WO2021120804A1 - 一种太阳能支架 - Google Patents

一种太阳能支架 Download PDF

Info

Publication number
WO2021120804A1
WO2021120804A1 PCT/CN2020/120728 CN2020120728W WO2021120804A1 WO 2021120804 A1 WO2021120804 A1 WO 2021120804A1 CN 2020120728 W CN2020120728 W CN 2020120728W WO 2021120804 A1 WO2021120804 A1 WO 2021120804A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
shaped shaft
solar
shaped
elastic
Prior art date
Application number
PCT/CN2020/120728
Other languages
English (en)
French (fr)
Inventor
王强
宋帅迪
靳松桦
葛明令
程傲霜
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Priority to AU2020260562A priority Critical patent/AU2020260562B2/en
Publication of WO2021120804A1 publication Critical patent/WO2021120804A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/19Movement dampening means; Braking means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a solar stent, in particular to an adjustment mechanism of the solar stent. With the adjustment mechanism and an electric control device, the self-tracking of solar cells can be realized.
  • a solar cell is an electronic component that converts the light energy of the sun into electrical energy.
  • people encapsulate several solar cells together to make flat solar cell modules, and combine multiple modules in series and parallel to form a solar power station together with an inverter.
  • the angle between the solar module and the sun determines the conversion efficiency of the solar power station.
  • the photovoltaic conversion efficiency of the solar cell is the highest.
  • the direct angle of sunlight is constantly changing, making the solar energy absorbed by solar cells also constantly changing.
  • people have proposed automatic tracking of solar power plants. The concept is that the solar cell rotates with the rotation of the earth, so that the sun basically shines directly on the solar cell.
  • the traditional solar support structure uses a metal support frame to fix and support the solar panel, and the solar panel cannot be rotated after the installation is completed.
  • all traceable solar cell modules are equipped with a motor in a bracket, and the solar panel is driven by the motor to rotate.
  • this type of solar mount equipped with a motor drive mechanism occupies a large space, has a large mass, has a complicated way of controlling the rotation of solar components, has high operating energy consumption, and has high maintenance costs, making it difficult to promote and apply on a large scale.
  • the purpose of the present invention is to overcome the above-mentioned defects of the prior art and provide a solar support which is low in cost, easy to maintain, has good practicability, and can be widely promoted and applied.
  • the solar support provided by the present invention includes a fixed arc-shaped tube, an arc-shaped shaft suspended in the arc-shaped tube, a driving mechanism for driving the arc-shaped shaft to deflect, and a A locking mechanism for locking the arc-shaped shaft and a resetting mechanism for resetting the arc-shaped shaft.
  • the arc-shaped shaft is suspended in the arc-shaped tube, and the drive mechanism can be used to push the arc-shaped shaft to deflect to a certain angle at regular intervals, and then the locking mechanism is used to lock, so that the solar panel can track the sun.
  • the reset mechanism enables automatic reset after the tracking is completed, without manual intervention, and the reset mechanism is ingeniously designed to realize the reset function at a minimum cost.
  • Figure 1 is a schematic diagram of an application example of the solar stent of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the solar stent of the present invention.
  • Fig. 3 is a schematic diagram of the rotating drum structure of the solar stent of the present invention.
  • Fig. 4 is a coil power supply circuit of the driving mechanism in the solar stent of the present invention.
  • the signs in the figure are as follows: 1-roof, 2-support rod, 3-arc tube, 4-arc shaft, 5-solar panel, 6-first magnet array, 7-second magnet array, 8-coil , 9-counterweight, 10-rotor, 101-ratchet, 102-oblique chute, 103-axial groove, 104-guide plate, 105-first oblique chute, 106-first Ratchet, 11-flex card, 12-solar bracket, 13-magnetic suspension shaft, A-valley.
  • a solar mount placed on the roof is taken as an example to describe the present invention in detail.
  • one end of the solar cell panel 5 is supported by a magnetic levitation shaft 13, and the other end is supported by the solar support 12 of this embodiment.
  • the solar stent of this embodiment includes an arc tube 3 fixed to the roof 1 (base body) by a support rod 2, an arc shaft 4 suspended in the arc tube 3, and a driving arc shaft 4 to deflect
  • the arc-shaped shaft 4 is suitable for supporting the solar panel 5 from the back.
  • Figure 2 is the left side view of Figure 1, with the sun rising from the east side (left side of Figure 2).
