WO2021118210A1 - Blower - Google Patents

Blower Download PDF

Info

Publication number
WO2021118210A1
WO2021118210A1 PCT/KR2020/017875 KR2020017875W WO2021118210A1 WO 2021118210 A1 WO2021118210 A1 WO 2021118210A1 KR 2020017875 W KR2020017875 W KR 2020017875W WO 2021118210 A1 WO2021118210 A1 WO 2021118210A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
fan
diffuser
shroud
blower
Prior art date
Application number
PCT/KR2020/017875
Other languages
French (fr)
Korean (ko)
Inventor
정재혁
최석호
이창훈
김주현
박형호
김후진
김용민
최치영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190162890A external-priority patent/KR102630061B1/en
Priority claimed from KR1020200065091A external-priority patent/KR102630058B1/en
Priority claimed from KR1020200066279A external-priority patent/KR102644819B1/en
Priority claimed from KR1020200066280A external-priority patent/KR102658127B1/en
Priority claimed from KR1020200066278A external-priority patent/KR102658126B1/en
Priority claimed from KR1020200129518A external-priority patent/KR102655312B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP20898981.4A priority Critical patent/EP4074980A4/en
Priority to US17/783,385 priority patent/US20230051322A1/en
Priority to CN202080085128.6A priority patent/CN114829782B/en
Publication of WO2021118210A1 publication Critical patent/WO2021118210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/06Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/288Part of the wheel having an ejecting effect, e.g. being bladeless diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • F24F2013/205Mounting a ventilator fan therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression

Definitions

  • the present invention relates to a blower, and more particularly, to a fan assembly disposed on the blower.
  • the blower causes a flow of air, circulating the air in the indoor space, or creating an airflow toward the user.
  • the blower can purify the polluted air in the room, thereby improving the quality of the indoor air.
  • a fan assembly for sucking air and blowing the sucked air to the outside of the blower is disposed inside the blower.
  • the area from which the air is discharged from the blower is extended in the vertical direction.
  • the conventional fan assembly fails to form a uniform upward airflow with respect to the air sucked from the lower part, so there is a problem in that the purified air is unevenly supplied to the discharge area extending up and down.
  • Korean Patent No. 10-2058859 discloses a double flow fan mounted on an air conditioner, but there is a problem in that the vertical length of the discharge area is limited because there is no method of forming an upward air flow through the double flow fan.
  • Korean Patent No. 10-1331487 discloses a fan assembly that discharges air forward through the Coanda effect, but there is no structure to suppress vortex generation and flow separation in the process of forming an updraft, resulting in excessive noise. There was a problem being
  • An object of the present invention is to provide a blower that converts air discharged from a fan into an updraft and supplies it to a tower.
  • Another object of the present invention is to provide a blower with reduced noise generated.
  • Another object of the present invention is to provide a blower in which the flow rate of air lost by being discharged from the fan is reduced.
  • Another object of the present invention is to provide a blower provided with a diffuser for guiding a flow direction of air discharged from a fan.
  • Another object of the present invention is to provide a blower having a diffuser with a minimized shape deformation.
  • a blower in order to achieve the above object, includes a lower case having a suction hole through which air is introduced; It is disposed on the upper side of the lower case and includes an upper case having a discharge port through which air is discharged.
  • the blower may include a fan motor providing rotational force, and a fan disposed in the lower case and fixed to a motor shaft of the fan motor, and may supply the introduced air to the upper case.
  • the fan includes a hub having an outer surface inclined at a first angle with respect to the motor shaft, a plurality of blades coupled to the hub, and a second angle larger than the first angle with respect to the motor shaft.
  • a flow rate loss can be minimized due to a difference in inclination angle between the hub and the shroud by including a shroud having an inner surface opposite to the outer surface of the hub with respect to the blade.
  • the hub may extend radially outward to form an upper end of the hub, and the shroud may extend radially outward to form a shroud edge.
  • the shroud edge may be positioned radially outward from the top of the hub, thereby preventing air from escaping to the outside of the shroud.
  • the shroud may include a rim portion extending in a circumferential direction; and a support portion extending radially outwardly from the rim portion.
  • the rim portion may be positioned radially outside the upper end of the hub, so that air passing through the rim may be guided upward by the hub.
  • the hub may include: a shaft coupling part formed to protrude upward and downward from the center of the hub, and into which the motor shaft is inserted; a first inclined surface extending outwardly from the shaft coupling part; and a second inclined surface inclinedly extending outwardly from the first inclined surface.
  • the shaft coupling portion may protrude downward from the center of the hub to form a lower end of the hub, and may protrude upward to form a hub protrusion.
  • the shroud edge may be positioned at a height between the lower end of the hub and the hub protrusion.
  • the shroud edge may be located at a height between the lower end of the hub and the first guide surface, so that air introduced through the shroud may flow upward along the first guide surface.
  • the shroud may include an upper end of the rim that connects the rim and the support.
  • the shaft coupling part may be located above the upper end of the rim part, so that air passing through the rim part may be guided to the first guide surface.
  • the inclination angle of the shroud may be formed within a range of 35 degrees to 50 degrees.
  • An expansion angle may be formed between the hub and the shroud, so that air introduced through the shroud may be smoothly pressurized by the blade.
  • the extension angle may be formed within a range of 11 degrees to 26 degrees.
  • the blower according to an embodiment of the present invention is disposed on the downstream side of the fan, and includes a diffuser extending in the vertical direction to convert the flow direction of air discharged from the fan into an upward airflow.
  • the diffuser including the lower end concave upwards, the air reaching the diffuser may be guided to the diffuser surface riding the concave lower end.
  • the blower may include a fan housing in which the fan is accommodated; and a motor housing in which a fan motor for applying power to the fan is accommodated.
  • the diffuser may be disposed between the fan housing and the motor housing, and may be supported by the fan housing and the motor housing.
  • the diffuser may extend to be curved in the vertical direction, and thus may have adaptability to the flow direction.
  • the diffuser may include: a first extension extending curvedly from an upper end to a lower side; a second extension extending upwardly from the lower end; and a bent part connecting the first extension part and the second extension part.
  • At least a portion of the diffuser may be positioned between the hub and the shroud in a radial direction, so that air discharged between the hub and the shroud may flow toward the diffuser.
  • the height of the lower end concave to the upper side may be formed within the range of 10% to 30% of the total height of the diffuser, thereby reducing flow friction caused by the lower edge.
  • the diffuser may extend in the vertical direction, and a plurality of diffuser grooves spaced apart from each other may be formed along the extending direction of the lower end, so that air flowing through the diffuser may flow upward.
  • Ribs may be formed between the plurality of diffuser grooves.
  • the lower end of the groove of the diffuser groove may be formed to be in contact with the lower end of the diffuser, so that air reaching the lower end of the groove of the diffuser groove may flow upward through the diffuser groove.
  • the upper end of the groove of the diffuser groove may be formed to be spaced apart from the lower side of the upper end of the diffuser, thereby reducing flow friction generated at the upper end of the diffuser.
