WO2021120981A1 - 一种二维光波导、虚实光波合束器以及ar设备 - Google Patents

一种二维光波导、虚实光波合束器以及ar设备 Download PDF

Info

Publication number
WO2021120981A1
WO2021120981A1 PCT/CN2020/130321 CN2020130321W WO2021120981A1 WO 2021120981 A1 WO2021120981 A1 WO 2021120981A1 CN 2020130321 W CN2020130321 W CN 2020130321W WO 2021120981 A1 WO2021120981 A1 WO 2021120981A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
coupling
area
zone
track
Prior art date
Application number
PCT/CN2020/130321
Other languages
English (en)
French (fr)
Inventor
魏一振
陈达如
张卓鹏
Original Assignee
杭州光粒科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州光粒科技有限公司 filed Critical 杭州光粒科技有限公司
Priority to KR1020227011068A priority Critical patent/KR20220054876A/ko
Priority to US17/620,766 priority patent/US20220357578A1/en
Priority to JP2021577383A priority patent/JP7223177B2/ja
Publication of WO2021120981A1 publication Critical patent/WO2021120981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0252Diffusing elements; Afocal elements characterised by the diffusing properties using holographic or diffractive means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to the field of augmented reality technology, in particular to a two-dimensional optical waveguide, a virtual and real optical wave combiner and an AR device
  • Augmented Reality With the in-depth development of information technology, Augmented Reality (AR) technology has gradually been recognized and accepted by people, and the development of related application technologies and product research and development have received extensive attention.
  • AR Augmented Reality
  • more and more technology giants have entered the AR industry through acquisitions, investments, and self-research, such as Apple, Microsoft, Google, Facebook, Huawei, etc.
  • AR equipment can superimpose and integrate virtual content in the real world, so that the human eye can receive virtual image information and real image information at the same time, which is further applied to a wide range of industries such as entertainment, education, industry, transportation, medical treatment, and tourism.
  • the core component of the AR device is a virtual and real light beam combiner (Combiner), which is used to image a virtual image onto the retina of the human eye, while allowing light to pass through the real world to achieve a virtual and real AR display.
  • Traditional geometric optical devices such as prisms, semi-transparent mirrors, free-form surface mirrors, arrayed waveguides, etc. can be used, as well as diffractive optical devices such as surface relief optical waveguides, holographic optical waveguides, etc.
  • the diffractive optical waveguide display technology uses diffraction gratings to realize the incidence, transition and emission of light, and realizes light transmission based on the principle of total reflection. It can achieve compact structure and light device. It is currently the most competitive AR equipment core optical device.
  • the diffractive optical waveguides used in AR devices are mainly divided into coupling-in area, refraction-enlarged pupil area and coupling-out area.
  • Different gratings are made on different areas on the optical waveguide substrate glass to control the propagation direction of light.
  • the coupling-in area The area is small to realize the coupling of the projection beam into the optical waveguide; the area of the refractive pupil expansion area is large, which mainly realizes the function of pupil expansion; the area of the coupling-out area is the largest, and the beam exits into the human eye.
  • the efficiency of refractive pupil dilation is low, resulting in low imaging efficiency. Therefore, how to provide a two-dimensional optical waveguide with high refractive index and pupil expansion efficiency is an urgent problem to be solved by those skilled in the art.
  • the purpose of the present invention is to provide a two-dimensional optical waveguide with high refractive pupil dilation efficiency; the present invention also provides a virtual and real optical beam combiner and an AR device with high refractive pupil dilation efficiency.
  • the present invention provides a two-dimensional optical waveguide, including a substrate, a coupling-in grating, and a coupling-out grating;
  • the surface of the substrate is divided into a coupling-in area, a refractive pupil expansion area, and a coupling-out area; a defect track and at least two defect zones are arranged in the refractive pupil expansion area, and the defect track moves away from the coupling area from the coupling area.
  • One side of the coupling zone extends, one end of the defect zone is in contact with the defect track, the other end of the defect zone extends to the coupling out zone, and at least two of the defect zones are distributed along the axis of the defect track ;
  • the photonic crystal region is provided with a plurality of scattering columns to form a photonic crystal, and the axis of the scattering column is perpendicular to the surface of the refractive pupil dilation region;
  • the coupling-in grating is located on the surface of the coupling-in area, and the coupling-out grating is located on the surface of the coupling-out area.
  • the width of the defective track gradually becomes smaller in a direction from the coupling area to a side away from the coupling area.
  • the coupling-in area is located at an edge portion on one side of the substrate surface
  • the defect track extends from an edge portion on one side of the substrate surface to an edge portion on the other side of the substrate surface
  • the coupling-out area includes The first out-coupling zone and the second out-coupling zone are arranged opposite to the axis of the defect track
  • the defect zone includes a first defect zone and a second defect zone
  • the first defect zone extends from the defect track to The first out-of-coupling area and the second defect zone extend from the defect track to the second out-of-coupling area.
  • the defect zone is any one or any combination of the following;
  • a linear defect zone perpendicular to the axis of the defect track an oblique line defect zone that is not perpendicular to the defect track axis, and a broken line defect zone.
  • the coupling-in area is located at an edge portion of one side of the substrate surface
  • the coupling-out area is located at the other side of the substrate surface
  • the defect track extends from the coupling-in area to the coupling-out area
  • the defect zone includes a first defect zone located on one side of the defect track and a second defect zone located on the other side of the defect track, and the defect zone is a broken-line defect zone.
  • the coupling-in area is located at a corner edge portion of a side of the substrate surface, and the coupling-out area is located at a side of the defective track.
  • the defect zone is any one or any combination of the following;
  • the coupling-in area is located at a corner edge of one side of the substrate surface
  • the coupling-out area is located on the other side of the substrate surface
  • the defect track extends from the coupling-in area to the coupling-out area.
  • Zone; The defect zone is a broken line defect zone.
  • the value range of the defective track length is 5 mm to 50 mm, including the endpoint value.
  • the width of the defect zone ranges from 0.1 mm to 5 mm, including the endpoint value.
  • the decoupling area coincides with the refraction pupil dilation area.
  • the present invention also provides a virtual and real optical wave combiner, including the two-dimensional optical waveguide as described in any one of the above.
  • the present invention also provides an AR device, including the two-dimensional optical waveguide according to any one of the above.
  • the surface of the substrate is divided into a coupling-in area, a refractive pupil expansion area and a coupling-out area; the refractive pupil expansion area is provided with a defect track and at least two defect bands, and the defect track is from the coupling-in area.
  • the zone extends to the side away from the coupling zone, one end of the defect zone is in contact with the defect track, and the other end of the defect zone extends to the coupling out zone.
  • At least two defect zones are distributed along the axis of the defect track; adjacent defect zones in the refractive pupil dilation zone Between the defect zone and the defect track, between the defect zone and the edge of the refractive pupil expansion zone, and between the defect track and the edge of the refractive pupil expansion zone is the photonic crystal zone.
  • the photonic crystal zone is provided with multiple scattering columns to form photons. In the crystal, the axis of the scattering column is perpendicular to the surface of the refractive pupil dilation zone.
  • the defect track and the defect zone will form a light guide branch, and the light transmitted from the coupling-in area into the substrate can be transmitted to the coupling-out area through the defect track and the defect zone to achieve the function of pupil expansion.
  • the photonic crystal can completely prohibit the propagation of light, so that the light can be bent and transmitted at a large angle and low loss along the light guide branch, so that the two-dimensional optical waveguide has a high refractive index pupil expansion efficiency.
  • the present invention also provides a virtual and real optical wave combiner and an AR device, which also have the above-mentioned beneficial effects, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a two-dimensional optical waveguide provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a first specific two-dimensional optical waveguide provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a second specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a third specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a fifth specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a sixth specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a seventh specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • the core of the present invention is to provide a two-dimensional optical waveguide.
  • a diffraction grating is made on the surface of the waveguide substrate to realize the light-shielding pupil expansion function, but its refractive pupil expansion efficiency is low, which greatly reduces the overall diffraction efficiency of the diffractive optical waveguide;
  • the diffraction grating in the refractive pupil expansion area cannot overlap with the diffraction grating in the out-coupling area, which limits the proportion of the diffractive optical waveguide display area;
  • the diffraction grating can only provide the optical path in the form of reflection or transmission The control limits the flexibility and aesthetics of the design of the diffractive optical waveguide optical path.
  • the substrate surface is divided into a coupling-in zone, a refractive pupil expansion zone and a coupling-out zone; the refractive pupil expansion zone is provided with a defect track and at least two defect zones, and the defect track is separated from the coupling
  • the entrance zone extends to the side away from the coupling zone, one end of the defect zone is in contact with the defect track, and the other end of the defect zone extends to the coupling out zone.
  • At least two defect zones are distributed along the axis of the defect track; adjacent defects in the refractive pupil expansion zone Between the belts, between the defect belt and the defect track, between the defect belt and the edge of the refractive pupil expansion area, and between the defect track and the edge of the refractive pupil expansion area, is the photonic crystal area.
  • the photonic crystal area is provided with a plurality of scattering columns to form For photonic crystals, the axis of the scattering column is perpendicular to the surface of the pupil dilation zone.
  • the defect track and the defect zone will form a light guide branch, and the light transmitted from the coupling-in area into the substrate can be transmitted to the coupling-out area through the defect track and the defect zone to achieve the function of pupil expansion.
  • the photonic crystal can completely prohibit the propagation of light, so that the light can be bent and transmitted at a large angle and low loss along the light guide branch, so that the two-dimensional optical waveguide has a high refractive index pupil expansion efficiency.
  • Figure 1 is a schematic structural diagram of a two-dimensional optical waveguide provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a first specific two-dimensional optical waveguide provided by an embodiment of the present invention .
  • a two-dimensional optical waveguide includes a substrate 1, a coupling grating and a coupling out grating; the surface of the substrate 1 is divided into a coupling area 2, a refractive pupil expansion area 3, and a coupling out area 4;
  • a defect track 31 and at least two defect bands 32 are arranged in the refractive pupil expansion area 3, and the defect track 31 extends from the coupling area 2 to a side away from the coupling area 2, and the defect band 32
  • One end of the defect track 31 is in contact with the defect track 31, the other end of the defect belt 32 extends to the coupling out area 4, and at least two of the defect belts 32 are distributed along the axis of the defect track 31;
  • the above-mentioned substrate 1 is the main structure of the two-dimensional optical waveguide.
  • the substrate 1 is generally in the shape of a sheet.
  • External light will be transmitted from the coupling-in area 2 into the substrate 1, and after the pupil dilation transmission through the refractive pupil dilation area 3, it will be transmitted out of the substrate 1 from the coupling-out area 4.
  • the aforementioned coupling-in area 2, refractive pupil dilation area 3 and coupling-out area 4 are usually located on the same surface of the substrate 1.
  • the coupling-in area 2 is provided with a coupling grating on the surface, and the coupling-out area 4 is provided with a coupling-out grating.
  • the external light will be transmitted into the substrate 1 through the coupling grating, and the corresponding light passing through the refractive dilated pupil area 3 will pass through the coupling.
  • the two-dimensional optical waveguide is transmitted out of the grating.
