WO2021120445A1 - 一种驱动电路、相关电路和装置 - Google Patents

一种驱动电路、相关电路和装置 Download PDF

Info

Publication number
WO2021120445A1
WO2021120445A1 PCT/CN2020/082968 CN2020082968W WO2021120445A1 WO 2021120445 A1 WO2021120445 A1 WO 2021120445A1 CN 2020082968 W CN2020082968 W CN 2020082968W WO 2021120445 A1 WO2021120445 A1 WO 2021120445A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
storage device
energy storage
controlled switch
switch tube
Prior art date
Application number
PCT/CN2020/082968
Other languages
English (en)
French (fr)
Inventor
牟在鑫
Original Assignee
美芯晟科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美芯晟科技(北京)有限公司 filed Critical 美芯晟科技(北京)有限公司
Priority to EP20901972.8A priority Critical patent/EP4033863A4/en
Publication of WO2021120445A1 publication Critical patent/WO2021120445A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/36Circuits for reducing or suppressing harmonics, ripples or electromagnetic interferences [EMI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/392Switched mode power supply [SMPS] wherein the LEDs are placed as freewheeling diodes at the secondary side of an isolation transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Definitions

  • the invention relates to a driving circuit, an LED circuit and related devices.
  • LED light source is a light source based on light-emitting diodes, which has the advantages of using low-voltage power supply, low energy consumption, strong applicability, high stability, short response time, no pollution to the environment, and multi-color light emission.
  • LED light sources have been widely used, shopping malls, factories and housing scenes will use a large number of LED light sources as lighting or decoration, and adjust the brightness of these LED light sources when needed to provide comfortable lighting .
  • LED drivers need to meet certain performance requirements.
  • the LED driver circuit shown in Figure 1 it includes: a rectifier module connected to an AC input power supply, an LED light source connected to the rectifier module, and a power control connected to the LED light source Module, and a capacitor connected in parallel with the LED light source.
  • the AC input voltage and AC input current of the LED drive circuit have good symmetry and a high power factor (PF), which can reduce or eliminate harmonic pollution to the power grid.
  • PF power factor
  • this kind of high PF drive circuit cannot solve the problem of stroboscopic flicker, and will cause damage to human eyes when used, and cannot meet the needs of LED lighting.
  • the purpose of the embodiments of the present invention is to provide a driving circuit, LED circuit and related devices that can achieve high PF and no flicker to meet the driving requirements of the actual controlled load.
  • the embodiments of the present invention provide a driving circuit, including: a load current control circuit, a rectifier module, an energy storage device, and a charge and discharge generating circuit, the charge and discharge generating circuit and the The energy storage device is connected to the load current control circuit; the energy storage device and the charge-discharge generating circuit are connected to both ends of the rectifier module;
  • the charging and discharging generating circuit is used to form a charging loop with the energy storage device during the charging process of the energy storage device, and to control the size of the charging current of the energy storage device;
  • the energy storage device forms a discharge circuit.
  • the charge-discharge generation circuit includes a first controlled switch tube and a first switch control module connected to a control terminal of the first controlled switch tube, and the first switch control module is used to control The on-off of the first controlled switch tube.
  • the driving circuit further includes: a unidirectional current path connected in parallel with the charging and discharging generating circuit, the unidirectional current path is turned on when the energy storage device is discharged .
  • the unidirectional current path includes:
  • the driving circuit further includes: at least one first resistor connected to the first controlled switch tube.
  • the circuit formed by connecting the at least one first resistor in series with the first controlled switch tube is connected in parallel with the unidirectional current path.
  • the first controlled switch tube is connected in parallel with the unidirectional current path, it is connected to the at least one first resistor.
  • the first switch control module includes a first operational amplifier
  • the positive input terminal of the first operational amplifier is used to connect the first reference voltage, the negative input terminal of the first operational amplifier is connected to the current output terminal of the first controlled switch tube; the output terminal of the first operational amplifier is connected to the first controlled The control end of the switch tube.
  • the first controlled switching tube is an NMOS tube, and the current output terminal of the first controlled switching tube refers to the source of the NMOS tube, or,
  • the first controlled switch tube is a bipolar transistor, and the current output terminal of the first controlled switch tube refers to a bipolar transistor.
  • the emitter of the transistor is a bipolar transistor.
  • the first switch control module further includes: a current source, a second resistor, a third resistor, a second controlled switch tube, and a third controlled switch tube;
  • the current source is connected in series with the second resistor, it is connected in parallel with the charging circuit formed by the energy storage device and the first controlled switch tube;
  • the positive input terminal of the first operational amplifier is connected between the current source and the second resistor;
  • the drain of the third controlled switch is connected to the rectified bus voltage via the third resistor, or the drain of the third controlled switch is used to connect the output of the controlled load via the third resistor end;
  • the second controlled switch tube and the third controlled switch tube are connected to form a current mirror.
  • the driving circuit further includes: a unidirectional current path, and the unidirectional current path is turned on when the energy storage device is discharged;
  • the charging and discharging generating circuit includes at least one fourth resistor, and the unidirectional current path is connected in parallel with the at least one fourth resistor.
  • the load current control circuit is a linear control circuit, a buck circuit, a fly-back circuit, or a boost circuit.
  • the embodiments of the present invention provide an LED circuit, including an LED load and the driving circuit described in any one of the above.
  • the embodiments of the present invention provide an LED lamp, which includes the above-mentioned LED circuit.
  • the driving circuit for the AC input power connected to the rectifier module, utilizes the characteristic that the bus voltage changes in a sine wave to charge and discharge an energy storage device.
  • a stable working voltage can be provided for the controlled load.
  • the bus voltage When the bus voltage is greater than the voltage of the energy storage device, the bus voltage charges the energy storage device and provides load current at the same time.
  • the energy storage device supplies power to the controlled load, thereby powering the controlled load Stable and eliminate ripples.
  • the voltage of the energy storage device is always slightly larger than the load voltage of the LED load, which can achieve no flicker.
  • the charging current of the energy storage device is used as a part of the AC input current, which can realize that the AC input current and the AC input voltage have a common symmetry axis relationship, and the waveform consistency of the AC input current and the AC input voltage is improved, thereby improving the PF.
  • FIG. 1 is a schematic diagram of the structure of an LED driving circuit in the prior art
  • Fig. 2 is a schematic diagram of the waveform change of current with voltage in the LED driving circuit shown in Fig. 1;
  • FIG. 3 is a structural schematic diagram 1 of a driving circuit provided by an embodiment of the present invention.
  • FIG. 4 is a second structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 5 is a third structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 6 is a fourth structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 7 is a fifth structural schematic diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 8 is a sixth structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 9 is a seventh structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 10 is an eighth schematic structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram 9 of the structure of a driving circuit provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of current and voltage waveforms in the driving circuit shown in FIG. 11;
  • FIG. 13 is a tenth structural diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 14 is an eleventh structural diagram of a driving circuit provided by an embodiment of the present invention.
  • 15 is a structural diagram twelfth of a driving circuit provided by an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of current and voltage waveforms in the driving circuit shown in FIG. 15;
  • FIG. 17 is a structural diagram twelfth of a driving circuit provided by an embodiment of the present invention.
  • FIG. 18 is a thirteenth schematic diagram of the structure of a driving circuit provided by an embodiment of the present invention.
  • 19 is a fourteenth structural diagram of a driving circuit provided by an embodiment of the present invention.
  • 20 is a fifteenth structural schematic diagram of a driving circuit provided by an embodiment of the present invention.
  • FIG. 21 is a sixteenth structural diagram of a driving circuit provided by an embodiment of the present invention.
  • the driving circuit includes: a rectifier connected to an AC input power supply. Module, load current control circuit for controlling the connected load current, energy storage device and charging and discharging generating circuit;
  • the charge and discharge generating circuit is connected to the energy storage device and the load current control circuit; the energy storage device and the charge and discharge generating circuit are connected to both ends of the rectifier module; the controlled load is connected to the rectifier module and the load Between current control circuits;
  • the charging and discharging generating circuit is used to form a charging loop with the energy storage device during the charging process of the energy storage device, and to control the size of the charging current of the energy storage device;
  • the energy storage device forms a discharge circuit.
