WO2021119933A1 - 一种跳频同步的实现方法、接收机及通信设备 - Google Patents

一种跳频同步的实现方法、接收机及通信设备 Download PDF

Info

Publication number
WO2021119933A1
WO2021119933A1 PCT/CN2019/125685 CN2019125685W WO2021119933A1 WO 2021119933 A1 WO2021119933 A1 WO 2021119933A1 CN 2019125685 W CN2019125685 W CN 2019125685W WO 2021119933 A1 WO2021119933 A1 WO 2021119933A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
frequency
receiver
time information
information
Prior art date
Application number
PCT/CN2019/125685
Other languages
English (en)
French (fr)
Inventor
杨天培
崔光明
赖允平
Original Assignee
鹤壁天海电子信息系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹤壁天海电子信息系统有限公司 filed Critical 鹤壁天海电子信息系统有限公司
Priority to PCT/CN2019/125685 priority Critical patent/WO2021119933A1/zh
Publication of WO2021119933A1 publication Critical patent/WO2021119933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping

Definitions

  • This application relates to the field of communication technology, and in particular to a method for implementing frequency hopping synchronization, a receiver, and a communication device.
  • Frequency hopping communication is a kind of radio communication in which the carrier frequency changes constantly according to a certain rule.
  • This communication method has a high anti-interference ability; in practical applications, in order to maintain the consistency of the frequency hopping frequency and the frequency hopping start and stop of the two parties in the frequency hopping communication, it is necessary
  • the frequency hopping information of the transmitter is transmitted to the receiver through a synchronization signal.
  • the receiver corrects the frequency start-stop time error between the receiver and the transmitter and the frequency hopping sequence generation parameters through the synchronization signal.
  • the prerequisite for the correct reception of frequency hopping signals is that both the sender and receiver must achieve frequency hopping synchronization, that is, the frequency hopping receiver and the frequency hopping transmitter use the same frequency at the same time;
  • the content of frequency hopping synchronization includes: the frequency hopping table is the same, and the frequency hopping The frequency sequence is the same, and the start and end moments of the jump are the same.
  • the reliability of synchronization includes multiple indicators such as synchronization establishment time and synchronization holding time. Generally speaking, the shorter the synchronization establishment time, the better, and the longer the synchronization holding time, the better.
  • the time the synchronization signal exists in the air should be as short as possible, so that the enemy It is difficult for the party to find the synchronization signal within the corresponding time.
  • the duration of the synchronization signal in the air in the prior art is n*(n+1)*t, where n is the number of synchronization frequencies, and t is the duration of each hop;
  • the exposure time in the air increases logarithmically with the number of synchronization frequency points, and the synchronization efficiency is low, and the longer the signal duration in the air, the easier it is to be captured by the enemy, which leads to the destruction of the synchronization process by the enemy, resulting in the frequency hopping communication system paralysis.
  • the main problem to be solved by this application is to provide a method for realizing frequency hopping synchronization, a receiver, and a communication device, which can increase the synchronous reception speed of the receiver and enhance the anti-interference performance.
  • the technical solution adopted in this application is to provide a method for implementing frequency hopping synchronization.
  • the method for implementing frequency hopping synchronization includes: the receiving transmitter utilizes multiple first synchronization frequency cycles in the first synchronization frequency table.
  • the first synchronization frequency table is generated by the transmitter according to the time information of the transmitter, and the synchronization information includes correlation codes and time information;
  • the second synchronization frequency table is divided into multiple frequency sets according to preset rules, wherein, The second synchronization frequency table is generated by the receiver according to the time information of the receiver.
  • the receiver includes multiple processing channels, and each frequency set corresponds to one processing channel.
  • the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partly the same ; Through each processing channel using the second synchronization frequency in the corresponding frequency set to perform synchronization search; according to the correlation between the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency, determine the first synchronization frequency and the second synchronization Whether the frequencies are the same, if the first synchronization frequency is the same as the second synchronization frequency, the search is successful, the synchronization information is received through the processing channel, the time information of the receiver is updated, and other processing channels are closed.
  • a receiver which includes a controller, a detection circuit, and a plurality of processing channels, and each processing channel includes an antenna, a frequency synthesizer, and a mixer.
  • Each processing channel corresponds to a frequency set
  • the antenna is used to receive synchronization information sent by the transmitter using multiple first synchronization frequencies in the first synchronization frequency table, where the first synchronization frequency table is determined by the transmitter according to the transmitter’s Time information generation, the second synchronization frequency table includes a plurality of frequency sets, the second synchronization frequency table is generated by the receiver according to the time information of the receiver, the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partially the same, and the synchronization
  • the information includes correlation code and time information; the frequency synthesizer is used to generate the corresponding local oscillation signal according to the pseudo-random sequence; the mixer is respectively connected with the antenna and the frequency synthesizer to mix the signal received by the antenna with the local oscillation signal
  • the detection circuit is respectively connected with the mixer and the controller, and is used to perform a synchronization search according to a plurality of second synchronization frequencies in the corresponding frequency set, and according to the correlation between the correlation code in the
  • a communication device which includes a transmitter and a receiver connected to each other.
  • the transmitter is used for transmitting signals
  • the receiver is used for adjusting the reception according to the signals.
  • the time information of the receiver is such that the error between the time information of the receiver and the time information of the transmitter is within a preset range, wherein the receiver is the above-mentioned receiver.
  • the beneficial effect of the present application is: the present application receives the synchronization information that the transmitter uses multiple first synchronization frequencies in the first synchronization frequency table to cyclically send; and then divides the second synchronization frequency table into multiples according to a preset rule. Frequency sets, each processing channel uses the second synchronization frequency in the frequency set for synchronization search; when the first synchronization frequency is the same as the second synchronization frequency, the search is successful, the synchronization information is received through the processing channel, and the receiver's time information is updated , And close other processing channels.
  • Using multiple processing channels can reduce the duration of synchronization information in the air, improve the receiver's synchronization reception speed, reduce the possibility of synchronization frequency being captured by the enemy, enhance anti-interference, and improve frequency hopping
  • the concealment of synchronization improves the efficiency of frequency hopping synchronization.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for implementing frequency hopping synchronization provided by the present application
  • FIG. 2 is a schematic diagram of frequency hopping at the transmitting end and slow frequency scanning at the receiving end in an embodiment of the method for implementing frequency hopping synchronization provided by the present application;
  • FIG. 3 is a schematic flowchart of another embodiment of a method for implementing frequency hopping synchronization provided by the present application
  • Fig. 4 is a schematic structural diagram of an embodiment of a receiver provided by the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a receiver provided by the present application.
  • Fig. 6 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • the synchronization method used in this application is the synchronization prefix method. Before sending the data information, a synchronization prefix is first sent.
  • the synchronization prefix contains all the information required to generate the frequency hopping pattern and local time information (TOD, Time of Day). ), the receiver realizes frequency hopping synchronization according to the information provided by the synchronization prefix.
  • Fig. 1 is a schematic flowchart of an embodiment of a method for implementing frequency hopping synchronization provided by the present application. The method includes the following steps:
  • Step 11 Receiving synchronization information sent by the transmitter cyclically using multiple first synchronization frequencies in the first synchronization frequency table.
  • Time information is used to control the pseudo-random sequence, thereby performing frequency hopping pattern synchronization.
  • Time information is a time variable, which changes with time. It is provided by a high-precision clock.
  • the time information of the transmitter and receiver should be consistent; but due to the independence of each clock, their There are differences in time, resulting in differences in time information. Therefore, the transmitter sends its own real-time time information as a kind of synchronization information. After the receiver captures the synchronization information, it adjusts its own time information according to the transmitter's time information. Time information keeps its own time information consistent with the time information of the transmitter.
