进一步地,最短间隔距离之和M1+M2设置成小于20微米,有效发光面积Se与总面积Sa的比例Se/Sa设置成小于38%,或者,最短间隔距离之和M1+M2设置成介于20微米-30微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于38%-45%。或者,最短间隔距离之和M1+M2设置成介于30微米-40微米之间,有效发光面积Se与总面积Sa的比例Se/Sa设置成介于45%-55%之间。最短间隔距离之和M1+M2设置成介于40微米-60微米之间,有效发光面积Se与总面积Sa的 比例Se/Sa设置成介于55%-60%之间。
值得注意的是,上述基于氮化铝镓的垂直型发光二极管在工作时的峰值波长介于220nm-260nm、260nm-300nm、300nm-320nm或320nm-365nm,其他材料体系的峰值波长与上文描述的正装发光二级管相同,在此不再赘述。
综上,通过上述设置方式,有效改善电流分布的均匀性,以使发光二极管能够承受更高的工作电流,进而提升发光二极管的流明效率和流明密度。同时,发光二极管的寿命和可靠性高,不需要复杂的封装设计来进行散热,降低了发光二极管的流明成本。
值得注意的是,各种材料体系下的尺寸和比例限定同样适用于其他垂直结构和倒装结构的发光二极管。
如11和图12所示,根据本申请第二实施例的发光二极管为图8和9所示的垂直结构发光二极管的一种变型。在本实施例中,发光二极管同样包括与图8和图9所示的发光二极管类似的第一电极53、衬底51、金属键合层57、反射镜58、第一半导体层521、有源发光层522、第二半导体层523和第二电极54。本实施例与图8和图9所示的发光二极管的区别之处在于:
第一半导体层521、第二半导体层523和有源发光层522上设置有沟槽524,沟槽524将第一半导体层521、第二半导体层523和有源发光层522彼此间隔排布的台面结构(Mesa)525。台面结构525的侧壁以及台面结构525的外露区域内形成有绝缘层591和电流扩散层592。相邻的两个第二电极54分别设置在台面结构525两侧的沟槽524内,且通过电流扩散层592与第二半导体层523电连接。此时,如图12所示,由第一半导体层521、第二半导体层523和有源发光层522所形成的发光外延层的至少部分发光区域内的任意一发光点B′在衬底51上的投影与相邻的两个第二电极54在衬底51上的投影的最短间隔距离分别为M1′、M2′。两个最短间隔距离之和为M1′+M2′。
进一步,如图13和图14所示,根据本申请第六实施例的发光二极管为图11和12所示的垂直结构发光二极管的进一步变型。在本实施例中,发光二极管同样包括与图11和图12所示的发光二极管类似的第一电极63、衬底61、金属键合层67、反射镜68、第一半导体层621、有源发光层622、第二半导体层623和第二电极64。此外,第一半导体层621、有源发光层622、第二半导体层623同样通过沟槽624划分成彼此间隔的台面结构625,并在台面结构625的侧壁以及台面结构625的外露区域内形成有绝缘层691。本实施例与图11和图12所示的发光二极管的区别之处在于:
第二电极64的一部分以主干电极643的形式设置于沟槽624内,第二电极64的另一部分以分支电极644的形式延伸至台面结构625的顶部,并与第二半导体层623接触并形成电连接。此时,由分支电极644对第二半导体层623实现电流的点注入。如图14所示,由第一半导体层621、第二半导体层623和有源发光层622所形成的发光外延层的至少部分发光区域内的任意一发光点B″在衬底61上的投影与相邻的两个第二电极64在衬底61上的投影的最短间隔距离分别为M1″、M2′。两个 最短间隔距离之和为M1″+M2″。