  • the foregoing energy storage device may be a capacitor, and the foregoing controlled load may be an LED load.
  • the foregoing energy storage device may be a capacitor, and the foregoing controlled load may be an LED load.
  • the drive circuit controls the energy storage device to charge and discharge through the charge and discharge generation circuit.
  • the energy storage device enters the charging process.
  • the rectifier module and the energy storage device are charged and discharged.
  • the energy device and the charging and discharging generating circuit form a charging loop.
  • the charging and discharging generating circuit generates a current from the current input terminal Iin to the current output terminal Iout.
  • the current can be a constant current, or it can follow a certain or certain voltage in the drive circuit.
  • the charging current of the energy storage device can be controlled by the charging and discharging generating circuit; when the rectified input voltage is less than the charging voltage of the energy storage device, the energy storage device enters the discharging process. At this time, the storage device The energy device, the LED load, the load current control circuit and the charge-discharge generating circuit form a discharge loop, and the current in the charge-discharge generating circuit flows from the Iout end to the Iin end.
  • the driving circuit for the AC input power connected to the rectifier module, utilizes the characteristic that the bus voltage changes in a sine wave to charge and discharge an energy storage device.
  • a stable working voltage can be provided for the controlled load.
  • the bus voltage When the bus voltage is greater than the voltage of the energy storage device, the bus voltage charges the energy storage device and provides load current at the same time.
  • the energy storage device supplies power to the controlled load, thereby powering the controlled load Stable and eliminate ripples.
  • the voltage of the energy storage device is always slightly larger than the load voltage of the LED load, which can achieve no flicker.
  • the charging current of the energy storage device is used as a part of the AC input current, which can realize that the AC input current and the AC input voltage have a common symmetry axis relationship, and the waveform consistency of the AC input current and the AC input voltage is improved, thereby improving the PF.
  • the charge-discharge generating circuit includes a first controlled switch tube and a first switch control module connected to the control terminal of the first controlled switch tube, and the first switch control module is used to control the first controlled switch tube. Switch tube on and off.
  • the driving circuit further includes: a unidirectional current path connected in parallel with the charging and discharging generating circuit, and the unidirectional current path is turned on when the energy storage device is discharged.
  • the unidirectional current path includes the parasitic body diode of the first controlled switch.
  • the energy storage device is a capacitor C1
  • the first controlled switch tube of the charge and discharge generating circuit is an NMOS tube M1.
  • the AC input power supply is connected to the rectifier module, the rectifier module is connected to the capacitor C1, the capacitor C1 is connected to the Iin terminal of the charging and discharging generating circuit, and the Iout terminal of the charging and discharging generating circuit is grounded.
  • the NMOS tube M1 in the charging and discharging generating circuit is non-isolated Type MOS tube, where the drain of the NMOS tube M1 is connected to the Iin terminal, the source is connected to the Iout terminal, the gate is connected to the first switch control module, the substrate SUB terminal is connected to the Iout terminal, and the LED load is connected to the load current control circuit Then it forms a current loop with the rectifier module.
  • the first switch control module controls the NMOS tube M1 to turn on to generate a current from the Iin end to the Iout end.
  • the tube M1 forms a charging circuit, and the bus voltage Vin supplies power to the LED load and capacitor C1; when the bus voltage Vin is less than the voltage across the capacitor C1 after rectification, the first switch control module controls the NMOS tube M1 to turn off, due to the non-isolated NOMS tube
  • the SUB end of the substrate is connected to the Iout end, the parasitic body diode D1' in the NMOS tube M1 generates a current from the Iout end to the Iin end, the capacitor C1, the LED load, the load current control circuit and the parasitic body diode of the NMOS tube M1 D1' constitutes a discharge loop, and the capacitor C1 supplies power to the LED load.
  • the load current control circuit includes a power control module and a load controlled switch tube
  • the power control module may be an operational amplifier
  • the load controlled switch tube may be an NMOS tube M0, where the NMOS tube M0
  • the drain is connected to the controlled load
  • the output terminal of the operational amplifier is connected to the gate of the NMOS tube M0
  • the source of the NMOS tube M0 is connected to the resistor Rcs.
  • it is connected to the negative input of the operational amplifier and the positive input of the operational amplifier.
  • the second reference voltage is terminated.
  • the specific implementation of the load current control circuit may refer to other structural methods for implementing controlled load current control in the prior art.
  • the specific circuit implementation is not strictly defined in the embodiment of the present invention. It is limited, as long as the requirement of current control in the circuit can be achieved, and it will not be repeated in the embodiment of the present invention.
  • the parasitic body diode D1' of the NMOS tube M1 manufactured by the integrated circuit process is used to realize the unidirectional conduction of the circuit when the capacitor C1 is discharged, and no external circuit components are required, which reduces the circuit cost.
  • the driving circuit further includes a unidirectional current path connected in parallel with the charging and discharging generating circuit, and the unidirectional current path is turned on when the energy storage device is discharged.
  • the charge-discharge generating circuit includes a first controlled switch tube and a first switch control module connected to the control terminal of the first controlled switch tube.
  • the first switch control module is used to control the first receiver. Control the on and off of the switch.
  • the energy storage device is a capacitor C1
  • the first controlled switch tube of the charge and discharge generation circuit is an NMOS tube M1.
  • the unidirectional current path includes at least one diode D1.
  • the first switch control module can realize the change of the current generated by the charge and discharge generating circuit by controlling the first controlled switch tube M1.
  • the AC input power supply is connected to the rectifier module, the rectifier module is connected to the capacitor C1, the capacitor C1 is connected to the Iin terminal of the charging and discharging generating circuit, and the Iout terminal of the charging and discharging generating circuit is grounded.
  • the NMOS tube M1 in the charging and discharging generating circuit is isolated.
  • MOS tube wherein the drain of the NMOS tube M1 is connected to the Iin terminal, the source is connected to the Iout terminal, and the gate is connected to the first switch control module.
  • the diode D1 is connected in parallel between the drain and the source of the NMOS tube M1, and the LED load After being connected with the load current control circuit, it forms a current loop with the rectifier module.
  • the first switch control module controls the NMOS tube M1 to turn on to generate a current from the Iin end to the Iout end.
  • the rectifier module, the capacitor C1 and the NMOS The tube M1 forms a charging circuit, and the bus voltage Vin supplies power to the LED load and the capacitor C1;
  • the first switch control module controls the NMOS tube M1 to turn off, and the diode D1 generates Iout
  • the current from the end to the Iin end, the capacitor C1, the LED load, the load current control circuit and the diode D1 form a discharge loop, and the capacitor C1 supplies power to the LED load.
  • the first controlled switching tube being an NMOS tube is only a specific implementation of the embodiment of the present invention, and the first controlled switching tube may also be other current control switching tubes.
  • the first controlled switching tube may also be other current control switching tubes.
  • it may be a bipolar transistor BJT (not shown in the figure), as long as the current can be controlled so that a charging loop is formed when the capacitor C1 is charged.
  • the driving circuit further includes at least one first resistor connected to the first controlled switch tube.
  • the circuit formed by connecting the at least one first resistor in series with the first controlled switch tube is connected in parallel with the unidirectional current path.
  • the driving circuit shown in FIG. 7 is based on the driving circuit described in the second embodiment.
  • the first resistor R1 is connected between the NMOS transistor M1 and the Iout terminal.
  • the NMOS transistor M1 After being turned on, a current from the Iin terminal to the Iout terminal can be generated, and the current at the Iout terminal flows through the first resistor R1 to flow into or out of the power loop.
  • the current adjustment is realized by the first resistor R1, and the current control when charging the energy storage device is realized.
  • the driving circuit shown in FIG. 8 is based on the driving circuit described in the first embodiment, and a first resistor R1 is connected between the NMOS transistor M1 and the Iout terminal, so that current adjustment can be achieved through the first resistor R1 , Realize the current control when charging the energy storage device.
  • the same NMOS transistor M1 as in the first embodiment is used to achieve the same or similar technical effects.
  • the first controlled switch tube is connected in parallel with the unidirectional current path, it is connected to the at least one first resistor.
  • the driving circuit shown in FIG. 9 is based on the driving circuit described in the second embodiment, and a first resistor R1 is connected between the Iout terminal and the ground terminal, so that current adjustment can be achieved through the first resistor R1. Current control when charging energy storage devices.
  • the driving circuit shown in FIG. 10 is based on the driving circuit described in Embodiment 1.
  • the first resistor R1 is connected between the Iout terminal and the ground terminal, so that current adjustment can be achieved through the first resistor R1. Realize the current control when charging the energy storage device.
