WO2021121063A1 - 星载堆栈体及其标准化模块 - Google Patents

星载堆栈体及其标准化模块 Download PDF

Info

Publication number
WO2021121063A1
WO2021121063A1 PCT/CN2020/134235 CN2020134235W WO2021121063A1 WO 2021121063 A1 WO2021121063 A1 WO 2021121063A1 CN 2020134235 W CN2020134235 W CN 2020134235W WO 2021121063 A1 WO2021121063 A1 WO 2021121063A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
frame
heat
cover plate
standardized
Prior art date
Application number
PCT/CN2020/134235
Other languages
English (en)
French (fr)
Inventor
冉德超
曹璐
庹洲慧
陈小前
范广腾
张飞
季明江
姜志杰
Original Assignee
中国人民解放军军事科学院国防科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军军事科学院国防科技创新研究院 filed Critical 中国人民解放军军事科学院国防科技创新研究院
Publication of WO2021121063A1 publication Critical patent/WO2021121063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1435Expandable constructions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]

Definitions

  • the invention relates to the field of integrated electronic technology for small satellites, in particular to a spaceborne stack body and a standardized module thereof.
  • Small satellites have the characteristics of low cost, short R&D cycle, and flexible application, which have attracted more and more attention.
  • the sub-systems of conventional large satellites such as control sub-systems, power sub-systems, thermal control sub-systems, and measurement and control sub-systems, are all installed inside the satellite with independent chassis, and the sub-systems use cables for power supply and communication.
  • the mass and volume of small satellites are strictly limited. Therefore, in order to improve the functional density of the entire satellite, each sub-system of the small satellite no longer uses an independently designed chassis, but in the design process, multiple physically separated sub-systems on the satellite are turned into multiple independent circuit boards.
  • the circuit boards are connected together by a bus architecture to form a stack assembly.
  • small satellites usually connect various circuit boards in series through titanium rods and sleeves to form a circuit board stack.
  • angle aluminum/T-shaped aluminum bars, side frames, heat dissipation bars and end frames are used. Perform mechanical reinforcement.
  • the present invention provides a space-borne stack body and a standardized module thereof.
  • the specific technical solutions are as follows:
  • a standardized module for a spaceborne stack includes: a frame, a circuit board, a heat conduction area, an external connector, a bus connector, and a heat dissipation mechanism;
  • the inner flange adapted to the frame structure, the circuit board is installed on the inner flange, and the inner flange is reserved with serial screw holes; the outer connector and the bus connector are respectively connected with The circuit board is connected, the frame is provided with reserved holes for passing through the external connector and the bus connector;
  • the heat conduction area is arranged around the circuit board, and the circuit board is installed
  • the heat conduction area is in contact with the frame, and the heat dissipation mechanism is in contact with the high-heat components on the circuit board and the frame respectively; the heat dissipation mechanism is in contact with the circuit board
  • a plurality of heat-conducting rods are arranged at the contact positions of the high-heat components, and vacuum heat-conducting grease is smea
  • the number of the serial screw holes is 4, which are respectively arranged at the four corners of the inner flange; the middle of the frame edge of the inner flange is provided with reinforcing ribs and connecting holes, Used to connect with the circuit board.
  • the two sides of the frame are respectively provided with suitable positioning stops.
  • a space-borne stack including a plurality of standardized modules as described in any one of the above, a series screw, a first cover plate, a second cover plate, a third cover plate, a mounting flange and a back Plate;
  • the serial screw passes through the serial screw holes in the stacked plurality of standardized modules, and is connected to the first cover plate and the second cover plate respectively located on both sides of the plurality of standardized modules;
  • the back plate Is provided on the third cover plate, and the back plate is provided with a socket adapted to the bus connector in the standardized module for connecting to the bus;
  • the third cover plate adopts the installation method
  • the blue is connected to the standardized module;
  • the backplane adopts a rigid-flexible hybrid backplane, the connection between the socket on the backplane and the backplane is made of rigid material, and the adjacent sockets are connected by flexible
  • the circuit boards are connected, and the distance between adjacent sockets is 1.05-1.1 times the height of the standardized module.
  • the number of the mounting flanges is one or more.
  • each of the mounting flanges is provided with two mounting holes, which are respectively connected to two adjacent standardized modules.
  • a mounting nut is provided on the inner side of the first cover plate, a bolt hole is provided on the second cover plate, one end of the tandem screw is inserted into and fixed in the mounting nut, and One end passes through the bolt hole and is fastened with a nut.