如图15和图16所示,根据本申请第七实施例的发光二极管为一种倒装发光二极管,包括衬底71、发光外延层72、第一电极73和第二电极74,第一电极73为面电极,第二电极74的数量为多个,且二者位于发光二极管的同一侧。发光外延层72进一步依次层叠设置于衬底71上的第一半导体层721、有源发光层722以及第二半导体层723。第一电极73设置于第二半导体层723远离衬底71的一侧,并与第二半导体层723电连接。在第一电极73与第二半导体层723之间进一步设置反射镜79,以反射有源发光层722所产生的光,进而从衬底71所在一侧进行出光。第一电极73的表面设置有多个凹槽724,该凹槽724经反射镜79、第二半导体层723和有源发光层722延伸至第一半导体层721。该多个第二电极74分别设置于对应的凹槽724内,并与第一半导体层721电连接。在本实施例中,第一半导体层421为N型半导体层(例如N型GaN),对应的第二电极74也称为N型电极。第二半导体层723为P型半导体层(例如P型GaN),对应的第一电极73也称为P型电极。在其他实施例中,第一半导体层721和第二半导体层723可以是具有不同导电类型的其他任意适当材料的单层或多层结构。在本实施例中,发光外延层72的至少部分发光区域内的任意一发光点B″′在衬底71上的投影与相邻的两个第二电极74在衬底71上的投影的最短间隔距离分别为M1″′、M2″′。两个最短间隔距离之和M1″′+M2″′。
上述几种发光二极管结构以及其他类似结构的两个最短间隔距离之和M1′+M2′、M1″+M2″和M1″′+M2″′均受上述尺寸约束,同时发光外延层的有效发光面积和总面积之间的比例受上述比例约束。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种发光二极管,其特征在于,所述发光二极管包括:
    衬底;
    发光外延层,包括依次层叠设置于所述衬底上的第一半导体层、有源发光层以及第二半导体层;
    第一电极和多个第二电极,所述第一电极与所述多个第二电极位于所述发光二极管的同一侧,所述第一电极与所述第一半导体层和第二半导体层中的一个电连接,所述多个第二电极与所述第一半导体层和第二半导体层中的另一个电连接;
    其中,所述第一电极为面电极,所述多个第二电极在所述衬底上的投影落在所述第一电极在所述衬底上的投影内部且彼此间隔设置,相邻的两个所述第二电极之间的最短间隔距离不大于80微米,所述发光外延层的有效发光面积与总面积之间的比例不大于65%,且所述第一半导体层和所述第二半导体层均是采用基于氮化铝镓体系的材料。
  2. 一种发光二极管,其特征在于,所述发光二极管包括:
    衬底;
    发光外延层,包括依次层叠设置于所述衬底上的第一半导体层、有源发光层以及第二半导体层;
    第一电极和多个第二电极,所述第一电极与所述第一半导体层和第二半导体层中的一个电连接,所述多个第二电极与所述第一半导体层和第二半导体层中的另一个电连接;
    其中,所述第一电极为面电极,所述多个第二电极在所述衬底上的投影落在所述第一电极在所述衬底上的投影内部且彼此间隔设置,所述发光外延层的至少部分发光区域内的任意一发光点在所述衬底上的投影与相邻的两个所述第二电极在所述衬底上的投影的最短间隔距离之和不大于80微米,所述发光外延层的有效发光面积与总面积之间的比例不大于65%,且所述第一半导体层和所述第二半导体层均是采用基于氮化铝镓体系的材料。
  3. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管在工作时的峰值波长介于220nm-260nm、260nm-300nm、300nm-320nm或320nm-365nm。
  4. 根据权利要求2所述的发光二极管,其特征在于,所述最短间隔距离之和进一步介于60微米-80微米之间,所述发光外延层的有效发光面积与总面积之间的比例介于60%-65%之间;
    或者,所述最短间隔距离之和进一步介于30微米-60微米之间,所述发光外延层的有效发光面积与总面积之间的比例介于45%-60%之间。
  5. 根据权利要求2所述的发光二极管,其特征在于,
    所述最短间隔距离之和进一步小于20微米,所述发光外延层的有效发光面积与总面积之间的比例小于38%;
    所述最短间隔距离之和进一步介于20微米-30微米之间,所述发光外延层的有效发光面积与总面积之间的比例介于38%-45%;
    所述最短间隔距离之和进一步介于30微米-40微米之间,所述发光外延层的有效发光面积与总面积之间的比例介于45%-55%之间;
