WO2021118515A1 - Panneau pvt de construction revêtus ayant de meilleures caractéristiques de solidité - Google Patents

Panneau pvt de construction revêtus ayant de meilleures caractéristiques de solidité Download PDF

Info

Publication number
WO2021118515A1
WO2021118515A1 PCT/UA2020/000111 UA2020000111W WO2021118515A1 WO 2021118515 A1 WO2021118515 A1 WO 2021118515A1 UA 2020000111 W UA2020000111 W UA 2020000111W WO 2021118515 A1 WO2021118515 A1 WO 2021118515A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocells
glass
sealant
panels
integrated
Prior art date
Application number
PCT/UA2020/000111
Other languages
English (en)
Russian (ru)
Inventor
Аркадий Аршавирович БАБАДЖАНЯН
Аршак Аркадьевич Бабаджанян
Original Assignee
Аркадий Аршавирович БАБАДЖАНЯН
Аршак Аркадьевич Бабаджанян
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аркадий Аршавирович БАБАДЖАНЯН, Аршак Аркадьевич Бабаджанян filed Critical Аркадий Аршавирович БАБАДЖАНЯН
Publication of WO2021118515A1 publication Critical patent/WO2021118515A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/54Slab-like translucent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/80Airborne solar heat collector modules, e.g. inflatable structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to eco-construction, in particular, to the construction of roofing building panels-heat exchangers for straight and pitched roofs and building facades with built-in photocells.
  • PV cells PV
  • thermal collectors thermal collectors into building materials and structures
  • integrated building structures are an integral part of a building or structure, they are more consistent with the architectural appearance of the building and are more aesthetically pleasing than traditional solar modules.
  • High strength requirements are imposed on building structures with photocells and / or heat exchangers - for finding people, materials, mechanisms on it and for resisting increased wind loads with large facade structures.
  • the standard PV modules themselves are designed for a pressure not exceeding 50g / cm2. (2-5 KPa) and cannot serve as a roof covering (the pressure of a person's weight reaches 500 KPa) because FE encapsulated with a double EVA film with front glass and / or laminated with a film in one piece, being fragile, cannot withstand deformations of the front tempered glass under heavy loads on its surface and are destroyed or covered with microcracks, which very quickly lead to their degradation.
  • PV-modules Flrench Systovi, Group Solution Energy
  • Patent UA116607 C2 describes a method for constructing a building PVT panel as a rigid package: from a sheet of front light-transmitting material of any size (glass or transparent material, color for facade panels is possible) with fixed FE and a back rigid plate (cement-containing and magnesite plates: slate, fibrolite; metal and alloys, synthetic materials, glass), which transfers the rigidity of the rear side to the front side, by creating spacer walls (stiffeners) or spacer fastening posts, fixed with a sealant with high adhesion evenly over the entire surface of the front and back sides along the perimeter of each PV or groups FE (Fig.
  • the stiffeners can be formed directly from the back side material as 8 (Fig. 2) according to part I (Fig. 1). After bonding with the front light-transmitting side of the carrier PV (mainly - tempered glass "solar-glass"), the ribs stiffness turns into beams giving additional and greater rigidity, i.e. a beam structure is created, the rigidity of which depends on the thickness of the package and the total butt area of the spacer ribs-walls and spacer posts with the front and back sides, connected by a polymer-sealant with high adhesion into one whole.
  • the level of rigidity is dictated by the amount of pressure on the roof surface - by a person on a pitched roof or by a mechanism on a straight line.
  • the formed spacers 9 are not stiffening ribs, but after bonding with a polymer with high adhesion, a series of longitudinal and transverse spacer columns located in one line transforms immediately into beams.
  • the front side can be a ready-made commercial PV-module with any electrical characteristics, and as a heat exchange part it can be molded from the material of the back side and with ready-made stiffeners 8 and posts 9 (Fig. 2), the geometry of which corresponds to the arrangement of photocells.
  • the front side - glass with photocells encapsulated with EVA film acts as an absorber in the building air PVT heat exchanger, i.e. building PV panels are uncoated (non-glazed) air heat collectors, which are known to be less efficient than glazed
  • This application for the invention proposes the implementation of the method described in the prototype for obtaining glazed (or coated) PVT- and T-panels with high strength characteristics and efficiency. thermal efficiency.
  • the aim of the present invention is a method of manufacturing glazed (covered) building panels-heat exchangers with integrated PVs for straight and pitched roofs and facades of buildings of the required rigidity.