  • the aforementioned refractive pupil expansion region 3 is further divided into a defect track 31, a defect zone 32, and a photonic crystal region.
  • a defect track 31 normally only one defective track 31 is provided in the refractive pupil expansion area 3, and one end of the defective track 31 will be in contact with the coupling area 2 and will move from the coupling area 2 to the surface of the substrate 1 away from the coupling area 2 side. extend.
  • the external light will first extend outward from the coupling area 2 along the defect track 31.
  • the width of the end of the defective track 31 in contact with the coupling area 2 is usually the same as the width of the coupling area 2. the same.
  • the width of the coupling region 2 is usually between 1 mm and 20 mm, including the end point value; correspondingly, the width of the end of the defective track 31 in contact with the coupling region 2 is usually between 1 mm and 20 mm. Between, including the endpoint value.
  • the value range of the length of the aforementioned defective track 31 is usually 5 mm to 50 mm, including the end point value, so as to conform to the user's wearing habits.
  • At least two defect zones 32 are provided in the refractive pupil expansion area 3, one end of the defect zone 32 is in contact with the defect track 31, and the other end of the defect zone 32 extends to the coupling-out area 4 and the coupling-out area 4, so that the defect
  • the belt 32 is specifically used to diffuse the light transmitted in the defective track 31 and specifically transmit it to the coupling-out area 4.
  • the above-mentioned defect belt 32 needs to be distributed along the axis of the defect track 31. Normally, the axis of the defect belt 32 will be at a certain angle with the axis of the defect track 31. When the light enters the defect belt 32 from the defect track 31, it usually turns a larger one. Angle to achieve pupil dilation function.
  • the above-mentioned defect strips 32 are usually located on the same side or on both sides of the defect track 31.
  • the light rays extend from the coupling area 2 to the side away from the coupling area 2 along the defect track 31, light rays of different powers will be It is specifically transmitted to the corresponding defect zone 32 to realize the function of pupil expansion, that is, the power corresponding to the light transmitted in different defect zones 32 is usually different.
  • the defect zones 32 located on the same side of the defect track 31 are usually parallel to each other.
  • a photonic crystal area is provided in the aforementioned refractive pupil dilation area 3. Specifically, between the adjacent defect zones 32 in the refractive pupil expansion area 3, between the defect zone 32 and the defect track 31, between the defect zone 32 and the edge of the refractive pupil expansion area 3, and between the defect track 31 and the refractive pupil expansion area 3 Between the edges is the photonic crystal area. That is, in the above-mentioned refractive pupil expansion region 3, the regions of the non-defective zone 32 and the non-defective track 31 are usually photonic crystal regions.
  • the defect track 31 and the defect zone 32 are usually formed by the different division of photonic crystal regions, that is, both sides of the axis of the defect track 31 need to be provided with photonic crystal regions to form the defect track 31 ; At the same time, both sides of the axis of the defect zone 32 need to be provided with photonic crystal regions to form the defect zone 32.
  • the width of the defect zone 32 generally ranges from 0.1 mm to 5 mm, including the endpoint value, so as to ensure that the pupil dilation area of the light has an effective pupil dilation function.
  • the above-mentioned photonic crystal region is provided with a plurality of scattering columns 33 to form a photonic crystal, and the axis of the scattering columns 33 is perpendicular to the surface of the refractive pupil dilation region 3.
  • the arrangement of the scattering column 33 will cause the photonic crystal region to form a photonic crystal, that is, the refractive index of the scattering column 33 is different from the refractive index of the substrate 1, and the scattering column 33 will be periodically and regularly distributed in the photonic crystal region to Form a photonic crystal.
  • the scattering column 33 will be arranged in a direction perpendicular to the surface of the refractive pupil dilation region 3 to ensure that the photonic crystal can restrict the light transmitted from the outcoupling region 4 from being transmitted along the defect track 31 and the defect zone 32.
  • the specific shape of the scattering column 33 is not specifically limited.
  • the scattering column 33 may be a cylinder, a triangular prism, a rectangular parallelepiped, etc., depending on the specific situation; at the same time, in the embodiment of the present invention
  • the adjacent scattering columns 33 can be arranged in a regular triangle, a square, or a rectangle, which is not specifically limited in the embodiment of the present invention.
  • the scattering column 33 is an air column, that is, the photonic crystal is usually formed by etching small holes in the photonic crystal region on the surface of the substrate 1.
  • the material of the scattering column 33 is not specifically limited, and it depends on the specific situation.
  • the refractive index and size of the scattering column 33, the spacing and arrangement between the scattering columns 33, and the refractive index of the scattering column 33 and the substrate 1 together determine the wavelength range of the light that the photonic crystal can constrain. Therefore, to ensure that the light of a specific wavelength is transmitted in the two-dimensional optical waveguide provided in the embodiment of the present invention, the refractive index of the scattering column 33 needs to meet certain constraints.
  • the photonic crystal has a photonic band gap effect on the light within the working wavelength, thereby ensuring that the light can only be transmitted along the defect track 31 and the defect band 32.
  • the axis direction of the defect track 31 light rays of different functions will be transmitted in the corresponding defect zone 32 to achieve the pupil dilation function.
  • mature methods for realizing the beam power division ratio include controlling the width of the defect zone 32, adjusting the scattering column 33 at the interface between the defect track 31 and the defect zone 32, etc. The present disclosure does not limit the beam power division method.
  • the width of the defective track 31 gradually becomes smaller along the width from the coupling area 2 to the side away from the coupling area 2, that is, the width of the aforementioned defective track 31 Will gradually become smaller along the light transmission direction. Setting the defect track 31 into the above structure can ensure that as much light as possible will be transmitted into the defect zone 32 and finally as much as possible to the coupling-out area 4.
  • the specific width parameters of the defective track 31 can be set according to actual conditions, and are not specifically limited in the embodiment of the present invention.
  • the outcoupling area 4 and the refractive pupil dilation area 3 overlap.
  • the out-coupling grating arranged on the surface of the out-coupling zone 4 will cover the refractive pupil expansion zone 3 along the direction perpendicular to the paper in FIG. 2, and usually specifically cover the defect zone on the side of the defect track 31 in the refractive pupil expansion zone 3.
  • the aforementioned outcoupling grating specifically covers the area extending from the refractive index pupil area 3 to the defect track 31.
  • the aforementioned coupling-out grating can also cover the defective track 31, which depends on the specific situation and is not specifically limited here.
  • the surface of the substrate 1 is divided into a coupling-in area 2, a refractive pupil expansion area 3 and a coupling-out area 4; the refractive pupil expansion area 3 is provided with defective tracks 31 and at least two Defective zone 32.
  • Defective track 31 extends from the coupling area 2 to the side away from the coupling zone 2.
  • One end of the defect zone 32 is in contact with the defect track 31, and the other end of the defect zone 32 extends to the coupling-out zone 4.
  • the belt 32 is distributed along the axis of the defect track 31; between the adjacent defect belts 32 in the refractive pupil expansion zone 3, between the defect zone 32 and the defect track 31, between the defect zone 32 and the edge of the refractive pupil expansion zone 3, and the defect track 31
  • a photonic crystal area is located between the edge of the refractive pupil expansion area 3 and the photonic crystal area is provided with a plurality of scattering pillars 33 to form a photonic crystal.
  • the axis of the scattering pillars 33 is perpendicular to the surface of the refractive pupil expansion area 3.
  • the defect track 31 and the defect zone 32 will form a light guide branch.
  • the light transmitted from the coupling-in zone 2 into the substrate 1 can be transmitted to the coupling-out zone 4 through the defect track 31 and the defect zone 32 to achieve pupil dilation.
  • the photonic crystal can completely prohibit the propagation of light, so that the light can be bent and transmitted at a large angle and low loss along the light guide branch, so that the two-dimensional optical waveguide has a high refractive index pupil expansion efficiency.
  • FIG. 3 is a schematic structural diagram of a second specific two-dimensional optical waveguide provided by an embodiment of the present invention
  • FIG. 4 is a third specific two-dimensional optical waveguide provided by an embodiment of the present invention Schematic diagram of the structure.
  • the embodiments of the present invention further specifically limit the structure of the two-dimensional optical waveguide on the basis of the above-mentioned embodiments of the invention.
  • the rest of the content has been described in detail in the above-mentioned embodiments of the invention, and will not be repeated here.
  • the coupling area 2 is located at the edge of the surface of the substrate 1, and the defect track 31 extends from the edge of the surface of the substrate 1 to the On the other side edge of the surface of the substrate 1, the coupling-out area 4 includes a first coupling-out area 41 and a second coupling-out area 42 opposite to the axis of the defect track 31, and the defect zone 32 includes a first defect A strip 321 and a second defective strip 322, the first defective strip 321 extends from the defective track 31 to the first coupling-out area 41, and the second defective strip 322 extends from the defective track 31 to the The second coupling out area 42.
  • the coupling area 2 is usually located at the edge of the surface of the substrate 1 to facilitate the display of images such as AR devices made based on the two-dimensional optical waveguide provided by the embodiment of the present invention.
  • the coupling area 2 is located at the edge of the surface of the substrate 1, and usually the coupling area 2 is located in the middle area of the edge of the surface of the substrate 1.
  • the above-mentioned area defect track 31 extends from one side edge of the substrate 1 surface, that is, the coupling area 2 to the other side edge of the substrate 1, so that light can extend from one side edge of the substrate 1 surface to the other side edge. .
  • the aforementioned coupling-out area 4 includes a first coupling-out area 41 and a second coupling-out area 42.
  • the first coupling-out area 41 and the second coupling-out area 42 are arranged opposite to each other along the axis of the defective track 31, that is, if the coupling area 2 is located On the left side of the surface of the substrate 1, the defective track 31 will extend from the left to the right.
  • the above-mentioned first out-coupling area 41 is usually located on the upper side of the surface of the substrate 1, and the second out-coupling area 42 is usually located on the lower side of the surface of the substrate 1.
  • the aforementioned defect zone 32 includes a first defect zone 321 and a second defect zone 322.
  • the first defect zone 321 extends from the defect track 31 to the first coupling-out area 41 to transmit part of the light to the first coupling-out zone.
  • the area 41 performs imaging; and the second defect zone 322 extends from the defect track 31 to the second coupling-out area 42 to transmit part of the light to the second coupling-out area 42 for imaging.
  • the arrangement of the first defect zone 321, the second defect zone 322, the first coupling-out zone 41, and the second coupling-out zone 42 will transmit the light transmitted in the coupling zone 2 to both sides, so as to An image is displayed.
  • the aforementioned defect zone 32 is any one or any combination of the following; a linear defect zone 32 perpendicular to the axis of the defect track 31, an oblique line defect zone 32 that is not perpendicular to the axis of the defect track 31, a broken line type Defective zone 32.
  • the defect belt 32 may be centered on the axis of the defect track 31 and extend in a direction perpendicular to the axis of the defect track 31 to form a linear defect belt 32; the defect belt 32 may also be centered on the axis of the defect track 31 and extend along an oblique line , Thereby forming an oblique line-shaped defect zone 32; the above-mentioned defect zone 32 may also be a broken line-shaped defect zone 32 to transmit light to the coupling-out region 4.
  • the specific shape of the defect zone 32 is not specifically limited, and it depends on the specific situation.
  • the coupling area 2 may be located on the left or right side of the surface of the substrate 1, so that light is transmitted in the horizontal direction; the coupling area 2 may also be located on the upper or lower side of the surface of the substrate 1, so that The light can be transmitted in the vertical direction, which is not specifically limited in the embodiment of the present invention.