  • the first synchronization frequency table is generated by the transmitter according to the time information of the transmitter, and can be determined pseudo-randomly from the frequency hopping frequency table according to a predetermined algorithm; the synchronization information includes the correlation code and time information, and the correlation code is used for the receiver to identify the time Information, and accurately locate the starting position of the time information with sampling-level accuracy.
  • the time information is used to carry the frequency hopping related information of the transmitter.
  • the transmitter generates a first synchronization frequency table according to the time information, and then uses multiple first synchronization frequencies in the first synchronization frequency table to cyclically send synchronization information.
  • the n first synchronization frequencies in the first synchronization frequency table are used as a set of synchronization frequencies, and the transmission is repeated. group.
  • the number of first synchronization frequencies is 5, and the first synchronization frequency table is ⁇ f1, f2, f3, f4, f5 ⁇ , the number of times that all frequencies in the first frequency table are used to send synchronization information is 4 times.
  • Step 12 Divide the second synchronization frequency table into multiple frequency sets according to a preset rule.
  • the second synchronization frequency table is generated by the receiver according to the receiver's time information.
  • the error between the transmitter's time information and the receiver's time information is within a certain range.
  • the length of the second synchronization frequency table is the same as that of the first synchronization frequency table.
  • the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partially the same to ensure that the receiver can search for the first synchronization frequency that is the same frequency as the second synchronization frequency table, and obtain synchronization information.
  • the receiver includes multiple processing channels, the number of processing channels is greater than or equal to the number of frequency sets, each frequency set corresponds to one processing channel, and each processing channel is independent of each other.
  • the preset rule can be divided according to parity, equal division according to order, or equal distance sampling.
  • the receiver divides the frequency points in the second frequency table into two equal parts.
  • the upper frequency corresponding to the first processing channel is f i
  • the second The frequency on the processing channel is The value of i ranges from 0 to
  • the number of frequencies searched for each processing channel is The search time of each frequency is n+2 hops, and the synchronization signal time in the air is one-half of the time in the prior art. The shortening of the time for receiving the synchronization signal can reduce the power consumption of the transmitter.
  • the second synchronization frequency table is ⁇ f0, f1, f2, f3, f4 ⁇
  • the frequency corresponding to the first processing channel is ⁇ f0, f1, f2 ⁇
  • the second processing channel corresponds to The frequency is ⁇ f3, f4 ⁇ .
  • Step 13 Use each processing channel to use the second synchronization frequency in the corresponding frequency set to perform a synchronization search.
  • the transmitter can only send synchronization information on one first synchronization frequency at the same time, and each processing channel of the receiver searches for the synchronization signal, so only one processing channel can identify the synchronization information at the same time.
  • Step 14 Determine whether the first synchronization frequency and the second synchronization frequency are the same according to the correlation between the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency. If the first synchronization frequency is the same as the second synchronization frequency, search If successful, the synchronization information is received through the processing channel, the time information of the receiver is updated, and other processing channels are closed.
  • the correlation code corresponds to the synchronization frequency one-to-one.
  • the correlation code can be detected according to the correlation peak detection method, and the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency can be obtained by calculation. Correlation, so as to determine whether the first synchronization frequency is the same as the second synchronization frequency.
  • the second synchronization frequency used in the current search is the same as the first synchronization frequency, it indicates that the search is successful, and the synchronization information is received through the processing channel, and the receiver's time information is updated, and other processing channels are closed at the same time; if the current search is used If the second synchronization frequency of is different from the first synchronization frequency, the next second synchronization frequency in the second synchronization frequency table is used to continue scanning until the search is successful.
  • the receiver performs a slow scan on the second synchronization frequency.
  • the receiver scans on the n first synchronization frequencies sent by the transmitter, The scanning rate is 1/(n+1) of the frequency hopping rate of the transmitter.
  • the first synchronization frequency table is ⁇ f0, f1, f2, f3, f4 ⁇
  • the second synchronization frequency table is ⁇ F0, F1, F2, F3, F4 ⁇
  • the first processing channel corresponds to
  • the frequency set is ⁇ F0, F1, F2 ⁇
  • the frequency set corresponding to the second processing channel is ⁇ F3, F4 ⁇
  • the first synchronization frequency f3 is equal to the second synchronization frequency F3
  • the first synchronization frequency f4 is equal to the second synchronization frequency F4.
  • the first processing channel scans slowly at frequency F0, and the second processing channel scans slowly at frequency F2; in the second scan cycle, the first processing channel scans slowly at frequency F1, and the first processing channel scans slowly at frequency F1.
  • the second processing channel scans slowly on the frequency F3; since the first synchronization frequency f3 is equal to the second synchronization frequency F3, the second processing channel search succeeds, the time information of the receiving end is updated to the time information of the transmitting end, and the first processing channel is closed at the same time .
  • This embodiment receives synchronization information sent by the transmitter using multiple first synchronization frequencies in the first synchronization frequency table; then according to a preset rule, the second synchronization frequency table is divided into multiple frequency sets, and each processing channel uses frequency concentration When the first synchronization frequency is the same as the second synchronization frequency, it indicates that the search is successful.
  • the synchronization information is received through the processing channel, the time information of the receiver is updated, and other processing channels are closed, using multiple processing
  • the channel can reduce the duration of synchronization information in the air, improve the synchronization reception speed of the receiver, reduce the possibility of the synchronization frequency being captured by the enemy, enhance anti-interference, improve the concealment of frequency hopping synchronization, and improve the efficiency of frequency hopping synchronization.
  • FIG. 3 is a schematic flowchart of another embodiment of a method for implementing frequency hopping synchronization provided by the present application. The method includes the following steps:
  • Step 31 Receiving synchronization information sent by the transmitter cyclically using multiple first synchronization frequencies in the first synchronization frequency table.
  • the first synchronization frequency table is generated by the transmitter according to the time information of the transmitter, and the synchronization information includes related codes and time information.
  • Step 32 Divide the second synchronization frequency table into multiple frequency sets according to a preset rule.
  • the second synchronization frequency table is generated by the receiver according to the time information of the receiver.
  • the receiver includes at least two processing channels, and each processing channel corresponds to a frequency set.
  • the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partially the same.
  • Step 33 Perform a synchronization search using the second synchronization frequency in the frequency set through each processing channel.
  • steps 31-33 are the same as steps 11-13, and will not be repeated here.
  • Step 34 Determine the correlation between the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency according to the correlation between the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency. If the correlation of the correlation code corresponding to the second synchronization frequency is greater than the preset correlation threshold, it is determined that the first synchronization frequency is the same as the second synchronization frequency, the search is successful, the synchronization information is received through the processing channel, and the receiver time is updated Information, and close other processing channels.
  • the correlation between the correlation code in the synchronization information and the correlation code corresponding to the second synchronization frequency is calculated. If the calculated correlation is greater than the preset correlation threshold, it indicates that the current search is successful.
  • the search After the search is successful, lock the first synchronization frequency corresponding to the currently received synchronization information, obtain the start bit of the time information in the synchronization information carried by the first synchronization frequency, and perform demodulation to obtain the time information; according to the demodulated time information Update the time information of the receiver and generate the same first synchronization frequency table as the transmitter; when the search is successful and the time information is not obtained, that is, when there is an error in the transmission, the closed other processing channels are opened and the search is continued.