  • the space-borne stack body and standardized modules of the present invention can physically isolate the circuit board, thereby improving the electromagnetic compatibility and space radiation resistance of the circuit board.
  • the heat dissipation effect is better through the heat conduction area and the heat dissipation structure, thereby improving the working efficiency of the circuit board.
  • the weight and length of the stack body can be flexibly configured to meet the use requirements of different scenarios.
  • FIG. 1 is a schematic structural diagram of a standardized module provided by an embodiment of the present invention
  • Figure 2 is an exploded view of a standardized module provided by an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a space-borne stack provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the overall structure of a spaceborne stack provided by an embodiment of the present invention.
  • Fig. 5 is an exploded view of a spaceborne stack provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a standardized module of a spaceborne stack, as shown in FIG. 1 and FIG. 2, the standardized module includes: a frame 1, a circuit board 2, a heat conduction area 3, and an external connector 4. Bus connector 5 and heat dissipation mechanism 6.
  • the inner wall of the frame 1 is provided with an inner flange adapted to the structure of the frame 1, the circuit board 2 is installed on the inner flange, and a series screw hole 7 is reserved on the inner flange.
  • the external connector 4 and the bus connector 5 are respectively connected to the circuit board 2, and the frame 1 is provided with reserved holes for passing through the external connector 4 and the bus connector 5.
  • the heat conduction area 3 is arranged around the circuit board 2. After the circuit board 2 is installed on the inner flange, the heat conduction area 3 contacts the frame 1, and the heat dissipation mechanism 6 contacts the high heat components on the circuit board 2 and the frame 1 respectively.
  • the circuit board 2 is installed and fixed on the inner flange inside the frame 1.
  • the frame 1 directly touches and resists, and the circuit board 2 does not directly touch.
  • the circuit board 2 is physically isolated, thereby improving the electromagnetic compatibility and space radiation resistance of the circuit board 2.
  • the circuit board 2 is surrounded by a heat conduction area 3, and the heat conduction area 3 is in contact with the frame 1 and plays a role of heat dissipation.
  • a heat dissipation mechanism 6 is provided to contact the high-heat components and the frame 1, so that heat can be conducted along the heat dissipation mechanism 6, and the high-heat components are locally focused on heat dissipation.
  • the heat dissipation effect is better, thereby improving the working efficiency of the circuit board 2.
  • the bus connector 5 may be a VPX bus connector.
  • the heat conduction area 3 may be a copper-clad heat conduction area arranged around the circuit board 2, which is suitable for the circuit board 2 with low overall power and no concentrated heat source.
  • a heat dissipation mechanism 6 is provided at the high-heat component.
  • a plurality of heat-conducting rods are arranged at the contact part of the heat dissipation mechanism 6 and the high-heat components. After the heat is transferred to the plurality of heat-conducting rods, the heat is dissipated through the heat-conducting rods to further improve the heat dissipation performance.
  • vacuum thermal grease is smeared between the high-heat components on the circuit board 2 and the heat dissipation mechanism 6.
  • the vacuum thermal grease can be any material that can conduct heat under vacuum conditions, which is not limited in the embodiment of the present invention.
  • the serial screw 8 passes through the serial screw hole 7 to install and fix the standardized module.
  • the number of serial screw holes 7 as shown in FIG. 1 and FIG. 2 is 4, which are respectively set inside The four corners of the flange.
  • the schematic diagram after installation can be seen in Figure 4.
  • reinforcing ribs may be provided at the position of the inner flange corresponding to the serial screw hole 7, that is, widening and thickening at the opening position, so as to improve the strength and ensure the safety and stability of use.
  • the circuit board 2 is installed on the inner flange. As shown in Figures 1 and 2, the middle of the frame of the inner flange is provided with reinforcing ribs and connecting holes. The holes on the circuit board 2 are aligned with the connecting holes during installation. It can be installed and fixed by means of bolts or pins. In order to ensure the strength of the connection, reinforcing ribs are also provided at the position corresponding to the connection hole.
  • the frames 1 of adjacent standardized modules touch and offset each other, and the positioning accuracy when the frames 1 are in contact directly affects the subsequent installation accuracy and difficulty.