  • Each of the upper grooves of the plurality of diffuser grooves may be located on the same horizontal plane.
  • FIG. 1 is a perspective view of a blower according to an embodiment of the present invention.
  • Figure 2 is a longitudinal cross-sectional perspective view of a blower according to an embodiment of the present invention.
  • FIG. 3 is another longitudinal cross-sectional perspective view of a blower according to an embodiment of the present invention.
  • FIG. 4 is a top perspective view of a blower according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional perspective view of a blower according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a blower showing an airflow converter according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of an airflow converter according to an embodiment of the present invention.
  • FIG. 8 is a perspective view of a fan according to an embodiment of the present invention.
  • FIG. 9 is a bottom perspective view of a fan according to an embodiment of the present invention.
  • FIG. 10 is a longitudinal cross-sectional perspective view of a fan according to an embodiment of the present invention.
  • FIG. 11 is an enlarged view of region M shown in FIG. 10 .
  • FIG. 12 is a graph showing air volume performance of a fan according to an embodiment of the present invention.
  • FIG. 13 is a graph showing noise performance of a fan according to an embodiment of the present invention.
  • FIG. 14 is a design diagram of a blade according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of a blade airfoil according to an embodiment of the present invention.
  • 16 is a contour diagram showing an optimal blade design according to an embodiment of the present invention.
  • FIG 17 is a perspective view of a fan according to another embodiment of the present invention.
  • FIG. 18 is an enlarged view of a blade according to another embodiment of the present invention.
  • FIG. 19 is a longitudinal cross-sectional perspective view of a blade according to another embodiment of the present invention.
  • 20 is a view for explaining the flow flow in the blade according to another embodiment of the present invention.
  • 21 is a graph showing air volume performance of a fan according to another embodiment of the present invention.
  • 22 is a graph showing noise performance of a fan according to another embodiment of the present invention.
  • FIG. 23 is a perspective view of a fan according to another embodiment of the present invention.
  • FIG. 24 is a longitudinal cross-sectional perspective view of a fan assembly according to embodiments of the present invention.
  • 25 is an enlarged view of a diffuser according to embodiments of the present invention.
  • 26 is a graph for explaining the effect on the air volume and noise of the diffuser according to the embodiment of the present invention.
  • 27 is a graph for explaining the effect on the air volume and noise of the diffuser according to the embodiment of the present invention.
  • Figure 1 shows the overall appearance of the blower (1).
  • the blower 1 may be named by other names, such as an air conditioner, an air clean fan, an air purifier, etc. in that it sucks air and circulates the sucked air.
  • the blower 1 may include a suction module 100 through which air is sucked, and a blower module 200 through which the sucked air is discharged.
  • the blower 1 may have a columnar shape whose diameter decreases toward the top, and the blower 1 may have a conical or truncated cone shape as a whole.
  • the cross section becomes narrower toward the upper side, the center of gravity is lowered and the risk of overturning due to external impact is reduced.
  • the cross section does not need to be in a form that becomes narrower toward the upper side.
  • the suction module 100 may be formed to gradually decrease in diameter toward the upper end, and the blower module 200 may also be formed to have a gradually reduced diameter toward the upper end.
  • the suction module 100 may include a base 110 , a lower case 120 disposed above the base 110 , and a filter 130 disposed inside the lower case 120 .
  • the base 110 may be seated on the ground, and may support the load of the blower 1 .
  • the lower case 120 and the filter 130 may be seated on the upper side of the base 110 .
  • the outer shape of the lower case 120 may be cylindrical, and may form a space in which the filter 130 is disposed.
  • the lower case 120 may have a suction hole 121 opened to the inside of the lower case 120 .
  • a plurality of suction holes 121 may be formed along the circumference of the lower case 120 .
  • the outer shape of the filter 130 may be cylindrical, and may filter out foreign substances contained in the air introduced through the suction hole 121 .
  • the blowing module 200 may be disposed separately in the form of two columns extending up and down.
  • the blowing module 200 may include a first tower 220 and a second tower 230 that are spaced apart from each other.
  • the blowing module 200 may include a tower base 210 connecting the first tower 220 and the second tower 230 to the suction module 100 .
  • the tower base 210 may be disposed on the upper side of the suction module 100 , and may be disposed on the lower side of the first tower 220 and the second tower 230 .
  • the outer shape of the tower base 210 may be cylindrical, and may be disposed on the upper side of the suction module 100 to form an outer peripheral surface continuous with the suction module 100 .
  • the upper surface of the tower base 210 may be concave downwardly, and may form the upper surface 211 of the tower base extending forward and backward.
  • the first tower 220 may extend upwardly from one side 211a of the tower base upper surface 211, and the second tower 230 may extend upwardly from the other side 211b of the tower base upper surface 211. have.
  • the tower base 210 may distribute the filtered air supplied from the inside of the suction module 100 and provide the distributed air to the first tower 220 and the second tower 230 , respectively.
  • the tower base 210, the first tower 220, and the second tower 230 may be manufactured as separate parts, respectively, or may be manufactured integrally.
  • the tower base 210 and the first tower 220 may form a continuous outer circumferential surface of the blower 1
  • the tower base 210 and the second tower 230 are continuous outer surfaces of the blower 1 .
  • a circumferential surface may be formed.
  • the first tower 220 and the second tower 230 may be directly assembled to the suction module 100 without the tower base 210 , or may be manufactured integrally with the suction module 100 .
  • the first tower 220 and the second tower 230 may be disposed to be spaced apart from each other, and a blowing space S may be formed between the first tower 220 and the second tower 230 .
  • the blowing space (S) may be understood as a space between the first tower 220 and the second tower 230 in which the front, rear and upper sides are opened.
  • the first tower 220 , the second tower 230 , and the blower module 200 including the blowing space S may have a truncated cone shape.
  • the discharge ports 222 and 232 respectively formed in the first tower 220 and the second tower 230 may discharge air toward the blowing space (S).
  • the outlet formed in the first tower 220 is referred to as a first outlet 222
  • the outlet formed in the second tower 230 is referred to as a second outlet 232 .
  • the first tower 220 and the second tower 230 may be symmetrically disposed with respect to the blowing space (S). By disposing the first tower 220 and the second tower 230 symmetrically, the flow is uniformly distributed in the blowing space S, which is more advantageous for controlling the horizontal airflow and the rising airflow.
  • the first tower 220 may include a first tower case 221 forming the outer shape of the first tower 220
  • the second tower 230 may include a second tower case forming the outer shape of the second tower 230
  • Two tower cases 231 may be included.
  • the first tower case 221 and the second tower case 231 may be referred to as upper cases disposed on the upper side of the lower case 120 and having outlets 222 and 232 through which air is discharged, respectively.
  • the first discharge port 222 may be formed to extend vertically to the first tower 220
  • the second discharge port 232 may be formed to extend vertically to the second tower 230 .