  • the outer surface of the arc-shaped shaft 4 is provided with a first magnet array 6, and the inner surface (or the outer surface) of the arc-shaped tube 3 is provided with a second magnet array 7, and the magnets in the first magnet array 6 and The magnetic poles of the magnets in the second magnet array 7 are of the same nature and are opposed to each other, and the arc-shaped shaft 4 is suspended in the arc-shaped tube 3 by using the feature of repulsive magnetic poles.
  • 4-6 magnets are distributed on the section circumference of the arc-shaped shaft 4 and the arc-shaped tube 3. Taking into account the self-weight of the solar panel 5 and the arc-shaped shaft 4, they are arranged on the arc-shaped tube 3 and the arc-shaped shaft 4.
  • the lower magnet has a higher distribution density.
  • the driving mechanism includes a section of coil 8 wound on the surface of the arc-shaped shaft 4, and a coil power supply circuit (see Figure 4).
  • the coil 8 is energized through the power supply circuit.
  • the magnetic field generated by the coil 8 and the magnets in the second magnet array 7 are energized.
  • the magnetic field generates thrust to drive the arc-shaped shaft 4 to deflect. From Fig. 2, the driving force generated is to the left, so that the arc-shaped shaft can be deflected clockwise by a certain angle, thus realizing tracking.
  • the power supply circuit includes a capacitor C1, a DC power supply V1 for charging the capacitor C1, a thyristor Q1 connected in series with the capacitor C1 and the electromagnetic coil L1, a control loop for controlling the on and off of the thyristor Q1, and a control loop arranged in the control
  • the timing switch circuit in the loop, the electromagnetic coil L1 is the coil 8 wound on the surface of the arc-shaped shaft 4;
  • the control loop includes a battery B1 and a resistor R1, and the negative electrode of the battery B1 is connected to the control electrode of the thyristor Q1 ;
  • the timing switch circuit includes a timer U1 (choose a 555 timer) and an electromagnetic relay T1 and a transistor Q2 connected in series between the power supply and the ground, the electromagnetic relay T1 has a normally open contact connected to the control loop T1', the output port of timer U1 is connected to the base of transistor Q
  • D1 is a diode
  • a diode in parallel can prevent the collector of the transistor Q2 from being subjected to instantaneous high voltage
  • S1 is a switch. When S1 is closed, the DC power supply V1 charges the capacitor C1.
  • the transistor Q2 When the output port of the timer U1 is high, the transistor Q2 is turned on, the electromagnetic relay T1 is energized, its normally open contact T1' is closed, the thyristor Q1 is turned on, and the capacitor C1 is discharged through the electromagnetic coil L1 in the electromagnetic coil L1 (Coil 8 in Figure 2) generates an instantaneous large current, which causes the arc-shaped shaft (the component pointed to by number 4 in Figure 2) to deflect under the action of the magnetic field.
  • the output port of the timer U1 When the output port of the timer U1 is low level, the transistor Q2 is cut off, the electromagnetic relay T1 loses power, its normally open contact T1' is disconnected, the thyristor Q1 is cut off, and the DC power supply V1 continues to charge the capacitor C1.
  • the timer can be set to trigger a high level once every hour to realize the deflection of the driving arc axis once every hour.
  • the trigger time of the timer can be adjusted according to the distribution density
  • Capacitor C1 plays a vital role. It stores the high-voltage and high-current electric energy delivered by the power supply, and then provides instant high-voltage and high-current to the work load to discharge the electromagnetic coil with high efficiency, generating a strong magnetic field, which stimulates the work. . Of course, this is related to the voltage, the capacitance of the capacitor, and the number of turns of the coil. In addition, it plays a role of power compensation for charging and discharging. If you want to drive the mechanism with high power and high efficiency, you can choose a capacitor with a higher voltage resistance and a larger capacity, such as 400v30uf, etc., but the charging time is a little longer to increase the capacity of the capacitor.
  • the locking mechanism of the solar stent includes: a row of protruding external forces arranged on the surface of the arc-shaped shaft 4 in the axial direction (the external force comes from the process of pushing the arc-shaped shaft 4,
  • the elastic card 11 is pressed by the oblique sliding groove 102 of the rotating drum 10) and the elastic card 11 pressed in and the outer end of one end of the arc-shaped tube 3 (the left end in FIG. 2, which is the end close to the rising sun) is arranged through a bearing
  • the rotating drum 10 with the end surface ratchet teeth 101 is locked into the valley A between the adjacent ratchet teeth 101 through the elastic card 11 to realize the locking of the rotation angle of the arc shaft 4.