  • each processing channel uses the second synchronization frequency to perform synchronous slow scanning.
  • the search is stopped, and the The time information is demodulated from the synchronization information, and the time information of the receiver is updated according to this time information, so that the time information of the receiver is consistent with the time information of the transmitter, and the synchronization of the frequency hopping sequence is realized.
  • the use of multiple processing channels can reduce The duration of the synchronization information in the air improves the synchronization reception speed of the receiver, enhances the anti-interference performance, and improves the frequency hopping synchronization efficiency.
  • FIG. 4 is a schematic structural diagram of an embodiment of a receiver provided by the present application.
  • the receiver includes a controller 41, a detection circuit 42 and a plurality of processing channels 43.
  • Each processing channel 43 includes an antenna 431, a mixer 432, and a frequency synthesizer 433.
  • the processing channels 43 are independent of each other and have an independent frequency synthesizer 433.
  • the receiver can control the state of the processing channel 43 at the same time to receive synchronization signals.
  • Each processing channel 43 corresponds to a frequency set.
  • the antenna 431 is used to receive synchronization information sent by the transmitter using multiple first synchronization frequencies in the first synchronization frequency table, where the first synchronization frequency table is generated by the transmitter according to the time information of the transmitter, and the second synchronization frequency table Generated by the receiver according to the time information of the receiver, the second synchronization frequency table includes a plurality of frequency sets, the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partially the same, and the synchronization information includes correlation codes and time information.
  • the frequency synthesizer 433 is used to generate the corresponding local oscillation signal according to the pseudo-random sequence.
  • the frequency hopping sequence is a set of frequencies formed by the second synchronization frequency. It hops according to a preset hopping rule, and generates one in each scan period.
  • the local oscillation signal is a frequency hopping carrier signal generated by the transmitter.
  • the antenna 431 After the antenna 431 receives the synchronization signal sent by the transmitter, it sends the synchronization signal to the mixer 432.
  • the mixer 432 is connected to the antenna 431 and the frequency synthesizer 433, and is used to connect the signal received by the antenna 431 to the local oscillator. Signal mixing.
  • the detection circuit 42 is respectively connected to the mixer 432 and the controller 41, and is used to perform a synchronization search according to a plurality of second synchronization frequencies in the corresponding frequency set, and correspond to the second synchronization frequency according to the correlation code in the synchronization information If the first synchronization frequency is the same as the second synchronization frequency, the search is successful, the synchronization information is received, and the controller 41 controls other processing channels to close, and updates the time information of the receiver.
  • the receiver in this embodiment includes multiple processing channels 43.
  • Each processing channel 43 includes an antenna 431, a mixer 432, and a frequency synthesizer 433.
  • the antenna 431 is used to receive synchronization information sent by the transmitter cyclically using the first synchronization frequency.
  • the frequency synthesizer 433 is used to generate a local oscillation signal
  • the mixer 432 is used to mix the synchronization signal with the local oscillation signal to obtain synchronization information
  • the detection circuit 42 is used to perform a synchronous slow scan at the second synchronization frequency to determine Whether the first synchronization frequency and the second synchronization frequency are the same, if they are the same, stop searching, obtain time information from the synchronization information, and adjust the time information of the receiver, while the controller 41 controls other processing channels to close; use multiple processing channels 43 can receive synchronization signals of different frequency points, improve the synchronization reception speed of the receiver, reduce the duration of the synchronization signal sent by the transmitter in the air, and enhance the anti-interference ability.
  • FIG. 5 is a schematic structural diagram of another embodiment of a receiver provided by the present application.
  • the receiver includes a controller 51, a detection circuit 52, a plurality of processing channels 53, a frequency hopping sequence generator 54 and a clock adjustment circuit 55 .
  • Each processing channel 53 includes an antenna 531, a mixer 532, a frequency synthesizer 533, a band pass filter 534, and a correlation calculation circuit 535, and each processing channel 51 corresponds to a frequency set.
  • the antenna 531 is used to receive synchronization information that the transmitter cyclically transmits by using multiple first synchronization frequencies in the first synchronization frequency table, where the first synchronization frequency table is generated by the transmitter according to the time information of the transmitter, and is composed of multiple frequency sets
  • the second synchronization frequency table, the second synchronization frequency table is generated by the receiver according to the time information of the receiver, the frequencies in the first synchronization frequency table and the second synchronization frequency table are at least partially the same, and the synchronization information includes correlation codes and time information.
  • the frequency synthesizer 533 is used to generate a corresponding local oscillation signal according to the pseudo-random sequence; the mixer 532 is connected to the antenna 531 and the frequency synthesizer 533 respectively, and is used to mix the signal received by the antenna 531 with the local oscillation signal.
  • the band-pass filter 534 is connected to the mixer 532 and the detection circuit 52, and is used to filter out interference signals in the signal output by the mixer.
  • the correlation calculation circuit 535 is connected to the mixer 532 through the band-pass filter 534 to obtain the correlation code corresponding to the first synchronization frequency, and calculate the correlation between the correlation code corresponding to the first synchronization frequency and the correlation code in the synchronization information.
  • the detection circuit 52 is connected to the correlation calculation circuit 535, and is used to determine whether the correlation is greater than the preset correlation threshold. If the acquired correlation is greater than the preset correlation threshold, the time information of the transmitter is extracted from the synchronization information and sent The control signal is sent to the controller 51 so that the controller 51 turns off the frequency synthesizer 533 in other processing channels and updates the time information of the receiver.
  • the clock adjustment circuit 55 is connected to the controller 51 and the frequency hopping sequence generator 54.
  • the controller 51 is used to send time information to the clock adjustment circuit 55 when the search is successful.
  • the clock adjustment circuit 55 is used to transfer the receiver to the time information according to the time information.
  • the time information is updated to the time information of the transmitter.
  • the frequency hopping sequence generator 54 is connected to the frequency synthesizer 533, and is used to generate a pseudo-random sequence according to the time information of the receiver to control the frequency synthesizer 533 so that the frequency synthesizer 533 generates a local oscillation signal; the frequency hopping sequence generator 54 uses To generate multiple sets of pseudo-random codes according to preset rules, and send them to the corresponding frequency synthesizer 533 in the order of the random codes in each set of pseudo-random codes, so that the frequency of the local oscillation signal generated by the frequency synthesizer 533 follows the pseudo-random Code jump.
  • the mixer 532, bandpass filter 534, correlation calculation circuit 535, detection circuit 52, controller 51, clock adjustment circuit 55, and frequency hopping sequence generator 54 of each processing channel 53 form a closed loop to dynamically adjust the receiver
  • the local time of the receiver finally follows the local time of the transmitter.
  • the receiver in this embodiment includes multiple processing channels 53, each processing channel 53 performs synchronous slow scanning on the second synchronization frequency, stops searching when the first synchronization frequency is the same as the second synchronization frequency, and obtains from the synchronization information
  • the time information is sent to the clock adjustment circuit 55 to adjust the time information of the receiver; the use of multiple processing channels 53 can increase the synchronization receiving speed of the receiver, reduce the duration of the synchronization signal sent by the transmitter in the air, and enhance the anti-interference ability .
  • FIG. 6 is a schematic structural diagram of an embodiment of a communication device provided by the present application.
  • the communication device includes a transmitter 61 and a receiver 62 that are connected to each other.
  • the transmitter 61 is used to transmit a signal, and the signal carries the transmitter 61.
  • the receiver 62 is used to adjust the time information of the receiver 62 according to the received signal so that the error between the time information of the receiver 62 and the time information of the transmitter 61 is within a preset range, where the receiver 62 It is the receiver in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种跳频同步的实现方法、接收机及通信设备,该方法包括接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息;按照预设规则将第二同步频率表分成多个频率集,接收机包括多个处理通道,每个频率集对应一个处理通道,第一同步频率表与第二同步频率表中的频率至少部分相同;通过处理通道利用其对应的频率集中的第二同步频率进行同步搜索;根据同步信息中的相关码与第二同步频率对应的相关码的相关性,判断第一同步频率与第二同步频率是否相同,若相同,则接收同步信息,更新时间信息,关闭其他处理通道。通过上述方式,本申请能够提高接收机的同步接收速度,增强抗干扰性。