  • the two-dimensional optical waveguide provided by the embodiment of the present invention has a coupling region 2 located near the central axis of the two-dimensional optical waveguide. It is suitable for AR glasses with a projector installed on the temples on both sides of the glasses. The shape of the glasses is very matched, and there is no need to design the shape of the glasses, which is widely applicable and versatile.
  • FIG. 5 is a schematic structural diagram of a fourth specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • the embodiments of the present invention further specifically limit the structure of the two-dimensional optical waveguide on the basis of the above-mentioned embodiments of the invention.
  • the rest of the content has been described in detail in the above-mentioned embodiments of the invention, and will not be repeated here.
  • the coupling-in area 2 is located at the edge of one side of the surface of the substrate 1, the coupling-out area 4 is located on the other side of the surface of the substrate 1, and the defect track 31 is located from
  • the coupling-in zone 2 extends to the coupling-out zone 4;
  • the defect zone 32 includes a first defect zone 321 located on one side of the defect track 31 and a second defect zone 322 located on the other side of the defect track 31.
  • the defect belt 32 is a broken line type defect belt 32.
  • the coupling-in area 2 is located at the edge of one side of the surface of the substrate 1, and the coupling-out area 4 is located on the other side of the surface of the substrate 1.
  • the defect track 31 extends from the coupling-in area 2 to the coupling-out area 4, and the defect belt 32 is a broken line-shaped defect belt 32.
  • One end of the defect belt 32 will contact the defect track 31, and the defect belt 32 will It is folded to the out-coupling area 4 and finally extends to the out-coupling area 4 to transmit light to the out-coupling area 4.
  • the above-mentioned defective belt 32 will include a first defective belt 321 and a second defective belt 322.
  • the first defective belt 321 and the second defective belt 322 will be respectively located on both sides of the defective belt 32 so as to extend from both sides of the defective track 31.
  • the light is transmitted to the coupling-out zone 4.
  • the coupling area 2 may be located on the left or right side of the surface of the substrate 1, so that light is transmitted in the horizontal direction; the coupling area 2 may also be located on the upper or lower side of the surface of the substrate 1, so that The light can be transmitted in the vertical direction, which is not specifically limited in the embodiment of the present invention.
  • the two-dimensional optical waveguide provided by the embodiment of the present invention has a coupling region 2 located near the central axis of the two-dimensional optical waveguide. It is suitable for AR glasses with a projector installed on the temples on both sides of the glasses. The shape of the glasses is very matched, and there is no need to design the shape of the glasses, which is widely applicable and versatile.
  • FIG. 6 is a schematic structural diagram of a fifth specific two-dimensional optical waveguide provided by an embodiment of the present invention
  • FIG. 7 is a sixth specific two-dimensional optical waveguide provided by an embodiment of the present invention Schematic diagram of the structure.
  • the embodiments of the present invention further specifically limit the structure of the two-dimensional optical waveguide on the basis of the above-mentioned embodiments of the invention.
  • the rest of the content has been described in detail in the above-mentioned embodiments of the invention, and will not be repeated here.
  • the coupling-in area 2 is located at a corner edge of the surface of the substrate 1, and the coupling-out area 4 is located at the side of the defective track 31.
  • the above-mentioned base 1 is usually in a rectangular shape or a rectangular shape with rounded corners.
  • the edge portion of the base 1 specifically includes corner edge portions located at four corners.
  • the coupling area 2 is located at a corner edge portion on one side of the surface of the substrate 1.
  • the above-mentioned defective track 31 will extend along one side of the surface of the substrate 1.
  • the above-mentioned coupling-in region 2 is usually only provided on the side of the defective track 31.
  • the defect zone 32 will extend from the defect track 31 to the coupling area 2 to transmit light to the coupling area 2 for imaging.
  • the aforementioned coupling area 2 and the defective track 31 are usually located at the edge of the field of view of the AR device, so that the two-dimensional optical waveguide provided by the embodiment of the present invention does not affect the user's line of sight.
  • the aforementioned defect zone 32 is any one or any combination of the following; a linear defect zone 32 perpendicular to the axis of the defect track 31, an oblique line defect zone 32 that is not perpendicular to the axis of the defect track 31, a broken line type Defective zone 32.
  • the defect zone 32 may be centered on the axis of the defect track 31 and extend in a direction perpendicular to the axis of the defect track 31 to form a linear defect zone 32; the defect zone 32 may also be centered on the axis of the defect track 31 and extend along an oblique line , Thereby forming an oblique line-shaped defect zone 32; the above-mentioned defect zone 32 may also be a broken line-shaped defect zone 32 to transmit light to the coupling-out region 4.
  • the specific shape of the defect zone 32 is not specifically limited, and it depends on the specific situation.
  • the light may be transmitted in a horizontal direction or a vertical direction, which is not specifically limited in the embodiment of the present invention.
  • the coupling area 2 is arranged on the side of the refractive pupil dilation area 3, the defective track 31 extends along the side of the substrate 1, and the projector can be arranged on the temples on both sides of the glasses It can also be set above the lens to match the shape of the existing glasses, without additional design of the shape of the glasses, with wide applicability and strong versatility.
  • FIG. 8 is a schematic structural diagram of a seventh specific two-dimensional optical waveguide provided by an embodiment of the present invention.
  • the embodiments of the present invention further specifically limit the structure of the two-dimensional optical waveguide on the basis of the above-mentioned embodiments of the invention.
  • the rest of the content has been described in detail in the above-mentioned embodiments of the invention, and will not be repeated here.
  • the coupling-in area 2 is located at the edge of one side of the surface of the substrate 1
  • the coupling-out area 4 is located on the other side of the surface of the substrate 1
  • the defective track 31 Extending from the coupling-in area 2 to the coupling-out area 4;
  • the defect zone 32 is a broken-line defect zone 32.
  • the above-mentioned base 1 is usually in a rectangular shape or a rectangular shape with rounded corners.
  • the edge portion of the base 1 specifically includes corner edge portions located at four corners.
  • the coupling area 2 is located at a corner edge portion on one side of the surface of the substrate 1.
  • the above-mentioned defective track 31 will extend along one side of the surface of the substrate 1.
  • the coupling-in area 2 is located at the edge of one side of the surface of the substrate 1, and the coupling-out area 4 is located on the other side of the surface of the substrate 1. That is, the coupling-in area 2 and the coupling-in area 2 meet on the surface of the substrate 1. Relative settings.
  • the defect track 31 extends from the coupling-in area 2 to the coupling-out area 4, and the defect belt 32 is a broken line-shaped defect belt 32.
  • One end of the defect belt 32 will contact the defect track 31, and the defect belt 32 will It is folded to the out-coupling area 4 and finally extends to the out-coupling area 4 to transmit light to the out-coupling area 4.
  • the aforementioned coupling area 2 and the defective track 31 are usually located at the edge of the field of view of the AR device, so that the two-dimensional optical waveguide provided in the embodiment of the present invention does not affect the user's line of sight.
  • the light may be transmitted in a horizontal direction or a vertical direction, which is not specifically limited in the embodiment of the present invention.
  • the coupling area 2 is arranged on the side of the refractive pupil dilation area 3, the defective track 31 extends along the side of the substrate 1, and the projector can be arranged on the temples on both sides of the glasses It can also be set above the lens to match the shape of the existing glasses, without additional design of the shape of the glasses, with wide applicability and strong versatility.
  • a specific two-dimensional optical waveguide will be provided below.
  • the surface of the substrate 1 is divided into a coupling-in area 2, a refractive pupil dilation area 3 and a coupling-out area 4.
  • the coupling zone 2 is set on the left side of the refractive pupil expansion zone 3, and the light beam perpendicularly incident to the two-dimensional optical waveguide planar coupling zone 2 becomes a light beam propagating from the coupling zone 2 to the right in the waveguide sheet; in the refractive pupil expansion zone 3
  • a photonic crystal with a preset structure is provided.
  • the photonic crystal is a series of cylindrical air pillars specially arranged on the waveguide plane.
  • the holes are arranged in a horizontal array.
  • the photonic crystal structure is equal to the thickness of the waveguide in the vertical waveguide plane direction.
  • Uniform structure the refractive index pupil area 3 presents a defect track 31 with gradually decreasing width from left to right, and the defect track 31 derives at least two defect bands 32 from left to right downwards, and the defect bands 32 are diagonal.
  • This kind of defect track 31 and defect zone 32 act as a light guide.
  • the light beam propagating from left to right in the refractive pupil dilation zone 3 will divide part of the light into the defect zone 32 according to a specific power, so that the whole beam will continue to propagate downward. .
  • the width of the defect track 31 and the air column the light on the defect track 31 is split to each sub-defect zone 32.
  • the defect track 31 derives 10 downward defect belts 32.
  • the wavelength of the light wave is 640 nm
  • the two-dimensional optical waveguide material uses a polymer with a relative permittivity of 20
  • the hole duty ratio of the refractive pupil dilation zone 3 is 0.492
  • the splitting ratio is 75:1.5 through calculation and simulation.
  • the defect track 31 has the same width as the coupling-in zone 2, which is 5mm; the length of the defect track 31 and the coupling-out zone 4 are the same, which is 30mm; the width of the defect zone 32 is 5mm; the entire width of the refractive pupil dilation zone 3 is 40mm. Zone 4 overlaps with the refractive pupil dilation zone 3.
  • a virtual and real optical wave combiner provided by an embodiment of the present invention includes the two-dimensional optical waveguide provided by any one of the above-mentioned embodiments of the present invention, and usually also includes a protective glass on the surface of the two-dimensional optical waveguide, and The color-changing device connected by the dimensional optical waveguide optical communication
  • the present disclosure does not specifically limit the optical waveguide protective glass, the color changing device, etc., nor does it specifically limit the virtual and real optical combiner (Combiner), as long as the two-dimensional optical waveguide disclosed in the present invention is included in the virtual and real optical beam combination. (Combiner).
  • the rest of the content can refer to the prior art, and will not be further described here.
  • the following describes an AR device provided by the present invention.
  • the AR device described below and the structure of the two-dimensional optical waveguide described above can be referred to each other.
  • An AR device provided by an embodiment of the present invention includes the two-dimensional optical waveguide as described in any of the foregoing embodiments of the present invention, and usually also includes a projection display module, a calculation module, and a sensing module; the sensing module is used to obtain The orientation information, the calculation module is used to control the image source in the projection display module to generate a corresponding image according to the orientation information; the image is transmitted into the coupling area 2 through the coupling grating.
  • the above-mentioned sensing module is used to perceive the position information
  • the calculation module is used to control the image source in the projection display module to generate a corresponding image according to the position information, and the image will be transmitted into the coupling area 2 through the coupling grating.
  • the above-mentioned sensor module usually includes many devices, such as cameras, IMU (Inertial Measurement Unit) and other sensors to measure different parameters.
  • the specific structure and specific process of the sensor module can be set according to the actual situation. Make specific restrictions.
  • the embodiment of the present invention does not specifically limit the image source in the projection display unit.
  • the image source in the projection display unit may be any one or more of LCoS, DMD, OLED, microLED, and LBS. That is, the image source is equipped with a corresponding optical design and an optical transfer prism to input the enlarged image into the waveguide coupling area 2.
  • the AR device is any one or more of AR glasses, AR helmet device, and AR head-up display (HUD).
  • AR glasses any one or more of AR glasses, AR helmet device, and AR head-up display (HUD).
  • HUD AR head-up display
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种二维光波导、虚实光波合束器以及AR设备,基底(1)表面划分有耦入区(2)、折光扩瞳区(3)和耦出区(4);折光扩瞳区(3)内设置有缺陷轨道(31)和至少两条缺陷带(32),缺陷轨道(31)从耦入区(2)向远离耦入区(2)一侧延伸,缺陷带(32)的一端与缺陷轨道(31)接触,缺陷带(32)的另一端延伸至耦出区(4),至少两条缺陷带(32)沿缺陷轨道(31)轴线分布;光子晶体会沿缺陷轨道(31)以及缺陷带(32)边沿设置。光子晶体包括多个散射柱(33),散射柱(33)的轴线垂直于折光扩瞳区(3)表面。由于光子晶体的存在,缺陷轨道(31)与缺陷带(32)会构成导光支路,由于光子晶体可以完全禁止光线传播,从而使得光线可以沿导光支路实现大角度低损耗弯折传输,从而使得二维光波导具有较高的折光扩瞳效率。