  • suitable positioning stops are provided on both sides of the frame 1 respectively. Taking the direction shown in FIG. 4 as a reference, the left and right sides of the frame 1 are respectively provided with suitable stoppers, and among the two adjacent frames 1, the right stop of the left frame 1 and the right frame The left spigot of 1 is adapted to contact, and so on to complete the installation.
  • the positioning stop By setting the positioning stop, on the one hand, it is used as a positioning reference to improve the dimensional accuracy of series installation.
  • the damping between the frames 1 is increased, which helps to reduce the high frequency response of vibration. And can play a good electromagnetic isolation shielding effect.
  • an embodiment of the present invention provides a space-borne stack, as shown in FIG. 4 and FIG. 5, including a plurality of standardized modules as described in any one of the above, a tandem screw 8, and a first cover plate 9.
  • the tandem screw 8 passes through the tandem screw holes 7 in the stacked multiple standardized modules, and is connected to the first cover plate 9 and the second cover plate 10 respectively located on both sides of the multiple standardized modules.
  • the back plate 13 is arranged on the third cover plate 11, and the back plate 13 has a socket adapted to the bus connector 5 in the standardized module for connecting to the bus.
  • the third cover plate 11 is connected with the standardized module through the mounting flange 12.
  • Figures 4 and 5 are the rear view and rear exploded view of the space-borne stack, respectively, the first cover 9 and the second cover 10 are the left cover and the right cover, respectively, and the third cover 11 It is the back cover.
  • the space-borne stack provided by the embodiment of the present invention is formed by stacking the above-mentioned standardized modules.
  • the electromagnetic compatibility and electromagnetic compatibility of the circuit board 2 are improved.
  • Anti-spatial radiation capability the heat dissipation effect is better, and thus the working efficiency of the circuit board 2 is improved.
  • the serial screw 8 by passing the serial screw 8 through a plurality of standardized modules for assembly and fixing, the weight and length of the stack body can be flexibly configured to meet the use requirements of different scenarios.
  • the backplane 13 is arranged on the third cover 11 and connected to the bus connector 5 in the standardized module to connect each circuit board 2 to the bus.
  • the position of the socket on the backplane 13 does not strictly correspond to the stacked circuit board 2, it will cause stress between the socket and the circuit board 2, which is not convenient for installation but also causes wear and tear and unstable connection.
  • a rigid-flex hybrid backplane 13 is provided, that is, the connection between the socket and the backplane 13 is made of rigid material, and the adjacent sockets are connected by the flexible circuit board 2.
  • Such a setting can not only ensure the strength of the connection, but also can lengthen and shorten the distance between the sockets in a small range, and avoid large stress on the socket and the bus connector 5.
  • the flexible circuit board 2 can maintain a longer service life and safety when compressed than when it is stretched. Therefore, the distance between adjacent sockets is slightly larger than the height of the standardized module. For example, it can be the height of the standardized module. 1.05-1.1 times (for example, it can be 1.05, 1.08, 1.1, etc.), so that the flexible circuit board 2 is likely to maintain a compressed working state, and the service life and safety are improved.
  • the back plate 13 is fixed on the frame 1 of the standardized module through the mounting flange 12, and the number of the mounting flange 12 is one or more. Further, each mounting flange 12 is provided with two mounting holes, which are respectively connected to two adjacent standardized modules. Such a configuration can not only distribute the force between the mounting flange 12 and the standardized module evenly, reduce the stress on a single standardized module, but also enable the mounting flange 12 to play a role of auxiliary fastening and positioning between the standardized modules.
  • each frame 1 is provided with a protruding plate body, the inner side of the plate body is provided with a connecting block, and a connecting hole is provided on the connecting block for connecting with the mounting flange 12.
  • the stacked standardized modules are assembled and fixed by the series screw 8.
  • the inner side of the first cover plate 9 is provided with mounting nuts
  • the second cover plate 10 is provided with
  • one end of the tandem screw 8 is inserted and fixed in the mounting nut, and the other end is inserted through the bolt hole and fastened with a nut.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种星载堆栈体及其标准化模块,该标准化模块包括:框架(1)、电路板(2)、导热区(3)、对外连接器(4)、总线连接器(5)和散热机构(6)。框架(1)的内壁设置有与框架(1)结构相适配的内法兰,电路板(2)安装在内法兰上,内法兰上预留有串联螺杆孔(7)。对外连接器(4)和总线连接器(5)分别与电路板(2)连接,框架(1)上设置有用于穿出对外连接器(4)和总线连接器(5)的预留孔。导热区(3)围设在电路板(2)的四周,电路板(2)安装在内法兰上后,导热区(3)与框架(1)接触,散热机构(6)分别与电路板(2)上的高热元器件和框架(1)接触,能够对电路板起到物理隔离作用,提高电磁兼容性和抗空间辐照能力。散热效果较好,提高工作效率。可以灵活配置堆栈体的重量和长度,满足不同场景的使用需求。

