WO2021120723A1 - 钻井提速装置 - Google Patents

钻井提速装置 Download PDF

Info

Publication number
WO2021120723A1
WO2021120723A1 PCT/CN2020/114861 CN2020114861W WO2021120723A1 WO 2021120723 A1 WO2021120723 A1 WO 2021120723A1 CN 2020114861 W CN2020114861 W CN 2020114861W WO 2021120723 A1 WO2021120723 A1 WO 2021120723A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
bearing assembly
output
outer cylinder
cam
Prior art date
Application number
PCT/CN2020/114861
Other languages
English (en)
French (fr)
Inventor
王甲昌
张海平
臧艳彬
孙明光
马广军
王立双
玄令超
刘晓丹
张仁龙
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油工程技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油工程技术研究院 filed Critical 中国石油化工股份有限公司
Priority to CA3163213A priority Critical patent/CA3163213A1/en
Priority to US17/757,205 priority patent/US11898417B2/en
Publication of WO2021120723A1 publication Critical patent/WO2021120723A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/16Plural down-hole drives, e.g. for combined percussion and rotary drilling; Drives for multi-bit drilling units

Definitions

  • the invention relates to the technical field of oil and gas drilling, in particular to a drilling speed-increasing device.
  • Rotary percussion drilling technology uses various impact tools to generate high-frequency impact loads, which can cause the volume of rock to be broken, thereby improving the rock breaking effect.
  • the present invention proposes a drilling speed-increasing device, which can be installed on a dual-drive drilling tool and causes the drill bit to generate high-frequency impact load, so that the volume of the rock is broken, thereby increasing the efficiency of rock breaking.
  • a drilling speed-increasing device including:
  • the output main shaft is arranged at the lower end of the rotating main shaft.
  • the output main shaft can rotate around its axis under the drive of the rotating main shaft.
  • the lower end of the output main shaft extends out of the inner cavity of the outer cylinder for connecting the drill bit of the dual-drive drilling tool.
  • the impact generator is arranged between the output main shaft and the outer cylinder.
  • the impact generator can drive the outer cylinder and the rotating main shaft to move upward relative to the output main shaft, and under the action of drilling pressure, make the rotating main shaft and the outer cylinder move down to match the output
  • the spindle generates an impact.
  • the impact generator includes:
  • the upper cam sleeved on the outer wall of the output main shaft in a gap type, and the upper cam is fixed relative to the outer cylinder in the axial and circumferential directions, and the lower end of the upper cam is constructed with driven teeth,
  • the lower cam can be driven to rotate, and the driving teeth act on the driven teeth to make the upper cam move repeatedly in the axial direction and act on the outer cylinder.
  • a lower cam seat is fixedly sleeved on the output main shaft, and the outer wall of the lower cam seat is protrudingly provided with clamping teeth so as to extend radially outwardly into the clamping groove provided on the wall of the lower cam, The upper end surface of the lower cam seat abuts against the first step surface provided in the inner cavity of the lower cam.
  • the lower end surface of the lower cam can axially cross the lower end surface of the lower cam seat to abut the vibration damping assembly sleeved on the output spindle, and the lower end surface of the vibration damping assembly is in contact with the limit set on the output spindle. Bit sets abutting.
  • the vibration damping assembly has two retaining rings arranged in an axially spaced manner and a disc spring arranged between the retaining rings.
  • the upper retaining ring abuts against the lower end surface of the lower cam, and the lower retaining ring abuts against the lower end surface of the lower cam.
  • the limit sleeve abuts.
  • the outer cylinder has a split structure and includes an upper joint and a cylinder threadedly connected to the lower end of the upper joint.
  • the outer wall of the upper cam is radially embedded into the lower end surface of the upper joint and the second step surface provided on the cylinder. In between, the upper end surface of the upper cam and the lower end surface of the upper joint have a tooth clamping structure.
  • the upper end of the output main shaft extends to the inner cavity of the rotating main shaft and a circumferential clamping connection is formed between the two, and the upper end surface of the output main shaft is arranged opposite to the third step surface formed on the inner side of the rotating main shaft,
  • An axially extending limit slot is arranged on the outer wall of the output main shaft, and a limit key that can extend radially into the limit slot is fixedly arranged on the rotating main shaft.
  • a stepped hole communicating with inside and outside is provided on the wall of the rotating main shaft, the limit key extends radially and is clamped in the stepped hole, and the outer wall of the rotating main shaft is fixedly provided with a radially abutting stop key Hoop.
  • a TC bearing assembly is arranged between the outer cylinder and the output spindle, wherein the inner ring of the TC bearing assembly is interference-connected with the output spindle, the bearing shell of the TC bearing assembly is fixedly arranged at the lower end of the outer cylinder, and the TC bearing assembly
  • the inner ring lock nut is fixedly sleeved on the output spindle and located at the upper end of the inner ring of the TC bearing assembly.
  • a first seal is provided between the outer cylinder and the rotating main shaft
  • a second seal is provided between the inner ring of the TC bearing assembly and the bearing shell of the TC bearing assembly
  • the first seal and the second seal are provided between the inner ring of the TC bearing assembly and the bearing shell of the TC bearing assembly.
  • Lubricating oil is poured between the outer cylinder between the seals, the rotating main shaft and the output main shaft.
  • the present invention has the advantage that: after the drilling speed-increasing device is installed in a drilling tool, such as a compound dual-drive drilling tool, under the action of an impact generator, the output spindle can receive an axial impact , And transfer this impact energy to the drill bit set at the lower end of the output spindle, so that the drill bit impacts the formation.
  • This composite effect helps to quickly break the formation, thereby speeding up drilling efficiency and reducing drilling costs.
  • Figure 1 shows a schematic diagram of a drilling speed-up device according to an embodiment of the present invention
  • Figure 2a shows an embodiment of a cross-sectional view of the cuff of the drilling speed increasing device in Figure 1;
  • Figure 2b shows an embodiment of the left side view of the cuff of the drilling speed increasing device in Figure 1;
  • Fig. 3a shows an embodiment of the front view of the limit key of the drilling speed-up device in Fig. 1;
  • Fig. 3b shows an embodiment of a bottom view of the limit button of the drilling speed-up device in Fig. 1;
  • Figure 4a shows an embodiment of a cross-sectional view of the output main shaft of the drilling speed increasing device in Figure 1;
  • Figure 4b shows a cross-sectional view of C-C in Figure 4a
  • Figure 5a shows a perspective view of an embodiment of the upper cam of the drilling speed increasing device in Figure 1;
  • Figure 5b shows a cross-sectional view of an embodiment of the upper cam of the drilling speed increasing device in Figure 1;
  • Fig. 6a shows an embodiment of the front view of the lower cam of the drilling speed increasing device in Fig. 1;
  • Fig. 6b shows an embodiment of a right side view of the lower cam of the drilling speed increasing device in Fig. 1;
  • Fig. 7a shows an embodiment of a front view of the lower cam seat of the drilling speed increasing device in Fig. 1;
  • Fig. 7b shows an embodiment of a right side view of the lower cam seat of the drilling speed increasing device in Fig. 1.
  • Fig. 1 schematically shows an embodiment of a drilling speed-increasing device 100 according to the present invention.
  • the drilling speed-increasing device 100 can be applied to dual-drive drilling tools to generate high-frequency shocks to improve rock breaking efficiency.
  • the drilling speed-increasing device 100 includes an outer cylinder, a rotating main shaft 4, an output main shaft 7 and an impact generator.
  • the outer cylinder 1 is a cylindrical structure, which is connected with the outer shell of the downhole power motor of the dual-drive drilling tool, and mainly plays the role of connection and force transmission.
  • the rotating main shaft 4 is arranged in the inner cavity of the outer cylinder 1, and is connected with the rotating shaft of the downhole power motor of the dual-drive drilling tool to be driven to rotate around its axis for transmitting rotating power.
  • the output spindle 7 is arranged at the lower end of the rotary spindle 4 and rotates around the axis driven by the rotary spindle 4 to transmit rotary power to the drill arranged at the lower end of the output spindle 7.
  • the impact generator is arranged between the output spindle 7 and the outer cylinder.
  • the impact generator can drive the outer cylinder, the rotating main shaft 4, and all upper drill strings (collectively referred to as driven components) fixedly connected to it to move up the center of gravity (neutral point) relative to the output main shaft 7, that is, to make the entire drill
  • the neutral point of the column moves up.
  • the center of gravity of the driven component that is, the neutral point of the drill string
  • the drilling speed-increasing device 100 of the present application can be applied to a dual-drive drilling tool, which uses the compound dual-drive rotary power to drive the drill bit to rotate at a high speed while generating high-frequency reciprocating percussive weight on the formation.
  • This composite effect helps to quickly break the formation rock, thereby speeding up drilling efficiency and reducing drilling costs. .
  • the impact generator has an upper cam 8, a lower cam 9 and a lower cam seat 10.
  • the upper cam 8 itself is cylindrical, and is sleeved on the outer wall of the output spindle 7 in a gap type.
  • the upper cam 8 is fixed relative to the outer cylinder in the axial and circumferential directions.
  • the lower cam seat 10 itself is cylindrical, and is used to be fixedly sleeved on the output spindle 7.