  • the substrate SUB end (not shown in the figure) of the NOMS tube M1 is connected to the source, and the diode D1 described in FIG. 9 is replaced by its parasitic body diode D1'.
  • the parasitic body diode D1' of the NMOS tube M1 manufactured by the integrated circuit process is used in this embodiment to realize the unidirectional conduction of the circuit when the capacitor C1 is discharged, and no external circuit devices are required.
  • the cost of the circuit it is beneficial to reduce the volume of the drive circuit, and facilitates the reasonable arrangement of various devices in the drive circuit during production and manufacturing.
  • the first switch control module in the embodiment of the present invention may include a first operational amplifier
  • the positive input terminal of the first operational amplifier is used to connect the first reference voltage, the negative input terminal of the first operational amplifier is connected to the current output terminal of the first controlled switch tube; the output terminal of the first operational amplifier is connected to the first controlled The control end of the switch tube.
  • the current output terminal of the first controlled switching tube refers to the source of the NMOS tube.
  • the first controlled switch tube can also be a bipolar transistor.
  • the current output terminal of the first controlled switch tube refers to a bipolar transistor. Emitter.
  • the AC input power supply is connected to the rectifier module, the rectifier module is connected to the LED load, and the LED load is connected to the load current control circuit.
  • the load current control circuit includes power control.
  • the power control module can be a second operational amplifier
  • the load controlled switch tube can be an NMOS tube M0, where the drain of the NMOS tube M0 is connected to the LED load
  • the second operational amplifier AMP2 The output terminal is connected to the gate of the NMOS tube M0, the source of the NMOS tube M0 is connected to the resistor Rcs, and is also connected to the negative input terminal of the second operational amplifier AMP2, and the positive input terminal of the second operational amplifier AMP2 is connected to the second reference Voltage VREF2.
  • the capacitor C1 is connected to the rectified bus voltage Vin, and the diode D1 is connected in parallel with the charging and discharging generating circuit.
  • the cathode of the diode D1 of the unidirectional current path is connected to the Iin terminal of the charging and discharging generating circuit, and is connected to one end of the capacitor C1; the anode of the diode is connected to the Iout terminal of the charging and discharging generating circuit.
  • the drain of the NMOS tube M1 of the charge and discharge generating circuit is connected to the Iin terminal, and the source of the NMOS tube M1 is connected to one end of the first resistor R1, and at the same time, is connected to the negative phase input terminal of the first operational amplifier AMP1.
  • the other end of R1 is connected to Iout; the gate of the NMOS tube M1 is connected to the output terminal of the first operational amplifier AMP1; the non-inverting input terminal of the first operational amplifier AMP1 is connected to the first reference voltage VREF1.
  • the first reference voltage VREF1 may be a constant value
  • the second reference voltage VREF2 can also be a constant value
  • the rectifier module is a full-bridge rectifier bridge, and the relationship between the absolute value of the current Iac before the rectification of the AC input current
  • V C1 is the voltage across the capacitor C1
  • VD1 is the forward conduction voltage of the diode D1
  • Vac is the AC input voltage
  • is the AC rectified input voltage.
  • V C1 is much larger than the forward voltage VD1 of the diode. In order to simplify the analysis, the influence of VD1 is ignored in the following description.
  • V C1 is greater than V C1 , the current Ichg generated by the charge-discharge generating circuit charges the capacitor C1; when
  • T1 indicates that the capacitor C1 is in the charging stage.
  • is greater than V C1 , and the capacitor C1 is in the charging state.
  • Ichg is a constant current
  • the voltage V C1 increases linearly, and the capacitor C1 is in the charging stage
  • T2 means that the capacitor C1 is in the discharging stage.
  • the load current Iload is a constant value, the voltage V C1 is in a linearly decreasing state, and the capacitor C1 is in the discharge stage.
  • Iload is always a constant value and is VREF2/R CS , especially for LED loads, which ensures that there is no ripple current in the LED load and achieves no flicker.
  • the input current Imain behind the bridge and the AC input voltage Vac present a common symmetry axis relationship, that is, the AC input current
  • the waveform consistency with the AC input voltage is good, and the PF of the AC input power is high.
  • FIG. 11 is only a specific implementation of the embodiment of the present invention.
  • the isolated MOS tube replaces the diode D1 described in FIG. 11 with its parasitic body diode D1'.
  • the NMOS tube M1 in the first controlled switching tube adopts an isolated MOS tube, that is, the substrate SUB end of the NOMS tube is connected to the source electrode, and its parasitic body diode D1' is used instead of FIG. 11 The diode D1.
  • the first reference voltage VREF1 may also change with a change in a certain control variable in the circuit, so that the current generated in the charge and discharge generating circuit changes accordingly.
  • the first reference voltage is a varying voltage.
  • the first switch control module further includes: The current source IREF1, the second resistor R2, the third resistor R3, the second controlled switch tube and the third controlled switch tube; for example, the second controlled switch tube and the third controlled switch tube may be NMOS tubes of the same specification Among M2 and M3:
  • the current source IREF1 is connected in series with the second resistor R2, it is connected in parallel with the charging circuit formed by the capacitor C1, the NMOS tube M1 and the first operational amplifier AMP1;
  • the non-inverting input terminal of the first operational amplifier AMP1 is connected between the current source and the second resistor R2;
  • the drain of the NMOS tube M3 is connected to the rectified bus voltage Vin via the third resistor R3, and the gates of the NMOS tube M2 and the NMOS tube M3 are connected to form a current mirror.
  • the current Ichg generated by the charge and discharge generating circuit in this embodiment changes with the change of the bus voltage.
  • the current source IREF1 is connected to the second resistor R2, and the above-mentioned first reference voltage VREF1 is generated on the second resistor R2.
  • the first reference voltage VERF1 is IREF1*R2
  • the current Ichg generated by the charge-discharge generating circuit is VERF1/ R1.
  • the NMOS transistors M2 and M3 are turned on, and the current Icomp increases.
  • the first reference voltage VERF1 is (IREF1-Icomp) *R2, which is generated by the charge and discharge generating circuit
  • the current Ichg is (IREF1-Icomp)*R2/R1. The higher the AC input voltage Vac, the larger Icomp, and the smaller the first reference voltage VERF1.
  • the driving circuit shown in FIG. 15 is only a specific embodiment in which the first reference voltage VREF1 changes with the rectified bus voltage in the circuit.
  • the first reference voltage VREF1 may also follow Other control variables in the circuit change.
  • the drain of the NMOS transistor M3 shown in FIG. 15 is connected to the output terminal of the controlled load through the third resistor R3, and the other circuit connection methods remain unchanged.
  • the first reference voltage VREF1 changes with the change of the difference between the rectified bus voltage and the load voltage in the circuit, so as to achieve the same technical effect as the driving circuit shown in FIG. 15.
  • the charging and discharging generating circuit in the driving circuit includes at least one fourth resistor and a unidirectional current path connected in parallel with the fourth resistor, and the unidirectional current path includes at least one diode D1.
  • the charging and discharging generating circuit includes a fourth resistor R4 and a diode D1, and the diode D1 is connected in parallel with the fourth resistor R4.
  • the energy storage device may be a capacitor C1, the rectifier module is connected to the AC input power source, the capacitor C1 after the rectifier module is connected, and the other end of the capacitor C1 is connected to the fourth resistor R4 of the charging and discharging generating circuit.
  • the characteristic that the AC input voltage is a sine wave is used to charge the capacitor C1 for a specific time.
  • the charge-discharge generating circuit can automatically stop charging when the voltage across the capacitor C1 reaches a certain value V C1 ; after the charging stops, the capacitor C1 discharges the controlled load through the diode D1.
  • the controlled load here refers to, for example, LED Load, so as to provide a basically stable voltage for the controlled load.
  • the fourth resistor R4 may be a variable resistor.
  • the load current control circuit can be a linear control circuit or a switch-type control circuit, for example, refer to the buck-type circuit shown in FIG. 19, and refer to the fly-type circuit shown in FIG. 20. -back type circuit or refer to the boost type circuit shown in Figure 21. Since the circuit implementation of the other parts of the drive circuit including the above-mentioned switch-type control circuit is similar to the above-mentioned embodiment, the specific implementation can refer to the detailed description in Embodiment 1 to Embodiment 6, and it should be noted that the present invention In the embodiment, the specific implementation of the constant current control module can refer to other structural methods for realizing constant current control of the controlled load in the prior art. The specific circuit implementation is not strictly limited in the embodiment of the present invention, as long as it can The requirement of constant current control in the circuit can be realized, and it will not be repeated in the embodiment of the present invention.
  • embodiments of the present invention also provide an LED circuit, including an LED load and the driving circuit described in the above embodiments.
  • embodiments of the present invention also provide an LED lamp, which includes the above-mentioned LED circuit.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明公开了一种驱动电路、相关电路和装置,该驱动电路包括:负载电流控制电路、整流模块、储能器件和充放电产生电路,所述充放电产生电路与所述储能器件和负载电流控制电路连接;所述储能器件和充放电产生电路连接在所述整流模块的两端;所述充放电产生电路,用于在储能器件充电过程中,与所述储能器件形成充电回路,并控制所述储能器件充电电流的大小;以及在储能器件放电过程中,与所述储能器件形成放电回路。本发明实施例提供的上述驱动电路,能够消除电路中的电流纹波,保证了被控负载的稳定性,并且交流输入电流与交流输入电压呈公共对称轴关系,从而提高PF。

