WO2021118272A1 - Perovskite photodetector device and method for manufacturing same - Google Patents

Perovskite photodetector device and method for manufacturing same Download PDF

Info

Publication number
WO2021118272A1
WO2021118272A1 PCT/KR2020/018081 KR2020018081W WO2021118272A1 WO 2021118272 A1 WO2021118272 A1 WO 2021118272A1 KR 2020018081 W KR2020018081 W KR 2020018081W WO 2021118272 A1 WO2021118272 A1 WO 2021118272A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
electrode
nanowire
perovskite compound
present
Prior art date
Application number
PCT/KR2020/018081
Other languages
French (fr)
Korean (ko)
Inventor
임상혁
허진혁
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2021118272A1 publication Critical patent/WO2021118272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a perovskite photodetecting device including at least one nanowire using a single crystal perovskite compound and a method for manufacturing the same.
  • Conventional photodetectors sense light using a semiconductor device, and the wavelength region of the detected light is determined according to the bandgap energy of the semiconductor device used.
  • the bandgap energy In order to change the detectable wavelength of light, the bandgap energy must be adjusted. In order to adjust the bandgap energy, a method of doping an impurity or a method of using a semiconductor device of another element has been adopted.
  • Perovskite materials can be used as active layers in photodetectors and optoelectronic devices.
  • An embodiment of the present invention is to provide a perovskite photodetecting device having high stability and high responsiveness using a single nanowire using a single crystal perovskite compound.
  • a perovskite photodetecting device comprises: a substrate; first and second electrodes patterned on the substrate; and a sensing unit formed on the substrate, having a structure in contact with the first electrode and the second electrode, and sensing light, wherein the sensing unit includes at least one nanowire including a single crystal perovskite compound characterized in that
  • the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction.
  • the at least one nanowire including the single-crystal perovskite compound has a crystal lattice structure of cubic, tetragonal, It may be any one of orthorhombic, rhombohedral, layered and dimer.
  • the at least one nanowire is a perovskite photodetecting device characterized in that it comprises a single crystal perovskite compound represented by the following formula .
  • A is a monovalent cation
  • M is a divalent metal cation or a trivalent metal cation
  • X is a monovalent anion
  • M is a divalent metal cation
  • the at least one nanowire may have an average diameter of 1 nm to 100 nm.
  • the at least one nanowire may have an average length of 1 ⁇ m to 1,000 ⁇ m.
  • the surface of the at least one nanowire is chelated with the divalent metal cation or the trivalent metal cation or the monovalent anion to form an alkyl ligand It can be passivated by the forming passivating agent.
  • the surface of the at least one nanowire may be coated with a material having a larger band gap than the single crystal perovskite compound.
  • the light responsiveness of the perovskite photodetecting device is characterized in that 10 4 A/W to 10 8 A/W. .
  • the photodetectivity of the perovskite photodetecting device is characterized in that 10 15 jones to 10 20 jones.
  • a method of manufacturing a perovskite photodetecting device comprises: forming an electrode material on a substrate; patterning the electrode material to form a first electrode and a second electrode; and coating at least one nanowire including a single crystal perovskite compound to contact the first electrode and the second electrode to form a sensing unit.
  • the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction.
  • the step of forming the first electrode and the second electrode by patterning the electrode material may be performed on the substrate through a photolithography patterning process.
  • the first electrode and the second electrode are formed.
  • At least one nanowire containing a single crystal perovskite compound is coated to contact the first electrode and the second electrode for sensing.
  • the forming of the part may be formed by coating at least one nanowire including the single crystal perovskite compound in a dispersed state in a solution.
  • the band gap is larger than that of the single-crystal perovskite compound on the surface of at least one nanowire including the single-crystal perovskite compound. It may further include the step of coating by applying a material.
  • the composition of the perovskite compound can be freely adjusted during the process, so that the range of the detectable spectrum can be easily controlled, and thus excellent light detection performance at a wavelength of 300 nm to 1200 nm It is possible to provide a perovskite photodetecting device showing
  • the surface of a single nanowire using a single crystal perovskite compound is immobilized by an alkyl ligand having moisture resistance to provide a perovskite photodetecting device having high stability.
  • FIG. 1 is a plan view of a perovskite photodetecting device according to an embodiment of the present invention
  • FIG. 2 is an AA of the perovskite photodetecting device according to the embodiment shown in FIG. 1 of the present invention.
  • a cross-section of ' is shown.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention.
  • TEM 4 shows a transmission electron microscopy (TEM) image of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
  • FIG 5 shows data obtained by X-ray diffraction analysis (XRD) of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
  • XRD X-ray diffraction analysis
  • FIG. 6 shows data on optical absorption and photo-luminescent (PL) of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • FIGS 7A to 7C are diagrams of energy band diagrams of perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
  • 9A and 9B show spectral reactivity and spectral gain for perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
  • FIG. 11 shows a detection diagram of a perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • 12A and 12B show device stability of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • FIG. 13 is a scanning electron microscopy (SEM) image showing a cross-section of a perovskite photodetecting device according to a control example.
  • FIG. 14 is a graph showing the photoresponse and photodetectability of the perovskite photodetecting device according to the control example.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a plan view of a perovskite photodetecting device according to an embodiment of the present invention
  • FIG. 2 is an AA of the perovskite photodetecting device according to the embodiment shown in FIG. 1 of the present invention.
  • a cross-section of ' is shown.
  • the perovskite photodetecting device includes a substrate 110 , a first electrode 120a , a second electrode 120b and a sensing unit 130 . is composed
  • the substrate 110 is a substrate supporting the first electrode 120a, the second electrode 120b, and the sensing unit 130, and the material thereof is not limited.
  • the substrate 110 may be any one of a silicon substrate, a glass substrate, a quartz substrate, and a polymer substrate, and the material thereof is not particularly limited as long as it is a substrate used in the art.
  • the substrate 110 may be a polymer substrate
  • the polymer substrate is polyester, polyvinyl, polycarbonate, polyethylene, polyacetate, polyimide (Polyimide), polyethersulfone (Polyethersulphone; PES), polyacrylate (PAR), polyethylenenaphthelate (PEN), and polyethylene ether phthalate (Polyethyleneterephehalate; PET) consisting of any one material selected from the group consisting of It may be made of a transparent and flexible material, but is not limited thereto.
  • the first electrode 120a and the second electrode 120b are spaced apart from each other by a predetermined distance on the substrate 110 and are patterned to face each other in parallel and are formed.
  • the patterning process of the first electrode 120a and the second electrode 120b will be described in more detail in a method of manufacturing a perovskite photodetecting device to be described later.
  • the first electrode 120a and the second electrode 120b of the perovskite photodetecting device 100 are gold (Au), silver (Ag), aluminum (Al), calcium, respectively. It may include any one selected from the group consisting of (Ca), palladium (Pd), platinum (Pt), molybdenum (Mo), copper (Cu), lead (Pb), ITO, IZO, and AZO.
  • the first electrode 120a and the second electrode 120b may be formed of the same or different materials.
  • the perovskite photodetecting device may be formed in the form of an array in which a plurality of electrodes are formed in addition to the first electrode and the second electrode.
  • the sensing unit 130 of the perovskite photodetecting device is composed of at least one nanowire including a single crystal perovskite compound.
  • the sensing unit 130 includes two or more nanowires containing a single crystal perovskite compound by connecting the first electrode 120a and the second electrode 120b to each other. can be formed.
  • the sensing unit 130 detects light, and can detect light having wavelengths in the visible, near-infrared, and infrared regions, so that light in a wide wavelength range can be detected with high light responsiveness.
  • the sensing unit 130 of the perovskite photodetecting device 100 is formed by using at least one nanowire including a single crystal perovskite compound, the number of defects in the single crystal perovskite compound is small and a dark current is generated. This can be very little.
  • the single crystal perovskite compound may be a perovskite compound represented by the following formula.
  • A is a monovalent cation
  • M is a divalent metal cation or a trivalent metal cation
  • X is a monovalent anion
  • A may be a monovalent organic cation, a monovalent inorganic cation, or a combination thereof.
  • the single crystal perovskite compound is an organic/inorganic hybrid perovskite compound or an inorganic metal halide perovskite compound, depending on the type of A in the formula. compound).
  • the single crystal perovskite compound is an organic-inorganic hybrid perovskite composed of an organic material A and inorganic materials M and X, and an organic material and an inorganic material complex. It may be a compound.
  • the single crystal perovskite compound may be an inorganic metal halide perovskite compound composed of inorganic materials A, M and X and all inorganic materials.
  • the monovalent organic cation is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group ( -OCH 3 ) or an imidazolium group substituted C 1 to 24 straight or branched chain alkyl, or a combination thereof.
  • the monovalent inorganic cation may be Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + , Au(I) + , or a combination thereof.
  • Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ , Rf 2+ or these may be a combination of
  • M is a trivalent metal cation In 3+ , Bi 3+ , Co 3+ , Sb 3+ , Ni 3+ , Al 3+ , Ga 3+ , Tl 3+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Fe 3+ , Ru 3+ , Cr 3+ , V 3+ , Ti 3+ , or a combination thereof.
  • X may be F - , Cl - , Br - , I - , SCN - , BF 4 - or a combination thereof.
  • the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction, so that the halide composition in the single-crystal perovskite compound may be controlled through the halide substitution reaction.
  • the single crystal perovskite compound may include Br - and Cl - .
  • the halide substitution reaction is performed by synthesizing at least one nanowire containing a single crystal perovskite compound and then using a halide anion source material to convert a part of the monovalent anions included in the perovskite compound to the halide anion source material. It can be substituted with a halide anion.
  • the halide anion source material may include any one of hydrogen iodide (HI), hydrogen bromide (HBr), and hydrogen chloride (HCl), and if it is a material capable of providing a monovalent halide anion, the type no limits.
  • HI hydrogen iodide
  • HBr hydrogen bromide
  • HCl hydrogen chloride
  • the perovskite photodetecting device 100 forms the sensing unit 130 with a nanowire including a single-crystal perovskite compound having a controlled halide composition, so that the perovskite light
  • the light sensing ability of the detection element 100 may be improved.
  • the absorption wavelength may vary.
  • the absorption wavelength may shift from 400 nm to a longer wavelength such as 550 nm or 800 nm.
  • the halide substitution reaction is to replace some of the monovalent anions included in the single crystal perovskite compound with the halide anions of the halide anion source material, specifically, for example, contained in the single crystal perovskite compound.
  • Br 3 may be substituted with Br 3-x I x (0 ⁇ x ⁇ 3, x is a natural number).
  • the single-crystal perovskite compound includes a monovalent cation, a divalent or trivalent metal cation and a monovalent anion, and the surface of the at least one nanowire comprising the single-crystal perovskite compound is the divalent metal
  • the cation or the trivalent metal cation or the monovalent anion may be passivated by an alkyl ligand formed by chelating with a passivating agent.
  • the single crystal perovskite compound has an MX6 octahedron structure including a metal (M) and a halogen (X) as the main skeleton, and monovalent cations such as alkylammonium or alkali metal cations exist between the octahedron structures. do.
  • the metal (M) and the halogen (X) are exposed on the surface of the single-crystal perovskite compound, at this time, the single-crystal perovskite compound and the metal (M) exposed on the surface of the chelating (chelating) bond
  • the passivation of the single crystal perovskite compound is possible by an organic material capable of having a group capable of forming an alkyl ligand.
  • the single crystal perovskite compound may be passivated.
  • the single-crystal perovskite compound may be passivated.
  • the passivating agent capable of passivating the single crystal perovskite compound may be a material in which a metal and an organic material are combined, for example, Zn-TOPO (tri octylphosphine oxide), Zn-acetate (acetate), Zn-acetylacetone ( acetyl acetone) and Zn-alkyl thiol may be at least one, but the material is not limited thereto.
  • Zn-TOPO tri octylphosphine oxide
  • Zn-acetate acetate
  • Zn-acetylacetone acetyl acetone
  • Zn-alkyl thiol may be at least one, but the material is not limited thereto.
  • the perovskite photodetecting device 100 may have moisture resistance and high stability by immobilizing the surface of the at least one nanowire by an alkyl ligand.
  • the surface of the at least one nanowire may be coated with a material having a band gap larger than that of the single crystal perovskite compound.
  • the material for coating the surface of the at least one nanowire may be an organic material or an inorganic material larger than the band gap of the single crystal perovskite compound, and if it is a transparent material that does not dissolve the single crystal perovskite compound, the type is limited do not leave
  • the material coating the surface of the at least one nanowire is silicon oxide (SiO x ), titanium oxide (TiO x ), zinc oxide (ZnO x ), tin oxide (SnO x ), aluminum oxide (AlO x ) , indium oxide (InO x ), vanadium oxide (VO x ), barium oxide (BaO x ), molybdenum oxide (MoO x ) and metal oxides including compounds thereof, polystyrene, polyacrylate, polyvinylpyrrol It may include at least one of a polymer including money, polyvinyl alcohol, polymethyl methacrylate, polyolefin, cellulose, and a compound thereof.
  • the perovskite photodetecting device 100 provides moisture resistance and high stability because the surface of the at least one nanowire is coated with a material having a band gap larger than that of the single crystal perovskite compound. can have
  • a compound having a general perovskite crystal lattice structure has a unique sub-lattice structure of a corner-shared octahedral, and has a different twisted structure by changing halide ions in the perovskite crystal structure. (distorted structure).
  • At least one nanowire including a single crystal perovskite compound constituting the sensing unit 130 of the perovskite photodetecting device 100 according to an embodiment of the present invention is cubic, tetragonal. It may have a crystal lattice structure of any one of tetragonal, orthorhombic, rhombohedral, layer, and dimer.
  • the sensing unit 130 of the perovskite photodetecting device 100 includes at least one single crystal perovskite compound having an orthorhombic crystal lattice structure. of nanowires.
  • At least one nanowire forming the sensing unit 130 may have an average diameter of 1 nm to 100 nm.
  • the at least one nanowire may have an average length of 1 ⁇ m to 1,000 ⁇ m.
  • the perovskite photodetecting device 100 according to an embodiment of the present invention having the above-described structure may have high photoresponsivity.
  • the photoresponse is a rate at which photons are converted into current, and may be calculated based on photocurrent density, dark current density, and light intensity before irradiating light to the perovskite photodetecting device 100 .
  • the perovskite photodetecting device 100 may have a high light response of 10 4 A/W to 10 8 A/W.
  • the perovskite photodetecting device 100 according to an embodiment of the present invention having the above-described structure may have high photodetectivity.
  • the light detection performance may be calculated based on the light responsiveness, elementary charge, and dark current.
  • the perovskite photodetecting device 100 may have a high photodetection performance of 10 15 jones to 10 20 jones.
  • the perovskite photodetecting device 100 can easily control the range of a detectable light spectrum according to halide composition control of a single crystal perovskite compound through halide substitution. , it is possible to provide a perovskite photodetecting device exhibiting excellent photodetection performance at a wavelength of 300nm to 1200nm.
  • the perovskite photodetection device 100 is a perovskite photodetector having high stability by passivating the surface of at least one nanowire including a single crystal perovskite compound. devices can be provided.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention.
  • the first electrode and the second electrode are formed by forming an electrode material on a substrate ( S110 ), and patterning the electrode material. Forming (S120), and coating at least one nanowire containing a single-crystal perovskite compound to contact the first electrode and the second electrode to form a sensing unit (S130).
  • the step of forming the electrode material on the substrate ( S110 ) is a step of depositing the electrode material on the substrate through a deposition process.
  • the electrode material is deposited by vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, or metal organic chemical vapor deposition.
  • Deposition thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation ), RF sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating), and any one method of zone casting (zone casting) can be used. and is not limited to the above method.
  • the electrode material is gold (Au), silver (Ag), aluminum (Al), calcium (Ca), palladium (Pd), platinum (Pt), molybdenum (Mo), copper (Cu), lead (Pb) , ITO, IZO, may be any one selected from the group consisting of AZO.
  • the first electrode and the second electrode may be formed by patterning the electrode material deposited as a single layer.
  • the first electrode and the second electrode may be formed by being spaced apart from each other by a predetermined distance and patterned to have a structure opposite to each other.
  • the process used for patterning the electrode may use electron beam evaporation and a lift-off process, but is not limited thereto and is limited as long as it is a process capable of forming electrodes of a metal material at regular intervals. doesn't happen
  • Forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound to contact the first electrode and the second electrode (S130) is a single crystal perovskite connected to the first electrode and the second electrode (S130). It is a step of forming at least one nanowire including the skyte compound.
  • the step of forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound to contact the first electrode and the second electrode (S130) includes at least a single crystal perovskite compound containing at least one It may include manufacturing one nanowire and coating the at least one nanowire on a substrate.
  • a first mixed solution containing a monovalent cation and a second mixed solution containing a metal ion and a monovalent halogen anion may be reacted.
  • the reacted mixture may be centrifuged to separate at least one nanowire including a single crystal perovskite compound from the mixture.
  • the halogen element contained in the second mixed solution is bromine (Br)
  • the monovalent halogen anion contained in the single crystal perovskite compound is replaced with another halogen material, that is, iodine (I), through a halide exchange reaction. It can be exchanged for fluorine (F) or chlorine (Cl).
  • At least one nanowire including a single-crystal perovskite compound is coated on a substrate on which an electrode is formed using a solution in which a plurality of them are dispersed.
  • At least one nanowire including the single-crystal perovskite compound is a solution in which the nanowires containing the single-crystal perovskite compound are dispersed by spin coating, spray coating, or ultra-spray coating.
  • spin coating spray coating
  • ultra-spray coating electrospray coating
  • slot die coating gravure coating
  • bar coating bar coating
  • roll coating dip coating
  • shear coating shear coating
  • screen printing screen printing
  • inkjet printing inkjet printing
  • nozzle printing nozzle printing
  • the surface of the at least one nanowire including the single crystal perovskite compound is the divalent metal cation or the It can be immobilized by a passivating agent that chelates a trivalent metal cation or the monovalent anion to form an alkyl ligand.
  • the at least one nanowire is added to a solution in which a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound is dissolved in a solvent and mixed to passivate the at least one nanowire. have.
  • a solution in which a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound is dissolved in a solvent is applied on the array and dried to passivation can do it
  • a solution obtained by dissolving a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound in a solvent may be deposited on the at least one nanowire array for passivation.
  • the deposition method is vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition), Thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation, RF Any one of sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating) and zone casting (zone casting) may be used, and the not limited to the method.
  • sputtering Radio Frequency sputtering
  • magnetron sputtering magnetron sputtering
  • sputtering spin coating
  • dip coating dip coating
  • zone casting zone casting
  • a band than the single-crystal perovskite compound is formed on the surface of at least one nanowire including the single-crystal perovskite compound.
  • the method may further include coating by applying a material having a large gap.
  • a metal oxide precursor may be added to a solution in which the at least one nanowire is dispersed, and the surface of the at least one nanowire may be coated with a metal oxide through a sol-gel reaction.
  • the surface of the at least one nanowire may be coated with an organic material by filtration and drying.
  • a metal oxide and an organic material may be deposited on the surface of the at least one nanowire to coat the surface of the at least one nanowire.
  • the deposition method is vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition), Thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation, RF Any one of sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating) and zone casting (zone casting) may be used, and the not limited to the method.
  • sputtering Radio Frequency sputtering
  • magnetron sputtering magnetron sputtering
  • sputtering spin coating
  • dip coating dip coating
  • zone casting zone casting
  • the perovskite photodetecting device including at least one nanowire including a single crystal perovskite compound prepared through the above-described manufacturing step is 10 4 A/W to 10 8 A It may have a high light responsiveness of /W and a high light detectivity of 10 15 jones to 10 20 jones.
  • the perovskite photodetector device can easily control the range of the detectable spectrum according to the control of the halide composition in the single-crystal perovskite compound, and thus exhibits excellent photodetection performance at a wavelength of 300 nm to 1200 nm .
  • a solution in which Cl-substituted CsPbBr 3 perovskite nanowires are dispersed on a substrate on which the patterned first and second electrodes are formed is spin-coated at 3000 rpm for 1 minute, and then dried at 70° C. for 5 minutes.
  • a skye photodetector device was fabricated.
  • a perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.02 mmol of OAmCl was used.
  • a perovskite photodetector device was manufactured in the same manner as in [Example 1], except that a single crystal perovskite compound not subjected to halide substitution reaction was used.
  • a perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.01 mmol of PbI 2 and 0.01 mmol of OAmI were used as halide anion source materials.
  • a perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.03 mmol of PbI 2 and 0.01 mmol of OAmI were used as halide anion source materials.
  • a perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.07 mmol of PbI 2 and 0.03 mmol of OAmI were used as halide anion source materials.
  • a thin film-shaped sensing part was formed with CsPbBr 3 perovskite compound.
  • an aluminum (Al) electrode was formed to manufacture a thin-film perovskite photodetector device.
  • Table 1 summarizes Examples 1 to 6 according to halide anion source materials.
  • TEM 4 shows a transmission electron microscopy (TEM) image of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
  • the average diameter of at least one nanowire including a single crystal perovskite compound constituting the sensing unit of the perovskite photodetecting device according to an embodiment of the present invention is 8 nm to 10 nm, and , it can be seen that the average length is 5 ⁇ m to 10 ⁇ m.
  • FIG 5 shows data obtained by X-ray diffraction analysis (XRD) of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
  • XRD X-ray diffraction analysis
  • At least one nanowire including the single crystal perovskite compound according to Examples 1 to 6 of the present invention has an orthorhombic crystal lattice structure.
  • FIG. 6 shows data on optical absorption and photo-luminescent (PL) of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • FIGS 7A to 7C are diagrams of energy bands of perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
  • FIG. 7A shows when no bias is applied
  • FIG. 7B shows when forward bias is applied
  • FIG. 7C shows when reverse bias is applied.
  • electrons and holes generated by applying an electric field are spaced It is more efficiently separated by the electric field induced in the charge region, reducing the recombination rate of electrons and holes.
  • the applied electric field lowers the energy barrier so that electrons and holes in at least one nanowire containing a single crystal perovskite compound can be effectively transferred to each electrode.
  • the photocurrent is increased by 6 times compared to the dark current.
  • the perovskite photodetecting device according to an embodiment of the present invention has excellent photodetection performance.
  • 9A and 9B show spectral reactivity and spectral gain for perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
  • the perovskite photodetecting device exhibits a wide spectrum response at a wavelength of 350 ⁇ m to 650 ⁇ m and a very high sensitivity of ⁇ 10 7 A/W. have.
  • the photoelectric response signal of the perovskite photodetecting device operates without a time delay, which is This indicates that the lobskite photodetecting device can operate at high speed.
  • FIG. 11 shows a detection diagram of a perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • the perovskite photodetecting device has very good photodetection performance even when the halide composition of the single crystal perovskite compound included in the nanowire is changed.
  • the perovskite photodetecting device of the present invention has excellent photodetection performance irrespective of different halide compositions while changing the wavelength region for absorbing light due to different halide compositions of the single crystal perovskite compound, so that R (red ), G (green), and B (blue) color filters, it is possible to manufacture an image sensor that can detect three colors excellently.
  • 12A and 12B show device stability of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
  • 12A and 12B are current-voltage curves of data measured daily for 15 days according to light irradiation in a dark environment and a bright environment. Referring to FIGS. 12A and 12B, the data is maintained constant for 15 days. that can be checked
  • FIG. 13 is a scanning electron microscopy (SEM) image showing a cross-section of a perovskite photodetecting device according to a control example.
  • a thin film-shaped sensing part is formed of a CsPbBr 3 perovskite compound, and it can be confirmed that a thin film-type perovskite photodetecting device is manufactured.
  • FIG. 14 is a graph showing the photoresponse and photodetectability of the perovskite photodetecting device according to the control example.
  • the light responsiveness of the control example has a value between 10 ⁇ 1 A/W and 1 A/W, and the photodetectability has a value of 10 12 ⁇ 10 13 Jones.
  • the thin film-type perovskite photodetecting device of the control example has photoresponse and photodetectability of significantly smaller values than the values of photoresponse and photodetectability of Examples 1 to 6 above.