  • the flow direction of the air discharged from the first tower 220 and the second tower 230 may be formed in the front-rear direction.
  • the width of the blowing space (S) that is the interval between the first tower 220 and the second tower 230 may be formed to be the same in the vertical direction.
  • the upper width of the blowing space (S) may be formed to be narrower or wider than the lower width.
  • the flow velocity of the wide side may be low, and a deviation of the velocity may occur based on the vertical direction.
  • the air flow velocity deviation occurs in the vertical direction, the amount of clean air supplied may vary depending on the vertical position at which the air is discharged.
  • the air discharged from each of the first discharge port 222 and the second discharge port 232 may be supplied to the user after being merged in the blowing space (S).
  • the air discharged from the first discharge port 222 and the air discharged from the second discharge port 232 do not individually flow to the user, but may be supplied to the user after they are merged in the blowing space (S).
  • the blowing space (S) may be used as a space where the discharge air is mixed and mixed.
  • An indirect air flow is formed in the air around the blower 1 by the discharge air discharged to the blowing space (S), and the air around the blower (1) can also flow toward the blowing space (S).
  • the air around the first tower 220 and the second tower 230 is also indirectly airflowed. It may be guided to flow forward along the outer circumferential surface of the blowing module 200 .
  • the first outer wall 221d and the second outer wall 231d may be convex outwardly in a radial direction to form an outer circumferential surface of each of the first tower 220 and the second tower 230 .
  • the first inner wall 221e and the second inner wall 231e may be convex in a radial direction to form inner peripheral surfaces of the first tower 220 and the second tower 230 , respectively.
  • the first discharge port 222 may be formed to extend vertically to the first inner wall 221e, and may be formed to be opened radially inwardly.
  • the second discharge port 232 may be formed to extend vertically on the second inner wall 231e, and may be formed to be opened radially inwardly.
  • the first discharge port 222 may be formed at a position closer to the first tower rear end 221c than the first tower front end 221b.
  • the second discharge port 232 may be formed at a position closer to the second tower rear end 231c than the second tower front end 231b.
  • the first board slit 223 through which the first airflow converter 320 to be described later passes may be formed to extend vertically on the first inner wall 221e.
  • the second board slit 233 through which the second airflow converter 330, which will be described later, passes may be formed to extend vertically on the second inner wall 231e.
  • the first board slit 223 and the second board slit 233 may be formed to open radially inwardly.
  • the first board slit 223 may be formed at a position closer to the first tower front end 221b than the first tower rear end 221c.
  • the second board slit 233 may be formed at a position closer to the second tower front end 231b than the second tower rear end 231c.
  • the first board slit 223 and the second board slit 233 may be formed to face each other.
  • FIG. 2 is a cross-sectional perspective view of the blower 1 cut along the P-P' line shown in FIG. 1
  • FIG. 3 is a cross-sectional perspective view of the blower 1 cut along the Q-Q' line shown in FIG. to be.
  • a driving module 150 for rotating the blower 1 in the circumferential direction may be disposed on the upper side of the base 110 .
  • a driving space 100S in which the driving module 150 is disposed may be formed on the upper side of the base 110 .
  • the filter 130 may be disposed above the driving space 100S.
  • the outer shape of the filter 130 may be cylindrical, and a cylindrical filter hole 131 may be formed inside the filter 130 .
  • Air introduced through the suction hole 121 may pass through the filter 130 and flow into the filter hole 131 .
  • a suction grill 140 through which air flowing upward through the filter 130 passes may be disposed on the upper side of the filter 130 .
  • the suction grill 140 may be disposed between the fan assembly 400 and the filter 130 to be described later.
  • the suction grill 140 can prevent the user's hand from being put into the fan assembly 400 when the lower case 210 is removed and the filter 130 is separated from the blower 1 .
  • the fan assembly 400 may be disposed on the upper side of the filter 130 , and may generate suction force for the air outside the blower 1 .
  • the air outside the blower 1 can flow through the suction hole 121 and the filter hole 131 in order to the first tower 220 and the second tower 230 . have.
  • a pressurized space 400s in which the fan assembly 400 is disposed may be formed.
  • a first distribution space (220s) in which the air passing through the pressurized space (400s) flows upwardly may be formed in the first tower 220, and the pressurized space (400s) inside the second tower 230
  • a second distribution space 230s in which the air passing through flows upward may be formed.
  • the tower base 210 may distribute the air that has passed through the pressurized space 400s to the first distribution space 220s and the second distribution space 230s.
  • the tower base 210 may be a channel connecting the first and second towers 220 and 230 and the fan assembly 400 .
  • the first distribution space 220s may be formed between the first outer wall 221d and the first inner wall 221e.
  • the second distribution space 230s may be formed between the second outer wall 231d and the second inner wall 231e.
  • the first tower 220 may include a first flow guide 224 for guiding the flow direction of the air in the first distribution space 220s.
  • a plurality of first flow guides 224 may be disposed so as to be vertically spaced apart from each other.
  • the first flow guide 224 may be formed to protrude from the first tower rear end 221c toward the first tower front end 221b.
  • the first flow guide 224 may be spaced apart from the first tower front end (221b) in the front and rear.
  • the first flow guide 224 may be inclined downwardly extending toward the front.
  • the first guide front end 224a forming the front surface of the first flow guide 224 may be located below the first guide rear end 224b forming the rear surface of the first flow guide 224 .
  • the angle at which each of the plurality of first flow guides 224 is inclined downward may be smaller as those disposed on the upper side.
  • the second tower 230 may include a second flow guide 234 for guiding the flow direction of the air in the second distribution space 230s.
  • a plurality of second flow guides 234 may be disposed so as to be vertically spaced apart from each other.
  • the second flow guide 234 may be formed to protrude from the second tower rear end 231c toward the second tower front end 231b.
  • the second flow guide 234 may be spaced apart from the second tower front end 231b in front and rear.
  • the second flow guide 234 may extend to be inclined downward toward the front.
  • the second guide front end 234a forming the front surface of the second flow guide 234 may be located below the second guide rear end 234b forming the rear surface of the second flow guide 234 .
  • the angle at which each of the plurality of second flow guides 234 is inclined to the lower side may be smaller as it is disposed on the upper side.
  • the first flow guide 224 may guide the air discharged from the fan assembly 400 to flow toward the first discharge port 222 .
  • the second flow guide 234 may guide the air discharged from the fan assembly 400 to flow toward the second discharge port 232 .
  • the fan assembly 400 includes a fan motor 410 for generating power; a motor housing 430 in which the fan motor 410 is accommodated; a fan 500 which is rotated by receiving power from the fan motor 410; And it may include a diffuser 440 for guiding the flow direction of the air pressurized by the fan (500).
  • the fan motor 410 may be disposed on the upper side of the fan 500 , and may be connected to the fan 500 through a motor shaft 411 extending downward from the fan motor 410 .
  • the motor housing 430 may include a first motor housing 431 covering an upper portion of the fan motor 410 and a second motor housing 432 covering a lower portion of the fan motor 410 .