Description

星载堆栈体及其标准化模块 技术领域
本发明涉及小卫星综合电子技术领域,尤其涉及一种星载堆栈体及其标准化模块。
背景技术
小卫星具有成本低、研发周期短、应用灵活的特点,受到越来越多的关注。常规大卫星的各个分系统,如控制分系统、电源分系统、热控分系统、测控分系统等,均采用独立的机箱安装在卫星内部,各分系统之间通过线缆进行供电、通信。与大卫星相比,小卫星的质量、体积受到严格的限制。因此,为了提高整星的功能密度,小卫星的各个分系统不再使用独立设计的机箱,而是在设计过程中将卫星上多个物理分离的分系统,变成多个独立的电路板,各电路板之间通过总线架构连接在一起,形成堆栈组合体。
如附图1所示,目前,小卫星通常将各个电路板通过钛杆、套筒串接形成电路板堆栈,在堆栈外部通过角铝/T形铝条、侧框架、散热条及端部框架进行力学加固。
发明人发现现有技术至少存在以下问题:上述堆栈体结构主要通过散热条散热,散热面积小,效果差,从而限制了电路板的功率。且各电路板之间没有物理隔离,电磁兼容性和抗空间辐照能力较差。
发明内容
为解决上述现有技术中存在的技术问题,本发明提供了一种星载堆栈体及其标准化模块。具体技术方案如下:
第一方面,提供了一种星载堆栈体的标准化模块,所述标准化模块包括:框架、电路板、导热区、对外连接器、总线连接器和散热机构;所述框架的内壁设置有与所述框架结构相适配的内法兰,所述电路板安装在所述内法兰上,所述内法兰上预留有串联螺杆孔;所述对外连接器和所述总线连接器分别与所述电路板连接,所述框架上设置有用于穿出所述对外连接器和所述总线连接器的预留孔;所述导热区围设在所述电路板的四周,所述电路板安装在所述内法兰上后,所述导热区与所述框架接触,所述散热机构分别与所述电路板上的高热元器件和所述框架接触;所述散热机构与所述电路板上的高热元器件接触的部位设置有多个导热杆,所述散热机构与所述电路板上的高热元器件之间涂抹有真空导热脂。
在一种可能的设计中,所述串联螺杆孔的数量为4个,分别设置在所述内法兰的四个拐角处;所述内法兰的框边中部设置有加强筋和连接孔,用于与所述电路板连接。
在一种可能的设计中,所述框架的两侧分别设置有相适配的定位止口。
第二方面,提供了一种星载堆栈体,包括多个如上述任一项所述的标准化模块、串联螺杆、第一盖板、第二盖板、第三盖板、安装法兰和背板;所述串联螺杆穿过堆叠的多个 所述标准化模块中的串联螺杆孔,并与分别位于多个所述标准化模块两侧的第一盖板和第二盖板连接;所述背板设置在所述第三盖板上,所述背板上设置有与所述标准化模块中的总线连接器相适配的插座,用于接入总线;所述第三盖板通过所述安装法兰与所述标准化模块连接;所述背板采用刚柔混合背板,所述背板上的所述插座与所述背板的连接处为刚性材质,相邻的所述插座之间通过柔性电路板连接,且相邻的所述插座之间的间距为所述标准化模块层高的1.05-1.1倍。
在一种可能的设计中,所述安装法兰的数量为一个或多个。
在一种可能的设计中,每个所述安装法兰上设置有两个安装孔,分别与两个相邻的所述标准化模块连接。
在一种可能的设计中,所述第一盖板的内侧设置有安装螺母,所述第二盖板上设置有螺栓孔,所述串联螺杆的一端插入并固定在所述安装螺母内,另一端穿过所述螺栓孔并用螺母紧固。
本发明技术方案的主要优点如下:本发明的星载堆栈体及其标准化模块,能够对电路板起到物理隔离作用,进而提高电路板的电磁兼容性和抗空间辐照能力。通过导热区和散热结构进行散热,散热效果较好,进而提高电路板的工作效率。此外,通过由串联螺杆穿过多个标准化模块进行组装固定,可以灵活配置堆栈体的重量和长度,满足不同场景的使用需求。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明一个实施例提供的标准化模块的结构示意图;