  • the lower cam seat 10 is screwed on the output spindle 7 by a left-handed trapezoidal thread.
  • the lower cam seat 10 and the output spindle 7 are snap-fitted with each other through a stepped surface, so that the output spindle 7 can axially define the position of the lower cam seat 10.
  • the lower cam 9 itself is cylindrical and is sleeved on the outer side of the lower cam seat 10.
  • the outer wall of the lower cam seat 10 is radially provided with clamping teeth 27-2.
  • the wall of the lower cam 9 is provided with a clamping groove 27-1.
  • the clamping teeth 27-2 extend radially outwardly into the clamping groove 27-1 to form a clamping connection between the lower cam 9 and the lower cam seat 10 in the circumferential direction. Therefore, because the output main shaft 7 is fixedly connected, the lower cam base 10 can be driven to rotate, and the rotation of the clamped lower cam base 10 can drive the lower cam 9 to rotate.
  • a plurality of (three, four, five, etc.) clamping teeth 27-2 may be provided at intervals in the circumferential direction for uniform torque transmission.
  • a first step surface 91 is provided in the inner cavity of the lower cam 9 to abut the upper end surface of the lower cam seat 10 so that the lower cam seat 10 restricts the downward axial movement of the lower cam 9.
  • the lower cam 9 presses against the lower cam base 10 and transmits the axial force received by the lower cam 9 through the lower cam base 10 to the output spindle 7 and then to the drill bit.
  • the above structure adopts the split lower cam 9 and the lower cam seat 10, which makes the structure simple, convenient to process, easy to install and replace, and reduces the use cost.
  • the outer cylinder has a split structure and includes an upper joint 1 and a cylinder 14 arranged at the lower end of the upper joint 1.
  • the upper joint 1 is directly connected with the shell of the downhole power motor of the dual-drive drilling tool.
  • the upper end of the cylinder 14 is sleeved on the outer wall of the upper joint 1, and threaded connection is performed by means of inclined surface fitting.
  • a second step surface 25 is provided on the inner wall of the cylinder 14, and the second step surface 25 is distributed opposite to the lower end surface of the upper joint 1 extending into the inner cavity of the cylinder 14.
  • the lower end of the outer wall of the upper cam 8 is provided with a fourth step surface 81, so that the upper cam 8 extends radially and is partially embedded between the lower end surface of the upper joint 1 and the second step surface 25, and the second step surface 25 and the fourth step surface
  • the step surface 81 forms an axial clamping structure.
  • the above arrangement allows the axial position of the upper cam 8 to be defined by the outer cylinder.
  • the upper end surface of the upper cam 8 and the lower end surface of the upper joint 1 have a tooth clamping structure.
  • a plurality of circumferentially spaced sector-shaped teeth 24 are protrudingly provided on the upper end surface of the upper cam 8, and at the same time, circumferentially-spaced sector-shaped grooves (not shown in the figure) are provided on the lower end surface of the upper joint 1.
  • the teeth 24 can be inserted into the fan-shaped slot in a matching manner to form a clamping structure.
  • the above arrangement limits the rotation of the upper cam 8 through the upper joint 1.
  • the upper cam 8 makes full use of its axial matching relationship with the upper joint 1 and the cylinder body 14, and has a compact structure, which shortens the axial length of the drilling speed-up device 100, and also functions as a shaft for the upper cam 8 To limit and prevent the role of falling.
  • a driven tooth 82 is provided at the lower end of the upper cam 8, and the tooth surface of the driven tooth 82 faces substantially downward.
  • a driving tooth 92 is provided at the upper end of the lower cam 9, and the tooth surface of the driving tooth 92 is substantially facing upward.
  • the driven tooth 82 and the driving tooth 92 are opposed to each other and can cooperate with each other to form a conjugate cam tooth group.
  • the driven tooth 82 and the driving tooth 92 may be generally configured in a wave-shaped form as shown in FIGS. 5a and 6b, respectively.
  • the lower cam 9 is carried by the output spindle 7 and starts to rotate clockwise.
  • the pushing stroke starts. Since the upper cam 8 is axially clamped between the upper joint 1 and the cylinder 14 and is clamped with the upper joint 1 in the circumferential direction, the upper cam 8 drives the outer cylinder, the rotating main shaft 4, and the neutral point fixedly connected with it. The center of gravity of all the upper drill strings (collectively referred to as driven components) of the lower cam 9 moves upward.
  • the wave trough of the driven tooth 82 is opposite to the wave trough of the driving tooth 92, the upper cam 8, the outer cylinder, the rotating main shaft 4, and all below the neutral point fixedly connected to it
  • the center of gravity of the upper drill string (collectively referred to as the driven assembly) reaches the highest point.
  • the axial distance between the crest of the upper cam 8 and the trough of the lower cam 9 is D.
  • the value of the axial distance between the three stepped surfaces 41 (detailed later) is C. The design makes D>C.
  • the center of gravity of the driven component that is, the neutral point of the drill string
  • the driven component impacts downward together under the action of the weight on bit.
  • D>C the impact acts on the upper end surface of the output spindle 7, and the impact energy is transmitted to the downstream drill bit through the output spindle 7, so as to form an instantaneously higher “percussion weight on bit” similar to “drilling” and then:
  • the drill bit provides impact energy, so that the drill bit impacts the formation downward while rotating drilling.
  • a new round of meshing and rotating push-up phase is started between the teeth of the upper cam 8 and the lower cam 9, and the weight on bit returns to the normal value, that is, the neutral point of the drill string is reset, and the next lift phase begins.
  • the WOB changes periodically over and over again.
  • the wave-like driven tooth 82 and the driving tooth 92 comprise an upward tooth segment and a downward tooth segment connected to the upward tooth segment.
  • the upward tooth section of the drive tooth 92 is inclined in the direction opposite to the direction of rotation of the lower cam 9
  • the downward tooth section of the drive tooth 92 is inclined downward in the direction opposite to the direction of rotation of the lower cam 9 .
  • the inclination of the ascending tooth segment is relatively gentle, for example, it can be designed according to the required stroke height, etc., but the present application does not limit the inclination angle thereof.
  • the inclination of the downward tooth segment is relatively steep, for example, it can be a vertical steep surface, so that the upper cam 8 can move toward the lower cam 9 with a greater speed, and at the same time, since the driving tooth 92 also rotates clockwise at a certain speed, the The rotation speed can ensure that the downward tooth segment of the driven tooth 82 does not touch the downward tooth segment of the driving tooth 92 to ensure that its movement toward the lower cam 9 is a free fall motion.
  • the upper cam 8 can move upstream with respect to the lower cam 9 at a relatively slow speed, and can move downward at a relatively fast speed.
  • a plurality of driven teeth 82 and driving teeth 92 can be provided as needed, and the portions where the downward and upward tooth sections of each driven tooth 82 are connected, and the downward and downward tooth sections of each drive tooth 92
  • the connecting parts of the upper tooth segments are all provided with transitional stress fillets to eliminate stress concentration and ensure the movement buffer between the upper cam 8 and the lower cam 9.
  • a vibration damping component is sleeved on the output main shaft 7.
  • the lower end surface of the lower cam 9 can axially cross the lower end surface of the lower cam seat 10 to abut against the vibration damping assembly.
  • the lower end surface of the damping component and the limit sleeve set on the output spindle 7 (it should be noted that the main purpose of the limit sleeve is to limit the damping component in the axial direction, and in order to optimize the structure setting, it is not necessary to set the output spindle If additional components are provided on the upper 7 separately, the inner ring nut of the TC bearing fixedly arranged on the output spindle 7 can also assume the role of the limit sleeve) abutting.
  • the damping assembly is located between the lower cam 9 and the limit sleeve.
  • the upper cam 8 will give the lower cam 9 an impact force at the moment when the upward section of the driven tooth 82 meshes with the upward section of the drive tooth 92.
  • the damping assembly By providing the damping assembly, the impact force received by the lower cam 9 is transmitted to the damping assembly. That is, the damping component plays a role in absorbing the energy received by the lower cam 9, slowing down the hard impact between the two to protect the upper cam 8 and the lower cam 9, and prolong the service life of both.
  • the vibration damping assembly has two retaining rings 11 arranged in an axially spaced manner and a disc spring 12 arranged between the retaining rings 11.
  • the upper retaining ring 11 abuts against the lower end surface of the lower cam 9, and the lower retaining ring 11 abuts against the limit sleeve.
  • the disc spring 12 is a Mubeu disc reed, and the superimposed form is a single-piece inverse form.
  • a third stepped surface 41 is provided inside the rotating main shaft 4, and the third stepped surface 41 increases the size of the inner cavity of the rotating main shaft 4 at the lower end thereof.
  • the upper end of the output main shaft 7 axially extends upward into the inner cavity of the rotating main shaft 4 so that the upper end surface is opposite to the third step surface 41.
  • a circumferential clamping connection is formed between the output main shaft 7 and the rotating main shaft 4. Specifically, as shown in FIGS. 4a and 4b, the outer diameter of the portion of the output spindle 7 that can extend to the rotating spindle 4 is set in a polygonal column (for example, an octagonal column) shape.