Description

一种跳频同步的实现方法、接收机及通信设备 【技术领域】
本申请涉及通信技术领域,具体涉及一种跳频同步的实现方法、接收机及通信设备。
【背景技术】
跳频通信是一种载波频率按一定规律不断变化的无线电通信,该通信方法具有较高的抗干扰能力;在实际应用中,为了维持跳频通信双方跳频频率和跳频起止一致性,需要将发射机的跳频信息通过同步信号传输给接收机。接收机通过同步信号校正接收机与发射机之间频率起止时间误差和跳频序列生成参数。
正确接收跳频信号的前提条件是收发双方必须实现跳频同步,即跳频接收机与跳频发射机在相同的时刻使用相同的频率;跳频同步的内容包括:跳频频率表相同,跳频序列相同,跳变的起止时刻相同。同步的可靠性包括同步建立时间以及同步保持时间等多项指标,一般来说,同步建立时间越短越好,同步保持时间越长越好,同步信号在空中存在的时间要尽量短,使敌方难以在相应的时间内发现同步信号。
本申请的发明人在长期研发中发现,现有技术中同步信号在空中的持续时间为n*(n+1)*t,n是同步频率的个数,t是每一跳持续时间;信号在空中暴露的时间随着同步频点个数成对数增长,同步效率低下,而且信号在空中持续时间越长越容易被敌方捕获,从而导致同步过程被敌方破坏,致使跳频通信系统瘫痪。
【发明内容】
本申请主要解决的问题是提供一种跳频同步的实现方法、接收机及通信设备,能够提高接收机的同步接收速度,增强抗干扰性。
为解决上述技术问题,本申请采用的技术方案是提供一种跳频同步的实现方法,该跳频同步的实现方法包括:接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,第一同步频率表由发射机根据发射机的时间信息生成,同步信息包括相关码和时间信 息;按照预设规则将第二同步频率表分成多个频率集,其中,第二同步频率表由接收机根据接收机的时间信息生成,接收机包括多个处理通道,每个频率集对应一个处理通道,第一同步频率表与第二同步频率表中的频率至少部分相同;通过每个处理通道利用其对应的频率集中的第二同步频率进行同步搜索;根据同步信息中的相关码与第二同步频率对应的相关码的相关性,判断第一同步频率与第二同步频率是否相同,如果第一同步频率与第二同步频率相同,则搜索成功,通过处理通道接收同步信息,更新接收机的时间信息,并关闭其他处理通道。
为解决上述技术问题,本申请采用的另一技术方案是提供一种接收机,该接收机包括控制器、检测电路以及多个处理通道,每个处理通道包括天线、频率合成器以及混频器,每个处理通道对应一个频率集,天线用于接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,第一同步频率表由发射机根据发射机的时间信息生成,第二同步频率表包括多个频率集,第二同步频率表由接收机根据接收机的时间信息生成,第一同步频率表与第二同步频率表中的频率至少部分相同,同步信息包括相关码和时间信息;频率合成器用于根据伪随机序列,产生对应的本地振荡信号;混频器分别与天线以及频率合成器连接,用于将天线接收到的信号与本地振荡信号混频;检测电路分别与混频器以及控制器连接,用于根据对应的频率集中的多个第二同步频率进行同步搜索,根据所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性,判断第一同步频率与第二同步频率是否相同;若相同,则搜索成功,接收同步信息,控制器控制其他处理通道关闭,更新接收机的时间信息。
为解决上述技术问题,本申请采用的另一技术方案是提供一种通信设备,该通信设备包括互相连接的发射机和接收机,发射机用于发射信号,接收机用于根据信号,调整接收机的时间信息,使得接收机的时间信息与发射机的时间信息的误差在预设范围以内,其中,接收机为上述的接收机。
通过上述方案,本申请的有益效果是:本申请通过接收发射机利用 第一同步频率表中的多个第一同步频率循环发送的同步信息;然后按照预设规则将第二同步频率表分成多个频率集,每个处理通道利用频率集中的第二同步频率进行同步搜索;在第一同步频率与第二同步频率相同时,表明搜索成功,通过处理通道接收同步信息,更新接收机的时间信息,并关闭其他处理通道,利用多个处理通道能够减少同步信息在空中的持续时间,能够提高接收机的同步接收速度,降低同步频率被敌方捕获的可能性,增强抗干扰性,提高跳频同步的隐蔽性,提高跳频同步效率。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的跳频同步的实现方法一实施例的流程示意图;
图2是本申请提供的跳频同步的实现方法一实施例中发射端频率跳变与接收端频率慢扫描示意图;
图3是本申请提供的跳频同步的实现方法另一实施例的流程示意图;
图4是本申请提供的接收机一实施例的结构示意图;
图5是本申请提供的接收机另一实施例的结构示意图;
图6是本申请提供的通信设备一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请采用的同步方法为同步字头法,在发送数据信息之前,先发 送一个同步字头,该同步字头中含有生成跳频图案所需的全部信息以及本地时间信息(TOD,Time of Day),接收机按照同步字头提供的信息实现跳频同步。
参阅图1,图1是本申请提供的跳频同步的实现方法一实施例的流程示意图,该方法包括以下步骤:
步骤11:接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息。
为了实现同步,采用时间信息控制伪随机序列,从而进行跳频图案同步。时间信息是一个时间变量,随时间的变化而变化,由高精度时钟提供,为了保证跳频图案的同步,发射机和接收机的时间信息应该保持一致;但是由于各时钟的独立性,它们的时间是有差异的,导致时间信息也会存在差异,因此发射机将自己的实时时间信息作为一种同步信息进行发送,接收机在捕获到同步信息之后,根据发射机的时间信息来调整自己的时间信息,使得自己的时间信息与发射机的时间信息保持一致。