Abstract

The present invention provides a perovskite photodetector device and a method for manufacturing same. The perovskite photodetector device according to an embodiment of the present invention has a photo-detectivity of 1015-1020 jones and a photo-responsivity of 104-108 A/W, and the range of the detectable spectrum can be easily controlled by adjusting the composition of a perovskite compound. Thus, a perovskite photodetection device exhibiting excellent photo-detectivity over the entire spectrum can be provided.

Description

페로브스카이트 광검출 소자 및 이의 제조방법Perovskite photodetecting device and manufacturing method thereof
본 발명은 단결정 페로브스카이트 화합물을 이용한 적어도 하나의 나노와이어를 포함하는 페로브스카이트 광검출 소자 및 이의 제조방법에 관한 것이다.The present invention relates to a perovskite photodetecting device including at least one nanowire using a single crystal perovskite compound and a method for manufacturing the same.
기존의 광 검출기는 반도체 소자를 이용하여 빛을 감지하였고, 감지되는 빛의 파장 영역은 사용되는 반도체 소자의 밴드갭 에너지에 따라 결정된다. Conventional photodetectors sense light using a semiconductor device, and the wavelength region of the detected light is determined according to the bandgap energy of the semiconductor device used.
즉, 반도체 소자의 밴드갭보다 큰 에너지를 갖는 빛은 가전자대(valence band)의 전자를 전도대(conduction band)로 여기시켜, 상기 반도체 소자의 전기적 특성을 변화시킴으로써 빛이 감지된다. That is, light having an energy greater than the band gap of the semiconductor device excites electrons of a valence band into a conduction band, and the light is sensed by changing the electrical characteristics of the semiconductor device.
따라서, 상기 반도체 소자의 밴드갭 에너지보다 작은 에너지를 갖는 빛은 감지할 수 없다. 이에 따라 실리콘의 경우는 1.1 μm 보다 큰 파장을 갖는 적외선 영역의 빛의 감지가 불가능하다. Accordingly, light having an energy smaller than the bandgap energy of the semiconductor device cannot be detected. Accordingly, in the case of silicon, it is impossible to detect light in the infrared region having a wavelength greater than 1.1 μm.
감지 가능한 빛의 파장을 변화시키기 위해서는 상기 밴드갭 에너지를 조정해야 하는데, 밴드갭 에너지를 조정하기 위해서 불순물을 도핑하는 방법 또는 다른 원소의 반도체 소자를 이용하는 방법을 채용해왔다. In order to change the detectable wavelength of light, the bandgap energy must be adjusted. In order to adjust the bandgap energy, a method of doping an impurity or a method of using a semiconductor device of another element has been adopted.
페로브스카이트 물질들은 광 검출기와 광전 소자의 활성 층들로서 사용될 수 있다. Perovskite materials can be used as active layers in photodetectors and optoelectronic devices.
그러나, 페로브스카이트를 사용하여 광전 소자를 제조할 때, 미리 규정된 패턴으로 페로브스카이트를 구조화하는 데는 어려움이 있다.However, when fabricating optoelectronic devices using perovskite, there are difficulties in structuring the perovskite in a predefined pattern.
본 발명의 실시예는 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어를 사용하여 높은 안정성 및 높은 응답성을 갖는 페로브스카이트 광검출 소자를 제공하고자 한다.An embodiment of the present invention is to provide a perovskite photodetecting device having high stability and high responsiveness using a single nanowire using a single crystal perovskite compound.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는, 기판; 상기 기판 상에 패터닝(patterning) 된 제1 전극 및 제2 전극; 및 상기 기판 상에 형성되고, 상기 제1 전극 및 제2 전극과 접촉된 구조를 가지며 빛을 감지하는 감지부를 포함하고, 상기 감지부는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 포함하는 것을 특징으로 한다.A perovskite photodetecting device according to an embodiment of the present invention comprises: a substrate; first and second electrodes patterned on the substrate; and a sensing unit formed on the substrate, having a structure in contact with the first electrode and the second electrode, and sensing light, wherein the sensing unit includes at least one nanowire including a single crystal perovskite compound characterized in that
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 단결정 페로브스카이트 화합물은 할라이드 치환 반응에 의해 서로 상이한 1가 음이온을 포함할 수 있다.According to the perovskite photodetector device according to an embodiment of the present invention, the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어는 결정 격자 구조가 입방정계(cubic), 정방정계(tetragonal), 사방정계(orthorhombic), 사방 육면체(rhombohedral), 층상(layer) 및 이합체(dimer) 중 어느 하나일 수 있다.According to the perovskite photodetecting device according to an embodiment of the present invention, the at least one nanowire including the single-crystal perovskite compound has a crystal lattice structure of cubic, tetragonal, It may be any one of orthorhombic, rhombohedral, layered and dimer.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 적어도 하나의 나노와이어는 하기 화학식으로 표시되는 단결정 페로브스카이트 화합물을 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자.According to the perovskite photodetecting device according to an embodiment of the present invention, the at least one nanowire is a perovskite photodetecting device characterized in that it comprises a single crystal perovskite compound represented by the following formula .
[화학식][Formula]
AaMbXc A a M b X c
(상기 화학식에서, A는 1가의 양이온이고, M은 2가의 금속 양이온 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, 상기 M이 2가의 금속 양이온인 경우 a+2b=c이며, 상기 M이 3가의 금속 양이온인 경우 a+3b=c임.)(In the above formula, A is a monovalent cation, M is a divalent metal cation or a trivalent metal cation, X is a monovalent anion, and when M is a divalent metal cation, a+2b=c, wherein M For this trivalent metal cation, a+3b=c.)
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 적어도 하나의 나노와이어는 1nm 내지 100nm의 평균 직경을 가질 수 있다.According to the perovskite photodetecting device according to an embodiment of the present invention, the at least one nanowire may have an average diameter of 1 nm to 100 nm.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 적어도 하나의 나노와이어는 1μm 내지 1,000μm의 평균 길이를 가질 수 있다.According to the perovskite photodetecting device according to an embodiment of the present invention, the at least one nanowire may have an average length of 1 μm to 1,000 μm.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 적어도 하나의 나노와이어의 표면은 상기 2가의 금속 양이온 또는 상기 3가의 금속 양이온 또는 상기 1가의 음이온과 킬레이트 결합하여 알킬 리간드를 형성하는 부동화제에 의해 부동화될 수 있다.According to the perovskite photodetector device according to an embodiment of the present invention, the surface of the at least one nanowire is chelated with the divalent metal cation or the trivalent metal cation or the monovalent anion to form an alkyl ligand It can be passivated by the forming passivating agent.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 적어도 하나의 나노와이어의 표면은 상기 단결정 페로브스카이트 화합물보다 큰 밴드 갭을 가지는 물질로 코팅될 수 있다.According to the perovskite photodetecting device according to an embodiment of the present invention, the surface of the at least one nanowire may be coated with a material having a larger band gap than the single crystal perovskite compound.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에 따르면, 상기 페로브스카이트 광검출 소자의 광 응답성(responsivity)은 104 A/W 내지 108 A/W 인 것을 특징으로 한다.According to the perovskite photodetecting device according to an embodiment of the present invention, the light responsiveness of the perovskite photodetecting device is characterized in that 10 4 A/W to 10 8 A/W. .
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자에서, 상기 페로브스카이트 광검출 소자의 광 검출 성능(detectivity)은 1015 jones 내지 1020 jones 인 것을 특징으로 한다.In the perovskite photodetecting device according to an embodiment of the present invention, the photodetectivity of the perovskite photodetecting device is characterized in that 10 15 jones to 10 20 jones.
본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조방법은, 기판 상에 전극 물질을 형성하는 단계; 상기 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계; 및 상기 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계를 포함하는 것을 특징으로 한다.A method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention comprises: forming an electrode material on a substrate; patterning the electrode material to form a first electrode and a second electrode; and coating at least one nanowire including a single crystal perovskite compound to contact the first electrode and the second electrode to form a sensing unit.
본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조방법에 따르면, 상기 단결정 페로브스카이트 화합물은 할라이드 치환 반응에 의해 서로 상이한 1가 음이온을 포함할 수 있다.According to the method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention, the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction.
본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조방법에 따르면, 상기 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계는, 포토 리소그래피 패터닝 공정을 통하여 상기 기판 상에 상기 제1 전극 및 제2 전극을 형성하는 것을 특징으로 한다.According to the method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention, the step of forming the first electrode and the second electrode by patterning the electrode material may be performed on the substrate through a photolithography patterning process. The first electrode and the second electrode are formed.
본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조방법에 따르면, 상기 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계는, 상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어가 용액에 분산된 상태에서 코팅되어 형성될 수 있다.According to the method of manufacturing a perovskite photodetector device according to another embodiment of the present invention, at least one nanowire containing a single crystal perovskite compound is coated to contact the first electrode and the second electrode for sensing. The forming of the part may be formed by coating at least one nanowire including the single crystal perovskite compound in a dispersed state in a solution.
본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조방법에 따르면, 상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 표면에 상기 단결정 페로브스카이트 화합물보다 밴드갭이 큰 물질을 도포하여 코팅하는 단계를 더 포함할 수 있다.According to the method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention, the band gap is larger than that of the single-crystal perovskite compound on the surface of at least one nanowire including the single-crystal perovskite compound. It may further include the step of coating by applying a material.
본 발명의 일 실시예에 따르면, 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어 감지부를 형성하여, 1015 jones 내지 1020 jones의 높은 광 검출 성능 및 104 A/W 내지 108 A/W의 높은 광 응답성을 나타내는 페로브스카이트 광검출 소자를 제공할 수 있다.According to an embodiment of the present invention, by forming a single nanowire sensing unit using a single crystal perovskite compound, high light detection performance of 10 15 jones to 10 20 jones and 10 4 A/W to 10 8 A/W It is possible to provide a perovskite photodetecting device exhibiting high light responsiveness.
본 발명의 일 실시예에 따르면, 페로브스카이트 화합물의 구성을 공정 중 자유롭게 조정이 가능하여, 감지 가능한 스펙트럼의 범위를 용이하게 제어할 수 있고, 이에 따라 300nm 내지 1200nm의 파장에서 우수한 광 검출 성능을 보이는 페로브스카이트 광검출 소자를 제공할 수 있다.According to an embodiment of the present invention, the composition of the perovskite compound can be freely adjusted during the process, so that the range of the detectable spectrum can be easily controlled, and thus excellent light detection performance at a wavelength of 300 nm to 1200 nm It is possible to provide a perovskite photodetecting device showing
본 발명의 일 실시예에 따르면, 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어의 표면이 내습성을 갖는 알킬 리간드에 의하여 부동화되어 높은 안정성을 갖는 페로브스카이트 광검출 소자를 제공할 수 있다. According to an embodiment of the present invention, the surface of a single nanowire using a single crystal perovskite compound is immobilized by an alkyl ligand having moisture resistance to provide a perovskite photodetecting device having high stability. .
본 발명의 다른 실시예에 따르면, 용액 코팅 방법을 이용하여 감지부를 형성하므로 제조공정이 단순해지고 제조비용을 절감할 수 있는 페로브스카이트 광검출 소자의 제조방법을 제공할 수 있다.According to another embodiment of the present invention, it is possible to provide a method for manufacturing a perovskite photodetector device that can simplify the manufacturing process and reduce manufacturing cost by forming the sensing unit using a solution coating method.
도 1은 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 평면을 도시한 것이고, 도 2는 본 발명의 도 1에서 도시된 일 실시예에 따른 페로브스카이트 광검출 소자 중 A-A`의 단면을 도시한 것이다.1 is a plan view of a perovskite photodetecting device according to an embodiment of the present invention, and FIG. 2 is an AA of the perovskite photodetecting device according to the embodiment shown in FIG. 1 of the present invention. A cross-section of ' is shown.
도 3은 본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조 방법을 도시한 흐름도이다.3 is a flowchart illustrating a method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention.
도 4는 본 발명의 실시예 1 내지 실시예 6에 따른 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어의 투과 전자 현미경(transmission electron microscopy, TEM) 이미지를 도시한 것이다.4 shows a transmission electron microscopy (TEM) image of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
도 5는 본 발명의 실시예 1 내지 실시예 6에 따른 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어를 X-선 회절 분석(X-ray diffraction, XRD)한 데이터를 도시한 것이다.5 shows data obtained by X-ray diffraction analysis (XRD) of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
도 6은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 광 흡수(optical absorption) 및 광 루미네센스(photo-luminescent, PL)에 관한 데이터를 도시한 것이다.6 shows data on optical absorption and photo-luminescent (PL) of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
도 7a 내지 도 7c는 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 에너지 밴드 다이어그램을 도시한 것이다.7A to 7C are diagrams of energy band diagrams of perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 8은 어두운 환경 및 밝은 환경에서 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자에 10 μWcm-2의 조사력을 가진 400 ㎚ 파장의 레이저를 조사하였을 때의 전류 - 전압 그래프를 도시한 것이다.8 is a current when irradiating a 400 nm wavelength laser with an irradiating power of 10 μWcm -2 to the perovskite photodetecting device according to Examples 1 to 6 of the present invention in a dark environment and a bright environment; A voltage graph is shown.
도 9a 및 9b는 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자에 대한 스펙트럼 반응성 및 스펙트럼 이득을 도시한 것이다.9A and 9B show spectral reactivity and spectral gain for perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 10은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 광전 응답 신호를 도시한 것이다.10 shows photoelectric response signals of the perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 11은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 검출도를 도시한 것이다.11 shows a detection diagram of a perovskite photodetecting device according to Examples 1 to 6 of the present invention.