  • the inner cavity at the lower end of the third step surface 41 of the rotating main shaft 4 is also configured as a polygonal column cavity. Therefore, the above arrangement realizes the clamping connection between the rotating main shaft 4 and the output main shaft 7, so that the rotating main shaft 4 can drive the output main shaft 7 to rotate. This arrangement can also ensure that the rotating main shaft 4 and the output main shaft 7 can move relatively in the axial direction, thereby ensuring that the rotating main shaft 4 can impact the output main shaft 7 to provide rock breaking impact force.
  • every two adjacent octagonal sides are transitioned in the form of rounded corners to ensure a smooth connection.
  • an axially extending limit slot 22 is provided on the outer wall of the output spindle 7.
  • multiple pairs (for example, one pair, two pairs, three pairs, or four pairs) of limit grooves 22 may be provided in the circumferential direction.
  • two of each pair of limit grooves 22 are arranged opposite to each other.
  • a stepped hole 42 communicating with the inside and the outside is provided on the rotating main shaft 4, and the diameter of the stepped hole 42 on the radial outside is larger than the diameter on the radial inside.
  • a limit key 5 is provided at the stepped hole 42.
  • the main body of the limit key 5 is elongated and extends along the axial direction to improve the shear strength.
  • the limit key 5 is constructed in a stepped shape.
  • the radially outer side is an A-type ordinary flat key
  • the radially inner side is a stepped key formed by the A-type ordinary flat key. It is larger than the cross-sectional size located on the radial inner side.
  • the limit key 5 is radially matched and arranged at the stepped hole 42, the part with a large outer cross-sectional size is clamped at the stepped hole, and its inner end is radially inwardly matched to extend into the limit slot 22.
  • the hoop 3 is fixed on the outer wall of the rotating main shaft 4.
  • the hoop 3 can radially define the limit key 5 to prevent it from falling from the stepped hole 42.
  • the limit key 5 can axially move limitedly in the limit slot 22 to limit the further relative movement of the output main shaft 7.
  • the output spindle 7 drives the lower cam 9 and the like to fall relative to the rotating spindle 4, etc., and the groove wall surface of the upper end of the limit groove 22 overlaps the limit key 5, so that the limit key 5 starts To prevent it from falling off.
  • the inner diameter of the cuff 3 is different in size to be divided into a two-stage structure.
  • a section with a larger inner diameter is provided with a thread to form a fixed connection with the rotating main shaft 4.
  • a snap-fit fit is formed at the stepped surface of the two segments connected with the rotating spindle 4, and a downwardly facing 60-degree inclined surface is provided between the stepped surface of the two segments and the inner wall surface of the hoop 3 with a small inner diameter size for
  • the screw thread depth is limited, and the stepped surface is better matched with the rotating spindle 4 to prevent structural interference.
  • the driven tooth 82 and the driving tooth 92 are axially separated by a certain distance to ensure that the movable tooth 82 and the driving tooth 92 cannot be Contact to protect the safety of the tooth.
  • the inner end surface of the limit key 5 has a certain distance in the radial direction from the bottom wall of the limit groove 22 of the output spindle 7, and the size of the distance must meet the requirements of the torsion angle of the output spindle 7. Prevent the limit key 5 from shearing when the output spindle 7 rotates. This arrangement avoids the safe use of the limit key 5 and improves its service life.
  • a TC bearing assembly is provided between the outer cylinder and the output spindle 7.
  • the inner ring 18 of the TC bearing assembly and the output spindle 7 are interference-connected.
  • the bearing shell 15 of the TC bearing assembly is located outside the inner ring 18 of the TC bearing assembly in a matching manner, and is fixedly arranged at the lower end of the outer cylinder.
  • the inner ring lock nut 13 of the TC bearing assembly is fixedly sleeved on the output main shaft 7 and located at the upper end of the inner ring 18 of the TC bearing assembly. This setting ensures the stability of the relative rotation between the outer cylinder and the output spindle 7.
  • the bearing shell 15 and the cylinder 14 of the TC bearing assembly are connected by providing a drill pipe joint thread between the inclined contact surfaces to achieve a fixed connection.
  • the inner side of the inner ring lock nut 13 of the TC bearing assembly is provided with a left-handed trapezoidal female thread, which is matedly connected with the left-handed trapezoidal male thread on the output spindle 7 for tightening the inner ring 18 of the TC bearing assembly at the lower end.
  • a positioning sleeve 19 is provided at the lower end of the inner ring 18 of the TC bearing assembly.
  • the cross section of the positioning sleeve 19 is in the shape of "eight". After being sleeved on the output spindle 7, the upper end of the positioning sleeve 19 abuts against the inner ring 18 of the TC bearing assembly, and the lower end contacts the fifth on the output spindle 7. The step surface 71 abuts. The positioning sleeve 19 is used to push the inner ring 18 of the TC bearing assembly in the axial direction.
  • a first seal is provided between the outer cylinder and the rotating main shaft 4.
  • the first sealing member may be the Hunger RDI rotary sealing ring 2.
  • a second seal is provided between the inner ring 18 of the TC bearing assembly and the bearing shell 15 of the TC bearing assembly.
  • the second seal may be in the form of a double seal, and specifically includes a GDSA piston seal ring 16 at the upper end and a RODA rotary seal ring 17 at the lower end.
  • a sealed chamber is formed between the outer cylinder between the first sealing element and the second sealing element and the rotating main shaft 4 and the output main shaft 7.
  • Lubricating oil is poured into the sealed chamber to form an oil-sealed environment for the upper cam 8, the lower cam 9, and the disc spring 12, which greatly prolongs its service life.
  • a third sealing ring 6 is also provided between the rotating main shaft 4 and the output main shaft 7 for sealing between the two.
  • the third sealing ring 6 is located at the lower end of the limiting groove 22.
  • the above-mentioned drilling speed-increasing device 100 is arranged on a dual-drive drilling tool, wherein the outer cylinder 1 is connected with the outer shell of the downhole power motor of the dual-drive drilling tool, and the rotating main shaft 4 is connected with the rotating shaft of the downhole power motor of the dual-drive drilling tool.
  • a drill bit is provided at the lower end of the output spindle 7.
  • the dual-drive drilling tool provided with the drilling speed-increasing device 100 is lowered into the well to be drilled.
  • the output main shaft 7, the lower cam 9, the damping assembly, the inner ring lock nut 13 of the TC bearing assembly, the inner ring 18 of the TC bearing assembly, the positioning sleeve 19 and the drill bit move downward relative to the outer cylinder together, and
  • the output spindle 7 is located on the upper end surface of the limit key 5 to prevent further falling.
  • the teeth of the upper cam 8 and the teeth of the lower cam 9 are not in contact to ensure that the teeth will not be bumped by each other.
  • the drilling can then be carried out.
  • the rotating main shaft 4 rotates under the driving of the rotating shaft of the downhole power motor to drive the output main shaft 7 to rotate, so as to supply rotational power to the drill bit arranged at the lower end of the output main shaft 7.
  • the rotating output main shaft 7 drives the lower cam 9 to rotate together, and the lower cam 9 axially lifts the upper cam 8 to lift the outer cylinder and the rotating main shaft 4.
  • the outer cylinder and The rotating main shaft 4 impacts the upper end surface of the output main shaft 7 downward, and the axial reciprocating impact acts on the output main shaft 7 and is finally transmitted to the drill bit.
  • the drill bit rotates, it generates reciprocating impact and improves rock breaking efficiency. It provides new technical means for efficient drilling of hard and complex formations in ultra-deep oil wells, geothermal wells, and hot dry rock wells.
  • the outer wall of the rotating main shaft 4 is arranged in three sections for axial positioning of the hoop 3.
  • the inner wall of the rotating main shaft 4 is arranged at two ends, that is, a third step surface 42 is provided so that the inner cavity diameter of the upper section is smaller than the inner cavity diameter of the lower section.
  • the inner cavity of the upper section is mainly used for transporting drilling fluid, and
  • the inner cavity of the lower section is mainly used to set the output spindle 7.
  • the optimized structure of the rotating spindle with this setting can ensure good power transmission.
  • the outer wall of the output spindle 7 is arranged in multiple sections from top to bottom, for example, eight sections.
  • a stepped surface can be arranged to increase the outer diameter from top to bottom in order to match different components and optimize the connection with other components.
  • the diameter of the first section is relatively small to ensure that the guiding output spindle 7 is inserted into the rotating spindle 4.
  • the second section is guaranteed to form a circumferential snap fit with the rotating main shaft 4 to ensure power transmission.
  • the third section is used to set the upper cam 8, the lower cam 9 and the lower cam seat 10, and play a coaxial orientation.
  • the fourth section is used to set a left-handed trapezoidal thread to install the lower cam seat 10.
  • the fifth section is used to set the vibration damping components.
  • the sixth section is used to set the left-handed trapezoidal male thread to install the inner ring lock nut 13 of the TC bearing assembly.
  • the seventh section is used to set the inner ring 18 and the positioning sleeve 19 of the TC bearing assembly.
  • the eighth section is provided with threads in its inner cavity for connecting the drill bit. For example, transition slopes are provided between the above-mentioned sections.