  • the technical result of the proposed implementation is the creation of covered (glazed) air PVT- and T-panels that can withstand heavy loads, namely, the weight of people and materials when they cover roofs and facades, as well as: a) a significant improvement in the characteristics of the thermal efficiency of PVT- panels of the prototype with glazing - the coefficient of specific heat transfer in a glazed PVT collector with increased strength is 3 times higher than that of a non-glazed one [2]; c) the maximum increase in the light transmission of the glazing, therefore, the increase in the electrical and thermal efficiency of PVT panels due to the strength characteristics; c) cheaper construction of air PVT- and T-panels.
  • Fig. 1 shows the essence of the glazing design: construction PVT panels of the prototype (part I) by adding additional glazing made of tempered glass "solar glass” 1 with the formation of a second cavity or part II and reinforcing polymer spacer posts 6, 7 - polyurethane, silicone or MS-polymer sealant with high adhesion and, if necessary, transparent.
  • the tempered glass supporting PV is simply replaced by an aluminum absorber sheet.
  • Figure 2 shows a molded rear (rear), thermal part 3 ( Figure 1) with stiffening ribs 8 and spacer posts 9, corresponding to the geometry of the silicon monocrystalline photocells 2.
  • thermal part can consist of one cavity with inlet and outlet and only spacer struts 9.
  • the thermal part for polycrystalline PVs can be formed - by simply increasing the gap between the PVs on the PV-bearing glass of Fig. 2. respectively to the width of the spacer walls 8 and spacer columns 9.
  • Fig. 3 (section A - A) shows an additional cavity with an absorbing surface 4 made of a sheet of glass, polymer, metal with photocells 2 located on top of the photocells.
  • the spacer posts 6 of the glass-coating with 1 - the front side of the carrier PV (part II, Fig. 1), then in Fig. 3, the load-bearing PV element 4, the spacer columns located in one line, become stiffening beams in the part II panels (Fig. 1, 3), simultaneously, both in longitudinal and transverse directions, thereby increasing the strength characteristics of the building PVT panel itself (part I).
  • elements 9 and 6 act as elements of "disturbance" or mixing of the air flow for better heat transfer.
  • % Pacnophmic 0 U 85 Jf of any polymer 6 have a small height? I-T U TM m 2 ⁇ * W n and the length of the shadow falling on the PV, when using transparent spacers and made of glass, their height can be increased, and in the case of transparent spacer walls and columns in Part I for light penetration inward when using bifocal PVs.
  • the solution of installing the PV on top of the carrier surface 4 has two goals: 1) to increase the light absorption of the PV in comparison with the prototype and the variant of Fig. 1, by lamination with a thin film i.e. to increase both the thermal and electrical efficiency of part I in comparison with the prototype [3] without taking into account the effect of the coating; 2) significantly reduce the cost of the PV module, because instead of the expensive "solar-glass" bearing glass used as an absorber, cheap glasses with a high iron content or sheets of polymer or metal with insulation or other ones with better absorbing properties are used. In this case, the bearing surface can be perforated for uniform air flow from the upper cavity to the lower one and vice versa.
  • Figure 2 shows two heat dissipating cavities of the prototype (according to part I of Figs. 1, 3), it is obvious that in the variants of Figs. 1 and 3, the additional cavity II of the coating can be sealed or connected to both halves of the heat dissipating cavity of the prototype or divided as a cavity of the prototype , i.e. into the covering cavity II, it is necessary to split into two parts and insert, respectively, a continuous spacer wall similar to the first cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention se rapporte au domaine de la construction écologique et, notamment, des structures de panneaux échangeurs de chaleur de construction de toitures pour des toits plats ou inclinés et des façades de bâtiments avec ou sans photo-éléments intégrés. L'invention concerne essentiellement un procédé de production de panneaux échangeurs de chaleur de construction vitrés (revêtus) avec des photo-éléments intégrés, qui sont destinés des toitures planes ou inclinées et des façades de bâtiments et possèdent une rigidité voulue, ainsi que la production de panneaux PVT et T à air vitrés (revêtus) pouvant supporter de grandes charges, notamment le poids de personnes et de matériaux lors du revêtement de toits et de façades avec ces derniers, et a également pour but la diminution des coûts de construction des panneaux PVT et T à air. On obtient une augmentation maximale de la transmission de lumière des vitrages, c'est à dire une augmentation de l'efficacité électrique et thermique des panneaux PVT grâce aux caractéristiques de solidité.
PCT/UA2020/000111 2019-12-12 2020-12-30 Panneau pvt de construction revêtus ayant de meilleures caractéristiques de solidité WO2021118515A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201911861 2019-12-12
UAA201911861 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021118515A1 true WO2021118515A1 (fr) 2021-06-17