图2为本发明一个实施例提供的标准化模块的爆炸图;
图3为本发明一个实施例提供的星载堆栈体的剖视图;
图4为本发明一个实施例提供的星载堆栈体的整体结构示意图;
图5为本发明一个实施例提供的星载堆栈体的爆炸图。
附图标记说明:
1-框架、2-电路板、3-导热区、4-对外连接器、5-总线连接器、6-散热机构、7-串联螺杆孔、8-串联螺杆、9-第一盖板、10-第二盖板、11-第三盖板、12-安装法兰、13-背板。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明实施例提供的技术方案。
第一方面,本发明实施例提供了一种星载堆栈体的标准化模块,如附图1和附图2所示,该标准化模块包括:框架1、电路板2、导热区3、对外连接器4、总线连接器5和散热机构6。框架1的内壁设置有与框架1结构相适配的内法兰,电路板2安装在内法兰上,内法兰上预留有串联螺杆孔7。对外连接器4和总线连接器5分别与电路板2连接,框架1上设置有用于穿出对外连接器4和总线连接器5的预留孔。导热区3围设在电路板2的四周,电路板2安装在内法兰上后,导热区3与框架1接触,散热机构6分别与电路板2上的高热元器件和框架1接触。
以下对本发明实施例提供的星载堆栈体的标准化模块的有益效果进行说明:
通过设置标准化模块,每个标准化模块中,电路板2安装固定在框架1内部的内法兰上,标准化模块堆叠形成星载堆栈体时,框架1直接接触并相抵,电路板2不直接接触,对电路板2起到物理隔离作用,进而提高电路板2的电磁兼容性和抗空间辐照能力。电路板2的四周围设有导热区3,导热区3与框架1接触,起到散热作用。且对于高热元器件,设置散热机构6将高热元器件和框架1接触,使热量可以沿散热机构6进行传导,进而对高热元器件进行局部重点散热。散热效果较好,进而提高电路板2的工作效率。
其中,总线连接器5可以为VPX总线连接器。
其中,导热区3可以为设置在电路板2四周的覆铜导热区,适用于整体功率不大,无集中热源的电路板2。当有集中热源(即,存在高热元器件)时,在高热元器件处设置散热机构6。如附图3所示,散热机构6与高热元器件接触的部位设置有多个导热杆,热量传导到多个导热杆后通过导热杆进行热量散失,进一步提高散热性能。
为了进一步提高散热效果,电路板2上的高热元器件与散热机构6之间涂抹有真空导热脂。其中,真空导热脂可以为任何能在真空条件下进行导热的物质,本发明实施例中对其不作限定。
多个标准化模块堆叠后,串联螺杆8穿过串联螺杆孔7对标准化模块进行安装固定,示例地,如附图1和附图2所示串联螺杆孔7的数量为4个,分别设置在内法兰的四个拐角处。安装完成后的示意图可以参见附图4。进一步地,为了保证连接强度,内法兰上对应串联螺杆孔7的位置可以设置有加强筋,即在开孔位置进行加宽加厚等,以提高强度,保证使用安全性和稳定性。
电路板2安装在内法兰上,如附图1和附图2所示,内法兰的框边中部设置有加强筋和连接孔,安装时电路板2上的孔位于连接孔对准,可以通过螺栓或销钉等方式进行安装固定。为了保证连接处的强度,对应连接孔的位置同样设置有加强筋。
