WO2021120033A1 - 振动信号的处理方法、装置、设备及可读介质 - Google Patents

振动信号的处理方法、装置、设备及可读介质 Download PDF

Info

Publication number
WO2021120033A1
WO2021120033A1 PCT/CN2019/126169 CN2019126169W WO2021120033A1 WO 2021120033 A1 WO2021120033 A1 WO 2021120033A1 CN 2019126169 W CN2019126169 W CN 2019126169W WO 2021120033 A1 WO2021120033 A1 WO 2021120033A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
target single
shot
signals
Prior art date
Application number
PCT/CN2019/126169
Other languages
English (en)
French (fr)
Inventor
李建其
向征
张玉蕾
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/126169 priority Critical patent/WO2021120033A1/zh
Publication of WO2021120033A1 publication Critical patent/WO2021120033A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present invention relates to the technical field of signal processing and vibration signal processing and control, and in particular to a vibration signal processing method, device, equipment and readable medium.
  • signals that drive linear motors for tactile feedback can be divided into long signals and short signals according to their duration. Considering that there are various types of scenes requiring tactile feedback, a single long signal or short signal cannot achieve multiple tactile feedback. Therefore, it is necessary to select, combine and design the long signal and short signal to form a variety of vibration signals to meet Different tactile needs.
  • the present invention proposes a vibration signal processing method, device, computer equipment, and readable medium.
  • a vibration signal processing method includes:
  • a target vibration signal is generated for driving the motor to vibrate.
  • a processing device for vibration signals comprising:
  • Acquisition unit used to acquire target combined signal data, perform segmentation processing on the target combined signal data, and acquire multiple target single signals;
  • Determining unit used to separately determine the characteristic parameter corresponding to each of the target single-shot signals, and the characteristic parameter includes a signal duration interval;
  • Combination unit used to generate target signal description parameters corresponding to the target combined signal data according to the characteristic parameters corresponding to each of the target single signals;
  • Generating unit used to generate a target vibration signal for driving the motor to vibrate according to the target signal description parameter.
  • a computer device includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps:
  • a target vibration signal is generated for driving the motor to vibrate.
  • a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor executes the following steps:
  • a target vibration signal is generated for driving the motor to vibrate.
  • the beneficial effect of the present invention is that different types of target single signals (long signal and short signal) are cut out according to the acquired combined signal data, and the characteristic parameters of the target single signals are extracted according to different signal types. These characteristic parameters determine the target description parameters corresponding to the above-mentioned combined signal data, and finally the target vibration signal is designed to drive the motor to vibrate according to these target description parameters. That is to say, the present invention determines the characteristic parameters corresponding to the basic unit (long signal type or short signal type single signal) in signal design, and realizes that when various types of signals need to be combined for tactile feedback, It can be extracted and generated directly based on the above-mentioned characteristic parameters.
  • the storage of the signal data also takes up less space, which solves the problem of unintuitive data and storage in the processing and generation of vibration signals.
  • the inefficiency caused by the excessive space occupied by the original data improves the processing efficiency of the vibration signal.
  • Figure 1 shows a flowchart of a vibration signal processing method in an embodiment
  • Figure 2 shows a schematic diagram of the waveform of the target combined signal in an embodiment
  • Figure 3 shows a flow chart of segmentation processing on target combined signal data in an embodiment
  • FIG. 4 shows a flowchart of determining at least one signal start point and at least one signal end point corresponding to the target combined signal data in an embodiment
  • FIG. 5 shows a flowchart of determining characteristic parameters corresponding to a single target signal in an embodiment
  • Figure 6 shows a flow chart of determining the envelope corresponding to the target single signal in an embodiment
  • FIG. 7 shows a flowchart of determining the similarity between the target reference signal corresponding to the characteristic parameter and the target single signal in another embodiment
  • FIG. 8 shows a flowchart of generating target signal description parameters corresponding to the target combined signal in an embodiment
  • Figure 9 shows a structural block diagram of a vibration signal processing device in an embodiment
  • Fig. 10 shows an internal structure diagram of a computer device in an embodiment.
  • the embodiment of the present invention proposes a A vibration signal processing method.
  • the execution of the method may be based on a computer processing device, which includes electronic devices such as PCs and smart phones.
  • Fig. 1 shows a flowchart of a vibration signal processing method in an embodiment.
  • the implementation process of the vibration signal processing method proposed by the present invention may at least include the steps S1022-S1028 shown in FIG. 1. The above steps will be described in detail below with reference to FIG. 1.
  • step S1022 the target combined signal data is obtained, and the target combined signal data is segmented to obtain multiple target single signals.
  • the target combined signal and the multiple target single-shot signals cut out here may be a schematic diagram of signal waveforms as shown in FIG. 2.
  • Figure 2 shows a schematic diagram of the waveform of the target combined signal in an embodiment.
  • the step of performing segmentation processing on the target combined signal data to obtain multiple target single signals may also include steps S1032-S1034 shown in FIG. 3, which will be specifically described below with reference to FIG. 3.
  • Fig. 3 shows a flowchart of segmentation processing on target combined signal data in an embodiment.
  • step S1032 at least one signal start point and at least one signal end point corresponding to the target combined signal data are determined.
  • the combined signal data can include intermittent or continuous signal data within a period of time, and these signals can be signals with a certain regular change (such as a sine wave signal) or no period.
  • the magnitude of and short-term letters of variable duration are different. Therefore, it is necessary to segment the target combined signal according to certain standards to determine what the combined signal contains For each smallest signal segment unit (that is, the target single signal), the characteristic parameters are analyzed according to the different types of each signal segment unit.
  • step S1032 may at least include step S1042 to step S1044 as shown in FIG. 4.
  • Fig. 4 shows a flowchart of determining at least one signal start point and at least one signal end point corresponding to the target combined signal data in an embodiment.
  • step S1042 in the target combined signal data, search for a signal segment whose duration is greater than a preset first threshold and the absolute mean value of the signal value within the duration is greater than a preset second threshold, and obtain the signal The starting point of the segment serves as the starting point of the signal.