  • a counterweight 9 is provided near the left end of the arc-shaped shaft 4 to make the initial position of the solar bracket have a certain deflection angle.
  • the solar panel 5 can be aimed at the sun in the morning when there is effective light to improve solar energy. Utilization rate.
  • the solar support rotates clockwise from this initial position, so as to track the sun.
  • the arc-shaped shaft can also be set on the right side of the solar panel center line (the side away from the rising direction of the sun), and the center of gravity of the solar panel can be used to achieve the initial position of the solar support.
  • the inner wall of the rotating drum 10 is provided with a one-to-one correspondence with the ratchet teeth 101, which is suitable for pressing the elastic card 11 and guiding the elastic card 11 from the inner end of the rotating drum 10 to the outer end of the rotating drum 10 corresponding to the oblique sliding outside of the ratchet 101 Slot 102, the projection of the valley A between two adjacent ratchet teeth and the entrance of the next oblique sliding slot 102 on the surface of the rotating drum 10 is located on the same generatrix of the rotating drum 10, and then is pushed by the driving mechanism on the arc-shaped shaft 4 At this time, the next elastic card 11 drives the rotating drum 10 to rotate under the guidance of the oblique sliding groove 102.
  • the distance that the drive mechanism pushes the arc-shaped shaft each time is slightly larger than the distance between adjacent elastic cards (no more than twice the distance between the elastic cards), so that each time the arc-shaped shaft is pushed, the drum rotates once, so that The next flexible card snaps into the next valley.
  • the process of pushing the arc-shaped shaft several times realizes the tracking of the sun.
  • the problem is how to reset the arc axis after the tracking is over, that is, how to restore the solar stent from facing west to the initial state facing east.
  • the reset mechanism is cleverly arranged on the rotating drum 10, which is an axially penetrating part arranged on the inner wall of the rotating drum 10 and connected with the bottom of the inclined surface of the last ratchet tooth 101, which is suitable for the elastic card 11 when it is not installed.
  • the axial groove 103 that passes under the external force is provided with a guide plate 104 (not shown in the figure) suitable for guiding the elastic card 11 into the first oblique sliding groove 105 in the direction of the arrow in Fig. 3 at the inner end of the axial groove 103 Draw).
  • the guide plate 104 is rotatably arranged at the inner end of the axial groove 103 (the bottom end in the figure), and the guide plate 104 is kept in the guiding state by the elastic force of the elastic member (the coil spring is used in this embodiment, or the elastic sheet can also be used). (The position of the guide plate in Figure 3). Under the condition of no external force, the guide plate 104 blocks the inner port of the axial groove 103 to prevent the elastic card 11 from entering the axial groove 103 in the reverse direction.
  • the elastic clip 11 By arranging a reasonable number of elastic clips on the arc-shaped shaft, it can be realized that when the tracking ends, the elastic clip 11 is just stuck in the valley between the first ratchet tooth and the second ratchet tooth.
  • the driving mechanism pushes the arc-shaped shaft again, so that the next elastic card 11 (the last elastic card) slides out along the last oblique chute 102, and at the same time the drum 10 rotates synchronously, and then the arc-shaped shaft is under the action of gravity Turning counterclockwise, the elastic card 11 slides into the axial groove 103 along the slope of the last ratchet tooth 101, and at the same time makes the axial groove 103 and the elastic card 11 lie in the same axial direction, so that all the elastic cards pass through the axial groove one by one.
  • each elastic card 11 is drawn in from the outer end of the axial groove 103 (the top end in FIG. 3), and the guide plate 104 is pushed aside to slide from the inner end of the axial groove 103 (the bottom end in FIG. 3). Out.
  • the arc shaft can be pushed once by the drive mechanism to guide the first elastic card 11 into the first oblique chute 105 and push it out from the oblique side of the first ratchet tooth 106. The jam is stuck in the valley between the first ratchet tooth 106 and the second ratchet tooth.
  • the present invention can also have other embodiments. All technical solutions formed by equivalent replacements or equivalent transformations fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种太阳能支架,包括固定的弧形管、悬浮设置于该弧形管内的弧形轴、驱动弧形轴偏转的驱动机构、用于对发生偏转后的弧形轴进行锁定的锁止机构和用于将弧形轴复位的复位机构。本发明太阳能支架中,弧形轴悬浮设置于弧形管内,每隔一段时间可通过驱动机构推动弧形轴偏转一定角度,然后利用锁止机构进行锁定,这样即可实现电池板对太阳的追踪。通过复位机构使得追踪完毕后能够实现自动复位,而不需要人工干预,并且该复位机构设计巧妙,以最小的代价实现了复位功能。