  • the first outlet 222 may extend upwardly from one side 211a of the upper surface 211 of the tower base.
  • the first outlet lower end 222d may be formed on one side 211a of the upper surface 211 of the tower base.
  • the first discharge port 222 may be formed to be spaced apart from the lower side of the first tower upper end 221a.
  • the first discharge port upper end 222c may be formed to be spaced apart from the lower side of the first tower upper end 221a.
  • the first discharge port 222 may extend obliquely in the vertical direction.
  • the first discharge port 222 may be formed to be inclined toward the front toward the upper side.
  • the first discharge port 222 may extend obliquely backward with respect to the vertical axis Z extending in the vertical direction.
  • the first outlet front end 222a and the first outlet rear end 222b may be inclined in the vertical direction and may extend in parallel with each other.
  • the first outlet front end 222a and the first outlet rear end 222b may extend obliquely backward with respect to the vertical axis Z extending in the vertical direction.
  • the first tower 220 may include a first discharge guide 225 for guiding the air in the first distribution space 220s to the first discharge port 222 .
  • the first tower 220 may be symmetrical with the second tower 230 with respect to the blowing space S, and may have the same shape and structure as the second tower 230 .
  • the above-described description of the first tower 220 may be equally applied to the second tower 230 .
  • FIGS. 4 and 5 show the blower (1) is shown in a perspective view from the top to the bottom
  • Figure 5 shows a form in which the blower (1) is cut along the R-R' line shown in FIG. did it
  • the distances D0 , D1 , and D2 between the first inner wall 221e and the second inner wall 231e may become smaller as they are closer to the center of the blowing space S.
  • the first inner wall 221e and the second inner wall 231e may be convex toward the radially inward direction, and the shortest distance between the vertices of the first inner wall 221e and the second inner wall 231e ( D0) may be formed.
  • the shortest distance D0 may be formed in the center of the blowing space S.
  • the first discharge port 222 may be formed behind a position where the shortest distance D0 is formed.
  • the second discharge port 232 may be formed behind a position where the shortest distance D0 is formed.
  • the first tower front end 221b and the second tower front end 231b may be spaced apart by a first interval D1.
  • the first tower rear end 221c and the second tower rear end 231c may be spaced apart by a second interval D2.
  • the first interval D1 and the second interval D2 may be the same.
  • the first interval D1 may be greater than the shortest distance D0, and the second interval D2 may be greater than the shortest distance D0.
  • the distance between the first inner wall 221e and the second inner wall 231e may be reduced from the rear ends 221c and 231c to the position where the shortest distance D0 is formed, and the shortest distance D0 is formed. From the position to the front end (221b, 231b) can be large.
  • the first tower front end (221b) and the second tower front end (231b) may be formed to be inclined with respect to the front and rear axis (X).
  • a tangent line drawn at each of the first tower front end 221b and the second tower front end 231b may have a predetermined inclination angle A with respect to the front and rear axis X.
  • Some of the air discharged forward through the blowing space (S) may flow with the inclination angle (A) with respect to the front and rear axis (X).
  • the diffusion angle of the air discharged forward through the blowing space (S) can be increased.
  • the first airflow converter 320 to be described later may be in a state introduced into the first board slit 223 when air is discharged forward through the blowing space S.
  • the second airflow converter 330 to be described later may be in a state introduced into the second board slit 233 when air is discharged forward through the blowing space S.
  • the air discharged toward the blowing space S may be guided in a flow direction by the first discharge guide 225 and the second discharge guide 235 .
  • the first discharge guide 225 may include a first inner guide 225a connected to the first inner wall 221e and a first outer guide 225b connected to the first outer wall 221d.
  • the first inner guide 225a may be manufactured integrally with the first inner wall 221e, but may also be manufactured as a separate component.
  • the first outer guide 225b may be manufactured integrally with the first outer wall 221d, but may also be manufactured as a separate component.
  • the first inner guide 225a may be formed to protrude from the first inner wall 221e toward the first distribution space 220s.
  • the first outer guide 225b may be formed to protrude from the first outer wall 221d toward the first distribution space 220s.
  • the first outer guide 225b may be formed to be spaced apart from the first inner guide 225a, and a first discharge port 222 may be formed between the first outer guide 225a and the first inner guide 225a.
  • the radius of curvature of the first inner guide 225a may be smaller than the radius of curvature of the first outer guide 225b.
  • the air in the first distribution space 220s may flow between the first inner guide 225a and the first outer guide 225b and may flow into the blowing space S through the first outlet 222 .
  • the second discharge guide 235 may include a second inner guide 235a connected to the second inner wall 231e and a second outer guide 235b connected to the second outer wall 231d.
  • the second inner guide 235a may be manufactured integrally with the second inner wall 231e, but may also be manufactured as a separate component.
  • the second outer guide 235b may be manufactured integrally with the second outer wall 231d, or may be manufactured as a separate component.
  • the second inner guide 235a may be formed to protrude from the second inner wall 231e toward the second distribution space 230s.
  • the second outer guide 235b may be formed to protrude from the second outer wall 231d toward the second distribution space 230s.
  • the second outer guide 235b may be formed to be spaced apart from the second inner guide 235a, and a second discharge port 232 may be formed between the second outer guide 235a and the second inner guide 235a.
  • the radius of curvature of the second inner guide 235a may be smaller than the radius of curvature of the second outer guide 235b.
  • the air in the second distribution space 230s may flow between the second inner guide 235a and the second outer guide 235b and flow into the blowing space S through the second outlet 232 .
  • the widths w1 , w2 , and w3 of the first discharge port 222 may be formed to gradually decrease and then increase from the inlet to the outlet of the first discharge guide 225 .
  • the size of the inlet width w1 of the first discharge guide 225 may be greater than the outlet width w3 of the first discharge guide 225 .
  • the inlet width w1 may be defined as a distance between the outer end of the first inner guide 225a and the outer end of the first outer guide 225b.
  • the outlet width w3 is defined as the interval between the first outlet front end 222a, which is the inner end of the first inner guide 225a, and the first outlet rear end 222b, which is the inner end of the first outer guide 225b.
  • the inlet width w1 and the outlet width w3 may be larger than the smallest width w2 of the first outlet 222 .
  • the shortest width w2 may be defined as the shortest distance between the rear end 222b of the first outlet and the first inner guide 225a.
  • the width of the first discharge port 222 may gradually decrease from the entrance of the first discharge guide 225 to the position where the shortest width w2 is formed, and from the position where the shortest width w2 is formed, the width of the first discharge guide ( 225) can be gradually increased.
  • the second discharge guide 235 may also have a second discharge port front end 232a and a second discharge port rear end 232b , and have the same width as the first discharge guide 225 . can have a distribution.
  • FIG. 6 is a diagram illustrating a form in which the airflow converter 300 protrudes into the blowing space S and the blower 1 forms an upward airflow
  • FIG. 7 is a diagram illustrating the operating principle of the airflow converter 300 .