Description

一种驱动电路、相关电路和装置 技术领域
本发明涉及一种驱动电路、LED电路及相关装置。
背景技术
LED光源是一种基于发光二极管的光源,具有使用低压电源、耗能少、适用性强、稳定性高、响应时间短、对环境无污染、多色发光等的优点。随着LED技术的不断发展,LED光源得到了广泛的应用,商场、工厂及住房等场景会使用大量的LED光源作为照明或装饰,并在需要时调整这些LED光源的亮度,以便提供舒适的照明。
目前,LED驱动需要满足一定的性能要求,例如,参照图1所示的LED驱动电路,包括:与交流输入电源AC连接的整流模块、与整流模块连接的LED光源、与LED光源连接的功率控制模块、以及与LED光源并联的电容。参照图2所示,该LED驱动电路的交流输入电压和交流输入电流的对称性好,功率因数(Power Factor,PF)较高,能够减少或消除对电网造成的谐波污染。但是这种高PF的驱动电路,无法解决频闪问题,在使用是会对人眼造成伤害,不能很好的满足LED照明的需求。
发明内容
本发明实施例的目的是提供一种能够实现高PF、无频闪的驱动电路、LED电路及相关装置以满足实际被控负载的驱动需求。
作为本发明实施例的第一个方面,本发明实施例提供了一种驱动电路,包括:负载电流控制电路、整流模块、储能器件和充放电产生电路,所述充放电产生电路与所述储能器件和负载电流控制电路连接;所述储能器件和充放电产生电路连接在所述整流模块的两端;
所述充放电产生电路,用于在储能器件充电过程中,与所述储能器件形成充电回路,并控制所述储能器件充电电流的大小;以及在储能器件放电过程中,与所述储能器件形成放电回路。
在一些可选的实施例中,所述充放电产生电路包括第一受控开关管和与第一受控开关管控制端连接的第一开关控制模块,所述第一开关控制模块用于控制所述第一受控开关管的通断。
在一些可选的实施例中,所述的驱动电路,还包括:与所述充放电产生电路并联的单 向电流通路,所述单向电流通路在所述储能器件放电的情况下导通。
在一些可选的实施例中,所述单向电流通路包括:
二极管,或,所述第一受控开关管的寄生体二极管。
在一些可选的实施例中,所述的驱动电路,还包括:与所述第一受控开关管连接的至少一个第一电阻。
在一些可选的实施例中,所述至少一个第一电阻与所述第一受控开关管串联后形成的电路,与所述单向电流通路并联。
在一些可选的实施例中,所述第一受控开关管与所述单向电流通路并联后,与所述至少一个第一电阻连接。
在一些可选的实施例中,所述第一开关控制模块,包括第一运算放大器;
第一运算放大器的正相输入端用于连接第一基准电压,第一运算放大器的负相输入端连接第一受控开关管的电流输出端;第一运算放大器的输出端连接第一受控开关管的控制端。
在一些可选的实施例中,所述第一受控开关管为NMOS管,所述第一受控开关管的电流输出端是指NMOS管的源极,或,
在所述充放电产生电路与所述单向电流通路并联的情况下,所述第一受控开关管为双极性晶体管,所述第一受控开关管的电流输出端是指双极性晶体管的发射极。
在一些可选的实施例中,所述第一开关控制模块还包括:电流源、第二电阻、第三电阻、第二受控开关管和第三受控开关管;
所述电流源与所述第二电阻串联后,与所述储能器件和第一受控开关管构成的充电回路并联;
所述第一运算放大器的正向输入端连接在电流源与所述第二电阻之间;
所述第三受控开关管的漏极经所述第三电阻连接整流后母线电压,或,所述第三受控开关管的漏极用于经所述第三电阻连接被控负载的输出端;
所述第二受控开关管和第三受控开关管连接以构成电流镜。
在一些可选的实施例中,所述的驱动电路,还包括:单向电流通路,所述单向电流通路在所述储能器件放电的情况下导通;
所述充放电产生电路包括至少一个第四电阻,所述单向电流通路与所述至少一个第四电阻并联。
在一些可选的实施例中,所述负载电流控制电路为线性控制电路、buck型电路、fly-back型电路或boost型电路。
作为本发明实施例的第二个方面,本发明实施例提供了一种LED电路,包括LED负载和上述任一项所述的驱动电路。
作为本发明实施例的第三个方面,本发明实施例提供了一种LED灯具,该LED灯具包括上述的LED电路。
本发明实施例提供的上述技术方案的有益效果至少包括:
本发明实施例提供的上述驱动电路,对于整流模块连接的交流输入电源来说,该驱动电路利用母线电压为正弦波变化的特点,为一储能器件进行充放电。通过控制储能器件的充电电流,能够为被控负载提供稳定的工作电压。当母线电压大于储能器件的电压时,母线电压对储能器件充电并同时提供负载电流,当母线电压小于储能器件的电压时,通过储能器件为被控负载供电,从而被控负载供电稳定,消除了纹波。特别对于LED负载,储能器件的电压始终稍大于LED负载的负载电压,可实现无频闪。并且,储能器件的充电电流作为交流输入电流的一部分,可实现交流输入电流与交流输入电压呈公共对称轴关系,交流输入电流与交流输入电压的波形一致性提高,从而提高PF。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为现有技术中的LED驱动电路的结构示意图;
图2为图1所示的LED驱动电路中电流随电压的波形变化示意图;
图3为本发明实施例提供的一种驱动电路的结构示意图一;
图4为本发明实施例提供的一种驱动电路的结构示意图二;
图5为本发明实施例提供的一种驱动电路的结构示意图三;
图6为本发明实施例提供的一种驱动电路的结构示意图四;
图7为本发明实施例提供的一种驱动电路的结构示意图五;
图8为本发明实施例提供的一种驱动电路的结构示意图六;
图9为本发明实施例提供的一种驱动电路的结构示意图七;
图10为本发明实施例提供的一种驱动电路的结构示意图八;
图11为本发明实施例提供的一种驱动电路的结构示意图九;
图12为图11所示的驱动电路中电流、电压波形示意图;
图13为本发明实施例提供的一种驱动电路的结构示意图十;
图14为本发明实施例提供的一种驱动电路的结构示意图十一;
图15为本发明实施例提供的一种驱动电路的结构示意图十二;
图16为图15所示的驱动电路中电流、电压波形示意图;
图17为本发明实施例提供的一种驱动电路的结构示意图十二;
图18为本发明实施例提供的一种驱动电路的结构示意图十三;
图19为本发明实施例提供的一种驱动电路的结构示意图十四;
图20为本发明实施例提供的一种驱动电路的结构示意图十五;
图21为本发明实施例提供的一种驱动电路的结构示意图十六。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为了解决现有技术中LED驱动电路不能满足高PF无频闪的问题,本发明实施例提供了一种驱动电路,参照图3所示,该驱动电路,包括:与交流输入电源AC连接的整流模块、用于控制连接的被控负载电流的负载电流控制电路、储能器件和充放电产生电路;
充放电产生电路与所述储能器件和负载电流控制电路连接;所述储能器件和充放电产生电路连接在所述整流模块的两端;所述被控负载连接在整流模块与所述负载电流控制电路之间;
所述充放电产生电路,用于在储能器件充电过程中,与所述储能器件形成充电回路,并控制所述储能器件充电电流的大小;以及在储能器件放电过程中,与所述储能器件形成放电回路。
在一个具体实施例中,上述储能器件可以是电容,上述被控负载可以是LED负载。在一些可选的实施例中,
本发明实施例提供的驱动电路,通过充放电产生电路控制储能器件进行充放电,当整流后的输入电压大于储能器件的电压时,储能器件进入充电过程,此时,整流模块、储能器件和充放电产生电路构成充电回路,充放电产生电路产生由电流输入端Iin至电流输出端Iout的电流,该电流可以是恒定电流,也可以是随驱动电路中的某个或某些电压或电流的变化而变化的电流,通过充放电产生电路可以控制储能器件充电电流的大小;当整流后的输入电压小于储能器件的充电电压时,储能器件进入放电过程,此时,储能器件、LED负载、负载电流控制电路和充放电产生电路构成放电回路,充放电产生电路中电流由Iout端流向Iin端。