도 12a 및 도 12b는 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 장치 안정성을 도시한 것이다.12A and 12B show device stability of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
도 13은 대조예에 따른 페로브스카이트 광검출 소자의 단면을 도시한 SEM(scanning electron microscopy) 이미지이다.13 is a scanning electron microscopy (SEM) image showing a cross-section of a perovskite photodetecting device according to a control example.
도 14는 대조예에 따른 페로브스카이트 광검출 소자의 광 응답성 및 광 검출능을 도시한 그래프이다.14 is a graph showing the photoresponse and photodetectability of the perovskite photodetecting device according to the control example.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited by the embodiments.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. As used herein, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and/or "comprising" refers to the presence of one or more other components, steps, operations and/or elements mentioned. or addition is not excluded.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.As used herein, “embodiment”, “example”, “aspect”, “exemplary”, etc. are to be construed as advantageous in which any aspect or design described is preferred or advantageous over other aspects or designs. it is not doing
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.The terms used in the description below are selected as general and universal in the related technical field, but there may be other terms depending on the development and/or change of technology, customs, preferences of technicians, and the like. Therefore, the terms used in the description below should not be understood as limiting the technical idea, but should be understood as exemplary terms for describing the embodiments.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the corresponding description. Therefore, the terms used in the description below should be understood based on the meaning of the term and the content throughout the specification, not the simple name of the term.
한편, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되지 않는다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.Meanwhile, terms such as first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly defined in particular.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Meanwhile, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. And, the terms (terminology) used in this specification are terms used to properly express the embodiment of the present invention, which may vary according to the intention of the user or operator, or customs in the field to which the present invention belongs. Accordingly, definitions of these terms should be made based on the content throughout this specification.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 평면을 도시한 것이고, 도 2는 본 발명의 도 1에서 도시된 일 실시예에 따른 페로브스카이트 광검출 소자 중 A-A`의 단면을 도시한 것이다.1 is a plan view of a perovskite photodetecting device according to an embodiment of the present invention, and FIG. 2 is an AA of the perovskite photodetecting device according to the embodiment shown in FIG. 1 of the present invention. A cross-section of ' is shown.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 기판(110), 제1 전극(120a), 제2 전극(120b) 및 감지부(130)로 구성된다.1 and 2 , the perovskite photodetecting device according to an embodiment of the present invention includes a substrate 110 , a first electrode 120a , a second electrode 120b and a sensing unit 130 . is composed
기판(110)은 제1 전극(120a), 제2 전극(120b) 및 감지부(130)를 지지하는 기재로, 그 재질을 한정하지 않는다.The substrate 110 is a substrate supporting the first electrode 120a, the second electrode 120b, and the sensing unit 130, and the material thereof is not limited.
실시예에 따라서, 기판(110)은 실리콘 기판, 유리 기판, 석영 기판 및 고분자 기판 중 어느 하나일 수 있으며, 당 분야에서 사용하는 기판이라면 그 재질을 특별히 한정하지 않는다.According to an embodiment, the substrate 110 may be any one of a silicon substrate, a glass substrate, a quartz substrate, and a polymer substrate, and the material thereof is not particularly limited as long as it is a substrate used in the art.
예를 들어, 기판(110)은 고분자 기판일 수 있으며, 고분자 기판은 폴리에스테르(Polyester), 폴리비닐(Polyvinyl), 폴리카보네이트(Polycarbonate), 폴리에틸렌(Polyethylene), 폴리아세테이트(Polyacetate), 폴리이미드(Polyimide), 폴리에테르술폰(Polyethersulphone; PES), 폴리아크릴레이트(Polyacrylate; PAR), 폴리에틸렌나프탈레이트(Polyethylenenaphthelate; PEN) 및 폴리에틸렌에테르프탈레이트(Polyethyleneterephehalate; PET)으로 이루어진 그룹으로부터 선택되는 어느 하나의 물질로 구성된 투명한 플렉서블의 물질로 이루어질 수 있으나, 상기 물질에 한정되지 않는다.For example, the substrate 110 may be a polymer substrate, and the polymer substrate is polyester, polyvinyl, polycarbonate, polyethylene, polyacetate, polyimide ( Polyimide), polyethersulfone (Polyethersulphone; PES), polyacrylate (PAR), polyethylenenaphthelate (PEN), and polyethylene ether phthalate (Polyethyleneterephehalate; PET) consisting of any one material selected from the group consisting of It may be made of a transparent and flexible material, but is not limited thereto.
제1 전극(120a) 및 제2 전극(120b)은 기판(110)상에 일정 거리 이격되어 서로 평행하게 대향된 구조로 패터닝 되어 형성된다.The first electrode 120a and the second electrode 120b are spaced apart from each other by a predetermined distance on the substrate 110 and are patterned to face each other in parallel and are formed.
제1 전극(120a) 및 제2 전극(120b)의 패터닝 공정은 후술할 페로브스카이트 광검출 소자의 제조방법에서 보다 상세히 설명하도록 한다.The patterning process of the first electrode 120a and the second electrode 120b will be described in more detail in a method of manufacturing a perovskite photodetecting device to be described later.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)의 제1 전극(120a) 및 제2 전극(120b)은 각각 금(Au), 은(Ag), 알루미늄(Al), 칼슘(Ca), 팔라듐(Pd), 플래티넘(Pt), 몰리브데늄(Mo), 구리(Cu), 납(Pb), ITO, IZO, AZO으로 이루어진 군으로부터 선택되는 어느 하나를 포함할 수 있다.The first electrode 120a and the second electrode 120b of the perovskite photodetecting device 100 according to an embodiment of the present invention are gold (Au), silver (Ag), aluminum (Al), calcium, respectively. It may include any one selected from the group consisting of (Ca), palladium (Pd), platinum (Pt), molybdenum (Mo), copper (Cu), lead (Pb), ITO, IZO, and AZO.
상기 제1 전극(120a) 및 제2 전극(120b)은 서로 동일하거나 상이한 물질로 형성될 수 있다.The first electrode 120a and the second electrode 120b may be formed of the same or different materials.
도 1에서 확인할 수 있는 바와 같이, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 제1 전극 및 제2 전극 외에 다수의 전극이 형성된 어레이(array) 형태로 형성될 수 있다.As can be seen in FIG. 1 , the perovskite photodetecting device according to an embodiment of the present invention may be formed in the form of an array in which a plurality of electrodes are formed in addition to the first electrode and the second electrode.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 감지부(130)는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어로 구성된다.The sensing unit 130 of the perovskite photodetecting device according to an embodiment of the present invention is composed of at least one nanowire including a single crystal perovskite compound.
실시예에 따라서, 도 1에 도시되지 않았으나 감지부(130)는 단결정 페로브스카이트 화합물을 포함하는 두 개 이상의 나노와이어가 제1 전극(120a) 및 제2 전극(120b) 전극을 서로 연결하여 형성될 수 있다.According to an embodiment, although not shown in FIG. 1, the sensing unit 130 includes two or more nanowires containing a single crystal perovskite compound by connecting the first electrode 120a and the second electrode 120b to each other. can be formed.
감지부(130)는 빛을 감지하는 것으로, 가시광선, 근적외선, 적외선 영역의 파장을 가지는 빛을 감지할 수 있어, 넓은 파장 범위의 빛을 높은 광 응답성으로 감지할 수 있다.The sensing unit 130 detects light, and can detect light having wavelengths in the visible, near-infrared, and infrared regions, so that light in a wide wavelength range can be detected with high light responsiveness.
종래의 페로브스카이트 박막 형태의 다결정 페로브스카이트 광검출 소자는 페로브스카이트 화합물의 결정 그레인 간 결함으로 인해 암전류의 누설 전류가 발생하고 페로브스카이트 광검출 소자에 빛 조사 시 생성되는 전하가 트랩에 갇혀 감도가 떨어지는 문제점이 있었다.In the conventional perovskite thin film type polycrystalline perovskite photodetector device, dark current leakage occurs due to defects between crystal grains of the perovskite compound and is generated when light is irradiated to the perovskite photodetector device. There was a problem that the electric charge was trapped in the trap and the sensitivity was lowered.
단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 이용하여 페로브스카이트 광검출 소자(100)의 감지부(130)를 형성하면, 단결정 페로브스카이트 화합물 내의 결함이 적어 암전류의 발생이 매우 적을 수 있다.When the sensing unit 130 of the perovskite photodetecting device 100 is formed by using at least one nanowire including a single crystal perovskite compound, the number of defects in the single crystal perovskite compound is small and a dark current is generated. This can be very little.
또한, 페로브스카이트 광검출 소자(100)에 빛 조사 시 생성되는 전하가 트랩에 갇히지 않고 쉽게 이동될 수 있어, 빛에 대하여 매우 높은 감도를 가질 수 있다.In addition, since charges generated when light is irradiated to the perovskite photodetecting device 100 can be easily moved without being trapped in a trap, it can have very high sensitivity to light.
상기 단결정 페로브스카이트 화합물은 하기 화학식으로 표시되는 페로브스카이트 화합물일 수 있다.The single crystal perovskite compound may be a perovskite compound represented by the following formula.
[화학식][Formula]
AaMbXc A a M b X c
상기 화학식에서, A는 1가의 양이온이고, M은 2가의 금속 양이온 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, 상기 M이 2가의 금속 양이온인 경우 a+2b=c의 식을 만족하며, 상기 M이 3가의 금속 양이온인 경우 a+3b=c의 식을 만족한다.In the above formula, A is a monovalent cation, M is a divalent metal cation or a trivalent metal cation, X is a monovalent anion, and when M is a divalent metal cation, the formula a+2b=c is satisfied, and , when M is a trivalent metal cation, a+3b=c is satisfied.
상기 A는 1가의 유기 양이온, 1가의 무기 양이온 또는 이들의 조합일 수 있다.A may be a monovalent organic cation, a monovalent inorganic cation, or a combination thereof.
구체적으로, 상기 단결정 페로브스카이트 화합물은 상기 화학식 중 A의 종류에 따라, 유무기 하이브리드 페로브스카이트 화합물(organic/inorganic hybrid perovskite compound) 또는 무기금속할라이드 페로브스카이트 화합물(inorganic metal halide perovskite compound)일 수 있다.Specifically, the single crystal perovskite compound is an organic/inorganic hybrid perovskite compound or an inorganic metal halide perovskite compound, depending on the type of A in the formula. compound).
보다 구체적으로, 상기 화학식에서 A가 1가의 유기 양이온일 경우, 상기 단결정 페로브스카이트 화합물은 유기물인 A와, 무기물인 M 및 X로 구성되어 유기물과 무기물이 복합 구성된 유무기 하이브리드 페로브스카이트 화합물일 수 있다. 반면, 상기 화학식에서 A가 1가의 무기 양이온일 경우, 상기 단결정 페로브스카이트 화합물은 무기물인 A, M 및 X로 구성되어 전부 무기물로 구성된 무기금속할라이드 페로브스카이트 화합물일 수 있다.More specifically, when A in the above formula is a monovalent organic cation, the single crystal perovskite compound is an organic-inorganic hybrid perovskite composed of an organic material A and inorganic materials M and X, and an organic material and an inorganic material complex. It may be a compound. On the other hand, when A is a monovalent inorganic cation in the above formula, the single crystal perovskite compound may be an inorganic metal halide perovskite compound composed of inorganic materials A, M and X and all inorganic materials.
상기 1가의 유기 양이온은 C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬 또는 이들의 조합일 수 있다.The monovalent organic cation is C 1-24 straight or branched chain alkyl, amine group (-NH 3 ), hydroxyl group (-OH), cyano group (-CN), halogen group, nitro group (-NO), methoxy group ( -OCH 3 ) or an imidazolium group substituted C 1 to 24 straight or branched chain alkyl, or a combination thereof.
상기 1가의 무기 양이온은 Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+, Au(I)+ 또는 이들의 조합일 수 있다.The monovalent inorganic cation may be Li + , Na + , K + , Rb + , Cs + , Fr + , Cu(I) + , Ag(I) + , Au(I) + , or a combination thereof.
상기 M이 2가의 금속 양이온인 경우 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+, Rf2+ 또는 이들의 조합일 수 있다.When M is a divalent metal cation, Pb 2+ , Sn 2+ , Ge 2+ , Cu 2+ , Co 2+ , Ni 2+ , Ti 2+ , Zr 2+ , Hf 2+ , Rf 2+ or these may be a combination of
상기 M이 3가의 금속 양이온인 경우 In3+, Bi3+, Co3+, Sb3+, Ni3+, Al3+, Ga3+, Tl3+, Sc3+, Y3+, La3+, Ce3+, Fe3+, Ru3+, Cr3+, V3+, Ti3+ 또는 이들의 조합일 수 있다.When M is a trivalent metal cation In 3+ , Bi 3+ , Co 3+ , Sb 3+ , Ni 3+ , Al 3+ , Ga 3+ , Tl 3+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Fe 3+ , Ru 3+ , Cr 3+ , V 3+ , Ti 3+ , or a combination thereof.
상기 X는 F-, Cl-, Br-, I-, SCN-, BF4 - 또는 이들의 조합일 수 있다.X may be F - , Cl - , Br - , I - , SCN - , BF 4 - or a combination thereof.
실시예에 따라서, 상기 단결정 페로브스카이트 화합물은 할라이드 치환 반응에 의해 서로 상이한 1가 음이온을 포함할 수 있어, 할리이드 치환 반응을 통해 단결정 페로브스카이트 화합물 내 할라이드 조성을 조절할 수 있다.According to an embodiment, the single-crystal perovskite compound may include different monovalent anions by a halide substitution reaction, so that the halide composition in the single-crystal perovskite compound may be controlled through the halide substitution reaction.
예를 들어, 상기 단결정 페로브스카이트 화합물은 Br-과 Cl-를 포함할 수 있다.For example, the single crystal perovskite compound may include Br - and Cl - .
구체적으로, 상기 할라이드 치환 반응은 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 합성 후 할라이드 음이온 소스 물질을 이용하여 페로브스카이트 화합물에 포함된 1가 음이온의 일부를 할라이드 음이온 소스 물질의 할라이드 음이온으로 치환할 수 있다.Specifically, the halide substitution reaction is performed by synthesizing at least one nanowire containing a single crystal perovskite compound and then using a halide anion source material to convert a part of the monovalent anions included in the perovskite compound to the halide anion source material. It can be substituted with a halide anion.
실시예에 따라서, 상기 할라이드 음이온 소스 물질은 요오드화수소(HI), 브롬화수소(HBr) 및 염화수소(HCl) 중 어느 하나를 포함할 수 있으며, 1가의 할라이드 음이온을 제공할 수 있는 물질이라면 그 종류에 제한이 없다.According to an embodiment, the halide anion source material may include any one of hydrogen iodide (HI), hydrogen bromide (HBr), and hydrogen chloride (HCl), and if it is a material capable of providing a monovalent halide anion, the type no limits.
상기 할라이드 치환 반응은 후술할 도 3에서 자세히 다루도록 한다.The halide substitution reaction will be described in detail with reference to FIG. 3 to be described later.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 할라이드 조성이 조절된 단결정 페로브스카이트 화합물을 포함하는 나노와이어로 감지부(130)를 형성하여, 페로브스카이트 광검출 소자(100)의 광 감지능을 향상시킬 수 있다.The perovskite photodetecting device 100 according to an embodiment of the present invention forms the sensing unit 130 with a nanowire including a single-crystal perovskite compound having a controlled halide composition, so that the perovskite light The light sensing ability of the detection element 100 may be improved.