Abstract

一种钻井提速装置(100),包括外筒(1);设置在外筒的内腔中并能绕自身轴线旋转的旋转主轴(4);设置在旋转主轴的下端的输出主轴(7),输出主轴能在旋转主轴的带动下围绕其轴线旋转,输出主轴的下端延伸出外筒的内腔以用于连接双驱钻井工具的钻头;设置在输出主轴与外筒之间的冲击发生器,冲击发生器能促动外筒和旋转主轴相对于输出主轴上移,并在钻压作用下,使得旋转主轴与外筒下移以对输出主轴产生冲击。该钻井提速装置使得钻井工具能在对地层进行旋转钻进的同时,对地层产生冲击,钻进效率高。

Description

钻井提速装置
相关申请的交叉引用
本申请要求享有于2019年12月16日提交的名称为“钻井提速装置”的中国专利申请CN 201911294230.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及油气钻井技术领域,特别是涉及一种钻井提速装置。
背景技术
随着石油行业的快速发展,人们对石油需求日益提高,油气资源勘探开发逐向深部地层发展,深井和超深井钻井提速,一直以来都是钻井技术发展面临的难题。旋转冲击钻井技术利用各种冲击工具产生高频冲击载荷,可以使岩石产生体积破碎,从而提高破岩效果。
探索研究表明,复合双驱钻进技术与冲击回转钻进技术相结合,在高频冲击使岩石体积破碎的基础上,复加上高速的旋转切削,提速效果会更加明显。
发明内容
针对上述问题,本发明提出了一种钻井提速装置,其能设置在双驱钻井工具上,并使得钻头产生高频冲击载荷,以致岩石产生体积破碎,从而增加破岩效率。
根据本发明提出了一种钻井提速装置,包括:
外筒,
设置在外筒的内腔中并能绕自身轴线旋转的旋转主轴,
设置在旋转主轴的下端的输出主轴,输出主轴能在旋转主轴的带动下围绕其轴线旋转,输出主轴的下端延伸出外筒的内腔以用于连接双驱钻井工具的钻头,
设置在输出主轴与外筒之间的冲击发生器,冲击发生器能促动外筒和旋转主轴相对于输出主轴上移,并在钻压作用下,使得旋转主轴与外筒下移以对输出主轴产生冲击。
在一个实施例中,冲击发生器包括:
间隙式套设在输出主轴外壁上的上凸轮,且上凸轮相对于外筒轴向和周向均固定,上凸轮的下端构造有从动齿,
套设在输出主轴外壁上的下凸轮,下凸轮的上端构造有主动齿以与从动齿构成共轭凸轮齿组,
其中,在输出主轴旋转过程中,能带动下凸轮旋转,而驱动齿作用于从动齿使得上凸轮轴向反复运动并作用与外筒。
在一个实施例中,在输出主轴上固定套设下凸轮座,下凸轮座的外壁上突出式设置卡接齿以相应式径向向外延伸到设置在下凸轮的壁上的卡接槽内,下凸轮座的上端面与设置在下凸轮的内腔中的第一台阶面抵接。
在一个实施例中,下凸轮的下端面能轴向越过下凸轮座的下端面以与套设在输出主轴上的减振组件抵接,减振组件的下端面与设置在输出主轴上的限位套抵接。
在一个实施例中,减振组件具有轴向间隔式设置的两个挡圈和设置在挡圈之间的碟簧,上部的挡圈与下凸轮的下端面抵接,而下部的挡圈与限位套抵接。
在一个实施例中,外筒为分体式结构并包括上接头和螺纹连接在上接头下端的筒体,上凸轮的外壁径向嵌入到上接头的下端面与设置在筒体的第二台阶面之间,上凸轮的上端面与上接头的下端面为齿卡接结构。
在一个实施例中,输出主轴的上端延伸到旋转主轴的内腔并在两者之间形成周向卡接,输出主轴的上端面与形成在旋转主轴内侧上的第三台阶面相对式分布,在输出主轴的外壁上设置轴向延伸的限位槽,并在旋转主轴上固定设置能径向延伸到限位槽内的限位键。
在一个实施例中,在旋转主轴的壁上设置内外连通的阶梯孔,限位键径向延伸并卡接在阶梯孔中,在旋转主轴的外壁上固定设置能径向抵接限位键的箍套。
在一个实施例中,在外筒与输出主轴之间设置TC轴承组件,其中,TC轴承组件的内圈与输出主轴过盈式连接,TC轴承组件的轴承壳固定设置在外筒的下端,TC轴承组件的内圈锁紧螺母固定套设在输出主轴上并位于TC轴承组件的内圈的上端。
在一个实施例中,在外筒与旋转主轴之间设置第一密封件,在TC轴承组件的内圈与TC轴承组件的轴承壳之间设置第二密封件,并在第一密封件和第二密封件之间的外筒与旋转主轴和输出主轴之间灌注润滑油。
与现有技术相比,本发明的优点在于:将该钻井提速装置设置到钻具工具中后,例如复合双驱钻井工具,在冲击发生器的作用下,输出主轴能收到轴向的冲击,并将这种冲击能传递到设置在输出主轴的下端的钻头上,使得钻头对地层产生冲击。这种复合的作用有助于快速地破碎地层,从而能加快钻进效率,降低钻进成本。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1显示了根据本发明的一个实施方案的钻井提速装置的示意图;
图2a显示了图1中的钻井提速装置的箍套的剖面图的一个实施例;
图2b显示了图1中的钻井提速装置的箍套的左视图的一个实施例;
图3a显示了图1中的钻井提速装置的限位键的主视图的一个实施例;
图3b显示了图1中的钻井提速装置的限位键的仰视图的一个实施例;
图4a显示了图1中的钻井提速装置的输出主轴的剖面图的一个实施例;
图4b显示了图4a中C-C剖视图;
图5a显示了图1中的钻井提速装置的上凸轮的一个实施例的立体图;
图5b显示了图1中的钻井提速装置的上凸轮的一个实施例的剖面图;
图6a显示了图1中的钻井提速装置的下凸轮的主视图一个实施例;
图6b显示了图1中的钻井提速装置的下凸轮的右视图一个实施例;
图7a显示了图1中的钻井提速装置的下凸轮座的主视图一个实施例;
图7b显示了图1中的钻井提速装置的下凸轮座的右视图一个实施例。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明作进一步说明
图1示意性地显示了根据本发明的钻井提速装置100的一个实施例。该钻井提速装置100可以应用在双驱钻井工具上,用于产生高频冲击而提高破岩效率。具体地,钻井提速装置100包括外筒、旋转主轴4、输出主轴7和冲击发生器。其中,外筒1为筒状结构,其与双驱钻井工具的井下动力马达的外壳连接,主要 起到连接以及传递力的作用。旋转主轴4设置在外筒1的内腔中,与双驱钻井工具的井下动力马达的旋转轴连接以被驱动而围绕其轴线转动,用于传递旋转动力。输出主轴7设置在旋转主轴4的下端,并在旋转主轴4带动下围绕轴线转动,以为设置在输出主轴7的下端的钻头传递旋转动力。冲击发生器设置在输出主轴7与外筒之间。该冲击发生器能促动外筒、旋转主轴4以及与其固定连接的所有上部钻柱(统称从动组件)共同形成的重心(中和点)相对于输出主轴7上移,也就是使得整个钻柱的中和点上移。并在钻压作用下,从动组件重心(即钻柱的中和点)下移以对输出主轴7产生冲击,以形成瞬间较高的类“顿钻”的“冲击钻压”进而为钻头提供冲击能。从而,本申请的钻井提速装置100能应用在双驱钻井工具中,利用复合双驱旋转动力驱动钻头高速旋转的同时,对地层产生高频往复冲击钻压。这种复合的作用有助于快速地破碎地层岩石,从而能加快钻进效率,降低钻进成本。。