    所述最短间隔距离之和进一步介于40微米-60微米之间,所述发光外延层的有效发光面积与总面积之间的比例介于55%-60%之间。
  6. 根据权利要求2所述的发光二极管,其特征在于,所述第一电极和第二电极的数量总和不少于5个。
  7. 根据权利要求2所述的发光二极管,其特征在于,所述第一电极和第二电极的数量总和不少于7个。
  8. 根据权利要求2所述的发光二极管,其特征在于,所述第一电极和第二电极的数量总和不少于9个。
  9. 根据权利要求2所述的发光二极管,其特征在于,所述第一电极和第二电极的数量总和不少于11个。
  10. 根据权利要求2所述的发光二极管,其特征在于,所述第二半导体层和所述有源发光层上设置有沟槽,所述沟槽将所述第二半导体层和所述有源发光层划分成彼此间隔的至少两个台面结构,并暴露部分所述第一半导体层,其中所述至少部分发光区域包括至少一台面结构,所述第一电极设置于所述沟槽内并电连接至所述第一半导体层,所述第二电极设置于所述第二半导体层上并电连接至第二半导体层,或者所述第二电极至少部分设置于所述沟槽内并通过分支电极或电流扩散层电连接至所述第二半导体层。
  11. 根据权利要求10所述的发光二极管,其特征在于,所述第一电极和所述第二电极分别为沿第一方向延伸且沿垂直于所述第一方向的第二方向彼此间隔设置的条状电极。
  12. 根据权利要求2所述的发光二极管,其特征在于,所述发光外延层上的所有所述至少部分发光区域的集合与所述发光外延层上的全部发光区域的面积比不小于50%。
  13. 根据权利要求2所述的发光二极管,其特征在于,所述发光外延层上的所有所述至少部分发光区域的集合与所述发光外延层上的全部发光区域的面积比不小于70%。
  14. 根据权利要求2所述的发光二极管,其特征在于,所述发光外延层上的所有所述至少部分发光区域的集合与所述发光外延层上的全部发光区域的面积比不小于90%。
  15. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管工作时的所述平均电流密度不小于0.5A/mm 2
  16. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管工作时的所述平均电流密度不小于1A/mm 2
  17. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管工作时的所述平均电流密度不小于2A/mm 2
  18. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管工作时的 所述平均电流密度不小于10A/mm 2
  19. 根据权利要求2所述的发光二极管,其特征在于,所述发光二极管工作时的所述平均电流密度不小于20A/mm 2
  20. 一种发光二极管,其特征在于,所述发光二极管包括:
    衬底;
    发光外延层,包括依次层叠设置于所述衬底上的第一半导体层、有源发光层以及第二半导体层;
    第一电极和多个第二电极,所述第一电极与所述第一半导体层和第二半导体层中的一个电连接,所述多个第二电极与所述第一半导体层和第二半导体层中的另一个电连接;
    其中,所述第一电极为面电极,所述多个第二电极在所述衬底上的投影落在所述第一电极在所述衬底上的投影内部且彼此间隔设置,相邻的两个所述第二电极之间的最短间隔距离不大于80微米,所述发光外延层的有效发光面积与总面积之间的比例不大于65%,且所述第一半导体层和所述第二半导体层均是采用基于氮化铝镓体系的材料。
PCT/CN2020/137282 2019-12-17 2020-12-17 一种发光二极管 WO2021121334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911304255.6 2019-12-17
CN201911304255.6A CN112993110B (zh) 2019-12-17 2019-12-17 一种发光二极管