本发明实施例提供的上述驱动电路,对于整流模块连接的交流输入电源来说,该驱动电路利用母线电压为正弦波变化的特点,为一储能器件进行充放电。通过控制储能器件的充电电流,能够为被控负载提供稳定的工作电压。当母线电压大于储能器件的电压时,母线电压对储能器件充电并同时提供负载电流,当母线电压小于储能器件的电压时,通过储能器件为被控负载供电,从而被控负载供电稳定,消除了纹波。特别对于LED负载,储能器件的电压始终稍大于LED负载的负载电压,可实现无频闪。并且,储能器件的充电电流作为交流输入电流的一部分,可实现交流输入电流与交流输入电压呈公共对称轴关系,交流输入电流与交流输入电压的波形一致性提高,从而提高PF。
下面通过几个具体的实施例,对本发明的具体实现方式进行详细描述:
实施例一
在一些可选的实施例中,充放电产生电路包括第一受控开关管和与第一受控开关管控制端连接的第一开关控制模块,第一开关控制模块用于控制第一受控开关管的通断。
在一些可选的实施例中,驱动电路,还包括:与所述充放电产生电路并联的单向电流通路,所述单向电流通路在所述储能器件放电的情况下导通。
本发明实施例一中,单向电流通路包括第一受控开关管的寄生体二极管。
作为本发明的一个具体实施方式,可以是,储能器件为电容C1,充放电产生电路的第一受控开关管为NMOS管M1。参照图4所示,交流输入电源连接整流模块,整流模块连接电容C1,电容C1连接充放电产生电路的Iin端,充放电产生电路的Iout端接地,充放电产生电路中NMOS管M1为非隔离型MOS管,其中NMOS管M1的漏极连接该Iin端、源 极连接该Iout端、栅极连接该第一开关控制模块、衬底SUB端连接该Iout端,LED负载与负载电流控制电路连接后与所述整流模块构成一电流回路。在该驱动电路中,当整流后母线电压Vin大于电容C1两端的电压时,第一开关控制模块控制NMOS管M1导通,产生由Iin端至Iout端方向的电流,整流模块、电容C1和NMOS管M1构成充电回路,由母线电压Vin向LED负载和电容C1供电;当整流后母线电压Vin小于电容C1两端的电压时,第一开关控制模块控制NMOS管M1关断,由于非隔离型NOMS管的衬底SUB端与Iout端连接,在NMOS管M1中的寄生体二极管D1’产生由Iout端至Iin端方向的电流,电容C1、LED负载、负载电流控制电路和NMOS管M1的寄生体二极管D1’构成放电回路,由电容C1向LED负载供电。
在一个具体实施例中,该负载电流控制电路包括功率控制模块和负载受控开关管,该功率控制模块可以是运算放大器,该负载受控开关管可以是NMOS管M0,其中,NMOS管M0的漏极连接被控负载,运放放大器的输出端连接至NMOS管M0的栅极,NMOS管M0的源极连接电阻Rcs,同时连接至运放放大器的负相输入端,运算放大器的正相输入端接第二基准电压。
需要说明的是,本发明实施例中,负载电流控制电路具体实施方式,可以参照现有技术中其他实现被控负载电流控制的结构方式,其具体电路实现方式本发明实施例中在此不作严格限定,只要能够实现电路中电流控制的要求即可,本发明实施例中,不再赘述。
本发明实施例提供的上述实施方式中,通过使用集成电路工艺制造的NMOS管M1的寄生体二极管D1’,实现电容C1放电时的电路单向导通,不需要外接其他电路器件,降低了电路成本的同时,有利于减小驱动电路的体积,在生产制造时便于驱动电路中各个器件的合理布置。
实施例二
在一个具体的实施例中,参照图5所示,驱动电路还包括与充放电产生电路并联的单向电流通路,单向电流通路在所述储能器件放电的情况下导通。
作为本发明的一个具体实施方式,该充放电产生电路包括第一受控开关管和与第一受控开关管控制端连接的第一开关控制模块,第一开关控制模块用于控制第一受控开关管的通断。具体的可以是,储能器件为电容C1,充放电产生电路的第一受控开关管为NMOS管M1,本发明实施例二中,单向电流通路包括至少一个二极管D1。第一开关控制模块通过控制第一受控开关管M1,可实现充放电产生电路所产生电流的改变。
参照图6所示,交流输入电源连接整流模块,整流模块连接电容C1,电容C1连接充放电产生电路的Iin端,充放电产生电路的Iout端接地,充放电产生电路中NMOS管M1为隔离型MOS管,其中NMOS管M1的漏极连接该Iin端、源极连接该Iout端、栅极连接该第一开关控制模块,二极管D1并联在NMOS管M1的漏极和源极之间,LED负载与负载电流控制电路连接后与所述整流模块构成一电流回路。在该驱动电路中,当整流后母线电压Vin大于电容C1两端的电压时,第一开关控制模块控制NMOS管M1导通,产生由Iin端至Iout端方向的电流,整流模块、电容C1和NMOS管M1构成充电回路,由母线电压Vin向LED负载和电容C1供电;当整流后母线电压Vin小于电容C1两端的电压时,第一开关控制模块控制NMOS管M1关断,在二极管D1产生由Iout端至Iin端方向的电流,电容C1、LED负载、负载电流控制电路和二极管D1构成放电回路,由电容C1向LED负载供电。
需要说明的是,图6所示的驱动电路中,第一受控开关管为NMOS管仅为本发明实施例的一个具体实施方式,第一受控开关管还可以是其他电流控制开关管,例如,可以是双极性晶体管BJT(图中未示出),只要能够实现对电流的控制,以使得在电容C1充电时形成充电回路即可。
实施例三
在一些可选的实施例中,参照图7-图10所示的驱动电路,还包括与所述第一受控开关管连接的至少一个第一电阻。
在一个具体的实施例中,可以是,参照图7或图8所示,该至少一个第一电阻与第一受控开关管串联后形成的电路,与单向电流通路并联。
其中,图7所示的驱动电路为在实施例二中所描述的驱动电路的基础上,在NMOS管M1与Iout端之间连接第一电阻R1,在需要为电容C1充电时,NMOS管M1导通后,可以产生由Iin端至Iout端的电流,Iout端电流流过该第一电阻R1,从而流入或流出功率回路。通过第一电阻R1实现电流调节,实现对储能器件进行充电时的电流控制。
同样的,图8所示的驱动电路为在实施例一中所描述的驱动电路的基础上,在NMOS管M1与Iout端之间连接第一电阻R1,从而可以通过第一电阻R1实现电流调节,实现对储能器件进行充电时的电流控制。本实施例中使用与实施例一中相同的NMOS管M1,以达到相同或相似的技术效果。
关于图7或图8的具体的电路实现方案和执行的具体方式,已经在上述实施例一和实 施例二中进行了详细描述,此处将不做详细阐述说明。
在一个具体的实施例中,可以是,参照图9或图10所示,第一受控开关管与单向电流通路并联后,与该至少一个第一电阻连接。
其中,图9所示的驱动电路为在实施例二中所描述的驱动电路的基础上,在Iout端与接地端之间连接第一电阻R1,从而可以通过第一电阻R1实现电流调节,实现对储能器件进行充电时的电流控制。
同样的,图10所示的驱动电路为在实施例一中所描述的驱动电路的基础上,在Iout端与接地端之间连接第一电阻R1,从而可以通过第一电阻R1实现电流调节,实现对储能器件进行充电时的电流控制。在该驱动电路中,NOMS管M1的衬底SUB端(图中未示出)与源极连接,通过其寄生体二极管D1’代替图9中所述的二极管D1。与实施例一中的NMOS管M1相类似,本实施例中通过使用集成电路工艺制造的NMOS管M1的寄生体二极管D1’,实现电容C1放电时的电路单向导通,不需要外接其他电路器件,实现了降低电路成本的同时,有利于减小驱动电路的体积,在生产制造时便于驱动电路中各个器件的合理布置。