Description

一种二维光波导、虚实光波合束器以及AR设备
本申请要求于2019年12月16日提交中国专利局、申请号为201911294198.8、发明名称为“一种二维光波导、虚实光波合束器以及AR设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及增强现实技术领域,特别是涉及一种二维光波导、一种虚实光波合束器以及一种AR设备
背景技术
随着信息技术的深入发展,增强现实(Augmented Reality,AR)技术已经逐渐被人们认识和接受,相关应用技术发展及产品研发得到了广泛关注。目前越来越多的科技巨头公司通过收购、投资、自研等方式进入AR行业,如苹果、微软、谷歌、Facebook、华为等。AR设备能够在现实世界叠加融合虚拟内容,从而实现人眼同时接收虚拟图像信息和现实图像信息,进一步应用于娱乐、教育、工业、交通、医疗、旅游等广泛行业。AR设备的核心器件是虚实光波合束器(Combiner),其作用是将虚拟图像成像到人眼视网膜上,同时允许透过现实世界的光线,实现虚实融合的AR显示。既可采用传统几何光学器件如棱镜、半透半反镜片、自由曲面镜、阵列波导等,也可采用衍射光学器件如面浮雕光波导、全息光波导等。其中衍射光波导显示技术是利用衍射光栅实现光线的入射、转折和出射,基于全反射原理实现光线传输,能够做到结构紧凑和器件轻便,是目前最具竞争力的AR设备核心光学器件。
目前,应用于AR设备的衍射光波导主要分耦入区、折光扩瞳区和耦出区,通过在光波导基底玻片上不同的区域制作不同的光栅来控制光的传播方向,其中耦入区面积较小,实现投影光束耦合进入光波导;折光扩瞳区面积较大,主要实现扩瞳功能;耦出区面积最大,实现光束出射进入人眼。然而在现有技术中,折光扩瞳效率低下,导致成像效率不高。所以如何提供一种折光扩瞳效率高的二维光波导是本领域技术人员急需解决的问 题。
发明内容
本发明的目的是提供一种二维光波导,具有较高的折光扩瞳效率;本发明还提供了一种虚实光波合束器以及一种AR设备,具有较高的折光扩瞳效率。
为解决上述技术问题,本发明提供一种二维光波导,包括基底、耦入光栅和耦出光栅;
所述基底表面划分有耦入区、折光扩瞳区和耦出区;所述折光扩瞳区内设置有缺陷轨道和至少两条缺陷带,所述缺陷轨道从所述耦入区向远离所述耦入区一侧延伸,所述缺陷带的一端与所述缺陷轨道接触,所述缺陷带的另一端延伸至所述耦出区,至少两条所述缺陷带沿所述缺陷轨道轴线分布;
所述折光扩瞳区中相邻所述缺陷带之间、所述缺陷带与所述缺陷轨道之间、所述缺陷带与所述折光扩瞳区边缘之间、以及所述缺陷轨道与所述折光扩瞳区边缘之间为光子晶体区,所述光子晶体区设置有多个散射柱以形成光子晶体,所述散射柱的轴线垂直于所述折光扩瞳区表面;
所述耦入光栅位于所述耦入区表面,所述耦出光栅位于所述耦出区表面。
可选的,所述缺陷轨道的宽度沿从所述耦入区向远离所述耦入区一侧方向的宽度逐渐变小。
可选的,所述耦入区位于所述基底表面一侧边缘部,所述缺陷轨道从所述基底表面一侧边缘部延伸至所述基底表面另一侧边缘部,所述耦出区包括相对于所述缺陷轨道轴线相对设置的第一耦出区和第二耦出区,所述缺陷带包括第一缺陷带和第二缺陷带,所述第一缺陷带从所述缺陷轨道延伸至所述第一耦出区,所述第二缺陷带从所述缺陷轨道延伸至所述第二耦出区。
可选的,所述缺陷带为以下任意一项或任意组合;
与所述缺陷轨道轴线垂直的直线型缺陷带、与所述缺陷轨道轴线非垂 直的斜线型缺陷带、折线型缺陷带。
可选的,所述耦入区位于所述基底表面一侧边缘部,所述耦出区位于所述基底表面另一侧,所述缺陷轨道从所述耦入区延伸至所述耦出区;所述缺陷带包括位于缺陷轨道一侧的第一缺陷带以及位于缺陷轨道另一侧的第二缺陷带,所述缺陷带为折线型缺陷带。
可选的,所述耦入区位于所述基底表面一侧角边缘部,所述耦出区位于所述缺陷轨道一侧。
可选的,所述缺陷带为以下任意一项或任意组合;
与所述缺陷轨道轴线垂直的直线型缺陷带、与所述缺陷轨道轴线非垂直的斜线型缺陷带、折线型缺陷带。
可选的,所述耦入区位于所述基底表面一侧角边缘部,所述耦出区位于所述基底表面另一侧,所述缺陷轨道从所述耦入区延伸至所述耦出区;所述缺陷带为折线型缺陷带。
可选的,所述缺陷轨道长度的取值范围为5mm至50mm,包括端点值。
可选的,所述缺陷带宽度的取值范围为0.1mm至5mm,包括端点值。
可选的,所述耦出区与所述折光扩瞳区重合。
本发明还提供了一种虚实光波合束器,包括如上述任一项所述的二维光波导。
本发明还提供了一种AR设备,包括如上述任一项所述的二维光波导。
本发明所提供的一种二维光波导,基底表面划分有耦入区、折光扩瞳区和耦出区;折光扩瞳区内设置有缺陷轨道和至少两条缺陷带,缺陷轨道从耦入区向远离耦入区一侧延伸,缺陷带的一端与缺陷轨道接触,缺陷带的另一端延伸至耦出区,至少两条缺陷带沿缺陷轨道轴线分布;折光扩瞳区中相邻缺陷带之间、缺陷带与缺陷轨道之间、缺陷带与折光扩瞳区边缘之间、以及缺陷轨道与折光扩瞳区边缘之间为光子晶体区,光子晶体区设置有多个散射柱以形成光子晶体,散射柱的轴线垂直于折光扩瞳区表面。
由于光子晶体的存在,缺陷轨道与缺陷带会构成导光支路,从耦入区传输进基底的光线可以通过缺陷轨道以及缺陷带传输至耦出区以实现扩瞳功能。光子晶体可以完全禁止光线传播,从而使得光线可以沿导光支路实 现大角度低损耗弯折传输,从而使得二维光波导具有较高的折光扩瞳效率。
本发明还提供了一种虚实光波合束器以及一种AR设备,同样具有上述有益效果,在此不再进行赘述。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所提供的一种二维光波导的结构示意图;
图2为本发明实施例所提供的第一种具体的二维光波导的结构示意图;
图3为本发明实施例所提供的第二种具体的二维光波导的结构示意图;
图4为本发明实施例所提供的第三种具体的二维光波导的结构示意图;
图5为本发明实施例所提供的第四种具体的二维光波导的结构示意图;
图6为本发明实施例所提供的第五种具体的二维光波导的结构示意图;
图7为本发明实施例所提供的第六种具体的二维光波导的结构示意图;
图8为本发明实施例所提供的第七种具体的二维光波导的结构示意图。
图中:1.基底、2.耦入区、3.折光扩瞳区、31.缺陷轨道、32.缺陷带、321.第一缺陷带、322.第二缺陷带、33.散射柱、4.耦出区、41.第一耦出区、42.第二耦出区。
具体实施方式
本发明的核心是提供一种二维光波导。在现有技术中,第一,折光扩瞳区采用波导基片表面制作衍射光栅以实现遮光扩瞳功能,但其折光扩瞳效率较低,极大降低了衍射光波导的整体衍射效率;第二,一维光栅结构中,折光扩瞳区的衍射光栅不能和耦出区的衍射光栅重合,限制了衍射光波导显示区域的占比;第三,衍射光栅仅能以反射或透射形式提供光路控制,限制了衍射光波导光路设计的灵活性和美观性。
而本发明所提供的一种二维光波导,基底表面划分有耦入区、折光扩瞳区和耦出区;折光扩瞳区内设置有缺陷轨道和至少两条缺陷带,缺陷轨道从耦入区向远离耦入区一侧延伸,缺陷带的一端与缺陷轨道接触,缺陷带的另一端延伸至耦出区,至少两条缺陷带沿缺陷轨道轴线分布;折光扩瞳区中相邻缺陷带之间、缺陷带与缺陷轨道之间、缺陷带与折光扩瞳区边缘之间、以及缺陷轨道与折光扩瞳区边缘之间为光子晶体区,光子晶体区设置有多个散射柱以形成光子晶体,散射柱的轴线垂直于折光扩瞳区表面。
由于光子晶体的存在,缺陷轨道与缺陷带会构成导光支路,从耦入区传输进基底的光线可以通过缺陷轨道以及缺陷带传输至耦出区以实现扩瞳功能。光子晶体可以完全禁止光线传播,从而使得光线可以沿导光支路实现大角度低损耗弯折传输,从而使得二维光波导具有较高的折光扩瞳效率。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1以及图2,图1为本发明实施例所提供的一种二维光波导的结构示意图;图2为本发明实施例所提供的第一种具体的二维光波导的结构示意图。
参见图1,在本发明实施例中,二维光波导包括基底1、耦入光栅和耦 出光栅;所述基底1表面划分有耦入区2、折光扩瞳区3和耦出区4;所述折光扩瞳区3内设置有缺陷轨道31和至少两条缺陷带32,所述缺陷轨道31从所述耦入区2向远离所述耦入区2一侧延伸,所述缺陷带32的一端与所述缺陷轨道31接触,所述缺陷带32的另一端延伸至所述耦出区4,至少两条所述缺陷带32沿所述缺陷轨道31轴线分布;所述折光扩瞳区3中相邻所述缺陷带32之间、所述缺陷带32与所述缺陷轨道31之间、所述缺陷带32与所述折光扩瞳区3边缘之间、以及所述缺陷轨道31与所述折光扩瞳区3边缘之间为光子晶体区,所述光子晶体区设置有多个散射柱33以形成光子晶体,所述散射柱33的轴线垂直于所述折光扩瞳区3表面;所述耦入光栅位于所述耦入区2表面,所述耦出光栅位于所述耦出区4表面。
上述基底1为二维光波导的主体结构,在本发明实施例中该基底1通常呈片状。有关基底1的具体材质可以参考现有技术,在此不再进行赘述。外界的光线会从耦入区2传输进基底1,经过折光扩瞳区3进行扩瞳传输之后,从耦出区4传输出基底1。需要说明的是,上述耦入区2、折光扩瞳区3和耦出区4通常位于基底1的同一表面。
上述耦入区2表面设置有耦入光栅,耦出区4表面设置有耦出光栅,外界光线会通过耦入光栅传输进基底1,相应的经过折光扩瞳区3扩瞳的光线会通过耦出光栅传输出二维光波导。有关耦入光栅以及耦出光栅的具体结构可以参考现有技术,在此不再进行赘述。