Publications (1)

Publication Number Publication Date
WO2021121334A1 true WO2021121334A1 (zh) 2021-06-24

Family

ID=76342534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137282 WO2021121334A1 (zh) 2019-12-17 2020-12-17 一种发光二极管

Country Status (2)

Country Link
CN (1) CN112993110B (zh)
WO (1) WO2021121334A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133807A1 (en) * 2003-12-18 2005-06-23 Park Young H. Nitride semiconductor light emitting device
CN101118945A (zh) * 2006-07-18 2008-02-06 三菱电机株式会社 半导体发光二极管
CN101872813A (zh) * 2009-04-24 2010-10-27 刘胜 发光二极管芯片及其制造方法
CN102790146A (zh) * 2011-05-18 2012-11-21 展晶科技(深圳)有限公司 半导体发光元件
CN104505446A (zh) * 2014-12-17 2015-04-08 晶科电子(广州)有限公司 出光效率高散热性能好的倒装led芯片及其制备方法
CN106449926A (zh) * 2015-08-04 2017-02-22 三星电子株式会社 半导体发光器件及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984851B2 (en) * 2000-06-21 2006-01-10 Showa Denko Kabushiki Kaisha Group-III nitride semiconductor light-emitting diode, light-emitting diode lamp, light source, electrode for group-III nitride semiconductor light-emitting diode, and method for producing the electrode
WO2007094476A1 (en) * 2006-02-14 2007-08-23 Showa Denko K.K. Light-emitting diode
JP6458463B2 (ja) * 2013-12-09 2019-01-30 日亜化学工業株式会社 発光素子
TW201526282A (zh) * 2013-12-30 2015-07-01 Lextar Electronics Corp 發光二極體晶片
CN110060996B (zh) * 2019-04-11 2022-02-01 深圳第三代半导体研究院 一种垂直集成单元二极管芯片
CN112397626B (zh) * 2019-08-16 2021-10-08 深圳第三代半导体研究院 一种发光二极管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050133807A1 (en) * 2003-12-18 2005-06-23 Park Young H. Nitride semiconductor light emitting device
CN101118945A (zh) * 2006-07-18 2008-02-06 三菱电机株式会社 半导体发光二极管
CN101872813A (zh) * 2009-04-24 2010-10-27 刘胜 发光二极管芯片及其制造方法
CN102790146A (zh) * 2011-05-18 2012-11-21 展晶科技(深圳)有限公司 半导体发光元件
CN104505446A (zh) * 2014-12-17 2015-04-08 晶科电子(广州)有限公司 出光效率高散热性能好的倒装led芯片及其制备方法
CN106449926A (zh) * 2015-08-04 2017-02-22 三星电子株式会社 半导体发光器件及其制造方法

Also Published As

Publication number Publication date
CN112993110A (zh) 2021-06-18
CN112993110B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7118427B2 (ja) 半導体素子
US11239387B2 (en) Light emitting diode with high efficiency
TWI555231B (zh) 半導體發光元件
KR101761385B1 (ko) 발광 소자
CN112397626B (zh) 一种发光二极管
US20180204979A1 (en) Light-emitting device
US10172190B2 (en) Light emitting diode having improved current spreading efficiency, improved mechanical reliability, or some combination thereof
JP2016092414A (ja) 発光素子及び照明システム
WO2021115470A1 (zh) 一种发光二极管
US20150295139A1 (en) Light-emitting diode package
KR102465406B1 (ko) 발광 소자
WO2021121325A1 (zh) 一种发光二极管
WO2021121333A1 (zh) 一种发光二极管
WO2021121324A1 (zh) 一种发光二极管
KR20170025035A (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR20110132161A (ko) 반도체 발광 소자 및 그 제조방법
WO2021121334A1 (zh) 一种发光二极管
WO2021121332A1 (zh) 一种发光二极管
WO2021121326A1 (zh) 一种发光二极管
WO2021121328A1 (zh) 一种发光二极管
KR100642522B1 (ko) 패터닝된 투명기판을 채택하는 발광 다이오드 및 그것을제조하는 방법
JP7203164B2 (ja) 発光ダイオード
KR102239626B1 (ko) 발광 소자
KR101675583B1 (ko) 발광 소자
JP5736930B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20902167

Country of ref document: EP

Kind code of ref document: A1