구체적으로 설명하면, 상기 단결정 페로브스카이트 화합물은 할라이드 조성이 달라지면 흡수하는 파장이 달라질 수 있다.Specifically, when the halide composition of the single-crystal perovskite compound is changed, the absorption wavelength may vary.
예를 들어, 상기 단결정 페로브스카이트 화합물에 포함된 Cl이 Br 또는 I로 치환되면서 흡수하는 파장이 400nm에서 550 nm 또는 800 nm와 같이 장파장으로 이동할 수 있다.For example, as Cl contained in the single-crystal perovskite compound is substituted with Br or I, the absorption wavelength may shift from 400 nm to a longer wavelength such as 550 nm or 800 nm.
따라서, 상기 단결정 페로브스카이트 화합물의 할라이드 치환 반응을 통해 할라이드 조성을 조절함으로써 상기 단결정 페로브스카이트 화합물을 포함하는 나노와이어의 흡수되는 파장을 미세하기 조절할 수 있다.Therefore, by controlling the halide composition through the halide substitution reaction of the single-crystal perovskite compound, it is possible to finely control the absorbed wavelength of the nanowire including the single-crystal perovskite compound.
이때, 상기 할라이드 치환 반응은 상기 단결정 페로브스카이트 화합물에 포함된 1가의 음이온 중 일부를 할라이드 음이온 소스 물질의 할라이드 음이온으로 치환하는 것으로, 구체적으로 예를 들면 상기 단결정 페로브스카이트 화합물에 포함된 Br3을 Br3-xIx(0<x<3, x는 자연수)로 치환할 수 있다.In this case, the halide substitution reaction is to replace some of the monovalent anions included in the single crystal perovskite compound with the halide anions of the halide anion source material, specifically, for example, contained in the single crystal perovskite compound. Br 3 may be substituted with Br 3-x I x (0<x<3, x is a natural number).
상기 단결정 페로브스카이트 화합물은 1가의 양이온, 2가 또는 3가의 금속 양이온 및 1가의 음이온을 포함하는 바, 상기 단결정 페로브스카이트 화합물을 포함하는 상기 적어도 하나의 나노와이어 표면은 상기 2가의 금속 양이온 또는 상기 3가의 금속 양이온 또는 상기 1가의 음이온이 부동화제와 킬레이트 결합하여 형성된 알킬 리간드에 의해 부동화(passivation)될 수 있다.The single-crystal perovskite compound includes a monovalent cation, a divalent or trivalent metal cation and a monovalent anion, and the surface of the at least one nanowire comprising the single-crystal perovskite compound is the divalent metal The cation or the trivalent metal cation or the monovalent anion may be passivated by an alkyl ligand formed by chelating with a passivating agent.
상기 단결정 페로브스카이트 화합물은 금속(M)과 할로겐(X)을 포함하는 MX6 옥타헤드론 구조가 메인 뼈대를 이루고 있고, 옥타헤드론 구조 사이에 1가 양이온인 알킬암모늄 또는 알칼리 금속 양이온이 존재한다.The single crystal perovskite compound has an MX6 octahedron structure including a metal (M) and a halogen (X) as the main skeleton, and monovalent cations such as alkylammonium or alkali metal cations exist between the octahedron structures. do.
이에 따라 상기 단결정 페로브스카이트 화합물의 표면에 금속(M)과 할로겐(X)이 노출되어 있는데, 이때 상기 단결정 페로브스카이트 화합물 표면에 노출된 금속(M)과 킬레이팅(chelating) 결합하여 알킬 리간드를 형성할 수 있는 그룹을 가질 수 있는 유기물에 의해 상기 단결정 페로브스카이트 화합물의 부동화가 가능하다.Accordingly, the metal (M) and the halogen (X) are exposed on the surface of the single-crystal perovskite compound, at this time, the single-crystal perovskite compound and the metal (M) exposed on the surface of the chelating (chelating) bond The passivation of the single crystal perovskite compound is possible by an organic material capable of having a group capable of forming an alkyl ligand.
이때, 상기 단결정 페로브스카이트 화합물에 포함된 금속(M)과 결합할 수 있는 그룹을 포함하는 유기물이라면 상기 단결정 페로브스카이트 화합물을 부동화시킬 수 있다.In this case, if the organic material including a group capable of bonding to the metal (M) included in the single crystal perovskite compound, the single crystal perovskite compound may be passivated.
또는 상기 단결정 페로브스카이트 화합물에 포함된 할로겐과 결합할 수 있는 기능기를 가진 유기물이라면 상기 단결정 페로브스카이트 화합물을 부동화시킬 수 있다.Alternatively, if it is an organic material having a functional group capable of binding to a halogen contained in the single-crystal perovskite compound, the single-crystal perovskite compound may be passivated.
상기 단결정 페로브스카이트 화합물을 부동화시킬 수 있는 부동화제는 금속과 유기물이 결합된 물질일 수 있으며, 예를 들어 Zn-TOPO(tri octylphosphine oxide), Zn-아세테이트(acetate), Zn-아세틸아세톤(acetyl acetone) 및 Zn-알킬티올(alkyl thiol) 중 적어도 어느 하나일 수 있으며, 상기 물질에 제한되지 않는다.The passivating agent capable of passivating the single crystal perovskite compound may be a material in which a metal and an organic material are combined, for example, Zn-TOPO (tri octylphosphine oxide), Zn-acetate (acetate), Zn-acetylacetone ( acetyl acetone) and Zn-alkyl thiol may be at least one, but the material is not limited thereto.
상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 표면과 킬레이트 결합(chelating)에 의해 형성된 알킬 리간드는 상기 적어도 하나의 나노와이어에 내습성을 부여할 수 있으며, 카르복실기(R-COOH), 아민기(R-NH2), 카보닐기(R-C=O), 인산기(R1-P(R2)-R3), 포스핀기(R1-PO(R2)-R3) 및 티올기(R-SH)에서 선택되는 1 종 이상일 수 있다.The alkyl ligand formed by chelating with the surface of at least one nanowire comprising the single crystal perovskite compound may impart moisture resistance to the at least one nanowire, and a carboxyl group (R-COOH), In an amine group (R-NH 2 ), a carbonyl group (RC=O), a phosphoric acid group (R1-P(R2)-R3), a phosphine group (R1-PO(R2)-R3) and a thiol group (R-SH) It may be one or more selected.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 상기 적어도 하나의 나노와이어의 표면이 알킬 리간드에 의해 부동화 됨으로써 내습성과 높은 안정성을 가질 수 있다.The perovskite photodetecting device 100 according to an embodiment of the present invention may have moisture resistance and high stability by immobilizing the surface of the at least one nanowire by an alkyl ligand.
실시예에 따라서, 상기 적어도 하나의 나노와이어의 표면은 상기 단결정 페로브스카이트 화합물보다 큰 밴드 갭을 가지는 물질로 코팅될 수 있다.According to an embodiment, the surface of the at least one nanowire may be coated with a material having a band gap larger than that of the single crystal perovskite compound.
상기 적어도 하나의 나노와이어 표면을 코팅하는 물질은 상기 단결정 페로브스카이트 화합물의 밴드 갭보다 큰 유기물 또는 무기물일 수 있으며, 상기 단결정 페로브스카이트 화합물을 녹이지 않는 투명 소재라면 그 종류에 제한을 두지 않는다.The material for coating the surface of the at least one nanowire may be an organic material or an inorganic material larger than the band gap of the single crystal perovskite compound, and if it is a transparent material that does not dissolve the single crystal perovskite compound, the type is limited do not leave
예를 들어, 상기 적어도 하나의 나노와이어 표면을 코팅하는 물질은 실리콘산화물(SiOx), 티타늄산화물(TiOx), 아연산화물(ZnOx), 주석산화물(SnOx), 알루미늄산화물(AlOx), 인듐산화물(InOx), 바나듐산화물(VOx), 바륨산화물(BaOx), 몰리브데늄산화물(MoOx) 및 이들의 화합물을 포함하는 금속산화물, 폴리스티렌, 폴리아크릴레이트, 폴리비닐피롤리돈, 폴리비닐알코올, 폴리메틸메타크릴레이트, 폴리올레핀, 셀룰로우즈 및 이들의 화합물을 포함하는 고분자 중 적어도 어느 하나를 포함할 수 있다.For example, the material coating the surface of the at least one nanowire is silicon oxide (SiO x ), titanium oxide (TiO x ), zinc oxide (ZnO x ), tin oxide (SnO x ), aluminum oxide (AlO x ) , indium oxide (InO x ), vanadium oxide (VO x ), barium oxide (BaO x ), molybdenum oxide (MoO x ) and metal oxides including compounds thereof, polystyrene, polyacrylate, polyvinylpyrrol It may include at least one of a polymer including money, polyvinyl alcohol, polymethyl methacrylate, polyolefin, cellulose, and a compound thereof.
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 상기 적어도 하나의 나노와이어의 표면을 상기 단결정 페로브스카이트 화합물보다 밴드 갭이 큰 물질로 코팅하기 때문에 내습성과 높은 안정성을 가질 수 있다.The perovskite photodetecting device 100 according to an embodiment of the present invention provides moisture resistance and high stability because the surface of the at least one nanowire is coated with a material having a band gap larger than that of the single crystal perovskite compound. can have
일반적인 페로브스카이트 결정 격자 구조를 갖는 화합물은 코너 공유 팔면체(corner-shared octahedral)의 특이한 부격자(sub-lattice) 구조를 갖고, 페로브스카이트 결정 구조의 할라이드 이온의 변화에 의해서 다른 뒤틀린 구조(distorted structure)를 갖는 특성이 있다. A compound having a general perovskite crystal lattice structure has a unique sub-lattice structure of a corner-shared octahedral, and has a different twisted structure by changing halide ions in the perovskite crystal structure. (distorted structure).
본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)의 감지부(130)를 구성하는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어는 입방정계(cubic), 정방정계(tetragonal), 사방정계(orthorhombic), 사방 육면체(rhombohedral), 층상(layer) 및 이합체(dimer) 중 어느 하나의 결정 격자 구조를 가질 수 있다.At least one nanowire including a single crystal perovskite compound constituting the sensing unit 130 of the perovskite photodetecting device 100 according to an embodiment of the present invention is cubic, tetragonal. It may have a crystal lattice structure of any one of tetragonal, orthorhombic, rhombohedral, layer, and dimer.
구체적으로, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)의 감지부(130)는 사방정계(orthorhombic)의 결정 격자 구조를 갖는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어로 형성될 수 있다.Specifically, the sensing unit 130 of the perovskite photodetecting device 100 according to an embodiment of the present invention includes at least one single crystal perovskite compound having an orthorhombic crystal lattice structure. of nanowires.
감지부(130)를 형성하는 적어도 하나의 나노와이어는 1nm 내지 100nm의 평균 직경을 가질 수 있다.At least one nanowire forming the sensing unit 130 may have an average diameter of 1 nm to 100 nm.
또한, 상기 적어도 하나의 나노와이어는 1μm 내지 1,000μm의 평균 길이를 가질 수 있다.In addition, the at least one nanowire may have an average length of 1 μm to 1,000 μm.
전술한 구조를 갖는 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 높은 광 응답성(responsivity)을 가질 수 있다.The perovskite photodetecting device 100 according to an embodiment of the present invention having the above-described structure may have high photoresponsivity.
상기 광 응답성은 포톤이 전류로 변환되는 비율로, 광 전류 밀도, 암전류 밀도 및 페로브스카이트 광검출 소자(100)에 빛을 조사하기 전 광 강도를 기반으로 산출될 수 있다.The photoresponse is a rate at which photons are converted into current, and may be calculated based on photocurrent density, dark current density, and light intensity before irradiating light to the perovskite photodetecting device 100 .
구체적으로 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 104 A/W 내지 108 A/W의 높은 광 응답성을 가질 수 있다.Specifically, the perovskite photodetecting device 100 according to an embodiment of the present invention may have a high light response of 10 4 A/W to 10 8 A/W.
또한, 전술한 구조를 갖는 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 높은 광 검출 성능(detectivity)을 가질 수 있다.In addition, the perovskite photodetecting device 100 according to an embodiment of the present invention having the above-described structure may have high photodetectivity.
상기 광 검출 성능은 상기 광 응답성, 전기소량(elementary charge) 및 암 전류를 기반으로 산출될 수 있다.The light detection performance may be calculated based on the light responsiveness, elementary charge, and dark current.
구체적으로 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 1015 jones 내지 1020 jones의 높은 광 검출 성능을 가질 수 있다.Specifically, the perovskite photodetecting device 100 according to an embodiment of the present invention may have a high photodetection performance of 10 15 jones to 10 20 jones.
또한, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 할라이드 치환을 통한 단결정 페로브스카이트 화합물의 할라이드 조성 제어에 따라 감지 가능한 광 스펙트럼의 범위를 용이하게 제어할 수 있어, 300nm 내지 1200nm의 파장에서 우수한 광 검출 성능을 보이는 페로브스카이트 광검출 소자를 제공할 수 있다.In addition, the perovskite photodetecting device 100 according to an embodiment of the present invention can easily control the range of a detectable light spectrum according to halide composition control of a single crystal perovskite compound through halide substitution. , it is possible to provide a perovskite photodetecting device exhibiting excellent photodetection performance at a wavelength of 300nm to 1200nm.
또한, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자(100)는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어의 표면을 부동화하여 높은 안정성을 갖는 페로브스카이트 광검출 소자를 제공할 수 있다.In addition, the perovskite photodetection device 100 according to an embodiment of the present invention is a perovskite photodetector having high stability by passivating the surface of at least one nanowire including a single crystal perovskite compound. devices can be provided.
도 3은 본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조 방법을 도시한 흐름도이다.3 is a flowchart illustrating a method of manufacturing a perovskite photodetecting device according to another embodiment of the present invention.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 페로브스카이트 광검출 소자의 제조는 기판 상에 전극 물질을 형성하는 단계(S110), 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계(S120), 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계(S130)을 포함한다.Referring to FIG. 3 , in the fabrication of a perovskite photodetecting device according to another embodiment of the present invention, the first electrode and the second electrode are formed by forming an electrode material on a substrate ( S110 ), and patterning the electrode material. Forming (S120), and coating at least one nanowire containing a single-crystal perovskite compound to contact the first electrode and the second electrode to form a sensing unit (S130).
구체적으로, 기판 상에 전극 물질을 형성하는 단계(S110)는 기판 상에 증착 공정을 통하여 전극 물질을 증착하는 단계이다.Specifically, the step of forming the electrode material on the substrate ( S110 ) is a step of depositing the electrode material on the substrate through a deposition process.
이때, 전극 물질의 증착은 진공 증착법 (vacuum deposition), 화학 기상 증착법(chemical vapor deposition), 물리 기상 증착법(physical vapor deposition), 원자층 증착법(atomic layer deposition), 유기금속 화학 증착법(Metal Organic Chemical Vapor Deposition), 열증착(thermal evaporation), 플라즈마 화학 증착법(Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(Molecular Beam Epitaxy), 수소화물 기상 성장법(Hydride Vapor Phase Epitaxy), 전자빔증착(e-beam evaporation), RF 스퍼터링(Radio Frequency sputtering), 마그네트론 스퍼터링(magnetron sputtering), 스퍼터링(Sputtering), 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 존 캐스팅(zone casting) 중 어느 하나의 방법을 이용할 수 있으며, 상기 방법에 제한되지 않는다.In this case, the electrode material is deposited by vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, or metal organic chemical vapor deposition. Deposition, thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation ), RF sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating), and any one method of zone casting (zone casting) can be used. and is not limited to the above method.
상기 전극 물질은 금(Au), 은(Ag), 알루미늄(Al), 칼슘(Ca), 팔라듐(Pd), 플래티넘(Pt), 몰리브데늄(Mo), 구리(Cu), 납(Pb), ITO, IZO, AZO으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The electrode material is gold (Au), silver (Ag), aluminum (Al), calcium (Ca), palladium (Pd), platinum (Pt), molybdenum (Mo), copper (Cu), lead (Pb) , ITO, IZO, may be any one selected from the group consisting of AZO.