上述折光扩瞳区3中还划分有缺陷轨道31、缺陷带32以及光子晶体区。其中,通常情况下折光扩瞳区3内仅设置一条缺陷轨道31,该缺陷轨道31的一端会与耦入区2相接触,并从耦入区2向基底1表面远离耦入区2一侧延伸。相应的,外界光线会先从耦入区2沿缺陷轨道31向外延伸。需要说明的是,为了保证从耦入区2传输进基底1的光线可以完全的传输进缺陷轨道31,上述缺陷轨道31与耦入区2相接触的端部宽度通常与耦入区2的宽度相同。具体的,上述耦入区2的宽度取值通常在1mm至20mm之间,包括端点值;相应的,上述缺陷轨道31与耦入区2相接触的端部宽度的取值通常在1mm至20mm之间,包括端点值。具体的,在本发明实施例中,上述缺陷轨道31长度的取值范围通常为5mm至50mm,包括端 点值,以符合用户佩戴的习惯。
上述折光扩瞳区3中设置有至少两条缺陷带32,该缺陷带32的一端与缺陷轨道31接触,而缺陷带32的另一端延伸至耦出区4与耦出区4接触,使得缺陷带32具体用于将缺陷轨道31内传输的光线进行扩散并具体传输至耦出区4。上述缺陷带32需要沿缺陷轨道31轴线分布,通常情况下缺陷带32的轴线会与缺陷轨道31的轴线呈一定角度,光线在从缺陷轨道31进入缺陷带32时,通常会转一较大的角度以实现扩瞳功能。需要说明的是,上述缺陷带32通常位于缺陷轨道31的同一侧或者是两侧分布,当光线沿缺陷轨道31从耦入区2向远离耦入区2一侧延伸时,不同功率的光线会具体传输至对应的缺陷带32以实现扩瞳功能,即不同缺陷带32内传输的光线所对应的的功率通常均不相同。同时为了便于折光扩瞳区3的设置,位于缺陷轨道31同一侧的缺陷带32通常相互平行。
上述折光扩瞳区3中设置有光子晶体区。具体的,折光扩瞳区3中相邻缺陷带32之间、缺陷带32与缺陷轨道31之间、缺陷带32与折光扩瞳区3边缘之间、以及缺陷轨道31与折光扩瞳区3边缘之间为光子晶体区。即上述折光扩瞳区3中,非缺陷带32以及非缺陷轨道31的区域通常均为光子晶体区。需要说明的是,在本发明实施例中缺陷轨道31以及缺陷带32通常是由于光子晶体区不同的划分所形成,即缺陷轨道31轴线的两侧需要均设置有光子晶体区以形成缺陷轨道31;同时缺陷带32轴线的两侧需要均设置有光子晶体区以形成缺陷带32。具体的,在本发明实施例中上述缺陷带32宽度的取值范围通常为0.1mm至5mm,包括端点值,以保证光线扩瞳区具有有效的扩瞳功能。
在本发明实施例中,上述光子晶体区设置有多个散射柱33以形成光子晶体,散射柱33的轴线垂直于折光扩瞳区3表面。由于散射柱33的设置会使光子晶体区形成光子晶体,即上述散射柱33的折射率与基底1的折射率并不相同,且散射柱33的会在光子晶体区内周期状规则分布,以形成光子晶体。需要说明的是,上述散射柱33会沿垂直于折光扩瞳区3表面方向设置,以保证光子晶体可以限制从耦出区4传入的光线沿缺陷轨道31以及缺陷带32传输。
在本发明实施例中对于散射柱33具体的形状并不做具体限定,该散射柱33具体可以为圆柱、三棱柱、长方体等等均可,视具体情况而定;同时,在本发明实施例中对于相邻散射柱33之间分布的形状同样不做具体限定,相邻散射柱33之间可以按正三角形排列、正方形排列、长方形排列均可,在本发明实施例中不做具体限定。通常情况下,在本发明实施例中散射柱33为空气柱,即该光子晶体通常是在基底1表面的光子晶体区刻蚀小孔而成。当然,在本发明实施例中对于散射柱33的材质并不做具体限制,视具体情况而定。当然,散射柱33的折射率、尺寸大小、散射柱33之间间距及排列方式,以及散射柱33和基底1折射率等参数共同决定了光子晶体能够约束的光的波长范围。因此要保证特定波长光在本发明实施例所提用的二维光波导内传输,散射柱33的折射率需要满足一定的约束条件。
在本发明实施例中,光子晶体会对工作波长内的光线具有光子禁带效应,从而保证光线只能沿缺陷轨道31以及缺陷带32传输。而言缺陷轨道31轴线方向,不同功能的光线会在对应的缺陷带32内传输,以实现扩瞳功能。需要指出的是,实现光束功率分比的成熟方法包括控制缺陷带32的宽度大小、缺陷轨道31和缺陷带32接口处散射柱33调控等等,本公开不限定光束功率分比的方法。
作为优选的,在本发明实施例中,所述缺陷轨道31的宽度沿从所述耦入区2向远离所述耦入区2一侧方向的宽度逐渐变小,即上述缺陷轨道31的宽度会沿光线传输方向逐渐变小。将缺陷轨道31设置成上述结构,可以保证光线会尽可能多的传输进缺陷带32,并最终尽可能多的传输至耦出区4。有关缺陷轨道31具体的宽度参数可以根据实际情况自行设定,在本发明实施例中不做具体限定。
参见图2,作为优选的,在本发明实施例中,所述耦出区4与所述折光扩瞳区3重合。此时,位于耦出区4区表面设置的耦出光栅会沿图2中垂直于纸面方向覆盖折光扩瞳区3,通常具体会覆盖折光扩瞳区3中缺陷轨道31一侧的缺陷带32和光子晶体区,即上述耦出光栅具体会覆盖从折光扩瞳区3一直延伸至缺陷轨道31的区域。当然,上述耦出光栅也可以覆盖缺陷轨道31,视具体情况而定,在此不做具体限定。使得耦出区4与折 光扩瞳区3重合,可以极大的增加耦出区4面积占比。
本发明实施例所提供的一种二维光波导,基底1表面划分有耦入区2、折光扩瞳区3和耦出区4;折光扩瞳区3内设置有缺陷轨道31和至少两条缺陷带32,缺陷轨道31从耦入区2向远离耦入区2一侧延伸,缺陷带32的一端与缺陷轨道31接触,缺陷带32的另一端延伸至耦出区4,至少两条缺陷带32沿缺陷轨道31轴线分布;折光扩瞳区3中相邻缺陷带32之间、缺陷带32与缺陷轨道31之间、缺陷带32与折光扩瞳区3边缘之间、以及缺陷轨道31与折光扩瞳区3边缘之间为光子晶体区,光子晶体区设置有多个散射柱33以形成光子晶体,散射柱33的轴线垂直于折光扩瞳区3表面。
由于光子晶体的存在,缺陷轨道31与缺陷带32会构成导光支路,从耦入区2传输进基底1的光线可以通过缺陷轨道31以及缺陷带32传输至耦出区4以实现扩瞳功能。光子晶体可以完全禁止光线传播,从而使得光线可以沿导光支路实现大角度低损耗弯折传输,从而使得二维光波导具有较高的折光扩瞳效率。
有关本发明所提供的一种二维光波导的具体结构将在下述发明实施例中做详细介绍。
请参考图3以及图4,图3为本发明实施例所提供的第二种具体的二维光波导的结构示意图;图4为本发明实施例所提供的第三种具体的二维光波导的结构示意图。
区别于上述发明实施例,本发明实施例是在上述发明实施例的基础上,进一步的对二维光波导的结构进行具体限定。其余内容已在上述发明实施例中进行了详细介绍,在此不再进行赘述。
参见图3以及图4,在本发明实施例中,所述耦入区2位于所述基底1表面一侧边缘部,所述缺陷轨道31从所述基底1表面一侧边缘部延伸至所述基底1表面另一侧边缘部,所述耦出区4包括相对于所述缺陷轨道31轴线相对设置的第一耦出区41和第二耦出区42,所述缺陷带32包括第一缺陷带321和第二缺陷带322,所述第一缺陷带321从所述缺陷轨道31延伸至所述第一耦出区41,所述第二缺陷带322从所述缺陷轨道31延伸至 所述第二耦出区42。
首先需要说明的是,耦入区2通常位于基底1表面的边缘部,以便于基于本发明实施例所提供的二维光波导所制成的AR设备等图像的显示。在本发明实施例中,耦入区2位于基底1表面一侧边缘部,通常该耦入区2会位于基底1表面一侧边缘部的中间区域。上述区缺陷轨道31会从基底1表面一侧边缘部,即耦入区2延伸至基底1表面另一侧边缘部,以使光线可以从基底1表面一侧边缘部延伸至另一侧边缘部。
上述耦出区4包括第一耦出区41和第二耦出区42,该第一耦出区41和第二耦出区42会以缺陷轨道31轴线相对设置,即若耦入区2位于基底1表面左侧,则缺陷轨道31会从左侧延伸至右侧,上述第一耦出区41通常位于基底1表面上侧,第二耦出区42通常位于基底1表面下侧。相应的,上述缺陷带32包括第一缺陷带321和第二缺陷带322,其中第一缺陷带321会从缺陷轨道31延伸至第一耦出区41,以将部分光线传输至第一耦出区41进行成像;而第二缺陷带322会从缺陷轨道31延伸至第二耦出区42,以将部分光线传输至第二耦出区42进行成像。
在本发明实施例中,第一缺陷带321、第二缺陷带322、第一耦出区41以及第二耦出区42的设置会将耦入区2传输进的光线向两侧传输,以显示出一个图像。具体的,上述缺陷带32为以下任意一项或任意组合;与所述缺陷轨道31轴线垂直的直线型缺陷带32、与所述缺陷轨道31轴线非垂直的斜线型缺陷带32、折线型缺陷带32。上述缺陷带32可以以缺陷轨道31轴线为中心,沿垂直于缺陷轨道31轴线方向延伸,从而形成直线型缺陷带32;上述缺陷带32还可以以缺陷轨道31轴线为中心,沿一斜线延伸,从而形成斜线型缺陷带32;上述缺陷带32还可以为折线型缺陷带32,以将光线传输至耦出区4。当然,在本发明实施例中对于缺陷带32具体的形状并不作具体限定,视具体情况而定。
需要说明的是,在本发明实施例中耦入区2可以位于基底1表面左侧或右侧,使得光线沿水平方向传输;耦入区2也可以位于基底1表面上侧或下侧,使得光线沿垂直方向传输均可,在本发明实施例中不做具体限定。
本发明实施例所提供的一种二维光波导,耦入区2位置在二维光波导 的中轴线附近,适用于投影光机设置在眼镜两侧镜腿上的AR眼镜,与现有的眼镜形状十分匹配,不用额外设计眼镜形状,适用性广,通用性强。