  • the first threshold here can be 5ms
  • the second threshold is 0.1 .
  • the signal segment whose duration is greater than a certain value (considering that the general signal duration is 25ms-100ms or more), and the average value of the sum of the absolute value of each signal point contained in the signal segment is greater than Only a certain signal amount threshold can the signal segment identify and show a signal unit in a target combined signal data (that is, a target single-shot signal).
  • step S1044 in the target combined signal data, search for a signal segment whose duration is greater than a preset third threshold and the mean absolute value of the signal value within the duration is less than a preset fourth threshold, and obtain The end point of the signal segment serves as the end point of the signal.
  • the third threshold here can be 5ms, and the fourth threshold can be 0.01. It should be noted that the fourth threshold here can be smaller than the above-mentioned second threshold. This is because The signal volume at the end of the signal is generally significantly smaller than the signal volume at the beginning and the middle of the signal segment.
  • step S1034 at least one signal segment is determined according to the at least one signal start point and the at least one signal end point, and the signal segment is used as the target single signal.
  • step S1024 a characteristic parameter corresponding to each of the target single signals is determined respectively, and the characteristic parameter includes a signal duration interval.
  • Fig. 5 shows a flowchart of determining characteristic parameters corresponding to a single target signal in an embodiment.
  • step S1052 the signal duration of the at least one target single signal is determined respectively, and the signal type of each target single signal is determined according to the signal duration of each target single signal.
  • the signal types include short signal type and long signal type
  • the signal duration threshold is 50 ms, that is, the signal duration of the short signal type is less than 50 ms, so The signal duration of the long signal type is greater than or equal to 50ms.
  • the signal with a definite and short duration usually less than 50ms
  • the signal shape is determined and non-periodic. It is called a short signal.
  • the amount of single signal data of this short signal type is not large, so in practical applications, the signal data of the short signal type can be directly stored in the memory chip of the electronic device to be called when the motor needs to be driven.
  • the present invention extracts the characteristic parameters of different short signals and packs them together to create a short signal effect library.
  • the short signal corresponding to the characteristic parameters
  • Name and other identification information can be used to call the electrical signals in the library, so that on the one hand, the purpose of reuse can be achieved, making the calling speed faster.
  • the relevant data in the signal generation is more intuitive (by corresponding short signals) To the identification information).
  • the problems with the processing of long-signal signals and the corresponding improvement method proposed by the present invention are: Although long-signal signals do not need to be stored to be called, the efficiency of real-time generation of long signals is low and consumes more resources.
  • the present invention extracts some core characteristic parameters correspondingly to describe (simulate) the signal, so that the corresponding long signal can be generated more efficiently.
  • step S1054 for each target single-shot signal, if the signal type of the target single-shot signal is a short signal, calculate the similarity between the target single-shot signal and the standard short signal in the preset signal database to obtain The characteristic parameter corresponding to the standard short signal with the highest similarity is used as the characteristic parameter of the target single signal, and the characteristic parameter includes the identification information of the standard short signal.
  • the comparison of the similarity between the target single signal and the standard short signal may be based on the comparison of the overall characteristics related to the signal, such as the mean value of the signal amount, the total value of the signal amount, and the signal delay. That is, only when the similarity of the two short signals reaches a certain level, the vibration effect produced by the standard short signal in the standard library can be considered to be consistent with the original target single signal (short signal type). , So it can be replaced storage and simulation generation.
  • the identification information here refers to the unique signal identification code or effect name when the standard short signal is stored in the signal database, so that when you need to directly call a certain type of short signal, you can generate the vibration effect according to the desired More intuitive and convenient to find.
  • a short signal there can be a short signal, and its corresponding identification information can be "pop” (which can be named after the corresponding vibration effect) or "S01" (the key value of the corresponding short signal).
  • other characteristic parameters may also be the signal name, signal amount, signal duration, signal duration interval (such as [0, 20.0]) of the short signal, etc.
  • step S1056 if the signal type of the target single-shot signal is a long signal, an envelope of the target single-shot signal is generated, and the characteristic parameters of the target single-shot signal are determined according to the inflection point information of the envelope.
  • the steps for determining the envelope may include at least the steps S1062-S1064 shown in FIG. 6.
  • Fig. 6 shows a flow chart of determining the envelope corresponding to the target single signal in an embodiment.
  • step S1062 at least one signal period corresponding to the target single-shot signal is determined, and peak signal points and/or bottom signal points of the target single-shot signal in the at least one signal period are acquired.
  • the general long signal is a sine wave signal with a constant period and fluctuating amplitude (refer to the example of the signal waveform in Figure 1). Therefore, the fluctuation period of the sine wave signal is determined first, so as to extract the target characteristics of a single long signal in the smallest fluctuation unit, which can improve the efficiency of signal processing and reduce repetitive work.
  • step S1064 an envelope of the target single-shot signal is generated according to the peak signal point/bottom signal point.
  • the envelope in signal processing refers to connecting the peak points of a high-frequency signal for a period of time, and the obtained upper (positive) line and the lower (Negative) Two lines of one line.
  • the envelope reflects the amplitude change curve of the high-frequency signal.
  • these two envelopes are parallel lines.
  • the amplitude is fluctuating, it is particularly important to determine the envelope of the long signal (that is, the change in amplitude).
  • the extreme signal points of the target single signal can be used as the basis for drawing the envelope.
  • step S1056 for determining the characteristic parameter of the target single-shot signal according to the inflection point information of the envelope.
  • the inflection point of the envelope is also an extreme signal point, and according to the characteristic information of multiple inflection points in a period (such as the tangent slope of the inflection point, the time interval of the inflection point, etc.), the target in a period can be determined correspondingly