多个标准化模块堆叠时,相邻标准化模块的框架1接触并相抵,框架1接触时的定位精度直接影响后续的安装精度和难度。为了提高定位精度,框架1的两侧分别设置相适配 的定位止口。以附图4所示的方向为基准,框架1的左侧和右侧分别设置有相适配的止口,且相邻两个框架1中,居左框架1的右侧止口与居右框架1的左侧止口适配接触,以此类推完成安装。通过设置定位止口,一方面作为定位基准,提高串联安装尺寸精度。另一方面增大了框架1之间的阻尼,有助于减小振动的高频响应。且能起到良好的电磁隔离屏蔽作用。
第二方面,本发明实施例提供了一种星载堆栈体,如附图4和附图5所示,包括多个如上述任一项所述的标准化模块、串联螺杆8、第一盖板9、第二盖板10、第三盖板11、安装法兰12和背板13。串联螺杆8穿过堆叠的多个标准化模块中的串联螺杆孔7,并与分别位于多个标准化模块两侧的第一盖板9和第二盖板10连接。背板13设置在第三盖板11上,背板13上有与标准化模块中的总线连接器5相适配的插座,用于接入总线。第三盖板11通过安装法兰12与标准化模块连接。其中,附图4和附图5分别为星载堆栈体的后视图和后视爆炸图,第一盖板9和第二盖板10分别为左盖板和右盖板,第三盖板11为后盖板。
本发明实施例提供的星载堆栈体由上述标准化模块标准化模块堆叠形成,在兼具标准化模块有益效果的基础上(对电路板2起到物理隔离作用,进而提高电路板2的电磁兼容性和抗空间辐照能力),散热效果较好,进而提高电路板2的工作效率。此外,通过由串联螺杆8穿过多个标准化模块进行组装固定,可以灵活配置堆栈体的重量和长度,满足不同场景的使用需求。
本发明实施例提供的星载堆栈体中,背板13设置在第三盖板11上,并与标准化模块中的总线连接器5连接,以将各个电路板2接入总线。背板13上的插座位置与堆叠的电路板2不严格对应时,会导致插座与电路板2之间产生应力,既不便于安装又会导致使用磨损和连接不稳固等。基于此,本发明实施例中,设置刚柔混合背板13,即,插座与背板13的连接处为刚性材质,相邻插座之间通过柔性电路板2连接。如此设置,既能保证连接处的强度,又能使插座之间的间距小范围的拉长和缩短,避免在插座和总线连接器5处产生较大的应力。
柔性电路板2在压缩时相比拉长时能保持较长的使用寿命和安全性,因此,设置相邻插座之间的间距略大于标准化模块层高,示例地,可以为标准化模块层高的1.05-1.1倍(例如,可以为1.05、1.08、1.1等),使柔性电路板2大概率保持压缩工作态,提高使用寿命和安全性。
背板13通过安装法兰12固定在标准化模块的框架1上,安装法兰12的数量为一个或多个。进一步地,每个安装法兰12上设置有两个安装孔,分别与两个相邻的标准化模块连接。如此设置,既能使安装法兰12与标准化模块之间的作用力均匀分布,减少对单个标准化模块的受力,又能使安装法兰12起到标准化模块之间的辅助紧固定位作用。
如附图1和附图2所示,每个框架1的后部设置有突出的板体,板体的内侧设置连接块,连接块上设置有连接孔,用于与安装法兰12连接。
本发明实施例中,通过串联螺杆8对堆叠的标准化模块进行组装固定,如附图4和附图5所示,第一盖板9的内侧设置有安装螺母,第二盖板10上设置有螺栓孔,串联螺杆8的一端插入并固定在安装螺母内,另一端穿过螺栓孔并用螺母紧固。如此设置,仅需在一侧盖板处设置螺母,进而使堆栈体的表面光滑。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,本文中“前”、“后”、“左”、“右”、“上”、“下”均以附图中表示的放置状态为参照。
最后应说明的是:以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