有关本发明所提供的一种二维光波导的具体结构将在下述发明实施例中做详细介绍。
请参考图5,图5为本发明实施例所提供的第四种具体的二维光波导的结构示意图。
区别于上述发明实施例,本发明实施例是在上述发明实施例的基础上,进一步的对二维光波导的结构进行具体限定。其余内容已在上述发明实施例中进行了详细介绍,在此不再进行赘述。
参见图5,在本发明实施例中,所述耦入区2位于所述基底1表面一侧边缘部,所述耦出区4位于所述基底1表面另一侧,所述缺陷轨道31从所述耦入区2延伸至所述耦出区4;所述缺陷带32包括位于缺陷轨道31一侧的第一缺陷带321以及位于缺陷轨道31另一侧的第二缺陷带322,所述缺陷带32为折线型缺陷带32。
上述耦入区2位于基底1表面一侧边缘部,而耦出区4位于述基底1表面另一侧,即耦入区2和耦入区2在基底1表面会相对设置。此时,上述缺陷轨道31会从耦入区2延伸至耦出区4,而上述缺陷带32为折线形缺陷带32,该缺陷带32的一端会与缺陷轨道31接触,而缺陷带32会折向耦出区4并最终延伸至耦出区4,以向耦出区4传输光线。
具体的,上述缺陷带32会包括第一缺陷带321和第二缺陷带322,第一缺陷带321和第二缺陷带322会分别位于缺陷带32的两侧,以从缺陷轨道31的两侧向耦出区4传输光线。
需要说明的是,在本发明实施例中耦入区2可以位于基底1表面左侧或右侧,使得光线沿水平方向传输;耦入区2也可以位于基底1表面上侧或下侧,使得光线沿垂直方向传输均可,在本发明实施例中不做具体限定。
本发明实施例所提供的一种二维光波导,耦入区2位置在二维光波导的中轴线附近,适用于投影光机设置在眼镜两侧镜腿上的AR眼镜,与现有的眼镜形状十分匹配,不用额外设计眼镜形状,适用性广,通用性强。
有关本发明所提供的一种二维光波导的具体结构将在下述发明实施例中做详细介绍。
请参考图6以及图7,图6为本发明实施例所提供的第五种具体的二维光波导的结构示意图;图7为本发明实施例所提供的第六种具体的二维光波导的结构示意图。
区别于上述发明实施例,本发明实施例是在上述发明实施例的基础上,进一步的对二维光波导的结构进行具体限定。其余内容已在上述发明实施例中进行了详细介绍,在此不再进行赘述。
参见图6以及图7,在本发明实施例中,所述耦入区2位于所述基底1表面一侧角边缘部,所述耦出区4位于所述缺陷轨道31一侧。
上述基底1通常呈矩形或圆角矩形等类似矩形的形状,此时基底1的边缘部具体包括有位于四个角的角边缘部。在本发明实施例中,耦入区2位于基底1表面一侧角边缘部。相应的,上述缺陷轨道31会沿基底1表面的一侧边延伸。此时,上述耦入区2通常只设置在缺陷轨道31一侧。此时,缺陷带32会从缺陷轨道31延伸至耦入区2,以将光线传输至耦入区2进行成像。此时,上述耦入区2以及缺陷轨道31通常位于AR设备的视野边缘,从而使得本发明实施例所提供的二维光波导不会影响用户的视线。
具体的,上述缺陷带32为以下任意一项或任意组合;与所述缺陷轨道31轴线垂直的直线型缺陷带32、与所述缺陷轨道31轴线非垂直的斜线型缺陷带32、折线型缺陷带32。上述缺陷带32可以以缺陷轨道31轴线为中心,沿垂直于缺陷轨道31轴线方向延伸,从而形成直线型缺陷带32;上述缺陷带32还可以以缺陷轨道31轴线为中心,沿一斜线延伸,从而形成斜线型缺陷带32;上述缺陷带32还可以为折线型缺陷带32,以将光线传输至耦出区4。当然,在本发明实施例中对于缺陷带32具体的形状并不作具体限定,视具体情况而定。
需要说明的是,在本发明实施例中光线可以沿水平方向传输或者是沿垂直方向传输均可,在本发明实施例中不做具体限定。
本发明实施例所提供的一种二维光波导,耦入区2设置在折光扩瞳区 3一侧,缺陷轨道31沿基底1侧边与延伸,投影机可以设置在眼镜两侧镜腿上也可以设置在镜片上方,与现有的眼镜形状匹配,不用额外设计眼镜形状,适用性广,通用性强。
有关本发明所提供的一种二维光波导的具体结构将在下述发明实施例中做详细介绍。
请参考图8,图8为本发明实施例所提供的第七种具体的二维光波导的结构示意图。
区别于上述发明实施例,本发明实施例是在上述发明实施例的基础上,进一步的对二维光波导的结构进行具体限定。其余内容已在上述发明实施例中进行了详细介绍,在此不再进行赘述。
参见图8,在本发明实施例中,所述耦入区2位于所述基底1表面一侧角边缘部,所述耦出区4位于所述基底1表面另一侧,所述缺陷轨道31从所述耦入区2延伸至所述耦出区4;所述缺陷带32为折线型缺陷带32。
上述基底1通常呈矩形或圆角矩形等类似矩形的形状,此时基底1的边缘部具体包括有位于四个角的角边缘部。在本发明实施例中,耦入区2位于基底1表面一侧角边缘部。相应的,上述缺陷轨道31会沿基底1表面的一侧边延伸。在本发明实施例中,耦入区2位于基底1表面一侧角边缘部,而耦出区4位于述基底1表面另一侧,即耦入区2和耦入区2在基底1表面会相对设置。此时,上述缺陷轨道31会从耦入区2延伸至耦出区4,而上述缺陷带32为折线形缺陷带32,该缺陷带32的一端会与缺陷轨道31接触,而缺陷带32会折向耦出区4并最终延伸至耦出区4,以向耦出区4传输光线。在本发明实施例中,上述耦入区2以及缺陷轨道31通常位于AR设备的视野边缘,从而使得本发明实施例所提供的二维光波导不会影响用户的视线。
需要说明的是,在本发明实施例中光线可以沿水平方向传输或者是沿垂直方向传输均可,在本发明实施例中不做具体限定。
本发明实施例所提供的一种二维光波导,耦入区2设置在折光扩瞳区3一侧,缺陷轨道31沿基底1侧边与延伸,投影机可以设置在眼镜两侧镜 腿上也可以设置在镜片上方,与现有的眼镜形状匹配,不用额外设计眼镜形状,适用性广,通用性强。
下面将提供一种具体的二维光波导。在本发明实施例中,基底1表面划分有耦入区2、折光扩瞳区3和耦出区4。耦入区2设置在折光扩瞳区3左侧,垂直入射至二维光波导平面耦入区2的光束变成波导片内从耦入区2向右传输的光束;折光扩瞳区3中设置有预设结构的光子晶体,光子晶体是一系列在波导平面上呈特殊排列的圆柱形的空气柱,孔型为横线阵列式分布,光子晶体结构在垂直波导平面方向为等于波导厚度的均匀结构;折光扩瞳区3从左到右呈宽度逐步变小的缺陷轨道31,缺陷轨道31从左到右向下衍生至少两条缺陷带32,所述缺陷带32为斜线型。这种缺陷轨道31和缺陷带32起到导光作用,在折光扩瞳区3从左到右传输的光束将按照特定功率将部分光分到缺陷带32内,从而实现整体光束不断向下传播。通过对缺陷轨道31与空气柱宽带大小设计,使得由缺陷轨道31上的光向各子缺陷带32上进行分光。本实施例中,缺陷轨道31衍生出10条向下的缺陷带32。本实施例中,光波波长640nm,二维光波导材料采用相对介电常数为20的聚合物,折光扩瞳区3的孔占空比为0.492,通过计算模拟可以得到分光比为75:1.5。缺陷轨道31与耦入区2宽度一致,为5mm,缺陷轨道31长度和耦出区4长度一致,为30mm;缺陷带32的宽度为5mm;折光扩瞳区3整体宽度范围为40mm,耦出区4与折光扩瞳区3重合。
下面对本发明所提供的一种虚实光波合束器进行介绍,下文描述的虚实光波合束器与上述描述的二维光波导的结构可以相互对应参照。
本发明实施例所提供的一种虚实光波合束器,包括上述任一发明实施例所提供的二维光波导,通常还包括位于所述二维光波导表面的保护玻璃、以及与所述二维光波导光通信连接的变色器件。有关保护玻璃以及变色器件的具体结构可以参考现有技术,在此不再进行赘述。需要指出的是,本公开对光波导保护玻璃、变色器件等不作具体限定,对虚实光波合束器(Combiner)也不作具体限定,只要包括了本发明公开的二维光波导的虚 实光波合束器(Combiner)即可。其余内容可以参照现有技术,在此不再进行展开描述。
下面对本发明所提供的一种AR设备进行介绍,下文描述的AR设备与上述描述的二维光波导的结构可以相互对应参照。
本发明实施例所提供的一种AR设备,包括如上述任一发明实施例所述的二维光波导,通常还包括投影显示模块、计算模块和传感模块;所述传感模块用于获取方位信息,所述计算模块用于根据所述方位信息控制所述投影显示模块中的图像源产生对应图像;所述图像通过所述耦入光栅传输入所述耦入区2。
上述传感模块用于感知方位信息,而计算模块用于根据方位信息控制投影显示模块中的图像源产生对应图像,该图像会通过耦入光栅传输入耦入区2。当然,上述传感模块通常包括有很多设备,例如摄像头、IMU(惯性测量单元)等传感器以测量不同的参数,有关传感模块具体的结构以及具体工艺可以根据实际情况自行设定,在此不做具体限定。需要指出的是,本发明实施例对投影显示单元中的图像源不作具体限定,优选地,该投影显示单元中的图像源可以为LCoS、DMD、OLED、microLED、LBS中的任意一种或多种,所述图像源配以相应的光学设计及光学转接棱镜,将扩大的图像输入至波导耦入区2。
还需要指出的是,本公开对AR设备不作具体限定,优选地,所述AR设备为AR眼镜、AR头盔设备和AR平视显示器(HUD)中的任意一种或多种均可。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功 能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种二维光波导、一种虚实光波合束器以及一种AR设备进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (13)