第一同步频率表由发射机根据发射机的时间信息生成,可以按照预定的算法,伪随机地从跳频频率表中确定;同步信息包括相关码和时间信息,相关码用于接收机识别时间信息,并以采样级的精度精准定位时间息的起始位置,时间信息用于携带发射机的跳频相关信息。发射机根据时间信息生成第一同步频率表,再利用第一同步频率表中的多个第一同步频率循环发送同步信息。
在一具体的实施例中,当第一同步频率的数量为n时,第一同步频率表中的n个第一同步频率作为一组同步频率,重复发送
Figure PCTCN2019125685-appb-000001
组。例如,当第一同步频率的数量为5时,第一同步频率表为{f1,f2,f3,f4,f5},则利用第一频率表中的所有频率发送同步信息的次数为4次,发射机按照f1→f2→f3→f4→f5的顺序循环发送同步信息4次,则共发送5*4=20次;而现有技术中为了保证同步信息能够被接收机接收到,发射机需要利用n个第一同步频率重复发送n+1组,因此现有技术中需要发送的次数为5*6=30次。
步骤12:按照预设规则将第二同步频率表分成多个频率集。
第二同步频率表由接收机根据接收机的时间信息生成,发射机的时间信息与接收机的时间信息的误差在一定范围内,第二同步频率表的长度与第一同步频率表的长度相同,第一同步频率表与第二同步频率表中的频率至少部分相同,以保证接收机可以搜索到与其频率相同的第一同步频率,获取到同步信息。接收机包括多个处理通道,处理通道的数量大于或等于频率集的数量,每个频率集对应一个处理通道,且各个处理通道相互独立。
预设规则可以为按照奇偶性进行划分、按照顺序等分或者等距离抽样等方式。
在一具体的实施例中,当处理通道的数量为两个时,接收机将第二频率表中的频点等分成两部分,第一个处理通道对应的上频率为f i,第二个处理通道上频率为
Figure PCTCN2019125685-appb-000002
i的取值范围为0到
Figure PCTCN2019125685-appb-000003
每个处理通道搜索的频率数量为
Figure PCTCN2019125685-appb-000004
每个频率的搜索时间为n+2跳,同步信号在空中耗时是现有技术耗时的二分之一,接收同步信号的时间缩短可以降低发射机的功耗。
例如,当n为5时,第二同步频率表为{f0,f1,f2,f3,f4},第一个处理通道对应的频率为{f0,f1,f2},第二个处理通道对应的频率为{f3,f4}。
步骤13:通过每个处理通道利用其对应的频率集中的第二同步频率进行同步搜索。
发射机在同一时刻只能在一个第一同步频率上发送同步信息,接收机的每个处理通道都对同步信号进行搜索,因此同一时刻只有一个处理通道能识别到同步信息。
步骤14:根据同步信息中的相关码与第二同步频率对应的相关码的相关性,判断第一同步频率与第二同步频率是否相同,如果第一同步频率与第二同步频率相同,则搜索成功,通过处理通道接收同步信息,更新接收机的时间信息,并关闭其他处理通道。
相关码和同步频率一一对应,当利用第二同步频率进行搜索时,根 据相关峰检测法可以检测到相关码,通过计算可以得到同步信息中的相关码与第二同步频率对应的相关码的相关性,从而判断出第一同步频率与第二同步频率是否相同。
若当前搜索所使用的第二同步频率与第一同步频率相同时,则表明搜索成功,通过处理通道继续接收同步信息,并更新接收机的时间信息,同时关闭其他处理通道;若当前搜索所使用的第二同步频率与第一同步频率均不相同,则利用第二同步频率表中下一个第二同步频率继续扫描,直至搜索成功。接收机利在第二同步频率上进行慢扫描,在一具体的实施例中,当发射机的第一同步频率的数量为n,接收机在发射机发送的n个第一同步频率上扫描,扫描速率为发射机跳频速率的1/(n+1)。
例如,如图2所示,第一同步频率表为{f0,f1,f2,f3,f4},第二同步频率表为{F0,F1,F2,F3,F4},第一处理通道对应的频率集为{F0,F1,F2},第二处理通道对应的频率集为{F3,F4},第一同步频率f3等于第二同步频率F3,第一同步频率f4等于第二同步频率F4。在第一个扫描周期中,第一处理通道在频率F0上慢扫描,第二处理通道在频率F2上慢扫描;在第二个扫描周期中,第一处理通道在频率F1上慢扫描,第二处理通道在频率F3上慢扫描;由于第一同步频率f3等于第二同步频率F3,因而第二处理通道搜索成功,将接收端的时间信息更新为发射端的时间信息,同时将第一处理通道关闭。
本实施例接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息;然后按照预设规则将第二同步频率表分成多个频率集,每个处理通道利用频率集中的第二同步频率进行同步搜索;在第一同步频率与第二同步频率相同时,表明搜索成功,通过处理通道接收同步信息,更新接收机的时间信息,并关闭其他处理通道,利用多个处理通道能够减少同步信息在空中的持续时间,能够提高接收机的同步接收速度,降低同步频率被敌方捕获的可能性,增强抗干扰性,提高跳频同步的隐蔽性,提高跳频同步效率。
参阅图3,图3是本申请提供的跳频同步的实现方法另一实施例的流程示意图,该方法包括以下步骤:
步骤31:接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息。
第一同步频率表由发射机根据发射机的时间信息生成,同步信息包括相关码和时间信息。
步骤32:按照预设规则将第二同步频率表分成多个频率集。
第二同步频率表由接收机根据接收机的时间信息生成,接收机至少包括两个处理通道,每个处理通道对应一个频率集,第一同步频率表与第二同步频率表中的频率至少部分相同。
步骤33:通过每个处理通道利用频率集中的第二同步频率进行同步搜索。
其中,步骤31-33与步骤11-13相同,在此不再赘述。
步骤34:根据同步信息中的相关码与第二同步频率对应的相关码的相关性,判断同步信息中的相关码与第二同步频率对应的相关码的相关性,若同步信息中的相关码与第二同步频率对应的相关码的相关性的相关性大于预设相关性阈值,则判断第一同步频率与第二同步频率相同,搜索成功,通过处理通道接收同步信息,更新接收机的时间信息,并关闭其他处理通道。
计算同步信息中的相关码与第二同步频率对应的相关码的相关性,若计算出的相关性大于预设相关性阈值,则表明当前搜索成功。