전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계(S120)는 단일 층으로 증착된 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성할 수 있다.In the step of forming the first electrode and the second electrode by patterning the electrode material ( S120 ), the first electrode and the second electrode may be formed by patterning the electrode material deposited as a single layer.
이때, 제1 전극 및 제2 전극은 일정 거리 이격되어 서로 평행하게 대향된 구조로 패터닝 되어 형성될 수 있다.In this case, the first electrode and the second electrode may be formed by being spaced apart from each other by a predetermined distance and patterned to have a structure opposite to each other.
전극의 패터닝에 이용되는 공정은 전자빔 증착법(electron beam evaporation) 및 리프트-오프 공정(lift-off process)을 이용할 수 있으나, 이에 한정되지 않고 금속 물질의 전극을 일정 간격으로 형성할 수 있는 공정이면 제한되지 않는다.The process used for patterning the electrode may use electron beam evaporation and a lift-off process, but is not limited thereto and is limited as long as it is a process capable of forming electrodes of a metal material at regular intervals. doesn't happen
제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계(S130)는 상기 제1 전극 및 제2 전극과 연결되는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 형성하는 단계이다.Forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound to contact the first electrode and the second electrode (S130) is a single crystal perovskite connected to the first electrode and the second electrode (S130). It is a step of forming at least one nanowire including the skyte compound.
구체적으로, 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계(S130)는, 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 제조하는 단계 및 상기 적어도 하나의 나노와이어를 기판 상에 코팅하는 단계를 포함할 수 있다.Specifically, the step of forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound to contact the first electrode and the second electrode (S130) includes at least a single crystal perovskite compound containing at least one It may include manufacturing one nanowire and coating the at least one nanowire on a substrate.
먼저, 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 제조하는 단계는 1가의 양이온을 포함하는 제1 혼합 용액 및 금속 이온과 1가의 할로겐 음이온을 포함하는 제2 혼합 용액을 반응시킬 수 있다.First, in the step of preparing at least one nanowire containing a single crystalline perovskite compound, a first mixed solution containing a monovalent cation and a second mixed solution containing a metal ion and a monovalent halogen anion may be reacted. have.
이후, 반응시킨 혼합물을 원심분리 하여 상기 혼합물로부터 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 분리시킬 수 있다.Thereafter, the reacted mixture may be centrifuged to separate at least one nanowire including a single crystal perovskite compound from the mixture.
또한, 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어의 분리 공정 이후에, 할라이드 교환 반응을 통하여 최초 제2 혼합 용액에 포함된 1가의 할로겐 음이온 외에 다른 할로겐 물질로 교환할 수 있다.In addition, after the separation process of at least one nanowire containing the single crystal perovskite compound, it can be exchanged with a halogen material other than the monovalent halogen anion contained in the first second mixed solution through a halide exchange reaction.
예를 들면, 제2 혼합 용액에 포함된 할로겐 원소가 브롬(Br)인 경우, 할라이드 교환 반응을 통하여 단결정 페로브스카이트 화합물에 포함된 1가의 할로겐 음이온을 다른 할로겐 물질, 즉 요오드(I), 플루오린(F) 또는 염소(Cl)로 교환할 수 있다.For example, when the halogen element contained in the second mixed solution is bromine (Br), the monovalent halogen anion contained in the single crystal perovskite compound is replaced with another halogen material, that is, iodine (I), through a halide exchange reaction. It can be exchanged for fluorine (F) or chlorine (Cl).
이후, 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어가 다수 분산된 용액을 이용하여 전극이 형성된 기판 상에 코팅한다.Thereafter, at least one nanowire including a single-crystal perovskite compound is coated on a substrate on which an electrode is formed using a solution in which a plurality of them are dispersed.
상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어는 상기 단결정 페로브스카이트 화합물을 포함하는 나노와이어가 분산된 용액을 스핀코팅(spin coating), 스프레이코팅(spray coating), 울트라스프레이코팅(ultra-spray coating), 전기방사코팅, 슬롯다이코팅(slot die coating), 그라비아코팅(gravure coating), 바코팅(bar coating), 롤코팅(roll coating), 딥코팅(dip coating), 쉬어코팅(shear coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing) 또는 노즐 프린팅(nozzle printing) 등의 용액 코팅 공정을 이용하여 전극이 패터닝 된 기판 상에 코팅하여 형성될 수 있다.At least one nanowire including the single-crystal perovskite compound is a solution in which the nanowires containing the single-crystal perovskite compound are dispersed by spin coating, spray coating, or ultra-spray coating. (ultra-spray coating), electrospray coating, slot die coating, gravure coating, bar coating, roll coating, dip coating, shear coating (Shear coating), screen printing (screen printing), inkjet printing (inkjet printing) or a solution coating process such as nozzle printing (nozzle printing) may be formed by coating the electrode on the patterned substrate.
이러한 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 용액 코팅 방법을 이용하여 전극이 형성된 기판 상에 코팅할 경우, 제조공정이 단순해지고 제조비용을 절감할 수 있는 장점이 있다.When at least one nanowire containing such a single crystal perovskite compound is coated on a substrate on which an electrode is formed using a solution coating method, there is an advantage in that the manufacturing process is simplified and the manufacturing cost can be reduced.
실시예에 따라서, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 제조방법은 상기 단결정 페로브스카이트 화합물을 포함하는 상기 적어도 하나의 나노와이어의 표면은 상기 2가의 금속 양이온 또는 상기 3가의 금속 양이온 또는 상기 1가의 음이온과 킬레이트 결합하여 알킬 리간드를 형성하는 부동화제에 의해 부동화시킬 수 있다.According to an embodiment, in the method of manufacturing a perovskite photodetecting device according to an embodiment of the present invention, the surface of the at least one nanowire including the single crystal perovskite compound is the divalent metal cation or the It can be immobilized by a passivating agent that chelates a trivalent metal cation or the monovalent anion to form an alkyl ligand.
구체적으로, 상기 단결정 페로브스카이트 화합물에 포함된 금속 또는 할로겐과 결합할 수 있는 부동화제를 용매에 용해한 용액에 상기 적어도 하나의 나노와이어를 투입하여 혼합하여 상기 적어도 하나의 나노와이어를 부동화시킬 수 있다.Specifically, the at least one nanowire is added to a solution in which a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound is dissolved in a solvent and mixed to passivate the at least one nanowire. have.
또는, 상기 적어도 하나의 나노와이어로 어레이(array)를 만든 후, 어레이 위에 상기 단결정 페로브스카이트 화합물에 포함된 금속 또는 할로겐과 결합할 수 있는 부동화제를 용매에 용해한 용액을 도포하고 건조하여 부동화시킬 수 있다.Alternatively, after making an array with the at least one nanowire, a solution in which a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound is dissolved in a solvent is applied on the array and dried to passivation can do it
또는 상기 단결정 페로브스카이트 화합물에 포함된 금속 또는 할로겐과 결합할 수 있는 부동화제를 용매에 용해한 용액을 상기 적어도 하나의 나노와이어 어레이 상에 증착하여 부동화 시킬 수 있다. Alternatively, a solution obtained by dissolving a passivating agent capable of binding to a metal or a halogen contained in the single crystal perovskite compound in a solvent may be deposited on the at least one nanowire array for passivation.
상기 증착 방법은 진공 증착법 (vacuum deposition), 화학 기상 증착법(chemical vapor deposition), 물리 기상 증착법(physical vapor deposition), 원자층 증착법(atomic layer deposition), 유기금속 화학 증착법(Metal Organic Chemical Vapor Deposition), 열증착(thermal evaporation), 플라즈마 화학 증착법(Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(Molecular Beam Epitaxy), 수소화물 기상 성장법(Hydride Vapor Phase Epitaxy), 전자빔증착(e-beam evaporation), RF 스퍼터링(Radio Frequency sputtering), 마그네트론 스퍼터링(magnetron sputtering), 스퍼터링(Sputtering), 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 존 캐스팅(zone casting) 중 어느 하나의 방법을 이용할 수 있으며, 상기 방법에 제한되지 않는다.The deposition method is vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition), Thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation, RF Any one of sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating) and zone casting (zone casting) may be used, and the not limited to the method.
실시예에 따라서, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 제조방법은 상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 표면에 상기 단결정 페로브스카이트 화합물보다 밴드갭이 큰 물질을 도포하여 코팅하는 단계를 더 포함할 수 있다.According to an embodiment, in the method of manufacturing a perovskite photodetecting device according to an embodiment of the present invention, a band than the single-crystal perovskite compound is formed on the surface of at least one nanowire including the single-crystal perovskite compound. The method may further include coating by applying a material having a large gap.
구체적으로, 상기 적어도 하나의 나노와이어가 분산된 용액에 금속산화물 전구체를 넣고 솔-젤(sol-gel) 반응을 통해 상기 적어도 하나의 나노와이어 표면을 금속산화물로 코팅할 수 있다.Specifically, a metal oxide precursor may be added to a solution in which the at least one nanowire is dispersed, and the surface of the at least one nanowire may be coated with a metal oxide through a sol-gel reaction.
또는 유기물이 용해된 용액에 상기 적어도 하나의 나노와이어를 분산시킨 후, 여과 및 건조하여 상기 적어도 하나의 나노와이어 표면을 유기물로 코팅할 수 있다. Alternatively, after dispersing the at least one nanowire in a solution in which the organic material is dissolved, the surface of the at least one nanowire may be coated with an organic material by filtration and drying.
또는 금속산화물 및 유기물을 상기 적어도 하나의 나노와이어 표면에 증착하여 상기 적어도 하나의 나노와이어 표면을 코팅할 수 있다.Alternatively, a metal oxide and an organic material may be deposited on the surface of the at least one nanowire to coat the surface of the at least one nanowire.
상기 증착 방법은 진공 증착법 (vacuum deposition), 화학 기상 증착법(chemical vapor deposition), 물리 기상 증착법(physical vapor deposition), 원자층 증착법(atomic layer deposition), 유기금속 화학 증착법(Metal Organic Chemical Vapor Deposition), 열증착(thermal evaporation), 플라즈마 화학 증착법(Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(Molecular Beam Epitaxy), 수소화물 기상 성장법(Hydride Vapor Phase Epitaxy), 전자빔증착(e-beam evaporation), RF 스퍼터링(Radio Frequency sputtering), 마그네트론 스퍼터링(magnetron sputtering), 스퍼터링(Sputtering), 스핀 코팅(spin coating), 딥 코팅(dip coating) 및 존 캐스팅(zone casting) 중 어느 하나의 방법을 이용할 수 있으며, 상기 방법에 제한되지 않는다.The deposition method is vacuum deposition, chemical vapor deposition, physical vapor deposition, atomic layer deposition, metal organic chemical vapor deposition (Metal Organic Chemical Vapor Deposition), Thermal evaporation, Plasma-Enhanced Chemical Vapor Deposition, Molecular Beam Epitaxy, Hydride Vapor Phase Epitaxy, e-beam evaporation, RF Any one of sputtering (Radio Frequency sputtering), magnetron sputtering (magnetron sputtering), sputtering (Sputtering), spin coating (spin coating), dip coating (dip coating) and zone casting (zone casting) may be used, and the not limited to the method.
전술한 제조 단계를 통하여 제조된 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 포함하는 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 104 A/W 내지 108 A/W의 높은 광 응답성(responsivity)과, 1015 jones 내지 1020 jones의 높은 광 검출 성능(detectivity)을 가질 수 있다.The perovskite photodetecting device according to an embodiment of the present invention including at least one nanowire including a single crystal perovskite compound prepared through the above-described manufacturing step is 10 4 A/W to 10 8 A It may have a high light responsiveness of /W and a high light detectivity of 10 15 jones to 10 20 jones.
또한, 상기 페로브스카이트 광검출 소자는 단결정 페로브스카이트 화합물 내 할라이드 구성 제어에 따라 감지 가능한 스펙트럼의 범위를 용이하게 제어할 수 있어, 300 nm 내지 1200 nm의 파장에서 우수한 광 검출 성능을 보인다.In addition, the perovskite photodetector device can easily control the range of the detectable spectrum according to the control of the halide composition in the single-crystal perovskite compound, and thus exhibits excellent photodetection performance at a wavelength of 300 nm to 1200 nm .
이하, 본 발명의 실시예를 기재한다. 하기 실시예는 본 발명을 실험적으로 입증하기 위해 제시된 것일 뿐, 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described. The following examples are only presented to experimentally demonstrate the present invention, and the present invention is not limited thereto.
[실시예 1][Example 1]
1. 단결정 페로브스카이트 화합물을 포함하는 나노와이어 제조1. Preparation of Nanowires Containing Single Crystal Perovskite Compounds
아르곤(Ar) 분위기 하에 150℃에서 1시간 동안 7.5mL의 옥타데센(ODE, 90% 알드리치 사)을 포함한 25mL의 3구 둥근 바닥 플라스크에 0.2g의 Cs2CO3(99.9% 알드리치 사) 및 0.6mL의 올레산(OA, 90% 알드리치 사)을 반응시켜 Cs-올레이트(oleate) 용액을 제조하였다. 0.2 g of Cs 2 CO 3 (99.9% Aldrich) and 0.6 in a 25 mL three-necked round-bottom flask containing 7.5 mL of octadecene (ODE, 90% Aldrich) for 1 hour at 150° C. under an argon (Ar) atmosphere. mL of oleic acid (OA, 90% Aldrich) was reacted to prepare a Cs-oleate solution.
그 후, 5mL의 옥타데센 및 0.0734g의 PbBr2(99.999% 알드리치 사)를 3구 둥근 바닥 플라스크에 넣고 120℃에서 진공 하에 가열하였다.Then, 5 mL of octadecene and 0.0734 g of PbBr 2 (99.999% Aldrich) were placed in a three-necked round bottom flask and heated at 120° C. under vacuum.
0.8mL의 옥틸아민(OCT, 99% 알드리치 사) 및 0.8mL의 올레일아민(OAm, 70% 알드리치 사)을 아르곤 분위기 하에 120℃에서 순차적으로 주입한 다음 135℃에서 20분 동안 반응시켰다.0.8 mL of octylamine (OCT, 99% Aldrich) and 0.8 mL of oleylamine (OAm, 70% Aldrich) were sequentially injected at 120° C. under an argon atmosphere and then reacted at 135° C. for 20 minutes.
이후, 0.7㎖의 Cs-올레이트 용액을 주입한 후 135℃에서 50분 동안 반응시켰다.Thereafter, 0.7 ml of Cs-oleate solution was injected and reacted at 135° C. for 50 minutes.
마지막으로, 반응 혼합물이 담긴 3구 둥근 바닥 플라스크를 얼음 수조에 넣어 냉각시킨 후, 6000rpm에서 5분 동안 원심 분리하여 반응 혼합물로부터 CsPbBr3 페로브스카이트 나노와이어를 분리하고 헥산으로 세척하였다.Finally, the three-necked round-bottom flask containing the reaction mixture was placed in an ice water bath to cool, and then centrifuged at 6000 rpm for 5 minutes to separate CsPbBr 3 perovskite nanowires from the reaction mixture and washed with hexane.
이후, 세척된 CsPbBr3 페로브스카이트 나노와이어를 톨루엔(99.8% 알드리치사)에 재분산시켰다.Thereafter, the washed CsPbBr 3 perovskite nanowires were redispersed in toluene (99.8% Aldrich).
2. 할라이드 치환 공정2. Halide substitution process
0.03mmol의 OAmCl이 분해될 때까지 100℃에서 N2 분위기 하에 5mL의 옥타데센을 포함하는 25mL의 3구 둥근 바닥 플라스크에서 0.5mL의 올레산 및 0.5mL의 올레일아민과 반응시켰다.It was reacted with 0.5 mL of oleic acid and 0.5 mL of oleylamine in a 25 mL three-necked round bottom flask containing 5 mL of octadecene under N 2 atmosphere at 100° C. until 0.03 mmol of OAmCl was decomposed.
0.025mmol의 CsPbBr3 페로브스카이트 나노와이어 용액을 주입하고 50℃에서 30분 동안 반응시켰다.0.025 mmol of CsPbBr 3 perovskite nanowire solution was injected and reacted at 50° C. for 30 minutes.