  1. 一种星载堆栈体的标准化模块,其特征在于,所述标准化模块包括:框架、电路板、导热区、对外连接器、总线连接器和散热机构;
    所述框架的内壁设置有与所述框架结构相适配的内法兰,所述电路板安装在所述内法兰上,所述内法兰上预留有串联螺杆孔;
    所述对外连接器和所述总线连接器分别与所述电路板连接,所述框架上设置有用于穿出所述对外连接器和所述总线连接器的预留孔;
    所述导热区围设在所述电路板的四周,所述电路板安装在所述内法兰上后,所述导热区与所述框架接触,所述散热机构分别与所述电路板上的高热元器件和所述框架接触;
    所述散热机构与所述电路板上的高热元器件接触的部位设置有多个导热杆,所述散热机构与所述电路板上的高热元器件之间涂抹有真空导热脂。
  2. 根据权利要求1所述的星载堆栈体的标准化模块,其特征在于,所述串联螺杆孔的数量为4个,分别设置在所述内法兰的四个拐角处;所述内法兰的框边中部设置有加强筋和连接孔,用于与所述电路板连接。
  3. 根据权利要求1所述的星载堆栈体的标准化模块,其特征在于,所述框架的两侧分别设置有相适配的定位止口。
  4. 一种星载堆栈体,其特征在于,包括多个如权利要求1至3任一项所述的标准化模块、串联螺杆、第一盖板、第二盖板、第三盖板、安装法兰和背板;
    所述串联螺杆穿过堆叠的多个所述标准化模块中的串联螺杆孔,并与分别位于多个所述标准化模块两侧的第一盖板和第二盖板连接;
    所述背板设置在所述第三盖板上,所述背板上设置有与所述标准化模块中的总线连接器相适配的插座,用于接入总线;
    所述第三盖板通过所述安装法兰与所述标准化模块连接;
    所述背板采用刚柔混合背板,所述背板上的所述插座与所述背板的连接处为刚性材质,相邻的所述插座之间通过柔性电路板连接,且相邻的所述插座之间的间距为所述标准化模块层高的1.05-1.1倍。
  5. 根据权利要求4所述的星载堆栈体,其特征在于,所述安装法兰的数量为一个或多个。
  6. 根据权利要求4所述的星载堆栈体,其特征在于,每个所述安装法兰上设置有两个安装孔,分别与两个相邻的所述标准化模块连接。
  7. 根据权利要求4所述的星载堆栈体,其特征在于,所述第一盖板的内侧设置有安装螺母,所述第二盖板上设置有螺栓孔,所述串联螺杆的一端插入并固定在所述安装螺母内,另一端穿过所述螺栓孔并用螺母紧固。
PCT/CN2020/134235 2019-12-16 2020-12-07 星载堆栈体及其标准化模块 WO2021121063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911293603.4A CN111132445B (zh) 2019-12-16 2019-12-16 星载堆栈体及其标准化模块
CN201911293603.4 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021121063A1 true WO2021121063A1 (zh) 2021-06-24