在搜索成功之后,锁定当前接收到同步信息对应的第一同步频率,获取第一同步频率携带的同步信息中时间信息的起始位,并进行解调得到时间信息;根据解调出的时间信息更新接收机的时间信息,生成与发射机相同的第一同步频率表;当搜索成功且未获取到时间信息时,即传输出现误码情况时,将关闭的其他处理通道打开,继续进行搜索。
本实施例每个处理通道利用第二同步频率进行同步慢扫描,在第二同步频率对应的相关码与第一同步频率对应的相关码的相关性大于预设相关性阈值时,停止搜索,从同步信息中解调出时间信息,并根据此时间信息来更新接收机的时间信息,使得接收机的时间信息与发射机的时间信息保持一致,实现跳频序列同步,利用多个处理通道能够减少同 步信息在空中的持续时间,提高接收机的同步接收速度,增强抗干扰性,提高跳频同步效率。
参阅图4,图4是本申请提供的接收机一实施例的结构示意图,该接收机包括控制器41、检测电路42以及多个处理通道43。
每个处理通道43包括天线431、混频器432以及频率合成器433,处理通道43之间相互独立,拥有独立的频率合成器433,接收机可以同时控制处理通道43的状态从而进行同步信号接收,每个处理通道43对应一个频率集。
天线431用于接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,第一同步频率表由发射机根据发射机的时间信息生成,第二同步频率表由接收机根据接收机的时间信息生成,第二同步频率表包括多个频率集,第一同步频率表与第二同步频率表中的频率至少部分相同,同步信息包括相关码和时间信息。
频率合成器433用于根据伪随机序列,产生对应的本地振荡信号,该跳频序列为第二同步频率构成的频率集合,其按照预设跳变规则进行跳变,在每一个扫描周期产生一个本地振荡信号,本地振荡信号为发射机端产生的跳频载波信号。
天线431接收到发射机发送过来的同步信号之后,将同步信号发送至混频器432,混频器432分别与天线431以及频率合成器433连接,用于将天线431接收到的信号与本地振荡信号混频。
检测电路42分别与混频器432以及控制器41连接,用于根据对应的频率集中的多个第二同步频率进行同步搜索,根据所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性,判断第一同步频率与第二同步频率是否相同;若相同,则搜索成功,接收同步信息,控制器41控制其他处理通道关闭,更新接收机的时间信息。
本实施例中的接收机包括多个处理通道43,每个处理通道43包括天线431、混频器432以及频率合成器433,天线431用于接收发射机利用第一同步频率循环发送的同步信息,频率合成器433用于产生本地振荡信号,混频器432用于将同步信号与本地振荡信号混频,从而得到 同步信息,检测电路42用于在第二同步频率上进行同步慢扫描,判断第一同步频率与第二同步频率是否相同,若相同,则停止搜索,从同步信息中获取时间信息,并调整接收机的时间信息,同时控制器41控制其他处理通道关闭;利用多个处理通道43能够接收不同频点的同步信号,提高接收机同步接收速度,降低发射机发送的同步信号在空中的持续时间,增强抗干扰性。
参阅图5,图5是本申请提供的接收机另一实施例的结构示意图,该接收机包括控制器51、检测电路52、多个处理通道53、跳频序列发生器54以及时钟调整电路55。
每个处理通道53包括天线531、混频器532、频率合成器533、带通滤波器534以及相关计算电路535,每个处理通道51对应一个频率集。
天线531用于接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,第一同步频率表由发射机根据发射机的时间信息生成,多个频率集组成第二同步频率表,第二同步频率表由接收机根据接收机的时间信息生成,第一同步频率表与第二同步频率表中的频率至少部分相同,同步信息包括相关码和时间信息。
频率合成器533用于根据伪随机序列,产生对应的本地振荡信号;混频器532分别与天线531以及频率合成器533连接,用于将天线531接收到的信号与本地振荡信号混频。
带通滤波器534与混频器532以及检测电路52连接,用于滤除混频器输出的信号中的干扰信号。
相关计算电路535通过带通滤波器534与混频器532连接,用于获取第一同步频率对应的相关码,并计算第一同步频率对应的相关码与同步信息中的相关码的相关性。
检测电路52与相关计算电路535连接,用于判断相关性是否大于预设相关性阈值,若获取到的相关性大于预设相关性阈值,则从同步信息中提取发射机的时间信息,并发送控制信号给控制器51,以使得控制器51关闭其他处理通道中的频率合成器533,并更新接收机的时间信息。
时钟调整电路55与控制器51以及跳频序列发生器54连接,控制 器51用于在搜索成功时,将时间信息发送至时钟调整电路55,时钟调整电路55用于根据时间信息,将接收机的时间信息更新为发射机的时间信息。
跳频序列发生器54与频率合成器533连接,用于根据接收机的时间信息产生伪随机序列,以控制频率合成器533,使得频率合成器533生成本地振荡信号;跳频序列发生器54用于按照预设的规则生成多组伪随机码,并按照每组伪随机码中随机码的顺序依次发送给对应的频率合成器533,使得频率合成器533生成的本地振荡信号的频率跟随伪随机码跳变。
每个处理通道53的混频器532、带通滤波器534、相关计算电路535与检测电路52、控制器51、时钟调整电路55以及跳频序列发生器54形成闭合环路,动态调整接收机的本地时间,最终实现本接收机的本地时间对发射机的本地时间的跟随。
本实施例中的接收机包括多个处理通道53,每个处理通道53在第二同步频率上进行同步慢扫描,在第一同步频率与第二同步频率相同时停止搜索,从同步信息中获取时间信息,并发送给时钟调整电路55,从而调整接收机的时间信息;利用多个处理通道53能够提高接收机同步接收速度,降低发射机发送的同步信号在空中的持续时间,增强抗干扰性。