  • the airflow converter 300 may protrude toward the blowing space S, and may convert the flow of air discharged forward through the blowing space S into an upward wind.
  • the airflow converter 300 may include a first airflow converter 320 disposed in the first tower case 221 and a second airflow converter 330 disposed in the second tower case 231 .
  • the first airflow converter 320 and the second airflow converter 330 protrude toward the blowing space (S) from each of the first tower 220 and the second tower 230, the front of the blowing space (S). can be blocked
  • the first airflow converter 320 and the second airflow converter 330 are introduced into the first tower 220 and the second tower 230, respectively, and open the front of the blowing space S, the first outlet 222 And the air discharged through the second discharge port 232 may flow forward (X) through the blowing space (S).
  • the airflow converters 320 and 330 include a board 321 protruding toward the blowing space (S); a motor 322 providing a driving force to the board 321 ; Board guide 323 for guiding the moving direction of the board 321; and a cover 324 supporting the motor 322 and the board guide 323 .
  • the first airflow converter 320 will be described as an example, but the description of the first airflow converter 320 to be described below may be equally applied to the second airflow converter 330 .
  • the board 321 may be inserted into the first board slit 223 as shown in FIGS. 4 and 5 .
  • the board 321 may protrude into the blowing space S through the first board slit 223 when the motor 322 is driven.
  • the board 321 may have an arch shape in which a cross-sectional shape is an arc shape.
  • the board 321, when the motor 322 is driven, may be moved in the circumferential direction to protrude into the blowing space (S).
  • the motor 322 may be connected to the pinion gear 322a to rotate the pinion gear 322a.
  • the motor 322 may rotate the pinion gear 322a clockwise or counterclockwise.
  • the board guide 323 may have a plate shape extending up and down.
  • the board guide 323 may include a guide slit 323a extending obliquely up and down, and a rack 323b formed to protrude toward the pinion gear 322a.
  • the rack 323b may be engaged with the pinion gear 322a.
  • the rack 323b engaged with the pinion gear 322a may move up and down.
  • the guide protrusion 321a formed on the board 321 to protrude toward the board guide 323 may be inserted into the guide slit 323a.
  • the guide protrusion 321a may be moved by receiving a force by the guide slit 323a.
  • the guide projection 321a may be moved obliquely in the guide slit 323a.
  • the guide protrusion 321a When the rack 323b is moved upward, the guide protrusion 321a may be moved along the guide slit 323a to be positioned at the lowermost end of the guide slit 323a.
  • the board 321 When the guide protrusion 321a is positioned at the lowermost end of the guide slit 323a, the board 321 may be completely hidden in the first tower 220 as shown in FIGS. 4 and 5 .
  • the guide slit 323a also moves upward, so the guide protrusion 321a may be moved in the circumferential direction on the same horizontal plane along the guide slit 323a.
  • the guide protrusion 321a When the rack 323b is moved downward, the guide protrusion 321a may be moved along the guide slit 323a to be positioned at the uppermost end of the guide slit 323a.
  • the board 321 When the guide protrusion 321a is positioned at the uppermost end of the guide slit 323a, the board 321 may protrude from the first tower 220 toward the blowing space S as shown in FIG. 6 . Since the guide slit 323a is also moved downward when the rack 323b is moved downward, the guide protrusion 321a may be moved in the circumferential direction on the same horizontal plane along the guide slit 323a.
  • the cover 324 includes a first cover 324a disposed on the outside of the board guide 323; a second cover 324b disposed on the inside of the board guide 323 and in close contact with the first inner surface 221e; a motor support plate 324c extending upwardly from the first cover 324a and connected to the motor 322; and a stopper 324d for limiting vertical movement of the board guide 323 .
  • the first cover 324a may cover the outside of the board guide 323
  • the second cover 324b may cover the inside of the board guide 323 .
  • the first cover 324a may separate a space in which the board guide 323 is disposed from the first distribution space 220s.
  • the second cover 324b may prevent the board guide 323 from coming into contact with the first inner wall 221e.
  • the motor support plate 324c may extend upwardly from the first cover 324a to support the load of the motor 322 .
  • the stopper 324d may be formed to protrude from the first cover 324a toward the board guide 323 .
  • a blocking projection (not shown) may be formed on one surface of the board guide 323 to be caught by the stopper 324d as it moves up and down.
  • the locking protrusion (not shown) is caught by the stopper 324d, whereby vertical movement of the board guide 323 may be limited.
  • FIGS. 8 and 9 are perspective views of the fan 500 according to an embodiment of the present invention
  • FIG. 9 is a view showing the fan 500 according to an embodiment of the present invention as viewed from the bottom upward.
  • the fan 500 may use a flow fan.
  • the type of the fan 500 is not limited to the flow fan, and other types of fans may be used.
  • the fan 500 includes a hub 510 coupled to the fan motor 410 , a shroud 520 spaced apart from the lower side of the hub 510 , and connecting the shroud 520 and the hub 510 .
  • a plurality of blades 530 may be included.
  • a motor shaft 411 of the fan motor 410 is coupled to the center of the hub 510 , and when the fan motor 410 is operated, the hub 510 may rotate together with the motor shaft 411 .
  • the hub 510 may be formed in the shape of a bowl concave downward, and the fan motor 410 may be disposed above the hub 510 .
  • the hub 510 may include a first hub surface 511 disposed on the upper side of the shroud 520 to face the shroud 520 .
  • the first hub surface 511 may have a conical shape protruding downward, a circular cross-section, and a shape in which a diameter of a cross-section increases toward an upper end.
  • the shroud 520 may be spaced apart from the lower side of the hub 510 and may be arranged to surround the hub 510 .
  • At least a portion of the hub 510 may be inserted into the center of the shroud 520 .
  • a diameter of the hub 510 may be smaller than a diameter of the shroud 520 .
  • the shroud 520 may include a rim part 521 extending in a circumferential direction and a support part 522 extending obliquely upward from the rim part 521 .
  • the rim part 521 and the support part 522 may be integrally manufactured through injection molding.
  • the rim part 510 may be formed in an annular shape. Air may be sucked into the rim part 510 .
  • the rim portion 521 may be formed to have a higher vertical height than its thickness.
  • the rim part 521 may extend vertically up and down.
  • a length in which the rim part 511 extends in the vertical direction and a length in which the support part 522 is inclined upwardly may have a ratio of 1:3.
  • the blade 530 may connect the hub 510 and the shroud 520 spaced apart from each other.
  • the upper end of the blade 530 may be coupled to the hub 510 , and the lower end may be coupled to the shroud 520 .
  • the blade 530 includes a positive pressure surface 531 disposed toward the hub 510; a negative pressure surface 532 disposed toward the shroud 520; a root portion 535 connected to the hub 510; a tip portion 536 connected to the shroud 520; a leading edge 533 connecting one end of the root portion 535 and one end of the tip portion 536; and a trailing edge 534 connecting the other end of the root portion 535 and the other end of the tip portion 536 .