Family

ID=76329030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/UA2020/000111 WO2021118515A1 (fr) 2019-12-12 2020-12-30 Panneau pvt de construction revêtus ayant de meilleures caractéristiques de solidité

Country Status (1)

Country Link
WO (1) WO2021118515A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015220A1 (en) * 2000-02-17 2001-08-23 Roehm Gmbh & Co. Kg Photovoltaic element
RU2215100C2 (ru) * 2001-10-24 2003-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение машиностроения" Способ изготовления кровельной панели с солнечной батареей
CN201738472U (zh) * 2010-06-04 2011-02-09 大连皿能光电科技有限公司 前粘贴式太阳能发电幕墙组件
CN103022199A (zh) * 2012-12-27 2013-04-03 张保宏 Bipv太阳能电池组件及其制作方法
WO2018236330A1 (fr) * 2017-06-23 2018-12-27 Аркадий Аршавирович БАБАДЖАНЯН Procédé de fabrication d'un panneau de construction creux avec des cellules photovoltaïques intégrées

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015220A1 (en) * 2000-02-17 2001-08-23 Roehm Gmbh & Co. Kg Photovoltaic element
RU2215100C2 (ru) * 2001-10-24 2003-10-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение машиностроения" Способ изготовления кровельной панели с солнечной батареей
CN201738472U (zh) * 2010-06-04 2011-02-09 大连皿能光电科技有限公司 前粘贴式太阳能发电幕墙组件
CN103022199A (zh) * 2012-12-27 2013-04-03 张保宏 Bipv太阳能电池组件及其制作方法
WO2018236330A1 (fr) * 2017-06-23 2018-12-27 Аркадий Аршавирович БАБАДЖАНЯН Procédé de fabrication d'un panneau de construction creux avec des cellules photovoltaïques intégrées

Similar Documents

Publication Publication Date Title
CA2719732C (fr) Panneau de fenetre thermoisolant multicouche
CN101661963B (zh) 一种隔热型薄膜太阳能电池结构
Ghosh Fenestration integrated BIPV (FIPV): a review
US8833012B2 (en) Transparent sustainable wall system
CN201762849U (zh) 一种可拆卸通风式光伏幕墙
WO2011101682A2 (fr) Vitre photovoltaïque sous vide de concentration
WO2018236330A1 (fr) Procédé de fabrication d'un panneau de construction creux avec des cellules photovoltaïques intégrées
CN102337766A (zh) 可拆卸通风式光伏幕墙
EP1918661A1 (fr) Élément de construction avec élément de chauffage solaire intégré
KR200420311Y1 (ko) 건축외장용 일체형 복층유리 pv
CN202205774U (zh) 光伏真空玻璃组件
US20110162638A1 (en) Solar panel element
CN106149869A (zh) 既有建筑改造成的节能玻璃房
CN202487620U (zh) 中空微循环bipv光伏组件
CN203891278U (zh) 一种太阳能钢结构玻璃幕墙
WO2021118515A1 (fr) Panneau pvt de construction revêtus ayant de meilleures caractéristiques de solidité
CN201527981U (zh) 一种隔热型薄膜太阳能电池结构
CN203626096U (zh) 一种中空光伏玻璃幕墙组件
CN108457406B (zh) 一种基于室内外观感设计的建筑一体化光伏光热联供组件
CN106149870A (zh) 能源房
CN100370101C (zh) 透明隔热保温板块
CN2625477Y (zh) 透明隔热保温板块
CN106149865A (zh) 集成式能源房
CN106150117A (zh) 既有建筑改造成的能源房
US20220302876A1 (en) Photovoltaic and thermal energy system providing visible light transmission and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20898371

Country of ref document: EP

Kind code of ref document: A1