  1. 一种二维光波导,其特征在于,包括基底、耦入光栅和耦出光栅;
    所述基底表面划分有耦入区、折光扩瞳区和耦出区;所述折光扩瞳区内设置有缺陷轨道和至少两条缺陷带,所述缺陷轨道从所述耦入区向远离所述耦入区一侧延伸,所述缺陷带的一端与所述缺陷轨道接触,所述缺陷带的另一端延伸至所述耦出区,至少两条所述缺陷带沿所述缺陷轨道轴线分布;
    所述折光扩瞳区中相邻所述缺陷带之间、所述缺陷带与所述缺陷轨道之间、所述缺陷带与所述折光扩瞳区边缘之间、以及所述缺陷轨道与所述折光扩瞳区边缘之间为光子晶体区,所述光子晶体区设置有多个散射柱以形成光子晶体,所述散射柱的轴线垂直于所述折光扩瞳区表面;
    所述耦入光栅位于所述耦入区表面,所述耦出光栅位于所述耦出区表面。
  2. 根据权利要求1所述的二维光波导,其特征在于,所述缺陷轨道的宽度沿从所述耦入区向远离所述耦入区一侧方向的宽度逐渐变小。
  3. 根据权利要求2所述的二维光波导,其特征在于,所述耦入区位于所述基底表面一侧边缘部,所述缺陷轨道从所述基底表面一侧边缘部延伸至所述基底表面另一侧边缘部,所述耦出区包括相对于所述缺陷轨道轴线相对设置的第一耦出区和第二耦出区,所述缺陷带包括第一缺陷带和第二缺陷带,所述第一缺陷带从所述缺陷轨道延伸至所述第一耦出区,所述第二缺陷带从所述缺陷轨道延伸至所述第二耦出区。
  4. 根据权利要求3所述的二维光波导,其特征在于,所述缺陷带为以下任意一项或任意组合;
    与所述缺陷轨道轴线垂直的直线型缺陷带、与所述缺陷轨道轴线非垂直的斜线型缺陷带、折线型缺陷带。
  5. 根据权利要求2所述的二维光波导,其特征在于,所述耦入区位于所述基底表面一侧边缘部,所述耦出区位于所述基底表面另一侧,所述缺陷轨道从所述耦入区延伸至所述耦出区;所述缺陷带包括位于缺陷轨道一侧的第一缺陷带以及位于缺陷轨道另一侧的第二缺陷带,所述缺陷带为折 线型缺陷带。
  6. 根据权利要求2所述的二维光波导,其特征在于,所述耦入区位于所述基底表面一侧角边缘部,所述耦出区位于所述缺陷轨道一侧。
  7. 根据权利要求6所述的二维光波导,其特征在于,所述缺陷带为以下任意一项或任意组合;
    与所述缺陷轨道轴线垂直的直线型缺陷带、与所述缺陷轨道轴线非垂直的斜线型缺陷带、折线型缺陷带。
  8. 根据权利要求2所述的二维光波导,其特征在于,所述耦入区位于所述基底表面一侧角边缘部,所述耦出区位于所述基底表面另一侧,所述缺陷轨道从所述耦入区延伸至所述耦出区;所述缺陷带为折线型缺陷带。
  9. 根据权利要求1所述的二维光波导,其特征在于,所述缺陷轨道长度的取值范围为5mm至50mm,包括端点值。
  10. 根据权利要求1所述的二维光波导,其特征在于,所述缺陷带宽度的取值范围为0.1mm至5mm,包括端点值。
  11. 根据权利要求1至10任一项权利要求所述的二维光波导,其特征在于,所述耦出区与所述折光扩瞳区重合。
  12. 一种虚实光波合束器,其特征在于,包括如权利要求1至11任一项权利要求所述的二维光波导。
  13. 一种AR设备,其特征在于,包括如权利要求1至11任一项权利要求所述的二维光波导。
PCT/CN2020/130321 2019-12-16 2020-11-20 一种二维光波导、虚实光波合束器以及ar设备 WO2021120981A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227011068A KR20220054876A (ko) 2019-12-16 2020-11-20 2차원 광도파로, 가상 및 현실 광파 결합기, 및 ar 장치
US17/620,766 US20220357578A1 (en) 2019-12-16 2020-11-20 Two-dimensional optical waveguide, virtual and real light wave beam combiner, and ar apparatus
JP2021577383A JP7223177B2 (ja) 2019-12-16 2020-11-20 2次元光導波路、仮想及び実光波ビームコンバイナ、及びar機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911294198.8 2019-12-16
CN201911294198.8A CN112987294A (zh) 2019-12-16 2019-12-16 一种二维光波导、虚实光波合束器以及ar设备