  • the root portion 535 and the tip portion 536 may be formed as an air foil.
  • the leading edge 533 may be a front end that first contacts air when the hub 510 rotates, and the trailing edge 534 may be a rear end that comes into contact with air last when the hub 510 rotates. have.
  • the leading edge 533 may be disposed toward the rotation center of the fan 500 , and the trailing edge 534 may be disposed toward the radially outward side of the fan 500 .
  • the root portion 535 may be in contact with the first hub surface 511 of the hub 510 in an inclined shape.
  • the tip portion 536 may be in contact with the support portion 522 of the shroud 520 in an inclined form.
  • the inclinedly extended length of the first hub surface 511 may be shorter than the length of the root portion 535 .
  • the root portion 535 may be connected to be inclined with respect to the first hub surface 1110 .
  • the inclinedly extended length of the support part 522 may be shorter than the length of the tip part 536 .
  • the tip portion 536 may be inclinedly connected with respect to the support portion 522 .
  • a plurality of blades 530 may be disposed to be spaced apart in the circumferential direction.
  • the leading edge 533 of each of the plurality of blades 530 may be disposed to face at least a portion of the trailing edge 534 of the adjacent blade 530 up and down. Accordingly, when the fan 500 is viewed from the lower side as shown in FIG. 9 , the leading edge 533 of one blade 530 may overlap the trailing edge 534 of the adjacent blade 530 .
  • FIGS. 10 and 11 are cross-sectional perspective views of the fan 500 cut in the longitudinal direction
  • FIG. 11 is an enlarged view of region 'M' shown in FIG.
  • the hub 510 may include a second hub surface 512 disposed to face the fan motor 410 and a shaft coupling part 513 to which the motor shaft 411 is coupled.
  • the first hub surface 511 may be arranged to face downward, and the second hub surface 512 may be arranged to face upward.
  • the fan motor 410 may be inserted into the second hub surface 512 to be connected to the hub 510 .
  • the motor shaft 411 of the fan motor 410 may be coupled to the shaft coupling part 513 .
  • the shaft coupling part 513 may be disposed to pass through the hub 510 in the vertical direction.
  • a rotation center of the fan 500 may be formed inside the shaft coupling part 513 .
  • the shaft coupling part 513 may be integrally formed with the first hub surface 511 and the second hub surface 512 .
  • the shaft coupling portion 513 may be formed to protrude downward from the first hub surface 511 , and may be formed to protrude upward from the second hub surface 512 .
  • the shaft coupling portion 513 may protrude downward to form a lower end of the hub 510a.
  • the shaft coupling portion 513 may protrude upward to form a hub protruding end 510c.
  • the shaft coupling part 513 may be connected to the first hub surface 511 to form a hub end 510d.
  • the first hub surface 511 and the second hub surface 512 may extend obliquely outwardly in the radial direction, and may form the hub upper end 510b.
  • the hub 510 may extend in a straight line inclined toward a radially outward direction.
  • the inclined extension direction of the hub 510 is defined as L1
  • the inclined angle of the hub 510 is defined as the hub inclination angle ⁇ 1.
  • the diameter of the hub 510 may increase toward the radially outward direction, and the inner space of the hub 510 may expand upwardly.
  • the hub inclination angle ⁇ 1 may be formed within a range of 45 degrees to 60 degrees.
  • the rim portion 521 may extend in the vertical direction, and a fan suction port 500s may be formed therein.
  • the rim portion 521 may include a lower rim portion 520a constituting a lower portion of the fan inlet 500s and an upper rim portion 520c connected to the support portion 522 .
  • the support portion 522 may extend obliquely outwardly in a radial direction from the upper end of the rim portion 520c, and may form a shroud edge 520b on the outermost side in the radial direction.
  • the upper end of the rim 520c may be a boundary between the rim 521 and the support 522 .
  • the shroud 522 may include a first shroud surface 522a arranged downward and a second shroud surface 522b arranged upward.
  • the first shroud surface 522a may be formed to face the suction grill 140
  • the second shroud surface 522b may be formed to face the first hub surface 511 .
  • the rim 521 may protrude downward from the first shroud surface 522a.
  • the blade 530 may be coupled to the second shroud surface 522b.
  • the hub upper end 510b may be disposed inside the rim portion 521 .
  • the length of the blade 530 can be sufficiently secured and the air volume can be increased by sufficiently spaced apart from the hub top 510b and the shroud edge 520b.
  • At least a portion of the diffuser 440 to be described later may be disposed between the hub top 510b and the shroud edge 520b.
  • the height at which at least a portion of the diffuser 440 is positioned may be formed between the hub top 510b and the shroud edge 520b.
  • the shroud 520 may extend in a straight line inclined toward the radially outward direction.
  • the inclined extension direction of the shroud 520 is defined as L2, and the inclined angle of the shroud 520 is defined as the shroud inclination angle ⁇ 2.
  • the diameter of the shroud 520 may increase toward the outside in the radial direction, and the inner space of the shroud 520 may expand toward the top.
  • the shroud inclination angle ⁇ 2 may be formed within a range of 35 degrees to 50 degrees.
  • the hub inclination angle ⁇ 1 and the shroud inclination angle ⁇ 2 may be formed differently, and a flow path through which the air introduced through the fan inlet 500s flows may be formed between the hub 510 and the shroud 520.
  • An angle between the hub 510 and the shroud 520 is defined as an extension angle ⁇ 3 .
  • the hub 510 and the shroud 520 may form a flow passage having a size of an expansion angle ⁇ 3 between them.
  • the hub inclination angle ⁇ 1 may be greater than the shroud inclination angle ⁇ 2.
  • the size of the expansion angle ⁇ 3 can be increased, and the frictional resistance acting on the air passing through the fan inlet 500s can be reduced.
  • the hub 510 may have an outer surface 511 inclined at a first angle ⁇ 8 with respect to the motor shaft 411 .
  • the outer surface 511 may be a first hub surface 511 .
  • the shroud 520 may extend obliquely at a second angle ⁇ 9 greater than the first angle ⁇ 8 with respect to the motor shaft 411 .
  • the inner surface of the support 522 of the shroud 520 may face the outer surface 511 of the hub 510 with respect to the blade 530 .
  • the motor shaft 411 may be inserted into the shaft coupling part 513 to rotate the hub 510 and the blade 530 , and may form the rotation shaft MX of the fan 500 .
  • the hub upper end 510b may be spaced apart from the rotation shaft MX by a predetermined angle to form the hub area HA.
  • the shroud edge 520b may be spaced apart from the rotation shaft MX by a predetermined angle to form the shroud area SA.
  • the size of the shroud area SA may be larger than the size of the hub area HA.
  • the hub 510 may extend to be inclined at a first angle ⁇ 8 with respect to the first shaft MX1 parallel to the rotation shaft MX and passing through the shaft coupling part 513 .
  • the shroud 520 may extend obliquely at a second angle ⁇ 9 with respect to the second axis MX2 parallel to the rotation axis MX and passing through the rim portion 521 .