关于图9或图10的具体的电路实现方案和执行的具体方式,已经在上述实施例的一和实施例二中进行了详细描述,此处将不做详细阐述说明。
实施例四
基于实施例一至实施例三所描述的驱动电路,进一步的,本发明实施例中的第一开关控制模块,可以包括第一运算放大器;
第一运算放大器的正相输入端用于连接第一基准电压,第一运算放大器的负相输入端连接第一受控开关管的电流输出端;第一运算放大器的输出端连接第一受控开关管的控制端。
其中,当第一受控开关管为NMOS管时,第一受控开关管的电流输出端是指NMOS管的源极。
当在充放电产生电路与单向电流通路并联的情况下,第一受控开关管还可以是为双极性晶体管,此时,第一受控开关管的电流输出端是指双极性晶体管的发射极。
下面通过一个具体的实施例进行详细说明如下,参照图11所示的驱动电路,交流输入电源连接整流模块,整流模块连接LED负载,LED负载连接负载电流控制电路,该负载电流控制电路包括功率控制模块和负载受控开关管,该功率控制模块可以是第二运算放大器,该负载受控开关管可以是NMOS管M0,其中,NMOS管M0的漏极连接LED负载,第二 运放放大器AMP2的输出端连接至NMOS管M0的栅极,NMOS管M0的源极连接电阻Rcs,同时连接至第二运放放大器AMP2的负相输入端,第二运算放大器AMP2的正相输入端接第二基准电压VREF2。电容C1接整流后母线电压Vin,二极管D1与充放电产生电路并联。单向电流通路的二极管D1的阴极与充放电产生电路的Iin端连接,且连接到电容C1的一端;二极管阳极与充放电产生电路的Iout端相连。该充放电产生电路的NMOS管M1的漏极与Iin端相连,NMOS管M1的源极与第一电阻R1的一端相连,且同时连接至第一运算放大器AMP1的负相输入端,第一电阻R1的另一端与Iout相连;NMOS管M1的栅极与第一运算放大器AMP1的输出端相连;第一运算放大器AMP1的正相输入端连接第一基准电压VREF1。
在本发明实施例中,第一基准电压VREF1可以是为恒定值,则充放电产生电路所产生的电流Ichg=VREF1/R1为恒定值。第二基准电压VREF2也可以是恒定值,则负载电流Iload=VREF2/Rcs也为恒定值。该整流模块为全桥整流桥,则交流输入电流整流前电流Iac的绝对值|Iac|与整流后的桥后输入电流Imain的关系为:|Iac|=Imain,并且Imain=Ichg+Iload。
参照图11和图12所示,V C1为电容C1两端的电压,VD1为二极管D1的正向导通电压,Vac为交流输入电压,|Vac|为交流整流后的输入电压。通常V C1电压远大于二极管正向导通电压VD1,为了分析简单,以下描述中忽略了VD1的影响。当|Vac|大于V C1时,充放电产生电路所产生的电流Ichg对电容C1充电;当|Vac|小于V C1时,充电过程结束,此时D1正向导通,电容C1对LED负载放电,直至|Vac|再次大于V C1,如此循环。参照图12所示,T1表示电容C1处于充电阶段,此时|Vac|大于V C1,电容C1处于充电状态,由于Ichg是恒定电流,则电压V C1是线性升高的,电容C1在充电阶段的电压V C1的变化量为ΔV C1=(Ichg*T1)/C1;T2表示电容C1处于放电阶段,由于负载电流Iload是恒定值,所以电压V C1是线性下降状态,电容C1在放电阶段的电压V C1的变化量为ΔV C1=(Iload*T2)/C1。当电容C1充电与放电状态稳定后,充电状态的电压V C1的变化量与放电状态的电压V C1变化量相等,即达到电荷守恒,此时:(Ichg*T1)/C1=(Iload*T2)/C1,即Ichg*T1=Iload*T2,也就是说Ichg=Iload*T2/T1。由于交流整流后的输入电压|Vac|是周期变化的且周期为Tvac,如果交流整流后的输入电压|Vac|的电压周期稳定,那么电容C1的充电时间T1和放电时间T2也是周期性的,且充电时间与放电时间之和等于交流输入电压周期即T1+T2=Tvac。由以上分析,不难得出,根据负载电压V LED以及负载电流Iload,可通过设定ΔV C1、调整电容C1以及充电电流Ichg的大小可实现V C1≥V LED。由此可以看出桥后输入电流Imain的特 点为:当Vac小于V C1时,Imain为零,当Vac大于V C1时,Imain=Ichg+Iload。对于被控负载来说,由于V C1≥V LED,Iload始终为恒定值,且为VREF2/R CS,特别是对于LED负载,保证了LED负载中没有纹波电流,实现了无频闪。由于电容充电和放电的周期是稳定的,由此不难得出,在交流输入电压Vac的一个周期内,桥后输入电流Imain与交流输入电压Vac呈现公共对称轴关系,也就是说,交流输入电流与交流输入电压的波形一致性好,交流输入电源的PF高。
当然图11所示的上述实施例仅为本发明实施例的一个具体实现方式,在本发明实施例中,还可以是参照图13所示,第一受控开关管中的NMOS管M1采用非隔离型MOS管,通过其寄生体二极管D1’代替图11中所述的二极管D1。或者是,参照图14所示,第一受控开关管中的NMOS管M1采用隔离型MOS管,即NOMS管的衬底SUB端与源极连接,通过其寄生体二极管D1’代替图11中所述的二极管D1。
实施例五
基于实施五所描述的驱动电路,进一步的,该第一基准电压VREF1也可以是随着电路中的某个控制量的变化而变化,从而使充放电产生电路中所产生的电流随之发生变化。
作为本发明的一个具体实施方式,在图11所示的驱动电路的基础上,参照图15所示,第一基准电压为变化的电压,具体的,可以是,第一开关控制模块还包括:电流源IREF1、第二电阻R2、第三电阻R3、第二受控开关管和第三受控开关管;例如,第二受控开关管和第三受控开关管可以是同一规格的NMOS管M2和M3其中:
电流源IREF1与所述第二电阻R2串联后,与电容C1和NMOS管M1及第一运算放大器AMP1构成的充电回路并联;
第一运算放大器AMP1的正相输入端连接在电流源与第二电阻R2之间;
NMOS管M3的漏极经第三电阻R3连接整流后母线电压Vin,并且NMOS管M2和NMOS管M3的栅极连接以构成电流镜。
参照图15和图16所示,本实施例中充放电产生电路所产生的电流Ichg随母线电压的变化而变化。具体来说,可以是,图15和图16中,电流源IREF1与第二电阻R2连接,在第二电阻R2上产生上述的第一基准电压VREF1。当交流输入电压Vac较低时,NMOS管M3不导通,流过电流镜的电流Icomp为零,此时第一基准电压VERF1为IREF1*R2,充放电产生电路所产生的电流Ichg为VERF1/R1。当交流整流后的输入电压|Vac|升高过程中,NMOS管M2和M3导通,电流Icomp增大,此时第一基准电压VERF1为(IREF1-Icomp) *R2,充放电产生电路所产生的电流Ichg为(IREF1-Icomp)*R2/R1。交流输入电压Vac越高,Icomp越大,第一基准电压VERF1越小。
参照图16所示,若充放电产生电路所产生的电流Ichg恒定不变,在电路工作过程中,交流输入电压发生变化,如当交流输入电压Vac增大时,电容C1的充电时间增长,根据ΔV C1=(Ichg*T1)/C1,充电时间T1增大,ΔV C1必然增大,当充放电电荷重新平衡后,就会造成V C1与负载电压V LED的差值增大(V C1大于V LED),造成电源效率下降。反之,当交流输入电压Vac降低后,电容C1充电时间减小,根据ΔV C1=(Ichg*T1)/C1,充电时间T1减小,则ΔV C1必然减小,其结果是V C1与V LED的差值减小,甚至V C1小于V LED,造成频闪。通过图15所示的驱动电路,充放电产生电路所产生的电流Ichg随母线电压的变化而变化,当交流输入电压Vac增大后,充放电产生电路所产生的电流Ichg减小,则可使得V C1仍然保持接近负载V LED,从而使电源效率始终保持在较高的水平。当交流输入电压Vac减小后,充放电产生电路所产生的电流Ichg增大,则可使得V C1始终稍大于V LED,保证电路中没有纹波,从而避免频闪,从而使电源效率始终保持在较高的水平。