Description

一种太阳能支架 技术领域
本发明涉及一种太阳能支架,特别涉及太阳能支架的调节机构,借助该调节机构配合电控装置可实现太阳能电池的自追踪。
背景技术
太阳能电池是一种将太阳的光能转化为电能的电子元件。通常人们将若干片太阳能电池封装在一起做成平板状的太阳能电池组件,将多个组件以串、并联的方式组合后,与逆变器一起构成了太阳能电站。根据余弦定理,太阳能组件与太阳之间的角度决定了太阳能电站的转化效率。当阳光直射在太阳能电池上时,太阳能电池的光电转化效率最高。但是,在一天中随着地球的转动太阳光的直射角度不断的变化,使得太阳能电池吸收的太阳光能也不断变化,为了获得对太阳能电池最大光能的吸收,人们提出了自动追踪太阳能电站的概念,即太阳能电池随着地球的转动而转动,使得阳光基本直射在太阳能电池上。
传统的太阳能支撑结构都是通过金属支撑架对太阳能电池板进行固定支撑,安装完成后太阳能电池板无法转动。目前可追踪的太阳能电池组件都是将电机安装在支架中,通过电机驱动太阳能板转动。但该种安装有电机驱动机构的太阳能支架占据空间大,且质量大,控制太阳能组件转动的方式复杂,运行能耗高,使用维护成本高,难以大规模推广应用。
技术问题
本发明的目的在于,克服上述现有技术的缺陷,提供一种太阳能支架,其成本低,易维护,具有较好的实用性,可进行大规模推广和应用。
技术解决方案
为了实现本发明目的,本发明提供的太阳能支架,包括固定的弧形管、悬浮设置于该弧形管内的弧形轴、驱动所述弧形轴偏转的驱动机构、用于对发生偏转后的弧形轴进行锁定的锁止机构和用于将弧形轴复位的复位机构。
有益效果
本发明太阳能支架中,弧形轴悬浮设置于弧形管内,每隔一段时间可通过驱动机构推动弧形轴偏转一定角度,然后利用锁止机构进行锁定,这样即可实现电池板对太阳的追踪。通过复位机构使得追踪完毕后能够实现自动复位,而不需要人工干预,并且该复位机构设计巧妙,以最小的代价实现了复位功能。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明太阳能支架应用实例示意图。
图2是本发明太阳能支架的结构示意图。
图3是本发明太阳能支架的转筒结构示意图。
图4是本发明太阳能支架中驱动机构的线圈供电电路。
图中标号示意如下:1-屋顶,2-支撑杆,3-弧形管,4-弧形轴,5-太阳能电池板,6-第一磁铁阵列,7-第二磁铁阵列,8-线圈,9-配重块,10-转筒,101-棘齿,102-斜向滑槽,103-轴向槽,104-引导板,105-第一个斜向滑槽,106-第一个棘齿,11-弹性卡,12-太阳能支架,13-磁悬浮转轴,A-谷。
本发明的最佳实施方式
下面结合附图和具体实施例对本发明做进一步说明。
本实施例以放置于屋顶的太阳能支架为例对本发明进行详细说明。如图1所示,太阳能电池板5的一端由磁悬浮转轴13支撑,另一端由本实施例的太阳能支架12支撑。
如图2所示,本实施例太阳能支架包括通过支撑杆2固定于屋顶1(基体)的弧形管3,悬浮设置于该弧形管3内的弧形轴4、驱动弧形轴4偏转的驱动机构、用于对发生偏转后的弧形轴4进行锁定的锁止机构和用于将弧形轴4复位的复位机构。弧形轴4适合于从背部对太阳能电池板5进行支撑。图2是图1的左视图,太阳从东侧(图2的左侧)升起。