参阅图6,图6是本申请提供的通信设备一实施例的结构示意图,该通信设备包括互相连接的发射机61和接收机62,发射机61用于发射信号,该信号中携带发射机61的时间信息,接收机62用于根据接收到的信号,调整接收机62的时间信息,使得接收机62的时间信息与发射机61的时间信息的误差在预设范围以内,其中,接收机62为上述实施例中的接收机。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种跳频同步的实现方法,其中,包括:
    接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,所述第一同步频率表由所述发射机根据所述发射机的时间信息生成,所述同步信息包括相关码和时间信息;
    按照预设规则将第二同步频率表分成多个频率集,其中,所述第二同步频率表由接收机根据所述接收机的时间信息生成,所述接收机包括多个处理通道,其中,每个所述频率集对应一个所述处理通道,所述第一同步频率表与所述第二同步频率表中的频率至少部分相同;
    通过每个所述处理通道利用其对应的频率集中的第二同步频率进行同步搜索;
    根据所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性,判断所述第一同步频率与所述第二同步频率是否相同,如果所述第一同步频率与所述第二同步频率相同,则搜索成功,通过所述处理通道接收所述同步信息,更新所述接收机的时间信息,并关闭其他处理通道。
  2. 根据权利要求1所述的跳频同步实现方法,其中,所述根据所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性,判断所述第一同步频率与所述第二同步频率是否相同的步骤,包括:
    判断所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性是否大于预设相关性阈值;
    若所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性的相关性大于所述预设相关性阈值,则判断所述第一同步频率与所述第二同步频率相同,搜索成功。
  3. 根据权利要求1所述的跳频同步实现方法,其中,所述方法还包括:
    在搜索成功之后,获取所述同步信息中所述时间信息的起始位,并进行解调得到所述时间信息;
    根据解调出的所述时间信息更新所述接收机的时间信息,生成与所述发射机相同的所述第一同步频率表。
  4. 根据权利要求1所述的跳频同步实现方法,其中,所述方法还包括:
    当搜索成功且未获取到所述时间信息时,将关闭的所述其他处理通道打开,继续搜索。
  5. 一种接收机,其中,包括控制器、检测电路以及多个处理通道,每个所述处理通道包括天线、频率合成器以及混频器,每个所述处理通道对应一个频率集,
    所述天线用于接收发射机利用第一同步频率表中的多个第一同步频率循环发送的同步信息,其中,所述第一同步频率表由所述发射机根据所述发射机的时间信息生成,第二同步频率表由所述接收机根据所述接收机的时间信息生成,所述第二同步频率表包括多个所述频率集,所述第一同步频率表与所述第二同步频率表中的频率至少部分相同,所述同步信息包括相关码和时间信息;
    所述频率合成器用于根据伪随机序列,产生对应的本地振荡信号;
    所述混频器分别与所述天线以及所述频率合成器连接,用于将所述天线接收到的信号与所述本地振荡信号混频;
    所述检测电路分别与所述混频器以及所述控制器连接,用于根据对应的频率集中的多个第二同步频率进行同步搜索,根据所述同步信息中的相关码与所述第二同步频率对应的相关码的相关性,判断所述第一同步频率与所述第二同步频率是否相同;若相同,则搜索成功,接收所述同步信息,所述控制器控制其他处理通道关闭,更新所述接收机的时间信息。
  6. 根据权利要求5所述的接收机,其中,
    所述处理通道还包括相关计算电路,所述相关计算电路与所述混频器连接,用于获取所述第一同步频率对应的相关码,并计算所述第一同步频率对应的相关码与所述同步信息中的相关码的相关性,所述检测电路用于判断所述相关性是否大于预设相关性阈值,若是,从所述同步信 息中提取所述发射机的时间信息,并发送控制信号给所述控制器,以使得所述控制器关闭所述其他处理通道中的所述频率合成器。
  7. 根据权利要求5所述的接收机,其中,
    所述接收机还包括跳频序列发生器,所述跳频序列发生器与所述频率合成器连接,用于根据所述接收机的时间信息产生伪随机序列,以控制所述频率合成器,使得所述频率合成器生成所述本地振荡信号。
  8. 根据权利要求7所述的接收机,其中,
    所述接收机还包括时钟调整电路,所述时钟调整电路与所述控制器以及所述跳频序列发生器连接,所述控制器用于在搜索成功时,将所述时间信息发送至所述时钟调整电路,所述时钟调整电路用于根据所述时间信息,将所述接收机的时间信息更新为所述发射机的时间信息。
  9. 根据权利要求5所述的接收机,其中,
    所述接收机包括带通滤波器,所述带通滤波器与所述混频器以及所述检测电路连接,用于滤除所述混频器输出的信号中的干扰信号。
  10. 一种通信设备,其中,包括互相连接的发射机和接收机,所述发射机用于发射信号,所述接收机用于根据所述信号,调整所述接收机的时间信息,使得所述接收机的时间信息与所述发射机的时间信息的误差在预设范围以内,其中,所述接收机为权利要求5-9中任一项所述的接收机。
PCT/CN2019/125685 2019-12-16 2019-12-16 一种跳频同步的实现方法、接收机及通信设备 WO2021119933A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125685 WO2021119933A1 (zh) 2019-12-16 2019-12-16 一种跳频同步的实现方法、接收机及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/125685 WO2021119933A1 (zh) 2019-12-16 2019-12-16 一种跳频同步的实现方法、接收机及通信设备