이후, 생성물을 6000rpm에서 5분 동안 원심 분리하여 침전물을 회수한 후 헥산으로 세척하여 Cl 치환된 CsPbBr3 페로브스카이트 나노와이어를 제조하였다.Thereafter, the product was centrifuged at 6000 rpm for 5 minutes to recover a precipitate, and then washed with hexane to prepare Cl-substituted CsPbBr 3 perovskite nanowires.
이후 Cl 치환된 CsPbBr3 페로브스카이트 나노와이어를 톨루엔(99.8% 알드리치 사)에 재분산시켰다.Thereafter, Cl-substituted CsPbBr 3 perovskite nanowires were redispersed in toluene (99.8% Aldrich).
3. 페로브스카이트 광검출 소자 제조3. Fabrication of perovskite photodetection device
기판 상에 전극 물질인 구리를 증착한 후 제1 전극과 제2 전극 사이의 거리가 5㎛가 되도록 전자빔증착 및 표준 리프트 오프 공정을 통해 패턴화 하였다.After depositing copper, which is an electrode material, on the substrate, it was patterned through electron beam deposition and a standard lift-off process so that the distance between the first electrode and the second electrode was 5 μm.
패턴화 된 제1 전극 및 제2 전극이 형성된 기판 상에 Cl 치환된 CsPbBr3 페로브스카이트 나노와이어가 분산된 용액을 3000rpm에서 1분 동안 스핀 코팅한 다음 70℃에서 5분 동안 건조시켜 페로브스카이트 광검출 소자를 제조하였다. A solution in which Cl-substituted CsPbBr 3 perovskite nanowires are dispersed on a substrate on which the patterned first and second electrodes are formed is spin-coated at 3000 rpm for 1 minute, and then dried at 70° C. for 5 minutes. A skye photodetector device was fabricated.
[실시예 2][Example 2]
OAmCl을 0.02mmol 사용한 것을 제외하고는, 상기 [실시예 1]과 동일한 방법으로 페로브스카이트 광검출 소자를 제조하였다.A perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.02 mmol of OAmCl was used.
[실시예 3][Example 3]
할라이드 치환 반응을 하지 않은 단결정 페로브스카이트 화합물을 사용한 것을 제외하고는, 상기 [실시예 1]과 동일한 방법으로 페로브스카이트 광검출 소자를 제조하였다.A perovskite photodetector device was manufactured in the same manner as in [Example 1], except that a single crystal perovskite compound not subjected to halide substitution reaction was used.
[실시예 4][Example 4]
할라이드 음이온 소스 물질로 PbI2 0.01mmol과 OAmI 0.01mmol을 사용한 것을 제외하고는, 상기 [실시예 1]과 동일한 방법으로 페로브스카이트 광검출 소자를 제조하였다.A perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.01 mmol of PbI 2 and 0.01 mmol of OAmI were used as halide anion source materials.
[실시예 5][Example 5]
할라이드 음이온 소스 물질로 PbI2 0.03mmol과 OAmI 0.01mmol을 사용한 것을 제외하고는, 상기 [실시예 1]과 동일한 방법으로 페로브스카이트 광검출 소자를 제조하였다.A perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.03 mmol of PbI 2 and 0.01 mmol of OAmI were used as halide anion source materials.
[실시예 6][Example 6]
할라이드 음이온 소스 물질로 PbI2 0.07mmol과 OAmI 0.03mmol을 사용한 것을 제외하고는, 상기 [실시예 1]과 동일한 방법으로 페로브스카이트 광검출 소자를 제조하였다.A perovskite photodetector device was manufactured in the same manner as in [Example 1], except that 0.07 mmol of PbI 2 and 0.03 mmol of OAmI were used as halide anion source materials.
[대조예][contrast example]
ITO 전극 상에 PEDOT:PSS를 증착하여 정공 수송층을 형성한 후 CsPbBr3 페로브스카이트 화합물로 박막 형상의 감지부를 형성하였다.After depositing PEDOT:PSS on the ITO electrode to form a hole transport layer, a thin film-shaped sensing part was formed with CsPbBr 3 perovskite compound.
감지부 상에 PCBM 전자수송층을 형성한 후 알루미늄(Al) 전극을 형성하여 박막형 페로브스카이트 광검출 소자를 제조하였다.After forming the PCBM electron transport layer on the sensing unit, an aluminum (Al) electrode was formed to manufacture a thin-film perovskite photodetector device.
상기 실시예 1 내지 실시예 6을 할라이드 음이온 소스 물질에 따라 요약하면 아래의 표 1과 같다.Table 1 below summarizes Examples 1 to 6 according to halide anion source materials.
[표 1][Table 1]
Figure PCTKR2020018081-appb-I000001
Figure PCTKR2020018081-appb-I000001
이하에서는, 도 4 내지 도 12b을 참조하여 본 발명의 실시예에 따른 페로브스카이트 광검출 소자의 특성을 보다 상세하게 설명하도록 한다.Hereinafter, characteristics of the perovskite photodetecting device according to an embodiment of the present invention will be described in more detail with reference to FIGS. 4 to 12B .
도 4는 본 발명의 실시예 1 내지 실시예 6에 따른 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어의 투과 전자 현미경(transmission electron microscopy, TEM) 이미지를 도시한 것이다.4 shows a transmission electron microscopy (TEM) image of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
도 4를 참조하면, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 감지부를 구성하는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어의 평균 직경은 8㎚ 내지 10㎚이고, 평균 길이는 5㎛ 내지 10㎛인 것을 확인할 수 있다.Referring to FIG. 4 , the average diameter of at least one nanowire including a single crystal perovskite compound constituting the sensing unit of the perovskite photodetecting device according to an embodiment of the present invention is 8 nm to 10 nm, and , it can be seen that the average length is 5 μm to 10 μm.
도 5는 본 발명의 실시예 1 내지 실시예 6에 따른 단결정 페로브스카이트 화합물을 이용한 단일의 나노와이어를 X-선 회절 분석(X-ray diffraction, XRD)한 데이터를 도시한 것이다.5 shows data obtained by X-ray diffraction analysis (XRD) of a single nanowire using a single crystal perovskite compound according to Examples 1 to 6 of the present invention.
도 5를 참조하면, 본 발명의 실시예 1 내지 실시예 6에 따른 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어는 사방정계(orthorhombic) 결정 격자 구조를 갖는 것을 확인할 수 있다.Referring to FIG. 5 , it can be confirmed that at least one nanowire including the single crystal perovskite compound according to Examples 1 to 6 of the present invention has an orthorhombic crystal lattice structure.
또한 도 5에 따르면, 실시예에 따라 XRD 패턴이 선형적으로 이동되는 것으로 보아, 할라이드 교환 반응 이후에도 사방정계(orthorhombic) 결정 격자 구조, 결정 크기, 결정 형상이 유지되는 것을 확인할 수 있다.Also, according to FIG. 5 , since the XRD pattern is linearly moved according to the embodiment, it can be confirmed that the orthorhombic crystal lattice structure, crystal size, and crystal shape are maintained even after the halide exchange reaction.
도 6은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 광 흡수(optical absorption) 및 광 루미네센스(photo-luminescent, PL)에 관한 데이터를 도시한 것이다.6 shows data on optical absorption and photo-luminescent (PL) of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
도 6의 (a) 및 (b)에 도시된 페로브스카이트 광검출 소자의 광 흡수(optical absorption) 및 광 루미네센스(photo-luminescent, PL)를 살펴보면, 실시예 1 내지 실시예 6의 할라이드 조성에 따라 온 셋 흡수대 엣지(absorption onset band edge)와 최대 PL의 파장이 선형적으로 의존하는 것을 확인할 수 있다.Looking at the optical absorption and photo-luminescent (PL) of the perovskite photodetecting device shown in FIGS. 6 (a) and (b), Examples 1 to 6 It can be seen that the onset absorption band edge and the wavelength of the maximum PL are linearly dependent according to the halide composition.
도 7a 내지 도 7c는 본 발명의 실시예 1내지 실시예 6에 따른 페로브스카이트 광검출 소자의 에너지 밴드 다이어그램을 도시한 것이다.7A to 7C are diagrams of energy bands of perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 7a는 바이어스가 인가되지 않았을 때, 도 7b는 순방향 바이어스일 때, 도 7c는 역방향 바이어스일 때를 도시한 것으로, 도 7a 내지 도 7c를 참조하면, 전기장을 인가하여 생성 된 전자 및 정공은 공간 전하 영역에서 유도 된 전기장에 의해 보다 효율적으로 분리되어, 전자와 정공의 재결합 속도를 감소시킨다.7A shows when no bias is applied, FIG. 7B shows when forward bias is applied, and FIG. 7C shows when reverse bias is applied. Referring to FIGS. 7A to 7C , electrons and holes generated by applying an electric field are spaced It is more efficiently separated by the electric field induced in the charge region, reducing the recombination rate of electrons and holes.
또한, 인가 된 전기장은 에너지 장벽을 낮춤으로써 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 내의 전자와 정공이 효과적으로 각 전극으로 전달될 수 있도록 한다.In addition, the applied electric field lowers the energy barrier so that electrons and holes in at least one nanowire containing a single crystal perovskite compound can be effectively transferred to each electrode.
도 8은 어두운 환경 및 밝은 환경에서 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자에 10 μWcm-2의 조사력을 가진 400 ㎚ 파장의 레이저를 조사하였을 때의 전류 - 전압 그래프를 도시한 것이다.8 is a current when irradiating a 400 nm wavelength laser with an irradiating power of 10 μWcm -2 to the perovskite photodetecting device according to Examples 1 to 6 of the present invention in a dark environment and a bright environment; A voltage graph is shown.
도 8을 참조하면, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 암전류 대비 광전류가 6배 증가한 것을 확인할 수 있다.Referring to FIG. 8 , in the perovskite photodetecting device according to an embodiment of the present invention, it can be seen that the photocurrent is increased by 6 times compared to the dark current.
따라서, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 우수한 광 검출 성능을 가지는 것을 알 수 있다.Accordingly, it can be seen that the perovskite photodetecting device according to an embodiment of the present invention has excellent photodetection performance.
도 9a 및 9b는 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자에 대한 스펙트럼 반응성 및 스펙트럼 이득을 도시한 것이다.9A and 9B show spectral reactivity and spectral gain for perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 9a 및 9b를 참조하면, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자는 350 ㎛ 내지 650 ㎛ 파장에서 넓은 스펙트럼 응답과 ~ 107 A/W의 매우 높은 감도를 나타낸 것을 확인할 수 있다. 9a and 9b, it can be seen that the perovskite photodetecting device according to an embodiment of the present invention exhibits a wide spectrum response at a wavelength of 350 μm to 650 μm and a very high sensitivity of ~ 10 7 A/W. have.
도 10은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 광전 응답 신호를 도시한 것이다.10 shows photoelectric response signals of the perovskite photodetecting devices according to Examples 1 to 6 of the present invention.
도 10을 참조하면, 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 광전 응답 신호는 시간 지연(time delay) 없이 작동하는 것을 확인할 수 있고, 이는 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자가 고속으로 동작할 수 있음을 나타낸다.Referring to FIG. 10 , it can be seen that the photoelectric response signal of the perovskite photodetecting device according to an embodiment of the present invention operates without a time delay, which is This indicates that the lobskite photodetecting device can operate at high speed.
도 11은 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 검출도를 도시한 것이다.11 shows a detection diagram of a perovskite photodetecting device according to Examples 1 to 6 of the present invention.
보다 상세하게는 빛의 조사 강도에 따른 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 검출도를 도시한 것으로써, 도 11을 참조하면 본 발명의 실시예 1 내지 실시예 6에 무관하게, 즉 본 발명의 일 실시예에 따른 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어의 조성과는 무관하게 10μWcm-2 전력에서 최대 5Х1018 jones의 광 검출 성능을 나타내었다.More specifically, as showing the detection diagram of the perovskite photodetecting device according to an embodiment of the present invention according to the intensity of irradiation of light, referring to FIG. 11, in Examples 1 to 6 of the present invention Regardless, that is, regardless of the composition of the at least one nanowire including the single-crystal perovskite compound according to an embodiment of the present invention, a maximum of 5Х10 18 jones at 10 μWcm -2 power was exhibited.
따라서, 본 발명의 실시예에 따른 페로브스카이트 광검출 소자는 나노와이어에 포함된 단결정 페로브스카이트 화합물의 할라이드 조성이 달라지더라도 매우 우수한 광 검출 성능을 가지는 것을 알 수 있다.Therefore, it can be seen that the perovskite photodetecting device according to the embodiment of the present invention has very good photodetection performance even when the halide composition of the single crystal perovskite compound included in the nanowire is changed.
본 발명의 페로브스카이트 광검출 소자는 단결정 페로브스카이트 화합물의 상이한 할라이드 조성으로 인해 광을 흡수하는 파장 영역이 달라지면서도 상이한 할라이드 조성과 무관하게 우수한 광 검출 성능을 가지므로, R(적색),G(녹색),B(청색) 칼라 필터 없이도 3가지 색상을 우수히 검출할 수 있는 이미지 센서의 제작이 가능하다.The perovskite photodetecting device of the present invention has excellent photodetection performance irrespective of different halide compositions while changing the wavelength region for absorbing light due to different halide compositions of the single crystal perovskite compound, so that R (red ), G (green), and B (blue) color filters, it is possible to manufacture an image sensor that can detect three colors excellently.
도 12a 및 도 12b는 본 발명의 실시예 1 내지 실시예 6에 따른 페로브스카이트 광검출 소자의 장치 안정성을 도시한 것이다.12A and 12B show device stability of the perovskite photodetecting device according to Examples 1 to 6 of the present invention.
도 12a 및 12b는 어두운 환경 및 밝은 환경에서 에서의 광 조사에 따라, 15일간 매일 측정된 데이터의 전류-전압 곡선을 도시한 것으로써, 도 12a 및 12b를 참조하면 15일간 데이터가 일정하게 유지되는 것을 확인할 수 있다.12A and 12B are current-voltage curves of data measured daily for 15 days according to light irradiation in a dark environment and a bright environment. Referring to FIGS. 12A and 12B, the data is maintained constant for 15 days. that can be checked
이로써 본 발명의 일 실시예에 따른 페로브스카이트 광검출 소자의 안정성을 확인할 수 있다.Thus, the stability of the perovskite photodetecting device according to an embodiment of the present invention can be confirmed.
상기 실시예 1 내지 실시예 6의 페로브스카이트 광검출 소자의 특성을 요약하면 아래의 표 2와 같다.The characteristics of the perovskite photodetecting devices of Examples 1 to 6 are summarized in Table 2 below.
[표 2][Table 2]
Figure PCTKR2020018081-appb-I000002
Figure PCTKR2020018081-appb-I000002
도 13은 대조예에 따른 페로브스카이트 광검출 소자의 단면을 도시한 SEM(scanning electron microscopy) 이미지이다.13 is a scanning electron microscopy (SEM) image showing a cross-section of a perovskite photodetecting device according to a control example.
도 13을 참조하면, 상기 대조예의 페로브스카이트 광검출 소자는 CsPbBr3 페로브스카이트 화합물로 박막 형상의 감지부가 형성되어, 박막형 페로브스카이트 광검출 소자가 제조된 것을 확인할 수 있다.Referring to FIG. 13 , in the perovskite photodetecting device of the control example, a thin film-shaped sensing part is formed of a CsPbBr 3 perovskite compound, and it can be confirmed that a thin film-type perovskite photodetecting device is manufactured.
도 14는 대조예에 따른 페로브스카이트 광검출 소자의 광 응답성 및 광 검출능을 도시한 그래프이다.14 is a graph showing the photoresponse and photodetectability of the perovskite photodetecting device according to the control example.
도 14를 참조하면, 상기 대조예의 광 응답성은 10-1A/W와 1A/W 사이의 값을 가지며, 광 검출능은 1012~1013 Jones 값을 가지는 것을 확인할 수 있다.Referring to FIG. 14 , it can be seen that the light responsiveness of the control example has a value between 10 −1 A/W and 1 A/W, and the photodetectability has a value of 10 12 ~ 10 13 Jones.
즉, 상기 대조예의 박막형 페로브스카이트 광검출 소자는 상기 실시예 1 내지 실시예 6의 광 응답성 및 광 검출능 수치보다 현저히 작은 값의 광 응답성 및 광 검출능을 가지는 것을 확인할 수 있다.That is, it can be seen that the thin film-type perovskite photodetecting device of the control example has photoresponse and photodetectability of significantly smaller values than the values of photoresponse and photodetectability of Examples 1 to 6 above.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the present specification and drawings are merely presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It will be apparent to those of ordinary skill in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (15)