本实施例中弧形轴4的外表面设有第一磁铁阵列6,弧形管3的内表面(也可以是外表面)设置有第二磁铁阵列7,第一磁铁阵列6中的磁铁与第二磁铁阵列7中的磁铁的磁极同性相对,利用磁极同性相斥的特点,从而使得弧形轴4悬浮于弧形管3内。本例中,弧形轴4和弧形管3的断面圆周上分布有4-6块磁铁,考虑到太阳能电池板5和弧形轴4的自重,布置于弧形管3和弧形轴4下部的磁铁具有更高的分布密度。驱动机构包括绕设于弧形轴4表面一段线圈8、线圈供电电路(见图4),通过供电电路对该线圈8通电,通电后的线圈8所产生的磁场与第二磁铁阵列7中磁铁的磁场产生推力,以驱动弧形轴4发生偏转。从图2中看,产生的驱动力向左,使弧形轴实现顺时针偏转一定角度,从而实现追踪。
如图4所示,为本实施例太阳能支架中驱动机构的线圈供电电路。供电电路包括电容器C1、为该电容器C1充电的直流电源V1、串联后与该电容器C1并联的可控硅Q1和所述电磁线圈L1、控制可控硅Q1通断的控制回路以及设置于该控制回路中的定时开关电路,所述电磁线圈L1即为绕设于弧形轴4表面线圈8;所述控制回路包括电池B1和电阻R1,所述电池B1的负极连接可控硅Q1的控制极;所述定时开关电路包括定时器U1(选用555定时器)和串联在电源和地之间的电磁继电器T1和三极管Q2,所述电磁继电器T1具有接在所述控制回路中的常开触点T1',定时器U1的输出端口通过电阻R2接三极管Q2的基极。图4中,D1为二极管,并联一个二极管可以避免三极管Q2的集电极承受瞬间高压,S1为开关,当S1闭合时,直流电源V1给电容器C1充电。
当定时器U1的输出端口为高电平时,三极管Q2导通,电磁继电器T1得电,其常开触点T1'闭合,可控硅Q1导通,电容器C1通过电磁线圈L1放电在电磁线圈L1(图2中的线圈8)中产生瞬间大电流,在磁场作用下使得弧形轴(图2中标号4指向的部件)发生偏转。当定时器U1的输出端口为低电平时,三极管Q2截止,电磁继电器T1失电,其常开触点T1'断开,可控硅Q1截止,直流电源V1继续对电容器C1充电。定时器可以设置为每一个小时触发一次高电平,实现每一个小时驱动弧形轴偏转一次。定时器的触发时间可以根据弹性卡的分布密度来进行调整,以确保太阳能电池板对太阳的追踪。
电容器C1起着至关重要的作用,它将电源输送的高电压大电流电能储存在其中,再向工作负载提供瞬间高电压大电流以高效能向电磁线圈放电,产生强磁场,使其激发工作。当然,这与电压的大小,电容器电容量的大小,线圈的线径匝数都有关。另外,它起充电和放电的功率补偿作用。要想驱动机构的功率大效率高,可选耐压高电容量大一点电容器,如400v30uf等,不过电容器容量增大充电时间要稍长一点。