Publications (1)

Publication Number Publication Date
WO2021120981A1 true WO2021120981A1 (zh) 2021-06-24

Family

ID=76343291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130321 WO2021120981A1 (zh) 2019-12-16 2020-11-20 一种二维光波导、虚实光波合束器以及ar设备

Country Status (5)

Country Link
US (1) US20220357578A1 (zh)
JP (1) JP7223177B2 (zh)
KR (1) KR20220054876A (zh)
CN (1) CN112987294A (zh)
WO (1) WO2021120981A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793130A (zh) * 2022-10-21 2023-03-14 嘉兴驭光光电科技有限公司 用于图像显示的光学波导装置及具有其的显示设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715996A (zh) * 2005-07-08 2006-01-04 清华大学 光子晶体比例光强分光器
CN207037130U (zh) * 2017-07-19 2018-02-23 武汉云眸科技有限公司 一种基于光子晶体的平面波导投影结构
CN109073884A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有改进的强度分布的波导出射光瞳扩展器
US10331207B1 (en) * 2013-03-15 2019-06-25 John Castle Simmons Light management for image and data control
US10345519B1 (en) * 2018-04-11 2019-07-09 Microsoft Technology Licensing, Llc Integrated optical beam steering system
CN110865460A (zh) * 2019-12-19 2020-03-06 深圳惠牛科技有限公司 一种具有防窃功能的光学模组、显示装置及增强现实设备
CN210776046U (zh) * 2019-12-16 2020-06-16 杭州光粒科技有限公司 一种二维光波导、虚实光波合束器以及ar设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279763A (ja) * 2002-03-25 2003-10-02 Okamoto Glass Co Ltd 化合物半導体ガラス、それを用いる光デバイス素子、および、それらの製造方法
EP1639394A2 (en) * 2003-06-10 2006-03-29 Elop Electro-Optics Industries Ltd. Method and system for displaying an informative image against a background image
JP4793660B2 (ja) * 2005-12-27 2011-10-12 日本電気株式会社 導波路の結合構造
DE102009030338B4 (de) * 2009-06-18 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Interferenzanordnung und Verfahren zur Einkopplung von elektromagnetischer Strahlung in einen photonischen Kristall oder Quasikristall
BR102013018869B1 (pt) * 2013-06-25 2022-06-07 Universidade Federal Do Pará Divisor por três não recíproco baseado em um ressoador magneto-óptico
GB2529003B (en) * 2014-08-03 2020-08-26 Wave Optics Ltd Optical device
BR102015010961A2 (pt) * 2015-04-29 2016-11-01 Univ Fed Do Pará circulador óptco de três portas em formato de garfo baseado em um cristal fotônico bidimensional com rede trangular.
CN108152886A (zh) * 2016-12-05 2018-06-12 上海新微科技服务有限公司 一种基于硅光子晶体的三光束分光器
CN108873324A (zh) * 2017-05-09 2018-11-23 京东方科技集团股份有限公司 显示器件及其制作方法以及显示装置
DE102018201525A1 (de) * 2018-01-10 2019-07-11 Robert Bosch Gmbh Projektionsvorrichtung für eine Datenbrille und eine solche Datenbrille
CN108681067A (zh) * 2018-05-16 2018-10-19 上海鲲游光电科技有限公司 一种扩展视场角的波导显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1715996A (zh) * 2005-07-08 2006-01-04 清华大学 光子晶体比例光强分光器
US10331207B1 (en) * 2013-03-15 2019-06-25 John Castle Simmons Light management for image and data control
CN109073884A (zh) * 2016-04-13 2018-12-21 微软技术许可有限责任公司 具有改进的强度分布的波导出射光瞳扩展器
CN207037130U (zh) * 2017-07-19 2018-02-23 武汉云眸科技有限公司 一种基于光子晶体的平面波导投影结构
US10345519B1 (en) * 2018-04-11 2019-07-09 Microsoft Technology Licensing, Llc Integrated optical beam steering system
CN210776046U (zh) * 2019-12-16 2020-06-16 杭州光粒科技有限公司 一种二维光波导、虚实光波合束器以及ar设备
CN110865460A (zh) * 2019-12-19 2020-03-06 深圳惠牛科技有限公司 一种具有防窃功能的光学模组、显示装置及增强现实设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115793130A (zh) * 2022-10-21 2023-03-14 嘉兴驭光光电科技有限公司 用于图像显示的光学波导装置及具有其的显示设备

Also Published As

Publication number Publication date
JP7223177B2 (ja) 2023-02-15
KR20220054876A (ko) 2022-05-03
US20220357578A1 (en) 2022-11-10
CN112987294A (zh) 2021-06-18
JP2022539555A (ja) 2022-09-12

Similar Documents

Publication Publication Date Title
EP3443402B1 (en) Waveguides with extended field of view
CN108027510B (zh) 衍射背光显示和系统
CN110582716B (zh) 显示元件、个人显示装置、用于在个人显示器上显示图像的方法及用途
CN210776046U (zh) 一种二维光波导、虚实光波合束器以及ar设备
US11650427B2 (en) Diffractive display element with grating mirror
US10551616B2 (en) Display device system with tilted lens group to prevent ghost images
US8913324B2 (en) Display illumination light guide
US20180011324A1 (en) Environmentally isolated waveguide display
US10036834B2 (en) Curved display device
CN112867956A (zh) 包括体布拉格光栅的波导
CN112867957B (zh) 用于传送视场的多个部分的波导
WO2015154643A1 (zh) 透过式眼镜显示器
CN113568167B (zh) 镜片单元和包括镜片单元的ar设备
CN110036235B (zh) 具有用于再循环光的外围侧面几何形状的波导
US20190113746A1 (en) Systems, devices, and methods for optical waveguides
CN113777785A (zh) 衍射光波导ar系统、ar眼镜及其系统的配置方法
KR20190139307A (ko) 구조화된 표면을 갖는 가상 및 증강 현실 디바이스
WO2023151670A1 (zh) 衍射光波导及ar眼镜
WO2021120981A1 (zh) 一种二维光波导、虚实光波合束器以及ar设备
US20200033608A1 (en) Multi-part optical system for light propagation in confined spaces and method of fabrication and use thereof
TWI824355B (zh) 一種光學系統及混合實境設備
KR20230112710A (ko) 디스플레이 패널을 위한 패터닝된 백라이트
WO2022267610A1 (zh) 光学设备及电子设备
KR20230172974A (ko) 이미지 표시 광학장치 및 그 제조방법
KR20230082435A (ko) 도파관형 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227011068

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900997

Country of ref document: EP

Kind code of ref document: A1