  • the signal strength information of the long signal including signal average value and signal change information), signal frequency, signal increase duration, signal decrease duration, etc. are used as corresponding characteristic parameters.
  • each characteristic parameter that can be determined is as follows: “Duration (signal duration)”: 200, “Strength (signal duration)”: 0.8, “Frequency (signal frequency)”: 0.8, “RiseTime (signal increase) Large duration)”: 0.5, “BreakTime (signal reduction duration)”: 0.6.
  • FIG. 7 shows a flow chart of determining the similarity between the target reference signal corresponding to the characteristic parameter and the target single-shot signal in another embodiment.
  • step S1072 the target reference signal corresponding to the characteristic parameter is determined according to a preset signal generation algorithm.
  • the signal generation algorithm here can be that according to the signal and formula of the sine wave, the above parameters are combined to generate the single signal of the long signal type corresponding to the different characteristic parameters at a certain time interval, so as to obtain a single signal with the target.
  • the target reference signal corresponding to the second long signal to generate a vibration effect corresponding to the original long signal.
  • step S1074 the similarity between the target reference signal and the target single signal is calculated, and it is judged whether the similarity meets a preset similarity threshold.
  • the target single-shot signal is a short signal
  • the standard short signal with the highest similarity is used as the short signal matched by the target single-shot signal.
  • the principle is that the target reference signal and the target reference signal are calculated here.
  • the similarity of the target single signal is to determine whether the similarity meets the preset similarity threshold, and also to determine that the simulated description signal matches the vibration effect of the original long signal.
  • the similarity may be the magnitude of the root-mean-square error between the sine wave signal generated by the above-mentioned characteristic parameters and the target field time signal in one period.
  • step S1026 a target signal description parameter corresponding to the target combined signal data is generated according to the characteristic parameter corresponding to each target single signal.
  • the specific step S1026 may also include steps S1082-S1084 shown in FIG. 8, which are described as follows in conjunction with FIG. 8.
  • FIG. 8 shows a flowchart of generating target signal description parameters corresponding to the target combined signal in an embodiment.
  • the purpose of the steps here is that after determining the signal characteristic parameters corresponding to each signal segment contained in the target combined signal data according to its type, in order to facilitate the corresponding storage and recording, the entire target is restored in a certain order.
  • the signal characteristic parameter corresponding to the combined signal should be stored, and the combination of this characteristic parameter is used as the target description parameter combination corresponding to the target combined signal here.
  • step S1082 the signal duration interval of each target single-shot signal is acquired, and the timing information between each target single-shot signal is determined according to the signal duration interval.
  • timing information refers to the sequence of the time axis of each target single signal to sequentially restore the characteristic parameter data corresponding to the combined signal.
  • step S1084 the target signal description parameter is generated according to the characteristic parameter and timing information of the target single signal.
  • the target description parameter corresponding to an optional target combined signal data can be as follows:
  • the target description parameter here indicates that the target combined signal data contains two single signals, a long signal (signal type is denoted as sine) and a short signal (signal type is denoted as short). Furthermore, the duration of the long signal is 206ms, and the corresponding envelope has 4 inflection points.
  • the short signal s signal name is pop, the duration is 16ms, the signal average is 1, and there is no envelope.
  • step S1028 a target vibration signal is generated according to the target signal description parameter, and the target vibration signal is used to drive the motor to vibrate.
  • the method of generating the target vibration signal according to the target signal description parameters can be:
  • the target short signal is directly called by the key value of the standard short signal with the highest similarity to the target short signal, and when the long signal needs to be called, Then, according to the characteristic parameters corresponding to the long signal determined in the above steps, the long signal with the highest similarity is generated.
  • the above-mentioned long/short signals are combined in a certain way according to the desired effect (such as the vibration feeling gradually increases and then gradually decreases) as the target vibration signal.
  • Fig. 9 shows a structural block diagram of a vibration signal processing device in an embodiment.
  • the vibration signal processing device 1090 may include: an acquiring unit 1092, a determining unit 1094, a combining unit 1096, and a generating unit 1098.
  • the acquiring unit 1092 is configured to acquire target combined signal data, perform segmentation processing on the target combined signal data, and acquire multiple target single signals;
  • the determining unit 1094 is configured to respectively determine a characteristic parameter corresponding to each of the target single signals, and the characteristic parameter includes a signal duration interval;
  • the combination unit 1096 is configured to generate a target signal description parameter corresponding to the target combined signal data according to the characteristic parameter corresponding to each target single signal;
  • the generating unit 1098 is configured to generate a target vibration signal for driving the motor to vibrate according to the target signal description parameter.
  • Fig. 10 shows an internal structure diagram of a computer device in an embodiment.
  • the computer device may specifically be a terminal or a server.
  • the computer device includes a processor, a memory and a communication interface, a processing module, and a control module connected through a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and may also store a computer program.
  • the processor can enable the processor to implement a vibration signal processing method.
  • a computer program can also be stored in the internal memory, and when the computer program is executed by the processor, the processor can execute the vibration signal processing method.
  • FIG. 10 is only a block diagram of a part of the structure related to the solution of the present invention, and does not constitute a limitation on the computer device to which the solution of the present invention is applied.
  • the specific computer device may be Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the following steps:
  • a target vibration signal is generated for driving the motor to vibrate.
  • a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor executes the following steps:
  • a target vibration signal is generated for driving the motor to vibrate.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明实施例提供了一种振动信号的处理方法、装置、系统及可读介质,其中,所述方法包括获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;根据所述目标信号描述参数生成目标振动信号。因此本发明弥补了在进行振动信号的设计时,直接采用各种原始信号进行组合在占用内存较多的同时数据不直观的缺陷,提高了振动信号的处理的效率。