在一个实施例中,冲击发生器具有上凸轮8、下凸轮9和下凸轮座10。其中,如图5a、5b所示,上凸轮8自身为筒状,间隙式套设在输出主轴7的外壁上。上凸轮8相对于外筒轴向和周向均固定。如图7a、7b所示,下凸轮座10自身为筒状,用于固定套接在输出主轴7上。例如,下凸轮座10通过左旋梯形螺纹的方式旋拧在输出主轴7上。并且,在下凸轮座10与输出主轴7螺纹连接段之上,下凸轮座10与输出主轴7通过台阶面互相卡接配合,以使得输出主轴7能轴向限定下凸轮座10的位置。再如图6a、6b所示,下凸轮9自身为筒状,并套设在下凸轮座10的外侧。下凸轮座10的外壁上径向突出式设置卡接齿27-2。同时,下凸轮9的壁上设置卡接槽27-1。在安装过程中,卡接齿27-2相应式径向向外延伸到卡接槽27-1内,以在周向上形成下凸轮9与下凸轮座10之间的卡接。从而,由于固定连接输出主轴7能带动下凸轮座10转动,而由于卡接下凸轮座10的转动能驱动下凸轮9转动。例如,可以在周向上间隔式设置多个(三个或四个或五个等)卡接齿27-2,以用于均匀的传递扭矩。另外,下凸轮9的内腔中设置第一台阶面91,以与下凸轮座10的上端面抵接,以使得通过下凸轮座10限定下凸轮9的向下的轴向移动。同时,在下凸轮9推送上凸轮8运动过程中,下凸轮9顶紧下凸轮座10,将下凸轮9所受到的轴向力通过下凸轮座10向下传递到输出主轴7进而到钻头。上述结构采用分体式的下凸轮9和下凸轮座10,使得结构简单,加工方便,并易于安装和更换,降低了使用成本。
外筒为分体式结构,并包括上接头1和设置在上接头1下端的筒体14。其中,上接头1与双驱钻井工具的井下动力马达的外壳直接连接。筒体14的上端套设在上接头1的外壁上,并通过斜面配合的方式进行螺纹连接。其中,在筒体14的内壁上设置第二台阶面25,该第二台阶面25与上接头1的延伸到筒体14内腔中的下端面相对式分布。上凸轮8的外壁下端设置第四台阶面81,以使得上凸轮8径向延伸并部分嵌入到上接头1的下端面与第二台阶面25之间,并且,第二台阶面25与第四台阶面81形成轴向卡接结构。上述设置使得通过外筒限定了上凸轮8的轴向位置。另外,上凸轮8的上端面与上接头1的下端面为齿卡接结构。具体地,在上凸轮8的上端面上突出式设置周向间隔的多个扇形齿24,同时,在上接头1的下端面上设置周向间隔的扇形槽(图中未示出),扇形齿24能匹配式插入到扇形槽中,以形成卡接结构。上述设置通过上接头1限定了上凸轮8的转动。在上述设置中,上凸轮8充分利用了其与上接头1和筒体14的轴向配合关系,结构紧凑,缩短了钻井提速装置100轴向上的长度,也起到了对上凸轮8进行轴向限位和防掉的作用。
在上凸轮8的下端设置从动齿82,该从动齿82的齿面大致朝向下方。相应地,在下凸轮9的上端设置驱动齿92,该驱动齿92的齿面大致朝向上方。在安装后,从动齿82和驱动齿92相对并能彼此配合而形成共轭的凸轮齿组。从动齿82和驱动齿92可大体上分别构造为如图5a和6b所示的波浪形的形式。在工作过程中,下凸轮9在输出主轴7的带着下,开始顺时针旋转。若从动齿82的波谷与驱动齿92的波峰相对,推程开始。由于,上凸轮8轴向卡接在上接头1和筒体14之间,且周向与上接头1卡接,则上凸轮8带动外筒、旋转主轴4以及与其固定连接的中和点以下的所有上部钻柱(统称从动组件)重心相对于下凸轮9上行。直至从动齿82的波峰与驱动齿92的波峰相对,从动齿82的波谷与驱动齿92的波谷相对,上凸轮8、外筒、旋转主轴4以及与其固定连接的中和点以下的所有上部钻柱(统称从动组件)重心到达最高点,此时,上凸轮8的波峰和下凸轮9的波谷之间的轴向距离值为D,输出主轴7的上端面与旋转主轴4的第三台阶面41(后面详述)之间的轴向距离值为C。设计使得D>C。之后,从动组件的重心(即钻柱的中和点)突然下移,即从动组件在钻压的作用下一起向下冲击。由于D>C,则该冲击作用在输出主轴7的上端面上,该冲击功通过输出主轴7传递给下游的钻头,以形成瞬间较高的类“顿钻”的“冲击钻压”进而为钻头提供 冲击能,使得钻头在旋转钻进的同时向下冲击地层。之后上凸轮8、下凸轮9的齿之间又开始了新一轮的啮合旋转推升阶段,钻压恢复常规值,即钻柱中和点复位,开始下一个升程阶段,如此往复,产生周而复始的钻压周期性变化。
在一个优选的实施例中,波浪式的从动齿82和驱动齿92包含上行齿段,和与上行齿段相连的下行齿段。如图6a所示,驱动齿92的上行齿段沿着下凸轮9的与旋转方向相反的方向上倾斜,而驱动齿92的下行齿段沿着下凸轮9的与旋转方向相反的方向下倾斜。上行齿段的倾斜较为平缓,例如可以根据所需的行程的高度等进行设计,而本申请并不对其倾斜的角度做限定。而下行齿段的倾斜较为陡峭,例如可以为垂直陡面,从而使得上凸轮8朝向下凸轮9运动时能具有较大的速度,同时由于驱动齿92还要以一定的速度顺时针旋转,该旋转速度能够保证从动齿82的下行齿段不碰到驱动齿92的下行齿段,以保证其朝向下凸轮9的运动为自由落体运动。也就是说,上凸轮8能相对于下凸轮9以相对缓慢的速度而向上游移动,并能以相对较快的速度而向下运动。在周向上,可以根据需要设置多个从动齿82和驱动齿92,而在各从动齿82的下行齿段和上行齿段相连接的部分,以及在各驱动齿92的下行齿段和上行齿段相连接的部分均设置有过渡应力圆角,以消除应力集中,并保证上凸轮8和下凸轮9之间的运动缓冲。
在输出主轴7上套设减振组件。下凸轮9的下端面能轴向越过下凸轮座10的下端面以与减振组件抵接。而减振组件的下端面与设置在输出主轴7上的限位套(需要说明的是,该限位套的主要目的是轴向限定减振组件,而为了优化结构设置,没必要在输出主轴上7上单独设置额外的部件,则固定设置在输出主轴7上的由TC轴承的内圈螺母也可以承担限位套的作用)抵接。也就是说,轴向上,减振组件位于下凸轮9与限位套之间。在完成单次冲击后,在从动齿82的上行段与驱动齿92上行段相啮合接触瞬间,上凸轮8会给下凸轮9一个冲击力。通过设置减振组件,则下凸轮9所受的冲击力被传递到减振组件上。也就是,减振组件起到了吸收下凸轮9所受能量的作用,减缓两者之间的硬冲击以保护上凸轮8和下凸轮9,延长两者的使用寿命。
在一个优选的实施例中,减振组件具有轴向间隔式设置的两个挡圈11和设置在挡圈11之间的碟簧12。上部的挡圈11与下凸轮9的下端面抵接,而下部的挡圈11与限位套抵接。例如,碟簧12采用的是Mubeu碟簧片,叠合形式为单片对合形式。初设碟簧12预压缩量为N mm,该压缩量对应的预紧力为T kN,即 下凸轮9可承受的接触撞击力F在0-T范围内时,不会对上凸轮8和下凸轮9的齿造成损坏。
在旋转主轴4内侧设置第三台阶面41,该第三台阶面41使得位于其下端的旋转主轴4的内腔的尺寸增加。在安装过程中,输出主轴7的上端轴向向上延伸到旋转主轴4的内腔中,并使得上端面与第三台阶面41相对。在输出主轴7与旋转主轴4之间形成周向卡接。具体地,如图4a、4b所示,输出主轴7的能延伸到旋转主轴4的部分的外径设置为多方柱(例如八方柱)状。相对应的,旋转主轴4的第三台阶面41的下端的内腔也构造为多方柱腔状。从而,上述设置实现了旋转主轴4和输出主轴7的卡接,使得旋转主轴4能带动输出主轴7旋转。这种设置方式还能保证旋转主轴4和输出主轴7在轴向上可以相对移动,从而保证旋转主轴4能冲击输出主轴7而提供破岩冲击力。需要说明的是,为了避免应力集中,在旋转主轴4的内壁以及输出主轴7的外壁配合的八方柱处,每相邻的两个八方面之间均以圆角形式过渡,保证光滑连接。