  • the size of the first angle ⁇ 8 may be smaller than the size of the second angle ⁇ 9 .
  • the sum of the hub inclination angle ⁇ 1 and the first angle ⁇ 8 may be 90 degrees, and the sum of the shroud inclination angle ⁇ 2 and the second angle ⁇ 9 may be 90 degrees.
  • the height of the rim upper end 520c be H1
  • the height of the hub lower end 510a is referred to as H2
  • the height of the shroud edge 520b is referred to as H3
  • the height of the hub middle end 510d is referred to as H4, and the hub protrusion is referred to as H2.
  • the height of the stage 510c is defined as H5.
  • the fan 500 may have a shape in which the relationship H5>H4>H3>H2>H1 is established.
  • the hub lower end 510a may be formed higher than the rim upper end 520c
  • the shroud edge 520b may be formed higher than the hub lower end 510a
  • the hub end than the shroud edge 520b ( 510d) may be formed to be high
  • the hub protruding end 510c may be formed to be higher than the hub end 510d.
  • the height H3 of the shroud edge 520b may be formed between the height H2 of the hub lower end 510a and the height H5 of the hub protruding end 510c.
  • the height H3 of the shroud edge 520b may be formed between the height H2 of the lower end of the hub 510a and the height H4 of the middle end of the hub 510d.
  • the first hub surface 511 may include a first guide surface 511a connected to the shaft coupling part 513 and a second guide surface 511b that is inclined upwardly from the first guide surface 511a.
  • the first guide surface 511a may extend horizontally from the shaft coupling portion 513
  • the second guide surface 511b may extend upward from the outer end of the first guide surface 511a.
  • the air introduced through the fan inlet (500s) can be guided to flow within the range of the expansion angle ( ⁇ 3) without escaping to the outside of the fan (500) through the shroud edge (520b), thereby reducing the flow loss.
  • FIG. 12 is a graph showing the air volume according to the shroud inclination angle ⁇ 2
  • FIG. 13 is a graph showing the noise according to the shroud inclination angle ⁇ 2.
  • Table 1 shows experimental values for the rotation speed, noise, and sharpness of the fan 500 when the air volume is 10CMM. Referring to FIG. 13, when the shroud inclination angle ⁇ 2 is 20 degrees, 30 degrees, and 35 degrees, respectively, the RPM increases It can be seen that the air volume increases as the time increases.
  • the expansion angle ⁇ 3 may be set within a range of 11 degrees to 26 degrees, and preferably, the expansion angle ⁇ 3 may be 12 degrees.
  • FIG. 14 shows one blade 530
  • FIG. 15 shows a plurality of airfoils 535 , 536 , 537 , 538 constituting one blade 530 .
  • countless airfoils may be formed up to the root portion 535 and the tip portion 536 , and the blade 530 may be understood as an aggregate of a plurality of airfoils.
  • the airfoil may be understood as a cross-sectional shape of the blade 530 .
  • the root portion 535 and the tip portion 536 may be included in a plurality of airfoils.
  • any one airfoil between the root portion 535 and the tip portion 536 may be defined as the reference airfoils 537 and 538 .
  • the reference airfoils 537 and 538 may be defined as airfoils in which the distance between the root portion 535 and the tip portion 536 forms a constant reference ratio.
  • the distance from the reference spar 537 and 538 to the root portion 535 may be referred to as a first distance, and the distance from the reference spar to the tip portion 536 may be referred to as a second distance.
  • a ratio of the first distance and the second distance may be 1:2, and the reference spar 537 at this time may be defined as the first reference spar 537 .
  • a ratio of the first distance to the second distance may be 2:1, and the reference spar 538 at this time may be defined as the second reference spar 538 .
  • the leading edge 533 may be formed to be curved along the plurality of airfoils 535 , 536 , 537 , 538 .
  • the root portion 535 may form a leading edge 533 and a first intersection point 535a
  • the tip portion 536 may form a leading edge 533 and a second intersection point 536a.
  • the leading edge 533 may extend curvedly from the first intersection 535a to the second intersection 536a.
  • a virtual leading line L3 connecting the first intersection 535a and the second intersection 536a may be formed.
  • the leading edge 533 may be formed to be spaced apart from the leading line L3.
  • the first reference spar 537 may form a leading edge 533 and a third intersection 537a
  • the second reference spar 538 may form a leading edge 533 and a fourth intersection 538a. have.
  • the third intersection 537a may be understood as a point where the first average camber line CL1 of the first reference spar 537 intersects the leading edge 533 .
  • the fourth intersection 538a may be understood as a point where the second average camber line CL2 of the second reference spar 538 intersects the leading edge 533 .
  • the third intersection 537a and the fourth intersection 538a may be formed to be spaced apart from the leading line L3.
  • the traces of the intersection points 535a , 536a , 537a , and 538a formed by the rotation of the fan 500 may form a circle around the motor shaft 411 .
  • the traces of intersections 535a , 536a , 537a , 538a may be understood as constituting part of the traces of the leading edge 533 .
  • the third intersection 537a may form a circular first trace C1 by rotation of the fan 500 .
  • the fourth intersection 538a may form a circular second trace C2 by rotation of the fan 500 .
  • the blade 530 may design the leading edge 533 on the basis of the inlet angles ⁇ 4 and ⁇ 5 of the reference airfoils 537 and 538 .
  • the first entrance angle ⁇ 4 of the first reference airfoil 537 may mean an angle formed between the extension line of the first average camber line CL1 and the first trace C1 .
  • the tangent line at the third intersection 537a of the first average camber line CL1 is defined as the first tangent T1
  • the tangent line at the third intersection 537a of the first trace C1 is defined as the first baseline. It is defined as (B1).
  • the first entrance angle ⁇ 4 of the first reference airfoil 537 may be understood as an angle between the first tangent T1 and the first baseline B1.
  • the second entrance angle ⁇ 5 of the second reference airfoil 538 may mean an angle between the extension line of the second average camber line CL2 and the second trace C2 .
  • a tangent line at the fourth intersection 538a of the second average camber line CL2 is defined as the second tangent T2
  • the tangent line at the fourth intersection 538a of the second trace C2 is defined as the second baseline. It is defined as (B2).
  • the second entrance angle ⁇ 5 of the second reference spar 538 may be understood as an angle between the second tangent T2 and the second baseline B2.
  • the blade 530 may be formed so that the entrance angle is variable along the span direction.
  • the entrance angle may be continuously varied along the span direction.
  • the span direction may refer to an extension direction of the leading edge 533 formed to be curved from the first intersection point 537a toward the second intersection point 538a.
  • the inlet angle may be formed differently depending on the span direction of the blade 530 .
  • the shape of the leading edge 533 may be formed to be curved.
  • a virtual blade extending so that the leading edge has the same entrance angle along the span direction may be defined as a “first comparison blade”.
  • the entrance angle in all airfoils of the first comparison blade is the same.