  1. 기판;Board;
    상기 기판 상에 패터닝(patterning) 된 제1 전극 및 제2 전극; 및first and second electrodes patterned on the substrate; and
    상기 기판 상에 형성되고, 상기 제1 전극 및 제2 전극과 접촉된 구조를 가지며 빛을 감지하는 감지부A sensing unit formed on the substrate, having a structure in contact with the first electrode and the second electrode, and sensing light
    를 포함하고,including,
    상기 감지부는 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자.The sensing unit is a perovskite photodetector device, characterized in that it comprises at least one nanowire containing a single crystal perovskite compound.
  2. 제1항에 있어서,According to claim 1,
    상기 단결정 페로브스카이트 화합물은 할라이드 치환 반응에 의해 서로 상이한 1가 음이온을 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자.The single-crystal perovskite compound is a perovskite photodetector device, characterized in that it contains different monovalent anions by a halide substitution reaction.
  3. 제1항에 있어서,According to claim 1,
    상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어는 결정 격자 구조가 입방정계(cubic), 정방정계(tetragonal), 사방정계(orthorhombic), 사방 육면체(rhombohedral), 층상(layer) 및 이합체(dimer) 중 어느 하나인 것을 특징으로 하는 페로브스카이트 광검출 소자.At least one nanowire including the single crystal perovskite compound has a crystal lattice structure of cubic, tetragonal, orthorhombic, rhombohedral, layered and dimer. (dimer) Perovskite photodetecting device, characterized in that any one.
  4. 제1항에 있어서,According to claim 1,
    상기 적어도 하나의 나노와이어는 하기 화학식으로 표시되는 단결정 페로브스카이트 화합물을 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자.The at least one nanowire is a perovskite photodetector device, characterized in that it comprises a single crystal perovskite compound represented by the following formula.
    [화학식][Formula]
    AaMbXc A a M b X c
    (상기 화학식에서, A는 1가의 양이온이고, M은 2가의 금속 양이온 또는 3가의 금속 양이온이며, X는 1가의 음이온이고, 상기 M이 2가의 금속 양이온인 경우 a+2b=c이며, 상기 M이 3가의 금속 양이온인 경우 a+3b=c임.)(In the above formula, A is a monovalent cation, M is a divalent metal cation or a trivalent metal cation, X is a monovalent anion, and when M is a divalent metal cation, a+2b=c, wherein M For this trivalent metal cation, a+3b=c.)
  5. 제1항에 있어서,According to claim 1,
    상기 적어도 하나의 나노와이어는 1nm 내지 100nm의 평균 직경을 가지는 것을 특징으로 하는 페로브스카이트 광검출 소자.The at least one nanowire has an average diameter of 1 nm to 100 nm perovskite photo-sensing device, characterized in that.
  6. 제1항에 있어서,According to claim 1,
    상기 적어도 하나의 나노와이어는 1μm 내지 1,000μm의 평균 길이를 가지는 것을 특징으로 하는 페로브스카이트 광검출 소자.The at least one nanowire has an average length of 1 μm to 1,000 μm.
  7. 제4항에 있어서,5. The method of claim 4,
    상기 적어도 하나의 나노와이어의 표면은 상기 2가의 금속 양이온 또는 상기 3가의 금속 양이온 또는 상기 1가의 음이온과 킬레이트 결합하여 알킬 리간드를 형성하는 부동화제에 의해 부동화되는 것을 특징으로 하는 페로브스카이트 광검출 소자.The surface of the at least one nanowire is passivated by a passivating agent that forms an alkyl ligand by chelating with the divalent metal cation or the trivalent metal cation or the monovalent anion device.
  8. 제1항에 있어서,According to claim 1,
    상기 적어도 하나의 나노와이어의 표면은 상기 단결정 페로브스카이트 화합물보다 큰 밴드 갭을 가지는 물질로 코팅되는 것을 특징으로 하는 페로브스카이트 광검출 소자.A surface of the at least one nanowire is coated with a material having a band gap larger than that of the single-crystal perovskite compound.
  9. 제1항에 있어서,According to claim 1,
    상기 페로브스카이트 광검출 소자의 광 응답성(responsivity)은 104 A/W 내지 108 A/W 인 것을 특징으로 하는 페로브스카이트 광검출 소자.The perovskite photo-sensing device, characterized in that the light responsiveness (responsivity) of the perovskite photo-sensing device is 10 4 A/W to 10 8 A/W.
  10. 제1항에 있어서,According to claim 1,
    상기 페로브스카이트 광검출 소자의 광 검출 성능(detectivity)은 1015 jones 내지 1020 jones 인 것을 특징으로 하는 페로브스카이트 광검출 소자.The perovskite photodetecting device, characterized in that the light detection performance (detectivity) of the perovskite photodetecting device is 10 15 jones to 10 20 jones.
  11. 기판 상에 전극 물질을 형성하는 단계;forming an electrode material on the substrate;
    상기 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계; 및patterning the electrode material to form a first electrode and a second electrode; and
    상기 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound in contact with the first electrode and the second electrode
    를 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자의 제조방법.A method of manufacturing a perovskite photodetecting device comprising a.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 단결정 페로브스카이트 화합물은 할라이드 치환 반응에 의해 서로 상이한 1가 음이온을 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자의 제조방법.The single-crystal perovskite compound is a method of manufacturing a perovskite photodetecting device, characterized in that it contains different monovalent anions from each other by a halide substitution reaction.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 전극 물질을 패터닝 하여 제1 전극 및 제2 전극을 형성하는 단계는,Forming the first electrode and the second electrode by patterning the electrode material,
    포토 리소그래피 패터닝 공정을 통하여 상기 기판 상에 상기 제1 전극 및 제2 전극을 형성하는 것을 특징으로 하는 페로브스카이트 광검출 소자의 제조방법.A method of manufacturing a perovskite photo-sensing device, characterized in that the first electrode and the second electrode are formed on the substrate through a photolithography patterning process.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 제1 전극 및 제2 전극과 접촉하도록 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어를 코팅하여 감지부를 형성하는 단계는,Forming a sensing unit by coating at least one nanowire containing a single crystal perovskite compound in contact with the first electrode and the second electrode,
    상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어가 용액에 분산된 상태에서 코팅되어 형성되는 것을 특징으로 하는 페로브스카이트 광검출 소자의 제조방법.A method of manufacturing a perovskite photodetector device, characterized in that the at least one nanowire comprising the single-crystal perovskite compound is coated in a dispersed state in a solution.
  15. 제11항에 있어서,12. The method of claim 11,
    상기 단결정 페로브스카이트 화합물을 포함하는 적어도 하나의 나노와이어 표면에 상기 단결정 페로브스카이트 화합물보다 밴드갭이 큰 물질을 도포하여 코팅하는 단계를 더 포함하는 것을 특징으로 하는 페로브스카이트 광검출 소자의 제조방법.Perovskite photodetection, characterized in that it further comprises the step of coating the surface of at least one nanowire containing the single-crystal perovskite compound by applying a material having a larger band gap than the single-crystal perovskite compound. A method for manufacturing a device.
PCT/KR2020/018081 2019-12-10 2020-12-10 Perovskite photodetector device and method for manufacturing same WO2021118272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0163888 2019-12-10
KR1020190163888A KR102348967B1 (en) 2019-12-10 2019-12-10 Perovskite photo detector and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2021118272A1 true WO2021118272A1 (en) 2021-06-17