Description

振动信号的处理方法、装置、设备及可读介质 技术领域
本发明涉及信号处理与振动信号的处理控制技术领域,尤其涉及一种振动信号的处理方法、装置、设备及可读介质。
背景技术
在手机、平板电脑、穿戴设备以及汽车中控等各种电子设备的使用中,为了增强人机交互的真实感,越多越多地应用到了触觉反馈,而为了实现触觉反馈,一般要用到能将电能直接转换成运动机械能的线性马达作为实施载体。
技术问题
而一般驱动线性马达进行触觉反馈的信号根据时长可以分为长信号与短信号两种。考虑到需要进行触觉反馈的场景种类多样,单一的长信号或者短信号不能实现多种触觉的反馈,因此需要对长信号和短信号进行选择、组合和设计,以此形成多样的振动信号,满足不同的触觉需要。
在进行振动信号的设计时,一般是将多个不同形状的短信号或长组合信号,以此输出种类多样的触觉反馈。但现有技术中是将不同时长的信号直接进行组合,这样做一方面在存储作为组合信号单元的长/短信号时,信号数据存储占用空间过大,另一方面组合信号单元的数据不直观,这些都影响了振动信号的处理和生成效率。
技术解决方案
基于此,有必要针对上述问题,本发明提出了一种振动信号的处理方法、装置、计算机设备及可读介质。
一种振动信号的处理方法,所述方法包括:
获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
一种振动信号的处理装置,所述装置包括:
获取单元:用于获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
确定单元:用于分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
组合单元:用于根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
生成单元:用于根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:
获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:
获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
有益效果
本发明的有益效果在于:通过根据获取到的组合信号数据切出不同类型(长信号和短信号)的目标单次信号,根据不同的信号类型分别提取出上述目标单次信号的特征参数,根据这些特征参数确定出上述组合信号数据对应的目标描述参数,最后根据这些目标描述参数设计出目标振动信号用于驱动马达振动。也就是说,本发明通过确定出信号设计时的基本单元(长信号类型或者短信号类型的单次信号)所对应的特征参数,实现了在需要组合各种类型的信号来进行触觉反馈时,可以直接根据上述特征参数来进行提取和生成,在组合信号的生成更加直观和便利的同时,信号数据的存储上也占用更少空间,解决了在振动信号的处理与生成时数据不直观以及存储原始数据占用空间过大所导致的低效,提高了振动信号的处理效率。
附图说明
图1示出了一个实施例中振动信号的处理方法的流程图;
图2示出了一个实施例中目标组合信号的波形示意图;
图3示出了一个实施例中对目标组合信号数据进行切分处理的流程图;
图4示出了一个实施例中确定所述目标组合信号数据对应的至少一个信号起始点和至少一个信号结束点的流程图;
图5示出了一个实施例中确定目标单次信号对应的特征参数的流程图;
图6示出了一个实施例中确定目标单次信号对应的包络线的流程图;
图7示出了另一个实施例中对所述特征参数所对应的目标参考信号与目标单次信号之间进行相似度判断的流程图;
图8示出了一个实施例中生成与目标组合信号对应的目标信号描述参数的流程图;
图9示出了一个实施例中振动信号的处理装置的结构框图;
图10示出了一个实施例中计算机设备的内部结构图。
本发明的实施方式
下面结合图1至图10对本发明作进一步说明。
为了解决现有技术方案中的振动信号的处理中根据原始信号数据进行设计的,数据不直观且占用存储空间较大导致的振动信号的处理和生成低效的问题,本发明实施例提出了一种振动信号的处理方法,该方法的执行可以是基于一计算机处理设备,该设备包括PC、智能手机等电子设备。
如图1所示,图1示出了一个实施例中振动信号的处理方法的流程图。
本发明提出的振动信号的处理方法的实施流程至少可以包括图1示出的步骤S1022-S1028,下面结合图1对上述各步骤进行具体说明。
在步骤S1022中,获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号。
首先,此处的目标组合信号以及切分出的多个目标单次信号可以是如图2所示的信号波形示意图。图2示出了一个实施例中目标组合信号的波形示意图。
具体的,对所述目标组合信号数据进行切分处理,以此获取多个目标单次信号的步骤,还可以包括图3中示出的步骤S1032-S1034,下面结合图3具体进行说明。图3示出了一个实施例中对目标组合信号数据进行切分处理的流程图。
在步骤S1032中,确定所述目标组合信号数据对应的至少一个信号起始点和至少一个信号结束点。
容易理解的是,组合信号数据可以是包含了一段时间区间内的间断或者连续的信号数据,而这些信号可以是以一定规律变化的周期一定的信号(如正弦波信号),也可以是无周期的幅值以及时长不定的短时信。明显的,不同类型的信号的描述以及表征方法(即其所对应的特征参数的提取方法)是不同的,因此需要按照一定的标准对目标组合信号进行切分,从而确定出组合信号中包含的各个最小的信号片段单元(即目标单次信号),按照各个信号片段单元的不同类型进行特征参数的分析。
因此,步骤S1032又可以至少包括如图4中示出的步骤S1042-步骤S1044。图4示出了一个实施例中确定所述目标组合信号数据对应的至少一个信号起始点和至少一个信号结束点的流程图。
在步骤S1042中,在所述目标组合信号数据中,查找持续时长大于预设的第一阈值且在该持续时长内信号值的绝对值均值大于预设的第二阈值的信号片段,获取该信号片段的起始点作为所述信号起始点。
考虑到实际应用中,用一定范围的电信号驱动线性马达的目的是为了产生一定程度的振感从而进行触觉反馈等提示,因此,此处的第一阈值可以是5ms,而第二阈值是0.1。
也就是说,只有持续时长大于一定值(考虑到一般的信号持续时长为25ms-100ms以上)的信号片段,并且该信号片段包含的每一个信号点的信号量的绝对值的总和的平均值大于一定的信号量阈值,才将该信号片段识别示出了一个目标组合信号数据中的一个信号单元(即一个目标单次信号)。