如图2、图3所示,本太阳能支架的锁止机构包括:沿轴向设置于弧形轴4表面的一排外凸的可被外力(该外力来自于弧形轴4被推动过程中,转筒10的斜向滑槽102对弹性卡11的压迫)压入的弹性卡11和通过轴承设置于弧形管3一端(图2中的左端,即靠近太阳升起的一端)的外端带有端面棘齿101的转筒10,通过弹性卡11卡入相邻棘齿101之间的谷A进而实现弧形轴4转动角度的锁止。本例中,靠近弧形轴4的左端设置有配重块9,使太阳能支架的初始位置具有一定的偏转角度,这样,太阳能电池板5可以在上午存在有效光照的时候对准太阳,提高太阳能利用率。太阳能支架从该初始位置开始顺时针转动,从而实现对太阳的追踪。除了增设配重块的方式以外,也可以将弧形轴设置于太阳电池板中心线靠右的一侧(远离太阳升起方向一侧),利用太阳能电池板的重心实现太阳能支架的初始位置。转筒10内壁开设有与棘齿101一一对应的适合于按压弹性卡11并将该弹性卡11从转筒10内端一侧引导至转筒10外端对应棘齿101外侧的斜向滑槽102,相邻两棘齿间的谷A与下一个斜向滑槽102的入口在转筒10表面上的投影位于转筒10的同一条母线上,进而在弧形轴4被驱动机构推动时,下一个弹性卡11在斜向滑槽102的引导作用下驱使转筒10发生转动。驱动机构每次将弧形轴推动的距离稍大于相邻弹性卡之间的间距(不超过两倍弹性卡之间的间距),这样使得每次推动弧形轴,转筒发生一次转动,使得下一个弹性卡卡入下一个谷。
弧形轴被推动数次的过程,实现了对太阳的追踪。与此同时带来的问题是,当追踪结束后,如何实现弧形轴的复位,即如何将太阳能支架从面朝西恢复到面朝东的初始状态。本实施例中,将复位机构巧妙地设置在转筒10上,其为一设置于转筒10内壁且与最后一个棘齿101的斜面底部相接的轴向贯通的适合于弹性卡11在不受外力情况下通过的轴向槽103,轴向槽103的内端设置有一适合于将弹性卡11按图3中箭头方向引导入第一个斜向滑槽105的引导板104(图中未画出)。引导板104转动设置于轴向槽103的内端(图中的底端),并通过弹性部件(本实施例选用卷簧,也可以选用弹性片)的弹力使引导板104保持在引导状态位(图3中引导板的位置)。在不受外力情况下,引导板104挡住轴向槽103内端口,防止弹性卡11逆向进入轴向槽103内。
可以通过布置合理数量的弹性卡于弧形轴上,可实现当追踪结束时,弹性卡11刚好卡在倒数第一个棘齿和倒数第二个棘齿之间的谷内。驱动机构再次推动弧形轴,使得下一个弹性卡11(最后一个弹性卡)沿着最后一个斜向滑槽102滑出,与此同时转筒10同步转动,接着,弧形轴在重力作用下逆时针转动,弹性卡11沿最后一个棘齿101的斜面滑入轴向槽103,同时使得轴向槽103与弹性卡11位于同一轴向上,这样,所有的弹性卡逐次的通过轴向槽103,进而实现弧形轴在重力作用下无阻碍的自复位。在此过程中,每个弹性卡11从轴向槽103外端(图3中的顶端)划入,并推开引导板104从轴向槽103的内端(图3中的底端)滑出。复位完毕后,可通过驱动机构推动弧形轴一次,使第一个弹性卡11引导入第一个斜向滑槽105内,并从第一个棘齿106斜面侧推出,将第一个弹性卡卡在第一个棘齿106和第二个棘齿之间的谷的内。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (10)