Family

ID=70499037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134235 WO2021121063A1 (zh) 2019-12-16 2020-12-07 星载堆栈体及其标准化模块

Country Status (2)

Country Link
CN (1) CN111132445B (zh)
WO (1) WO2021121063A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132445B (zh) * 2019-12-16 2020-12-25 中国人民解放军军事科学院国防科技创新研究院 星载堆栈体及其标准化模块
CN111970819B (zh) * 2020-09-14 2021-09-17 北京最终前沿深空科技有限公司 星载电路板支撑装置
CN113163658B (zh) * 2021-03-30 2022-10-28 西南电子技术研究所(中国电子科技集团公司第十研究所) 飞行器载综合化电子设备组织架构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003071A (zh) * 2006-01-20 2007-07-25 黄崇贤 热导管与散热鳍片的自动化组装设备
CN106659044A (zh) * 2016-11-14 2017-05-10 航天东方红卫星有限公司 一种适用于微小卫星pc104堆栈的模块化结构
WO2018122531A1 (fr) * 2017-01-02 2018-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Système de couplage étanche à haute température d'un empilement à oxydes solides de type soec/sofc
CN111132445A (zh) * 2019-12-16 2020-05-08 中国人民解放军军事科学院国防科技创新研究院 星载堆栈体及其标准化模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597256B2 (en) * 2001-01-23 2003-07-22 Adc Telecommunications, Inc. Multi-circuit signal transformer
JP2004158501A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 基板と増設用ブラケット、増設ユニット、及び電子機器
CN206402529U (zh) * 2017-01-25 2017-08-11 丰顺县和生电子有限公司 一种高散热性印刷电路板
CN107124854B (zh) * 2017-05-26 2019-01-25 航天东方红卫星有限公司 一种堆栈组合体热控装置
CN109041501B (zh) * 2018-08-16 2020-08-14 航天东方红卫星有限公司 一种新型pc104板卡用堆栈组合体结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003071A (zh) * 2006-01-20 2007-07-25 黄崇贤 热导管与散热鳍片的自动化组装设备
CN106659044A (zh) * 2016-11-14 2017-05-10 航天东方红卫星有限公司 一种适用于微小卫星pc104堆栈的模块化结构
WO2018122531A1 (fr) * 2017-01-02 2018-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Système de couplage étanche à haute température d'un empilement à oxydes solides de type soec/sofc
CN111132445A (zh) * 2019-12-16 2020-05-08 中国人民解放军军事科学院国防科技创新研究院 星载堆栈体及其标准化模块

Also Published As

Publication number Publication date
CN111132445B (zh) 2020-12-25
CN111132445A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021121063A1 (zh) 星载堆栈体及其标准化模块
US20210309342A1 (en) Frame assembly for unmanned aerial vehicle (uav), and uav having the same
CN102216871B (zh) 防粉尘及抗振动的产业用电脑
US10085365B2 (en) Thermal conducting structure applied to network control automation system
US11224143B2 (en) Charging pile
CN110337209B (zh) 一种结构功能一体化的电子机箱及其组装方法
CN112783298B (zh) 一种风冷散热的模块化加固计算机
WO2020258447A1 (zh) 拼接式多层线路板
US7035103B2 (en) Cabinet and additional device
US20070217910A1 (en) Fan fastening structure
WO2023050506A1 (zh) 一种高频三电平dcdc变流器模块及装配方法
US20150173168A1 (en) Dc/dc power module and dc/dc power system having the same
US11343935B2 (en) Foolproof frame assembly and server chassis including the same
US7117929B2 (en) Heat sink
CN214799761U (zh) 交换机及车载视频监控系统
CN211930979U (zh) 一种igbt模块与pcb电路板固定连接结构
CN211509515U (zh) 一种模块插装式pcu装置
CN104552296B (zh) 一种机控一体化的Delta机器人
CN210899802U (zh) 一种便于维护的电路板结构
CN218183586U (zh) 一种新型高多阶hdi高密度线路板
TWI634827B (zh) ATX specification power supply and its housing
CN221203112U (zh) 大载荷机器人控制柜
CN216852668U (zh) 一种假双面印刷线路板
CN220305743U (zh) 一种散热器维护门结构和加固计算机
CN211331849U (zh) 一种激光打标机的激光器设备主机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900796

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20900796

Country of ref document: EP

Kind code of ref document: A1