当然图15所示的驱动电路,仅为第一基准电压VREF1随着电路中的整流后母线电压的变化而变化的一个具体实施例,在其他实施例中,第一基准电压VREF1还可随着电路中的其他控制量的变化而变化,例如,参照图17所示,将图15所示的NMOS管M3的漏极经第三电阻R3连接被控负载的输出端,其他电路连接方式不变的情况下,可以实现第一基准电压VREF1随着电路中的整流后母线电压与负载电压的差值的变化而变化,以达到与图15所示的驱动电路相同的技术效果。
实施例六
在一个实施例中,可以是,该驱动电路中的充放电产生电路包括至少一个第四电阻和与该第四电阻并联的单向电流通路,该单向电流通路包括至少一个二极管D1。
参照图18所示,该充放电产生电路包括一个第四电阻R4和二极管D1,且所述二极管D1与所述第四电阻R4并联。
作为本发明实施例的一个具体实施方式,该储能器件可为电容C1,整流模块前接交流输入电源,整流模块后电容C1,电容C1的另一端连接充放电产生电路的第四电阻R4,利用交流输入电压为正弦波的特点,实现对电容C1进行特定时间的充电。充放电产生电路可使得当电容C1两端电压达到一定值V C1后自动停止充电;充电停止后,电容C1通过二极管D1对被控负载进行放电,这里的所说的被控负载例如是指LED负载,从而实现为被控 负载提供基本稳定的电压,对于LED负载而言,保证电路中没有纹波,可以实现无频闪,同时电容C1的充电电流与负载电流之和与交流输入电压在单周期内呈公共对称轴关系,从而使得驱动电路的PF高。在一些可选的实施例中,该第四电阻R4可以是可变电阻。
在上述实施例一至实施例六中的驱动电路中,负载电流控制电路可以是线性控制电路,也可以是开关型控制电路,例如参照图19所示的buck型电路、参照图20所示的fly-back型电路或参照图21所示的boost型电路。由于包括上述开关型控制电路的驱动电路的其他部分的电路实现方式与上述实施例中相似,具体的实现方式可以参照实施例一至实施例六中的详细描述,并且,需要说明的是,本发明实施例中,恒流控制模块的具体实施方式,可以参照现有技术中其他实现被控负载的恒流控制的结构方式,其具体电路实现方式本发明实施例中在此不作严格限定,只要能够实现电路中恒流控制的要求即可,本发明实施例中,不再赘述。
基于相同的发明构思,本发明实施例还提供了一种LED电路,包括LED负载和上述实施例中所描述的驱动电路。
关于上述实施例中的LED电路,其中驱动电路的执行操作和实现方案的具体方式,已经在上述实施例一至六中进行了详细描述,此处将不做详细阐述说明。
基于相同的发明构思,本发明实施例还提供了一种LED灯具,该灯具中包括上述的LED电路。
关于上述实施例中的LED灯具,其中LED电路的驱动电路的执行操作和实现方案的具体方式,已经在上述实施例一至六中进行了详细描述,此处将不做详细阐述说明。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种驱动电路,包括:负载电流控制电路和整流模块,其特征在于,还包括:储能器件和充放电产生电路,所述充放电产生电路与所述储能器件和负载电流控制电路连接;所述储能器件和充放电产生电路连接在所述整流模块的两端;
    所述充放电产生电路,用于在储能器件充电过程中,与所述储能器件形成充电回路,并控制所述储能器件充电电流的大小;以及在储能器件放电过程中,与所述储能器件形成放电回路。
  2. 如权利要求1所述的驱动电路,其特征在于,所述充放电产生电路包括第一受控开关管和与第一受控开关管控制端连接的第一开关控制模块,所述第一开关控制模块用于控制所述第一受控开关管的通断。
  3. 如权利要求2所述的驱动电路,其特征在于,还包括:与所述充放电产生电路并联的单向电流通路,所述单向电流通路在所述储能器件放电的情况下导通。
  4. 如权利要求3所述的驱动电路,其特征在于,所述单向电流通路包括:二极管,或,所述第一受控开关管的寄生体二极管。
  5. 如权利要求2或3所述的驱动电路,其特征在于,还包括:与所述第一受控开关管连接的至少一个第一电阻。
  6. 如权利要求5所述的驱动电路,其特征在于,所述至少一个第一电阻与所述第一受控开关管串联后形成的电路,与所述单向电流通路并联。
  7. 如权利要求5所述的驱动电路,其特征在于,所述第一受控开关管与所述单向电流通路并联后,与所述至少一个第一电阻连接。
  8. 如权利要求5所述的驱动电路,其特征在于,所述第一开关控制模块,包括第一运算放大器;
    第一运算放大器的正相输入端用于连接第一基准电压,第一运算放大器的负相输入端连接第一受控开关管的电流输出端;第一运算放大器的输出端连接第一受控开关管的控制端。
  9. 如权利要求8所述的驱动电路,其特征在于,所述第一受控开关管为NMOS管,所述第一受控开关管的电流输出端是指NMOS管的源极,或,
    在所述充放电产生电路与所述单向电流通路并联的情况下,所述第一受控开关管为双极性晶体管,所述第一受控开关管的电流输出端是指双极性晶体管的发射极。
  10. 如权利要求8所述的驱动电路,其特征在于,所述第一开关控制模块还包括:电 流源、第二电阻、第三电阻、第二受控开关管和第三受控开关管;
    所述电流源与所述第二电阻串联后,与所述储能器件和第一受控开关管构成的充电回路并联;
    所述第一运算放大器的正向输入端连接在电流源与所述第二电阻之间;
    所述第三受控开关管的漏极经所述第三电阻连接整流后母线电压,或,所述第三受控开关管的漏极用于经所述第三电阻连接被控负载的输出端;
    所述第二受控开关管和第三受控开关管连接以构成电流镜。
  11. 如权利要求1所述的驱动电路,其特征在于,还包括:单向电流通路,所述单向电流通路在所述储能器件放电的情况下导通;
    所述充放电产生电路包括至少一个第四电阻,所述单向电流通路与所述至少一个第四电阻并联。
  12. 如权利要求8或11所述的驱动电路,其特征在于,所述负载电流控制电路为线性控制电路、buck型电路、fly-back型电路或boost型电路。
  13. 一种LED电路,其特征在于,包括LED负载和权利要求1-12任一项所述的驱动电路。
  14. 一种LED灯具,其特征在于,所述LED灯具包括权利要求13所述的LED电路。
PCT/CN2020/082968 2019-12-20 2020-04-02 一种驱动电路、相关电路和装置 WO2021120445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20901972.8A EP4033863A4 (en) 2019-12-20 2020-04-02 DRIVE CIRCUIT, RELATED CIRCUIT AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911330642.7 2019-12-20
CN201911330642.7A CN113015287B (zh) 2019-12-20 2019-12-20 一种驱动电路、相关电路和装置