Publications (1)

Publication Number Publication Date
WO2021119933A1 true WO2021119933A1 (zh) 2021-06-24

Family

ID=76478096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125685 WO2021119933A1 (zh) 2019-12-16 2019-12-16 一种跳频同步的实现方法、接收机及通信设备

Country Status (1)

Country Link
WO (1) WO2021119933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023102932U1 (de) 2023-05-26 2023-06-05 Leifheit Aktiengesellschaft Tragbare Reinigungsvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036847A1 (en) * 2005-09-27 2007-04-05 Koninklijke Philips Electronics N.V. Fast synchronization for frequency hopping systems
CN103391114A (zh) * 2013-07-29 2013-11-13 大连大学 一种卫星通信中跳频通信的快速捕获方法
CN105722092A (zh) * 2014-11-30 2016-06-29 中国科学院沈阳自动化研究所 一种基于置换群的多天线认知无线网络信道汇合方法
CN109194365A (zh) * 2018-09-25 2019-01-11 中国人民解放军陆军工程大学 一种二维图案调制跳频通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036847A1 (en) * 2005-09-27 2007-04-05 Koninklijke Philips Electronics N.V. Fast synchronization for frequency hopping systems
CN103391114A (zh) * 2013-07-29 2013-11-13 大连大学 一种卫星通信中跳频通信的快速捕获方法
CN105722092A (zh) * 2014-11-30 2016-06-29 中国科学院沈阳自动化研究所 一种基于置换群的多天线认知无线网络信道汇合方法
CN109194365A (zh) * 2018-09-25 2019-01-11 中国人民解放军陆军工程大学 一种二维图案调制跳频通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
vol. 4, 1 May 2007, article WEI, YANHUA: "The Simulation Research on Synchronization Acquisition Technology of Frequency Hopping Communication System", pages: 1 - 66, XP055822213 *
WU JIANBING: "Study and Analysis on the Synchronization Method of Shortwave Frequency Hopping Communication System", WIRELESS INTERNET TECHNOLOGY, no. 14, 1 July 2014 (2014-07-01), pages 1 - 2, XP055822180 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202023102932U1 (de) 2023-05-26 2023-06-05 Leifheit Aktiengesellschaft Tragbare Reinigungsvorrichtung

Similar Documents

Publication Publication Date Title
US7664160B2 (en) Transmitting device, receiving device, and communication system
US5699357A (en) Personal data network
CN102255631B (zh) 基于时频转换和滑动相关的超宽带通信方法
CN101626268B (zh) 一种窄带高速跳频同步实现方法
CN1375139A (zh) 顺序同步网络的方法和装置
CN101753201B (zh) 一种高速跳频无人机数据链同步方法
WO2009049468A1 (fr) Système et procédé d'émission et de réception d'impulsion ou séquence d'impulsions à bande ultra-large
WO2021119933A1 (zh) 一种跳频同步的实现方法、接收机及通信设备
WO2023159925A1 (zh) 跳频通信装置、方法、芯片、发射机及存储介质
CN112994742B (zh) 一种跳频同步的实现方法、接收机及通信设备
US20050207451A1 (en) Synchronization and access of the nodes in a wireless network
CN109547060A (zh) 跳扩频信号发射装置、跳扩频信号接收装置、跳扩频通信系统及跳扩频通信方法
CN102983881A (zh) 基于北斗授时芯片的跳频同步实现方法
CN205336269U (zh) 一种车载网平台上的跳频收发信机
CN107045121A (zh) 一种近场超宽带信号相位差测距方法及系统
RU2441320C1 (ru) Система связи сверхширокополосными сигналами с повышенной точностью и стабильностью синхронизации
CN113765541B (zh) 一种无人机跳频通信方法、装置、计算机设备及存储介质
Tang et al. A hybrid spread spectrum communication method based on chaotic sequence
CN104735771A (zh) 一种下行同步系统及方法
JPS58131840A (ja) 受信装置
Zhao et al. Research on synchronization technology of frequency hopping communication system
TWI510002B (zh) 同步裝置及其同步方法
CN114629526B (zh) 跳频同步方法、装置及系统
Liu et al. A High Speed Frequency Hopping Capture Synchronization Method
Qi et al. Frequency Hopping Synchronization Method and Simulation in VHF Channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956920

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956920

Country of ref document: EP

Kind code of ref document: A1