当然,还需要进一步限定输出主轴7相对于旋转主轴4的轴向位置,以防止在起下钻过程中,输出主轴7掉落。具体地,在输出主轴7的外壁上设置轴向延伸的限位槽22。例如,在周向上可以设置多对(例如,一对、两对、三对或者四对)限位槽22,为了保证受力均衡,每对限位槽22中的两个互相相对式分布。相对应地,在旋转主轴4上设置内外连通的阶梯孔42,且阶梯孔42径向外侧的直径大于径向内侧的直径。在阶梯孔42处设置限位键5。相对应地,如图3a、3b所示,限位键5主体为长条状并沿着轴向延伸,以用于提高抗剪强度。而在径向上,限位键5构造为阶梯状,例如,径向外侧为A型普通平键,径向内侧为A型普通平键向外扩展形成的台阶键,位于径向外侧的截面尺寸比位于径向内侧的截面尺寸大。以使得,限位键5径向匹配式设置在阶梯孔42处,其外截面尺寸大的部分卡接在阶梯孔处,且其内端径向向内匹配式延伸到限位槽22内。在旋转主轴4的外壁上固定箍套3。该箍套3能径向限定限位键5,以防止其由阶梯孔42处掉落。在输出主轴7相对于旋转主轴4轴向运动过程中,限位键5能在限位槽22内轴向有限的移动,用于限定输出主轴7进一步相对运动。例如,在起下钻过程中,输出主轴7带动下凸轮9等相对于旋转主轴4等下落,其限位槽22的上端的槽壁面搭接在限位键5上,从而限位键5起到防掉作用。
如图2a、2b所示,箍套3的内径尺寸不同以分为两段式结构。其中,内径尺 寸大的一段设置有螺纹,以与旋转主轴4形成固定连接。在两段连接的台阶面处与旋转主轴4形成卡接式配合,并且,两段连接的台阶面与内径尺寸小的箍套3的内壁面之间设置有朝向下的60度斜面,用于在安装箍套3的过程中,为螺纹旋入深度进行限位,并更好地与旋转主轴4进行台阶面的配合,防止结构干涉。
需要说明的是,在起下钻输出主轴7坐落在限位键5上时,从动齿82和驱动齿92轴向上脱离一定距离,以保证在空转时,动齿82和驱动齿92不能接触进而保护齿的安全。另外,在安装到位后,限位键5的内端面距离输出主轴7的限位槽22的槽底壁在径向上具有一定的距离,该距离的大小要满足输出主轴7的扭转角度的要求,防止在输出主轴7旋转时剪切该限位键5。这种设置避免限位键5的使用安全,提高了其使用寿命。还有,下钻到井底后加钻压时,在输出主轴7相对于旋转主轴4向上移动过程中,限位槽22的下端槽壁面不会接触到限位键5,用于避免对限位键5造成冲击,从而保护其使用安全。
在外筒与输出主轴7之间设置TC轴承组件。其中,TC轴承组件的内圈18与输出主轴7过盈式连接。TC轴承组件的轴承壳15匹配式位于TC轴承组件的内圈18之外,并固定设置在外筒的下端。TC轴承组件的内圈锁紧螺母13固定套设在输出主轴7上并位于TC轴承组件的内圈18的上端。该设置保证外筒与输出主轴7之间的相对转动的平稳性。在具体的实施例中,TC轴承组件的轴承壳15与筒体14通过在倾斜的接触面之间设置钻杆接头螺纹而连接,以实现固定连接。TC轴承组件的内圈锁紧螺母13的内侧设有左旋梯形母螺纹,与输出主轴7上的左旋梯形公螺纹配合连接,用于顶紧下端的TC轴承组件的内圈18。
在TC轴承组件的内圈18的下端设置有定位套19。例如,定位套19的截面为“八”字型,在套接在输出主轴7上后,定位套19的上端与TC轴承组件的内圈18抵接,而下端与输出主轴7上的第五台阶面71抵接。该定位套19用于在轴向上顶紧TC轴承组件的内圈18。
在一个实施例中,在外筒与旋转主轴4之间设置第一密封件。该第一密封件可以为洪格尔RDI旋转密封圈2。另外,在TC轴承组件的内圈18与TC轴承组件的轴承壳15之间设置第二密封件。并且,该第二密封件可以为双道密封形式,并具体为处于上端的GDSA活塞密封圈16和处于下端的RODA旋转密封圈17。第一密封件和第二密封件之间的外筒与旋转主轴4和输出主轴7之间形成了密封的腔室。并在该密封的腔室内灌注润滑油,为其中的上凸轮8、下凸轮9以及碟 簧12等形成油密封环境,大幅度延长了其使用寿命。在旋转主轴4与输出主轴7之间的也设置有第三密封圈6,用于实现两者之间的密封,该第三密封圈6位于限位槽22的下端。
下面根据图1-7b详细叙述钻井提速装置100的具体工作过程如下。
首先,上述钻井提速装置100设置在双驱钻井工具上,其中,外筒1与双驱钻井工具的井下动力马达的外壳连接,旋转主轴4与双驱钻井工具的井下动力马达的旋转轴连接,在输出主轴7的下端设置有钻头。
然后,将设置有钻井提速装置100的双驱钻井工具下入到要被钻进的井内。在下入过程中,输出主轴7、下凸轮9、减振组件、TC轴承组件的内圈锁紧螺母13、TC轴承组件的内圈18、定位套19和钻头一起相对外筒向下运动,并通过输出主轴7坐落在限位键5的上端面上,而防止进一步下落。此时,上凸轮8的齿与下凸轮9的齿并不接触,以保证齿不会受到彼此的磕碰。
在钻井工具的钻头接触到井底时,继续下放钻井工具,施加钻压,使得输出主轴7带动下凸轮9等相对于外筒和旋转主轴4轴向向上移动,直到下凸轮9和上凸轮8配合为止。此时,由于上凸轮从动齿82和下凸轮驱动齿92的上行齿段相啮合,输出主轴7的上端面20与旋转主轴4的第三台阶面41之间有一定轴向距离,此距离值小于C。
然后可进行钻井。旋转主轴4在井下动力马达的旋转轴带动下旋转,以带动输出主轴7转动,以为设置在输出主轴7的下端的钻头供给旋转动力。同时,旋转的输出主轴7带动下凸轮9一起旋转,而下凸轮9轴向顶升上凸轮8,用于抬升外筒和旋转主轴4,至最高点后,在钻压作用下,外筒和旋转主轴4向下冲击输出主轴7的上端面,该轴向的往复冲击作用在输出主轴7上,最终传递给钻头。由此使得钻头旋转的同时,产生往复冲击,提高破岩效率,超深油井、地热井、干热岩井的坚硬及复杂地层高效钻进提供新的技术手段。
在本申请中,需要强调的,该旋转主轴4的外壁为三段式设置,以用于为箍套3进行轴向定位。而旋转主轴4的内壁为两端式设置,也就是,设置有第三台阶面42,以使得上段的内腔直径小于下段的内腔直径,上段的内腔中主要用于输送钻井液,而下段的内腔中主要用于设置输出主轴7。这种设置的旋转主轴结构优化,能保证动力的很好传递。
而输出主轴7的外壁从上到下为多段式布设,例如八段。在输出主轴7的外壁上,可以通过布设台阶面的方式,以在从上到下方向上其外径尺寸依次增加,从而匹配设置不同的部件,以及与其他部件优化连接。具体地,从上到下方向上,第一段的直径比较小,以用于保证引导输出主轴7插入到旋转主轴4的内部。第二段保证与旋转主轴4形成周向卡接配合,保证动力传递。第三段用于设置上凸轮8、下凸轮9和下凸轮座10,并起到同轴定向作用。第四段用于设置左旋梯形螺纹以安装下凸轮座10。第五段以用于设置减振组件。第六段用于设置左旋梯形公螺纹而安装TC轴承组件的内圈锁紧螺母13。第七段用于设置TC轴承组件的内圈18和定位套19。第八段在其内腔中设置螺纹以用于连接钻头。例如,在上述的段与段之间均设置有过渡坡面。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种钻井提速装置,包括:
    外筒,
    设置在所述外筒的内腔中并能绕自身轴线旋转的旋转主轴,
    设置在所述旋转主轴的下端的输出主轴,所述输出主轴能在所述旋转主轴的带动下围绕其轴线旋转,所述输出主轴的下端延伸出所述外筒的内腔以用于连接所述双驱钻井工具的钻头,
    设置在所述输出主轴与所述外筒之间的冲击发生器,所述冲击发生器能促动所述外筒和所述旋转主轴相对于所述输出主轴上移,并在钻压作用下,使得所述旋转主轴与所述外筒下移以对所述输出主轴产生冲击。
  2. 根据权利要求1所述的钻井提速装置,其特征在于,所述冲击发生器包括:
    间隙式套设在所述输出主轴外壁上的上凸轮,且所述上凸轮相对于所述外筒轴向和周向均固定,所述上凸轮的下端构造有从动齿,
    套设在所述输出主轴外壁上的下凸轮,所述下凸轮的上端构造有主动齿以与所述从动齿构成共轭凸轮齿组,
    其中,在所述输出主轴旋转过程中,能带动所述下凸轮旋转,而所述驱动齿作用于所述从动齿使得所述上凸轮轴向反复运动并作用于所述外筒。
  3. 根据权利要求2所述的钻井提速装置,其特征在于,在所述输出主轴上固定套设下凸轮座,所述下凸轮座的外壁上突出式设置卡接齿以相应式径向向外延伸到设置在所述下凸轮的壁上的卡接槽内,所述下凸轮座的上端面与设置在所述下凸轮的内腔中的第一台阶面抵接。
  4. 根据权利要求3所述的钻井提速装置,其特征在于,所述下凸轮的下端面能轴向越过所述下凸轮座的下端面以与套设在所述输出主轴上的减振组件抵接,所述减振组件的下端面与设置在所述输出主轴上的限位套抵接。
  5. 根据权利要求4所述的钻井提速装置,其特征在于,所述减振组件具有轴向间隔式设置的两个挡圈和设置在所述挡圈之间的碟簧,上部的所述挡圈与所述下凸轮的下端面抵接,而下部的所述挡圈与所述限位套抵接。
  6. 根据权利要求2所述的钻井提速装置,其特征在于,所述外筒为分体式结构并包括上接头和螺纹连接在所述上接头下端的筒体,所述上凸轮的外壁径向 嵌入到所述上接头的下端面与设置在所述筒体的第二台阶面之间,所述上凸轮的上端面与所述上接头的下端面为齿卡接结构。
  7. 根据权利要求3所述的钻井提速装置,其特征在于,所述外筒为分体式结构并包括上接头和螺纹连接在所述上接头下端的筒体,所述上凸轮的外壁径向嵌入到所述上接头的下端面与设置在所述筒体的第二台阶面之间,所述上凸轮的上端面与所述上接头的下端面为齿卡接结构。
  8. 根据权利要求4所述的钻井提速装置,其特征在于,所述外筒为分体式结构并包括上接头和螺纹连接在所述上接头下端的筒体,所述上凸轮的外壁径向嵌入到所述上接头的下端面与设置在所述筒体的第二台阶面之间,所述上凸轮的上端面与所述上接头的下端面为齿卡接结构。
  9. 根据权利要求1所述的钻井提速装置,其特征在于,所述输出主轴的上端延伸到所述旋转主轴的内腔并在两者之间形成周向卡接,所述输出主轴的上端面与形成在所述旋转主轴内侧上的第三台阶面相对式分布,在所述输出主轴的外壁上设置轴向延伸的限位槽,并在所述旋转主轴上固定设置能径向延伸到所述限位槽内的限位键。
  10. 根据权利要求2所述的钻井提速装置,其特征在于,所述输出主轴的上端延伸到所述旋转主轴的内腔并在两者之间形成周向卡接,所述输出主轴的上端面与形成在所述旋转主轴内侧上的第三台阶面相对式分布,在所述输出主轴的外壁上设置轴向延伸的限位槽,并在所述旋转主轴上固定设置能径向延伸到所述限位槽内的限位键。
  11. 根据权利要求3所述的钻井提速装置,其特征在于,所述输出主轴的上端延伸到所述旋转主轴的内腔并在两者之间形成周向卡接,所述输出主轴的上端面与形成在所述旋转主轴内侧上的第三台阶面相对式分布,在所述输出主轴的外壁上设置轴向延伸的限位槽,并在所述旋转主轴上固定设置能径向延伸到所述限位槽内的限位键。
  12. 根据权利要求4所述的钻井提速装置,其特征在于,所述输出主轴的上端延伸到所述旋转主轴的内腔并在两者之间形成周向卡接,所述输出主轴的上端面与形成在所述旋转主轴内侧上的第三台阶面相对式分布,在所述输出主轴的外壁上设置轴向延伸的限位槽,并在所述旋转主轴上固定设置能径向延伸到所述限位槽内的限位键。
  13. 根据权利要求9所述的钻井提速装置,其特征在于,在所述旋转主轴的壁上设置内外连通的阶梯孔,所述限位键径向延伸并卡接在所述阶梯孔中,在所述旋转主轴的外壁上固定设置能径向抵接所述限位键的箍套。
  14. 根据权利要求1所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  15. 根据权利要求2所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  16. 根据权利要求3所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  17. 根据权利要求4所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  18. 根据权利要求5所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  19. 根据权利要求6所述的钻井提速装置,其特征在于,在所述外筒与所述输出主轴之间设置TC轴承组件,其中,所述TC轴承组件的内圈与所述输出主 轴过盈式连接,所述TC轴承组件的轴承壳固定设置在所述外筒的下端,所述TC轴承组件的内圈锁紧螺母固定套设在所述输出主轴上并位于所述TC轴承组件的内圈的上端。
  20. 根据权利要求14所述的钻井提速装置,其特征在于,在所述外筒与所述旋转主轴之间设置第一密封件,在所述TC轴承组件的内圈与所述TC轴承组件的轴承壳之间设置第二密封件,并在所述第一密封件和所述第二密封件之间的所述外筒与所述旋转主轴和所述输出主轴之间灌注润滑油。
PCT/CN2020/114861 2019-12-16 2020-09-11 钻井提速装置 WO2021120723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3163213A CA3163213A1 (en) 2019-12-16 2020-09-11 Drilling speed increasing device
US17/757,205 US11898417B2 (en) 2019-12-16 2020-09-11 Drilling speed increasing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911294230.2 2019-12-16
CN201911294230.2A CN112983259B (zh) 2019-12-16 2019-12-16 钻井提速装置