  1. 一种太阳能支架,其特征在于:包括固定的弧形管(3)、悬浮设置于该弧形管(3)内的弧形轴(4)、驱动所述弧形轴(4)偏转的驱动机构、用于对发生偏转后的弧形轴(4)进行锁定的锁止机构和用于将弧形轴(4)复位的复位机构,所述弧形轴(4)适合于从背部对太阳能电池板(5)进行支撑;所述锁止机构包括:沿轴向设置于弧形轴(4)表面的一排外凸的可被外力压入的弹性卡(11)和通过轴承设置于所述弧形管(3)一端的外端带有端面棘齿(101)的转筒(10),通过所述弹性卡(11)卡入相邻棘齿(101)之间进而实现弧形轴(4)转动角度的锁止,所述转筒(10)内壁开设有与棘齿(101)一一对应的适合于按压所述弹性卡(11)并将该弹性卡(11)从转筒内端一侧引导至转筒(10)外端对应棘齿(101)外侧的斜向滑槽(102),相邻两棘齿(101)间的谷与下一个斜向滑槽(102)的入口在转筒(10)表面上的投影位于转筒(10)的同一条母线上,进而在弧形轴(4)被驱动机构推动时,下一个弹性卡(11)在斜向滑槽(102)的引导作用下驱使转筒(10)发生转动;所述复位机构为一设置于转筒(10)内壁且与最后一个棘齿(101)的斜面底部相接的轴向贯通的适合于所述弹性卡(11)在不受外力情况下通过的轴向槽(103),所述轴向槽(103)的内端设置有一适合于将弹性卡(11)引导入第一个斜向滑槽的引导板(104)。
  2. 根据权利要求1所述的太阳能支架,其特征在于:所述弧形轴(4)设有第一磁铁阵列(6),弧形管(3)设置有第二磁铁阵列(7),所述第一磁铁阵列(6)中的磁铁与第二磁铁阵列(7)中的磁铁的磁极同性相对,从而使得弧形轴(4)悬浮于弧形管(3)内。
  3. 根据权利要求2所述的太阳能支架,其特征在于:所述驱动机构包括绕设于所述弧形轴(4)表面一段线圈(8),对该线圈(8)通电所产生磁场与第二磁铁阵列(7)中磁铁的磁场产生推力,从而驱动弧形轴(4)发生偏转。
  4. 根据权利要求3所述的太阳能支架,其特征在于:所述驱动机构包括为线圈供电的供电电路,所述供电电路包括电容器(C1)、为该电容器(C1)充电的直流电源(V1)、串联后与该电容器(C1)并联的可控硅(Q1)和所述电磁线圈(L1)、控制可控硅(Q1)通断的控制回路以及设置于该控制回路中的定时开关电路,所述电磁线圈(L1)即为绕设于弧形轴(4)表面线圈(8);所述控制回路包括电池(B1)和电阻(R1),所述电池(B1)的负极连接可控硅Q1的控制极;所述定时开关电路包括定时器(U1)和串联在电源和地之间的电磁继电器(T1)和三极管(Q2),所述电磁继电器(T1)具有接在所述控制回路中的常开触点(T1'),定时器(U1)的输出端口通过电阻(R2)接三极管(Q2)的基极,当定时器(U1)的输出端口为高电平时,三极管(Q2)导通,电磁继电器(T1)得电,其常开触点(T1')闭合,可控硅(Q1)导通,电容器C1通过电磁线圈(L1)放电;当定时器(U1)的输出端口为低电平时,三极管(Q2)截止,电磁继电器(T1)失电,其常开触点(T1')断开,可控硅(Q1)截止,直流电源(V1)继续对电容器(C1)充电。
  5. 根据权利要求1所述的太阳能支架,其特征在于:所述第一磁铁阵列(6)设置于弧形轴(4)的外表面,所述第二磁铁阵列(7)的设置于弧形管(3)的内表面或外表面。
  6. 根据权利要求1所述的太阳能支架,其特征在于:所述弧形管(3)通过支撑杆(2)固定于基体。
  7. 根据权利要求1所述的太阳能支架,其特征在于:所述引导板(104)转动设置于轴向槽(103)的内端,并通过弹性部件的弹力使引导板(104)保持在引导状态位。
  8. 根据权利要求7所述的太阳能支架,其特征在于:所述弹性部件为弹性片或卷簧。
  9. 根据权利要求1所述的太阳能支架,其特征在于:靠近所述弧形轴(4)的一端设置有配重块(9)。
  10. 根据权利要求1所述的太阳能支架,其特征在于:所述弧形轴(4)设置于太阳电池板(5)中心线的一侧。
PCT/CN2020/120728 2019-12-19 2020-10-14 一种太阳能支架 WO2021120804A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020260562A AU2020260562B2 (en) 2019-12-19 2020-10-14 Solar panel mounting bracket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911315000.X 2019-12-19
CN201911315000.XA CN110995135B (zh) 2019-12-19 2019-12-19 一种太阳能支架