以及,在步骤S1044中,在所述目标组合信号数据中,查找持续时长大于预设的第三阈值且在该持续时长内信号值的绝对值均值小于预设的第四阈值的信号片段,获取该信号片段的结束点作为所述信号结束点。
同样的,针对信号结束点的判断,此处的第三阈值可以是5ms,而第四阈值可以是0.01,需要说明的是此处的第四阈值可以是小于上述的第二阈值,这是因为信号结束点处的信号量一般会明显小于信号片段起始以及信号片段中部的信号量。
在步骤S1034中,根据所述至少一个信号起始点和所述至少一个信号结束点确定至少一个信号片段,将所述信号片段作为所述目标单次信号。
结合前一步骤的说明,也就是将一个信号起始点和信号结束点之间的间隔出的目标组合信号的一个信号片段作示出了一个对应的目标单次信号。
在步骤S1024中,分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间。
首先,具体的确定此处的特征参数的过程可以包括图5示出的S1052-S1056。图5示出了一个实施例中确定目标单次信号对应的特征参数的流程图。
在步骤S1052中,分别确定所述至少一个目标单次信号的信号持续时长,根据每一个目标单次信号的信号持续时长确定每一个所述目标单次信号的信号类型。
其中,在预设了信号持续时长阈值的情况下,所述信号类型包括短信号类型和长信号类型,所述信号持续时长阈值为50ms,即所述短信号类型的信号持续时长小于50ms,所述长信号类型的信号持续时长大于等于50ms。
下面针对此处的信号类型的定义以及作用进行具体的说明:
实际应用中,为了达到不同的振动方式以及效果,各种类型的马达在不同应用场景中所对应的驱动电信号存在较大的差异。
而具体的,在用于产生触觉反馈的线性马达的驱动信号的生成中,为了实现多样的振动效果和变化方式,往往是采取将不同类型的信号进行组合从而设计出最终的驱动信号。
一般存在两种信号特征和对应的振动效果都差别较大的信号,一种是时长确定且较短(通常小于50ms),信号形状确定且为非周期性变化的信号,称之为短信号,这种短信号类型的单个信号数据量不大,因此在实际应用中,可以直接将短信号类型的信号数据存储在电子设备的存储芯片中以在需要驱动马达时进行调用。
与此同时,对应的还存在另一种持续时长更长(大于50ms,一般在100ms以上)的单一频率,幅值不定的多周期变化的正弦波信号,我们称之为长信号。由于这样的长信号一般包含的数据量较大,如果直接存储会占用较大的存储空间。因此当某应用场景需要长信号进行驱动时,区别于需要短信号时直接从存储中取出某个所需的短信号,现有技术中会实时生成对应所需的长信号类型的电信号,并将生成的长信号数据由驱动芯片输出给马达进行驱动。
也就是说,对于短信号和长信号,它们所对应的特征参数最终都是以数据的形式存储,是在需要驱动马达直接进行使用的数据。
由此可见,针对短信号的处理的存在的问题和本发明提出的对应改进方法为:在实际操作中,虽然单个短信号的信号量较小,但是在应用场景多变,存储的短信号数量较多时,存储所有所需的短信号所占用的内存之大仍然是不可忽视,由此会增加信号处理的成本、降低信号处理的效率。
因此,不同于存储和调用原始的每一个单次短信号,本发明通过将不同的短信号的特征参数提取出来,打包到一起,创建一个短信号的效果库,根据与特征参数对应的短信号名称等标识信息来调用库中的电信号,这样一方面可以达到重复利用的目的,使得调用速度更快,与此同时,另一方面信号生成中的相关数据也更加直观(通过将短信号对应到标识信息上)。
针对长信号类型的信号的处理存在的问题以及本发明提出的对应改进方法为:虽然长信号类型的信号不需要存储以被调用,但是实时生成长信号的效率较低且耗费资源较多。
因此,为了能够更加高效地生成或调用对应的信号,本发明通过对应提取出一些核心的特征参数用来描述(模拟)这个信号,从而可以更加高效地生成对应所需的长信号。
最后,又由于短信号和长信号的信号量等,因此其对应的能够表征其信号特性的描述参数的提取方法也存在差异,下面就针对不同类型的目标单次信号的特征参数的提取方法分别进行说明。
在步骤S1054中,针对每一个目标单次信号,若该目标单次信号的信号类型为短信号,计算该目标单次信号与预设的信号数据库中的标准短信号之间的相似度,获取相似度最高的标准短信号所对应的特征参数作为该目标单次信号的特征参数,所述特征参数包括标准短信号的标识信息。
首先,目标单次信号与标准短信号之间的相似度的比较可以是基于信号量均值、信号量总值、信号延时等与信号相关的总体特征的比较。也就是,只有两个短信号的相似度达到了一定程度,才可以认为标准库中的标准短信号所产生的振动效果与原始的目标单次信号(短信号类型)所应产生的效果是一致的,因此可以进行替换存储和模拟生成。
而此处的标识信息指的是标准短信号在信号数据库中存储时所唯一对应的信号标识码或者效果名称等,这样在需要直接调用某种类型的短信号,可以根据想要生成的振动效果更加直观且方便的找到。
举例说明,可以存在一个短信号,其对应的标识信息可以是“pop”(可以以对应的振动效果来命名)或者“S01”(对应的短信号的键值)。
另外,可选的,其他的特征参数还可以是如短信号的信号名称、信号量、信号时长、信号持续时间区间(如[0,20.0])等。
以及,在步骤S1056中,若该目标单次信号的信号类型为长信号,生成该目标单次信号的包络线,根据所述包络线的拐点信息确定该目标单次信号的特征参数。
首先,在信号类型为长信号时,此处的包络线的确定步骤可以至少包括图6示出的步骤S1062-S1064。图6示出了一个实施例中确定目标单次信号对应的包络线的流程图。
在步骤S1062中,确定所述目标单次信号对应的至少一个信号周期,获取所述至少一个信号周期内所述目标单次信号的峰值信号点和/或谷值信号点。
结合前述步骤中对长信号的特征的说明,一般的长信号是周期一定、幅值波动的正弦波信号(参考图1中的信号波形的示例)。因此首先确定正弦波信号的波动周期,以此在最小的一个波动单元内提取出单次长信号的目标特征,由此可以提高信号处理的效率,减少重复工作。
在步骤S1064中,根据所述峰值信号点/谷值信号点生成该目标单次信号的包络线。
首先,结合图1中的波形示例,包络线(envelope)在信号处理中,指的是将一段时间长度的高频信号的峰值点连线,所得到的上方(为正)一条线和下方(为负)一条线的这两条线。
可以看出包络线反映的是高频信号幅度变化曲线。对于等幅高频信号,这两条包络线就是平行线。而在长信号的特征提取中,由于其周期是一定的,但振幅是波动的,因此确定长信号的包络线(即幅值变化情况)是尤为重要的。