Publications (1)

Publication Number Publication Date
WO2021120445A1 true WO2021120445A1 (zh) 2021-06-24

Family

ID=76382183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082968 WO2021120445A1 (zh) 2019-12-20 2020-04-02 一种驱动电路、相关电路和装置

Country Status (3)

Country Link
EP (1) EP4033863A4 (zh)
CN (1) CN113015287B (zh)
WO (1) WO2021120445A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205963A (zh) * 2021-12-21 2022-03-18 欧普照明股份有限公司 线性led驱动电路、驱动方法
CN115021554B (zh) 2022-08-05 2022-11-08 浙江大学 适配器电路、滤波系统、ac-dc电源及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202652092U (zh) * 2012-04-28 2013-01-02 欧司朗股份有限公司 负载驱动电路
US20130343095A1 (en) * 2012-06-26 2013-12-26 Bcd Semiconductor Manufacturing Co., Ltd. Circuits and methods for increasing power factor of switch mode power supply
CN103857138A (zh) * 2012-12-07 2014-06-11 李文雄 集成光源的led驱动电源和led日光灯
CN107979899A (zh) * 2017-12-27 2018-05-01 苏州菲达旭微电子有限公司 一种线性工频泵馈电恒流电路及具有它的led灯
CN109348587A (zh) * 2018-12-14 2019-02-15 上海源微电子科技有限公司 一种具有高pf无频闪的led恒流驱动电路
CN110519881A (zh) * 2019-07-16 2019-11-29 深圳市稳先微电子有限公司 一种led驱动电路及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630175A (zh) * 2008-12-31 2010-01-20 曹先国 匹配电流镜
JP5629191B2 (ja) * 2010-05-28 2014-11-19 ルネサスエレクトロニクス株式会社 電源装置
KR20140130666A (ko) * 2011-12-16 2014-11-11 어드밴스드 라이팅 테크놀러지, 인크. 고역률 내구성 저비용 led 램프 개조형 시스템 및 방법
CN103945616B (zh) * 2014-04-30 2016-03-30 深圳市晟碟半导体有限公司 一种灯具及其led驱动装置
CN104093252B (zh) * 2014-07-16 2016-04-06 浙江大学 一种无频闪非隔离型led恒流驱动电路
CN104883780B (zh) * 2015-05-19 2017-06-23 深圳创维-Rgb电子有限公司 多通道双模式数字控制led驱动电路及led灯
CN106961768B (zh) * 2017-04-28 2019-02-19 南京微客力科技有限公司 一种主动式填谷电路模式的led线性恒流驱动电路
CN207505174U (zh) * 2017-10-27 2018-06-15 上海晶丰明源半导体股份有限公司 线电压补偿电路、驱动器、及led驱动电路和驱动系统
CN107844155A (zh) * 2017-11-10 2018-03-27 深圳睿舍智能科技有限公司 一种旁路并联恒流源电路
CN107995736B (zh) * 2017-12-15 2020-06-09 矽力杰半导体技术(杭州)有限公司 Led驱动电路、功率变换器和控制方法
CN109309992A (zh) * 2018-10-26 2019-02-05 苏州菲达旭微电子有限公司 一种半压供电的无纹波led电路
CN110572897B (zh) * 2019-08-20 2024-03-19 深圳市晟碟半导体有限公司 高功率因数无频闪的led调光电路、装置及调光方法
CN211606882U (zh) * 2019-12-20 2020-09-29 美芯晟科技(北京)有限公司 一种驱动电路、led电路和灯具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202652092U (zh) * 2012-04-28 2013-01-02 欧司朗股份有限公司 负载驱动电路
US20130343095A1 (en) * 2012-06-26 2013-12-26 Bcd Semiconductor Manufacturing Co., Ltd. Circuits and methods for increasing power factor of switch mode power supply
CN103857138A (zh) * 2012-12-07 2014-06-11 李文雄 集成光源的led驱动电源和led日光灯
CN107979899A (zh) * 2017-12-27 2018-05-01 苏州菲达旭微电子有限公司 一种线性工频泵馈电恒流电路及具有它的led灯
CN109348587A (zh) * 2018-12-14 2019-02-15 上海源微电子科技有限公司 一种具有高pf无频闪的led恒流驱动电路
CN110519881A (zh) * 2019-07-16 2019-11-29 深圳市稳先微电子有限公司 一种led驱动电路及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033863A4 *

Also Published As

Publication number Publication date
CN113015287A (zh) 2021-06-22
CN113015287B (zh) 2024-02-06
EP4033863A1 (en) 2022-07-27
EP4033863A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
US10187938B2 (en) Multichannel constant current LED controlling circuit and controlling method
CN100414825C (zh) 开关式电源电路以及随其配备的电子装置
CN101815388B (zh) Led灯具控制电路及led灯具
CN211606882U (zh) 一种驱动电路、led电路和灯具
TWI578843B (zh) 發光二極體驅動電路
CN102655706B (zh) 发光元件驱动器及其控制电路和控制方法
AU2016310330A1 (en) Switched-mode power supply and associated television
WO2021120445A1 (zh) 一种驱动电路、相关电路和装置
JP6210936B2 (ja) 自励共振型力率改善回路および光源駆動装置
TW201410066A (zh) 直流調光型led驅動電路
CN104377971A (zh) 一种基于电压反馈的反激直驱led电源电路及电视机
CN212413485U (zh) 一种实现线电压补偿的驱动电路及led电路
CN204231217U (zh) 一种基于电压反馈的反激直驱led电源电路及电视机
CN201489799U (zh) Led显示屏及其供电电路
CN211606883U (zh) 一种led驱动电路、led电路和灯具
CN107734784B (zh) 一种led恒流源系统的控制方法
CN113015288B (zh) 一种led驱动电路、相关电路和装置
CN112105124B (zh) 一种环路型低功耗恒流控制电路及方法
CN210429267U (zh) 一种led背光驱动电路
WO2020052404A1 (zh) 一种用于高功率因数无频闪led照明的驱动电路
CN113300440A (zh) 一种电池供电装置及其供电方法
CN105792436A (zh) 开关电源的控制器以及开关电源
CN101801135A (zh) 高效率低谐波led光学投影引擎驱动电源
CN114126148A (zh) 一种实现线电压补偿的驱动电路及led电路
CN114423118B (zh) 三合一调光电路及led灯光系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020901972

Country of ref document: EP

Effective date: 20220419

NENP Non-entry into the national phase

Ref country code: DE