Family

ID=76329035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018081 WO2021118272A1 (en) 2019-12-10 2020-12-10 Perovskite photodetector device and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102348967B1 (en)
WO (1) WO2021118272A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016674A (en) * 2011-08-08 2013-02-18 삼성전자주식회사 Znsno3/zno nanowire having core-shell structure, method of forming znsno3/zno nanowire and nano generator including znsno3/zno nanowire, and method of forming znsno3 nanowire and nano generator including znsno3 nanowire
WO2014097181A1 (en) * 2012-12-19 2014-06-26 Basf Se Detector for optically detecting at least one object
KR20160098093A (en) * 2015-02-09 2016-08-18 성균관대학교산학협력단 Nanowire perovskite solar cell and preparing method thereof
KR20170052761A (en) * 2015-11-03 2017-05-15 재단법인대구경북과학기술원 Preparation method of perovskite nanostructures and the perovskite nanostructures thereby
JP2018513980A (en) * 2015-01-30 2018-05-31 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector for optically detecting at least one object

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3289615B1 (en) * 2015-04-27 2021-09-01 Board of Trustees of Michigan State University Organic salts for high voltage organic and transparent solar cells
BR112018000603A2 (en) 2015-07-13 2018-09-11 Crayonano As photodetectors and diodes emitting light in the form of nanowires / nanopiramids
KR101767254B1 (en) 2015-09-23 2017-08-10 한국과학기술연구원 A method of manufacturing hybrid film, hybrid film prepared by the same and photodetector comprising the same
JP6567201B2 (en) * 2016-04-13 2019-08-28 キング アブドゥーラ ユニバーシティ オブ サイエンス アンド テクノロジー Multifunctional optoelectronic device based on perovskite
KR101936466B1 (en) 2016-09-30 2019-01-08 포항공과대학교 산학협력단 Vertical Nano-structured Photodetector and Method of Forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016674A (en) * 2011-08-08 2013-02-18 삼성전자주식회사 Znsno3/zno nanowire having core-shell structure, method of forming znsno3/zno nanowire and nano generator including znsno3/zno nanowire, and method of forming znsno3 nanowire and nano generator including znsno3 nanowire
WO2014097181A1 (en) * 2012-12-19 2014-06-26 Basf Se Detector for optically detecting at least one object
JP2018513980A (en) * 2015-01-30 2018-05-31 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector for optically detecting at least one object
KR20160098093A (en) * 2015-02-09 2016-08-18 성균관대학교산학협력단 Nanowire perovskite solar cell and preparing method thereof
KR20170052761A (en) * 2015-11-03 2017-05-15 재단법인대구경북과학기술원 Preparation method of perovskite nanostructures and the perovskite nanostructures thereby

Also Published As

Publication number Publication date
KR20210073258A (en) 2021-06-18
KR102348967B1 (en) 2022-01-10

Similar Documents

Publication Publication Date Title
Yakunin et al. Non-dissipative internal optical filtering with solution-grown perovskite single crystals for full-colour imaging
WO2016208985A1 (en) Lead halide adduct compound and perovskite element using same
US10727429B2 (en) Insulating material, electronic device and imaging apparatus
WO2011136488A2 (en) Solar cell
WO2014204130A1 (en) Solar cell and manufacturing method therefor
EP2353187A2 (en) Solar cell and method of manufacturing the same
WO2019216545A1 (en) Tandem solar cell and manufacturing method therefor
CN109461745B (en) Image sensor and method for fabricating the same
CN103003974B (en) Photo-electric conversion element and solid camera head
WO2010114313A2 (en) Solar cell and manufacturing method thereof
WO2018124390A1 (en) Perovskite solar cell using graphene electrode, and manufacturing method therefor
WO2019039762A1 (en) Solar cell and method for manufacturing same
WO2018088797A1 (en) Spirobifluorene compound and perovskite solar cell comprising same
WO2019050185A1 (en) Solar cell and method for manufacturing same
WO2021118272A1 (en) Perovskite photodetector device and method for manufacturing same
WO2019054647A1 (en) Solar cell and method for manufacturing solar cell
WO2021162216A1 (en) Solar battery, and solar battery panel and method for manufacturing same
WO2016195190A1 (en) Heterojunction photodetector and method of manufacturing same
WO2015167228A1 (en) Precursor for preparing perovskite, preparation method therefor, and perovskite solar cell, and manufacturing method therefor
CN108369952B (en) Imaging device and electronic device
KR101905380B1 (en) Photoelectric Element and Method for fabricating the same
WO2024063230A1 (en) Method for manufacturing tandem solar cell
WO2020242042A1 (en) Solar cell panel manufacturing method and paste for solar cell electrode used therefor
WO2011002143A1 (en) Near-infrared sensing device and method for manufacturing same
WO2018021869A1 (en) Method for manufacturing organic-inorganic hybrid solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898064

Country of ref document: EP

Kind code of ref document: A1