Publications (1)

Publication Number Publication Date
WO2021120804A1 true WO2021120804A1 (zh) 2021-06-24

Family

ID=70095946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120728 WO2021120804A1 (zh) 2019-12-19 2020-10-14 一种太阳能支架

Country Status (2)

Country Link
CN (1) CN110995135B (zh)
WO (1) WO2021120804A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995135B (zh) * 2019-12-19 2022-01-21 南通大学 一种太阳能支架
CN113541586A (zh) * 2021-06-30 2021-10-22 扬州宏睿新能源产品科技发展有限公司 一种高耐腐蚀光伏支架及其生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204947991U (zh) * 2015-07-28 2016-01-06 中国大唐集团科学技术研究院有限公司 一种可调整角度的光伏支架
CN106160642A (zh) * 2016-08-30 2016-11-23 常熟市双羽铜业有限公司 一种太阳能光伏板支架
US20170163208A1 (en) * 2015-12-07 2017-06-08 Solarcity Corporation Ratcheting stow mechanism for solar tracking photovoltaic panel mounting system
CN109104146A (zh) * 2018-08-09 2018-12-28 华骞能源(深圳)有限公司 一种光伏支架角度调整方法及其可调式光伏支架
CN110995135A (zh) * 2019-12-19 2020-04-10 南通大学 一种太阳能支架

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006011295A1 (de) * 2006-03-11 2007-09-13 Heße, Andreas, Dr. Solargeneratoren mit schwimmenden Hohlkörpern
CN105118176B (zh) * 2015-10-15 2018-02-06 贵州大学 一种亭式太阳能电动自行车充电站
EP3396855A1 (en) * 2017-04-25 2018-10-31 Vestel Elektronik Sanayi ve Ticaret A.S. Light-tracking apparatus and method
CN107906770A (zh) * 2017-11-02 2018-04-13 江苏燕山光伏设备有限公司 一种多曲面槽式太阳能集热系统
CN108730885A (zh) * 2018-06-26 2018-11-02 王静龙 一种节能环保的自动控制的太阳能路灯装置
JP6606759B1 (ja) * 2019-03-13 2019-11-20 永康市美匯灯具有限公司 室外ledライト

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204947991U (zh) * 2015-07-28 2016-01-06 中国大唐集团科学技术研究院有限公司 一种可调整角度的光伏支架
US20170163208A1 (en) * 2015-12-07 2017-06-08 Solarcity Corporation Ratcheting stow mechanism for solar tracking photovoltaic panel mounting system
CN106160642A (zh) * 2016-08-30 2016-11-23 常熟市双羽铜业有限公司 一种太阳能光伏板支架
CN109104146A (zh) * 2018-08-09 2018-12-28 华骞能源(深圳)有限公司 一种光伏支架角度调整方法及其可调式光伏支架
CN110995135A (zh) * 2019-12-19 2020-04-10 南通大学 一种太阳能支架

Also Published As

Publication number Publication date
CN110995135A (zh) 2020-04-10
CN110995135B (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2021120804A1 (zh) 一种太阳能支架
CN210867581U (zh) 一种可自动调节角度的单晶硅太阳能光伏板用支架
JPS6123757B2 (zh)
CN209250543U (zh) 一种太阳能光伏支架
CN103984363A (zh) 一种单轴太阳能光伏追日装置
KR100711550B1 (ko) 계절별 태양 고도에 따른 태양전지판의 발전효율을 증가시키는 수동식 제어 방법
RU2280918C1 (ru) Солнечная электростанция
CN104953938A (zh) 一种太阳能光伏发电装置及其供电系统
CN112185140A (zh) 一种用于太阳能红绿灯的自动调节装置
AU2020260562B2 (en) Solar panel mounting bracket
CN208859485U (zh) 太阳能板可转动的太阳能路灯
CN207475464U (zh) 一种风光互补储能系统装置
CN101267172B (zh) 一种用于光伏发电的自适应对日跟踪装置
CN111007883B (zh) 一种太阳能追踪装置
US8674279B1 (en) Independently powered solar tracker controlling device with program to select alternative source of power supply to assure functionality
CN212278168U (zh) 一种便于组装的太阳能光伏发电板
CN211176578U (zh) 一种可调节式太阳能路灯
CN109140353B (zh) 一种弱光光伏一体化照明路灯
Gajjar An experimental study on dual axis solar tracking system
CN211349112U (zh) 一种光伏水泵及其能量分配系统
CN110553207A (zh) 一种用于室外的发电效率高的光伏板照明设备
CN210601384U (zh) 太阳能路灯
CN114665698A (zh) 一种光伏自供电源高压脉冲启动电路和光伏供电系统
CN209191724U (zh) 一种电力新能源充电桩的光伏组自动调节机构
CN218997993U (zh) 一种新能源储能装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020260562

Country of ref document: AU

Date of ref document: 20201014

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901692

Country of ref document: EP

Kind code of ref document: A1