根据包络线的定义和长信号的波形特点,可以将目标单次信号的极值信号点(即包括峰值信号点/谷值信号点)作为包络线绘制的依据。
回到对步骤S1056根据所述包络线的拐点信息确定该目标单次信号的特征参数的说明。
首先,包络的拐点也就是一个极值信号点,而根据一个周期内的多个拐点的特征信息(如该拐点的切线斜率、该拐点所在的时间区间等)可以对应确定出一个周期内目标长信号的信号强度信息(包括信号平均值、信号变化信息)、信号频率、信号增大时长、信号减小时长等作为对应的特征参数。
针对可以确定出的各项特征参数的具体内容举例如下:“Duration(信号时长)”:200,“Strength(信号时长)”:0.8,“Frequency(信号频率)”:0.8,“RiseTime(信号增大时长)”:0.5,“BreakTime(信号减小时长)”:0.6。
容易理解的是,在长信号为正弦波的情况下,根据上述这些特征参数就可以重新生产一个对应的模拟描述信号。
需要说明的是,在利用特征参数来描述和模拟信号,可能会存在不准确或者关键信息遗失的地方,因此需要进行特征参数所对应生成的信号与原始信号之间的相似度的判断。即要判断上述步骤所确定出的这些特征参数是否能够表征出原始的单次长信号与振动效果相关的全部或者理想范围中的大部分信号特征,以此能够产生原始的目标单次长信号所对应的振动效果。
因此,在根据所述包络线的拐点信息确定该目标单次信号的特征参数的步骤之后,还包括图7示出的步骤S1072-S1074,结合图7说明如下。图7示出了另一个实施例中对所述特征参数所对应的目标参考信号与目标单次信号之间进行相似度判断的流程图。
在步骤S1072中,按照预设的信号生成算法确定与所述特征参数对应的目标参考信号。
此处的信号生成算法可以是,按照正弦波的信号与的公式,将上述参数将不同特征参数对应的长信号类型的单次信号按照一定的时间间隔进行组合生成,以此得到一个与目标单次长信号对应的目标参考信号,以产生与原始长信号对应的振动效果。
在步骤S1074中,计算所述目标参考信号与所述目标单次信号的相似度,对所述相似度是否满足预设的相似度阈值进行判断。
与前述步骤中,在目标单次信号为短信号的情况下,将相似度最高的标准短信号作为该目标单次信号匹配的短信号的原理类似的是,此处计算所述目标参考信号与所述目标单次信号的相似度,对所述相似度是否满足预设的相似度阈值进行判断,也是为了确定所模拟出的描述信号与原始的长信号的振动效果是匹配的。
具体的,相似度可以是利用上述特征参数所生成的正弦波信号与目标场次长信号在一个周期内各个信号点之间的均方根误差的大小。
在步骤S1026中,根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数。
具体的步骤S1026还可以包括图8示出的步骤S1082-S1084,结合图8说明如下。图8示出了一个实施例中生成与目标组合信号对应的目标信号描述参数的流程图。
首先,此处步骤的用意在于,在确定出了目标组合信号数据所包含的各个信号片段依据其类型所对应的信号特征参数之后,为了方便对应进行存储和记录,按照一定的顺序还原出整个目标组合信号所对应应该存储的信号特征参数,以此将这个特征参数的组合对应作为此处的目标组合信号对应的目标描述参数组合。
具体的,在步骤S1082中,获取每一个所述目标单次信号的信号持续时间区间,根据所述信号持续时间区间确定各个所述目标单次信号之间的时序信息。
需要说明的是,此处的时序信息也就是指按照各个目标单次信号的时间轴顺序,以此依次还原出组合信号所对应的特征参数数据。
在步骤S1084中,根据所述目标单次信号的特征参数以及时序信息生成所述目标信号描述参数。
举例说明,一个可选的目标组合信号数据所对应的目标描述参数可以是如下:
[
{“Event”:
{“EventType”:Sine;
“RelativeTime”:108.0;“Duration”:206.0;
“Parameters”:
{“SignalName”:null,“Scale”:null,“Envelope”:[[0.0,0,0.0],[2.0,0,0.2],[202.0,0,0.2],[206.0,0,0.0]]
}
}
},
{“Event”:
{“EventType”:“Short”;
“RelativeTime”:793.0;“Duration”:16.0;
“Parameters”:
{“SignalName”:“pop”,“Scale”:1.0,“Envelope”:null
}
}
}
]
下面对上述目标描述参数的含义进行解释:
首先,此处的目标描述参数表明目标组合信号数据中包含两个单次信号,分别为一个长信号(信号类型记为sine)、一个短信号(信号类型记为short)。更进一步的,长信号的持续时长为206ms,对应的包络线存在4个拐点。而短信号的信号名称为pop,持续时长为16ms,信号均值为1并且不存在包络线。
最后,在步骤S1028中,根据所述目标信号描述参数生成目标振动信号,该目标振动信号用于驱动马达振动。
结合前述步骤中针对利用不同类型的振动信号驱动马达实现不同的触觉反馈效果的说明,此处根据目标信号描述参数生成目标振动信号的方式可以是:
按照想要实现的振感效果,在需要调用对应种类的短信号时,直接通过与该目标短信号相似度最高的标准短信号的键值调用该目标短信号,而在需要调用长信号时,则根据上述步骤中确定的该长信号对应的各项特征参数生成与其相似度最高的长信号。
最后按照想要实现的效果(如振感逐渐增强再逐渐减弱)将上述这些长/短信号按照一定的方式组合起来,作为目标振动信号。
图9示出了一个实施例中振动信号的处理装置的结构框图。
如图9所示,根据本发明的一个实施例的振动信号的处理装置1090可以包括:获取单元1092、确定单元1094、组合单元1096、生成单元1098。
其中,获取单元1092用于获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
确定单元1094用于分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
组合单元1096用于根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
生成单元1098用于根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