Publications (1)

Publication Number Publication Date
WO2021120723A1 true WO2021120723A1 (zh) 2021-06-24

Family

ID=76343296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114861 WO2021120723A1 (zh) 2019-12-16 2020-09-11 钻井提速装置

Country Status (4)

Country Link
US (1) US11898417B2 (zh)
CN (1) CN112983259B (zh)
CA (1) CA3163213A1 (zh)
WO (1) WO2021120723A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321569A (zh) * 2013-06-25 2013-09-25 中国海洋石油总公司 凸轮式高频冲击钻井工具
CN104033113A (zh) * 2014-06-27 2014-09-10 西南石油大学 一种旋冲螺杆钻具
US20150107904A1 (en) * 2013-10-21 2015-04-23 Laguna Oil Tools, Llc Systems and methods for producing forced axial vibration of a drillstring
CN204941340U (zh) * 2015-07-31 2016-01-06 江汉石油钻头股份有限公司 一种轴向振动冲击器
CN105275384A (zh) * 2014-06-26 2016-01-27 中国石油化工股份有限公司 一种冲击钻井装置
US20180283101A1 (en) * 2014-10-17 2018-10-04 Ashmin Holding Llc Hammer drill
CN108915583A (zh) * 2018-06-25 2018-11-30 北京工业大学 机械式复合冲击钻井提速工具
CN109098654A (zh) * 2018-10-15 2018-12-28 中国石油大学(华东) 一种基于螺杆钻具的机械式轴向旋转冲击钻井工具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3158159T3 (pl) * 2014-06-17 2021-05-04 Flexidrill Limited Generator siły mechanicznej
CN107120062B (zh) * 2017-07-13 2018-12-21 西南石油大学 一种高速冲击钻井工具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321569A (zh) * 2013-06-25 2013-09-25 中国海洋石油总公司 凸轮式高频冲击钻井工具
US20150107904A1 (en) * 2013-10-21 2015-04-23 Laguna Oil Tools, Llc Systems and methods for producing forced axial vibration of a drillstring
CN105275384A (zh) * 2014-06-26 2016-01-27 中国石油化工股份有限公司 一种冲击钻井装置
CN104033113A (zh) * 2014-06-27 2014-09-10 西南石油大学 一种旋冲螺杆钻具
US20180283101A1 (en) * 2014-10-17 2018-10-04 Ashmin Holding Llc Hammer drill
CN204941340U (zh) * 2015-07-31 2016-01-06 江汉石油钻头股份有限公司 一种轴向振动冲击器
CN108915583A (zh) * 2018-06-25 2018-11-30 北京工业大学 机械式复合冲击钻井提速工具
CN109098654A (zh) * 2018-10-15 2018-12-28 中国石油大学(华东) 一种基于螺杆钻具的机械式轴向旋转冲击钻井工具

Also Published As

Publication number Publication date
CA3163213A1 (en) 2021-06-24
CN112983259A (zh) 2021-06-18
CN112983259B (zh) 2022-02-25
US11898417B2 (en) 2024-02-13
US20230003085A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
CN110199083A (zh) 调节装置以及在钻孔中使用该调节装置的方法
US10927607B2 (en) Drilling speed increasing device driven by downhole motor for generating shock vibration
CN210033321U (zh) 一种井下钻柱扭转振动抑制工具
CN106121513A (zh) 一种复合冲击钻井工具
CN204941340U (zh) 一种轴向振动冲击器
CN101581196B (zh) 具有冲击功能的螺杆钻具传动轴总成
CN104499941A (zh) 将钻柱纵向振动转化为钻头扭转冲击的装置
WO2016101387A1 (zh) 扰动破岩钻具及扰动破岩钻井方法
CN112502608B (zh) 一种防卡钻的钻井提速工具
CN103321569A (zh) 凸轮式高频冲击钻井工具
CN203347681U (zh) 凸轮式高频冲击钻井工具
WO2021120721A1 (zh) 钻井提速工具
CN207701078U (zh) 一种脉冲螺杆
CN202157745U (zh) 一种具有减振功能的螺杆钻具传动轴总成
WO2021120723A1 (zh) 钻井提速装置
CN113863873A (zh) 一种钻井用恒压恒扭工具
CN204326969U (zh) 将钻柱纵向振动转化为钻头扭转冲击的装置
CN202596585U (zh) 机械式钻具蓄能保护工具
CN106320984A (zh) 利用涡激振动实现轴向冲击的钻井工具
CN110374509A (zh) 减阻振击器双压腔螺杆钻具
CN106761481B (zh) 一种自动调节钻压工具
CN105604484A (zh) 管柱减阻减扭器
CN111749619B (zh) 一种吸震式脉冲提速器及钻具系统
CN211008469U (zh) Pdc钻头自激动态平衡扭矩装置
CN104110215A (zh) 水力振荡器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3163213

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 522432847

Country of ref document: SA