图10示出了一个实施例中计算机设备的内部结构图。该计算机设备具体可以是终端,也可以是服务器。如图10所示,该计算机设备包括通过系统总线连接的处理器、存储器和通信接口、处理模块、控制模块。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机程序,该计算机程序被处理器执行时,可使得处理器实现振动信号的处理方法。该内存储器中也可储存有计算机程序,该计算机程序被处理器执行时,可使得处理器执行振动信号的处理方法。本领域技术人员可以理解,图10中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提出了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行以下步骤:
获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
在一个实施例中,提出了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行以下步骤:
获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种振动信号的处理方法,其特征在于,所述方法包括:
    获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
    分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
    根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
    根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
  2. 根据权利要求1所述的方法,其特征在于,对所述目标组合信号数据进行切分处理,获取多个目标单次信号的步骤,包括:
    确定所述目标组合信号数据对应的至少一个信号起始点和至少一个信号结束点;
    根据所述至少一个信号起始点和所述至少一个信号结束点确定至少一个信号片段,将所述信号片段作为所述目标单次信号。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述目标组合信号数据对应的至少一个信号起始点和至少一个信号结束点,包括:
    在所述目标组合信号数据中,查找持续时长大于预设的第一阈值且在该持续时长内信号值的绝对值均值大于预设的第二阈值的信号片段,获取该信号片段的起始点作为所述信号起始点,
    以及,在所述目标组合信号数据中,查找持续时长大于预设的第三阈值且在该持续时长内信号值的绝对值均值小于预设的第四阈值的信号片段,获取该信号片段的结束点作为所述信号结束点。
  4. 根据权利要求1所述的方法,其特征在于,分别确定每一个所述目标单次信号对应的特征参数的步骤,包括:
    预设信号持续时长阈值;
    分别确定所述至少一个目标单次信号的信号持续时长,根据每一个目标单次信号的信号持续时长确定每一个所述目标单次信号的信号类型,其中,所述信号类型包括短信号类型和长信号类型,当所述目标单次信号的信号持续时长小于信号持续时长阈值,所述信号类型为短信号类型;当所述目标单次信号的信号持续时长大于等于信号持续时长阈值,所述信号类型为长信号类型;
    针对每一个目标单次信号,若该目标单次信号的信号类型为短信号,计算该目标单次信号与预设的信号数据库中的标准短信号之间的相似度,获取相似度最高的标准短信号所对应的特征参数作为该目标单次信号的特征参数,所述特征参数包括该标准短信号的标识信息;
    以及,若该目标单次信号的信号类型为长信号,生成该目标单次信号的包络线,根据所述包络线的拐点信息确定该目标单次信号的特征参数。
  5. 根据权利要求4所述的方法,其特征在于,生成该目标单次信号的包络线的步骤,包括:
    确定所述目标单次信号对应的至少一个信号周期,获取所述至少一个信号周期内所述目标单次信号的峰值信号点和/或谷值信号点;
    根据所述峰值信号点/谷值信号点生成该目标单次信号的包络线。
  6. 根据权利要求4所述的方法,其特征在于,在根据所述包络线的拐点信息确定该目标单次信号的特征参数的步骤之后,还包括:
    按照预设的信号生成算法确定与所述特征参数对应的目标参考信号;
    计算所述目标参考信号与所述目标单次信号的相似度,对所述相似度是否满足预设的相似度阈值进行判断。
  7. 根据权利要求1所述的方法,其特征在于,所述根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数,包括:
    获取每一个所述目标单次信号的信号持续时间区间,根据所述信号持续时间区间确定各个所述目标单次信号之间的时序信息;
    根据所述目标单次信号的特征参数以及时序信息生成所述目标信号描述参数。
  8. 一种振动信号的处理装置,其特征在于,所述装置包括:
    获取单元:用于获取目标组合信号数据,对所述目标组合信号数据进行切分处理,获取多个目标单次信号;
    确定单元:用于分别确定每一个所述目标单次信号对应的特征参数,所述特征参数包括信号持续时间区间;
    组合单元:用于根据每一个所述目标单次信号对应的特征参数生成与所述目标组合信号数据对应的目标信号描述参数;
    生成单元:用于根据所述目标信号描述参数生成目标振动信号用于驱动马达振动。
  9. 一种计算机可读介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
  10. 一种计算机终端,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项所述方法的步骤。
PCT/CN2019/126169 2019-12-18 2019-12-18 振动信号的处理方法、装置、设备及可读介质 WO2021120033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126169 WO2021120033A1 (zh) 2019-12-18 2019-12-18 振动信号的处理方法、装置、设备及可读介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126169 WO2021120033A1 (zh) 2019-12-18 2019-12-18 振动信号的处理方法、装置、设备及可读介质

Publications (1)

Publication Number Publication Date
WO2021120033A1 true WO2021120033A1 (zh) 2021-06-24

Family

ID=76476892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126169 WO2021120033A1 (zh) 2019-12-18 2019-12-18 振动信号的处理方法、装置、设备及可读介质

Country Status (1)

Country Link
WO (1) WO2021120033A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070589A (ja) * 2013-10-01 2015-04-13 クラリオン株式会社 音場測定装置、音場測定方法および音場測定プログラム
GB2521142A (en) * 2013-12-10 2015-06-17 Dyson Technology Ltd A hand held appliance
CN105070296A (zh) * 2015-07-10 2015-11-18 西南交通大学 一种活性因子集员成比例子带自适应回声消除方法
CN105142173A (zh) * 2015-08-27 2015-12-09 华为技术有限公司 一种信号输出装置、板卡和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070589A (ja) * 2013-10-01 2015-04-13 クラリオン株式会社 音場測定装置、音場測定方法および音場測定プログラム
GB2521142A (en) * 2013-12-10 2015-06-17 Dyson Technology Ltd A hand held appliance
CN105070296A (zh) * 2015-07-10 2015-11-18 西南交通大学 一种活性因子集员成比例子带自适应回声消除方法
CN105142173A (zh) * 2015-08-27 2015-12-09 华为技术有限公司 一种信号输出装置、板卡和方法

Similar Documents

Publication Publication Date Title
CN111076807B (zh) 振动信号的处理方法、装置、设备及可读介质
US10115389B2 (en) Speech synthesis method and apparatus
US20190318231A1 (en) Method for acceleration of a neural network model of an electronic euqipment and a device thereof related appliction information
CN110491383A (zh) 一种语音交互方法、装置、系统、存储介质及处理器
US10438590B2 (en) Voice recognition
CN110136744A (zh) 一种音频指纹生成方法、设备及存储介质
CN112506341B (zh) 一种振动效果的生成方法、装置、终端设备及存储介质
CN109064532B (zh) 动画角色自动口型生成方法及装置
WO2019201511A8 (en) Method and data processing apparatus
WO2021004113A1 (zh) 语音合成方法、装置、计算机设备及存储介质
CN104572781A (zh) 一种交易日志产生方法和装置
CN110688518A (zh) 节奏点的确定方法、装置、设备及存储介质
WO2019127940A1 (zh) 视频分类模型训练方法、装置、存储介质及电子设备
CN110246502A (zh) 语音降噪方法、装置及终端设备
JP6778811B2 (ja) 音声認識方法及び装置
WO2021120033A1 (zh) 振动信号的处理方法、装置、设备及可读介质
CN110491366B (zh) 音频平滑处理方法、装置、计算机设备和存储介质
WO2021120034A1 (zh) 马达电信号参数化描述方法、装置、设备和介质
CN108735239B (zh) 一种音频播放的控制方法及终端设备
CN110806874A (zh) 一种直播间配置文件的解析方法、存储介质、电子设备及系统
CN115470900A (zh) 一种神经网络模型的剪枝方法、装置及设备
CN110674949A (zh) 一种基于大数据的工件故障智能补偿方法及装置
CN107833259A (zh) 基于智能终端的动态漫画引擎处理方法及系统
US20180286393A1 (en) Method and device for processing data based on speech recognizing and scoring system
CN109783469A (zh) 一种基于内容感知的数据去重方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956525

Country of ref document: EP

Kind code of ref document: A1