  • the entrance angles ⁇ 4 and ⁇ 5 of the reference blades 537 and 538 of the blade 530 according to the embodiment of the present invention may be greater than the entrance angles of the first comparison blade.
  • a blade having a leading edge extending in a straight line from the root portion to the tip portion may be defined as a “second comparison blade”.
  • the leading line L3 defined in the description of the present invention may coincide with the leading edge 533 .
  • the first comparison blade and the second comparison blade may have the same comparison root part and comparison tip part as the root part 535 of the present invention and the tip part 536 of the present invention.
  • the entrance angle of the blade 530 of the present invention may be larger than the entrance angle of the comparison blade.
  • Table 2 is a table showing the noise result values according to the inlet angle of the airfoil.
  • the inlet angle of the airfoil to be compared is 2/3 of the root and tip (the position of the second reference airfoil 538 of the present invention). ) means the entrance angle of the airfoil.
  • the entrance angle of the comparison blade airfoil may be 24.5 ⁇ , the entrance angle of the comparison blade airfoil is set as a control group, and the noise result value can be measured using the entrance angle ⁇ 5 of the second reference airfoil 538 as the experimental group. .
  • the noise result value is a value measured in decibels (dB) when the air volume is 10CMM.
  • the noise result value may be the lowest at 46.7dB.
  • the inlet angle ⁇ 5 of the second reference airfoil 538 may have a value greater than 29.5° and less than or equal to 32.5°.
  • the first reference spar 537 may be a spar at 1/3 of the root portion 535 and the tip portion 536
  • the second reference spar 538 is two of the root portion 535 and the tip portion 536 . It could be an airfoil at the /3 point.
  • the blade 530 may be designed based on the first entrance angle ⁇ 4 of the first reference spar 537 and the second entrance angle ⁇ 5 of the second reference spar 538 .
  • the blade 530 may first select an optimal entrance angle based on the second entrance angle ⁇ 5 and then select the first entrance angle ⁇ 4 through a 2-factor 2-level experiment.
  • the optimal experiment may be based on measured decibels (dB) when the air volume is 3CMM.
  • the comparison target entry angle at 1/3 of the comparison blade root and tip is around 21.5 ⁇ , and the root and tip are 2
  • the experiment can be carried out on the basis that the entrance angle to be compared at the /3 point is around 24.5 ⁇ .
  • the optimum value can be calculated by changing the value of the second entrance angle ( ⁇ 5) based on the comparison target entrance angle at 2/3 of the root and tip portions of 24.5°.
  • the optimal second entrance angle ⁇ 5 primarily selected according to the experiment may be greater than 29.5 ⁇ and less than or equal to 32.5 ⁇ .
  • the comparison target entrance angle 21.5° at 1/3 of the root and tip portions of the comparison blade and the selected The experiment can be carried out on the basis of 32.5 ⁇ , which is one of the optimal second entrance angles ⁇ 5.
  • the size of the first entrance angle ⁇ 4 and the second entrance angle ⁇ 5 is You can measure the noise result value (y) while making a change.
  • Table 3 shows the experimental results for the first entrance angle ⁇ 4 and the second entrance angle ⁇ 5 conducted in the above-described manner.
  • the optimal first entrance angle ⁇ 4 may be greater than 23.5 ⁇ and less than or equal to 25 ⁇
  • the second entrance angle ⁇ 5 may be greater than 29 ⁇ and less than or equal to 30.5 ⁇ .
  • the resulting noise value y is 42.4dB or less.
  • the noise result measured by repeating the experiment according to the above-described method can be confirmed as a contour line.
  • the first entrance angle ⁇ 4 and the second entrance angle ⁇ 5 corresponding to the region in which the noise is reduced to 42.4 dB or less may be appropriate values for noise reduction.
  • the first entrance angle ( ⁇ 4) and the second entrance angle ( ⁇ 5) are (23.5 ⁇ , 29.2), (24.5 ⁇ 30.5 ⁇ ), (25 ⁇ , 29.5 ⁇ ) It may consist of a region that gently connects the points.
  • the optimal region (R) having the lowest noise value among the regions where the noise is reduced to 42.4 dB or less, the first entrance angle ( ⁇ 4) and the second entrance angle ( ⁇ 5) are (23.5 ⁇ ,0) and (24.5 ⁇ ) 30.5 ⁇ ), the log function connecting the two points, (23.5 ⁇ ,0) and (24.5 ⁇ ,0), the straight line connecting the two points, and the two points (24.5 ⁇ ,0) and (24.5 ⁇ ,30.5 ⁇ ) It can be made of a straight line connecting
  • FIG. 17 is a perspective view of a fan 600 according to another embodiment of the present invention.
  • the fan 600 includes a hub 610 connected to the motor shaft 411; a shroud 620 disposed to be spaced apart from the hub 610; a plurality of blades 630 connecting the hub 610 and the shroud 620; and notches 640 formed in the plurality of blades.
  • the fan 600 is rotated in the circumferential direction about the rotation axis RX.
  • the shroud 620 includes a rim portion 621 extending in the circumferential direction; It may include a support portion 622 inclinedly extending from the rim portion 621 .
  • the hub 610 may include a first hub surface 611 guiding the flow direction of the air sucked into the fan 600 .
  • the hub 610 and the shroud 620 are the same as the hub 510 and the shroud 520 according to an embodiment of the present invention, so a detailed description is given below. omit
  • FIGS. 18 to 20 are enlarged views of the blade 630
  • FIG. 19 is a cutaway view of the blade 630 along the line F-F' shown in FIG. 18, and
  • FIG. 20 is the air by the notch 640.
  • the blade 630 includes a leading edge 633 forming one side of the blade 630; a trailing edge 634 opposite to the leading edge 633; a negative pressure surface 632 connecting the upper end of the leading edge 633 and the upper end of the trailing edge 634; and a pressure surface 631 connecting the lower end of the leading edge 633 and the lower end of the trailing edge 634 and opposing the negative pressure surface 632 .
  • the description of the pressure surface 631 , the negative pressure surface 632 , the leading edge 633 and the trailing edge 634 is related to the notch 640 . Except for that, the descriptions of the pressure surface 531 , the negative pressure surface 532 , the leading edge 533 , and the trailing edge 534 according to an embodiment of the present invention may be equally applied.
  • a plurality of notches 640 may be formed in each of the plurality of blades 630 to reduce noise generated by the fan 600 and the sharpness of the noise.
  • the notch 640 may be formed over a portion of the leading edge 633 and a portion of the negative pressure surface 632 .
  • the notch 640 may be formed by recessing a corner 644 where the leading edge 633 and the negative pressure surface 632 meet in the downward direction.
  • the notch 640 may be formed over an upper middle portion of the leading edge 633 and a partial region adjacent to the leading edge 633 on the negative pressure surface 632 .
  • the notch 640 may be formed to be recessed from the negative pressure surface 632 toward the pressure surface 631 .
  • the cross-sectional shape of the notch 640 is not limited and may have various shapes. However, in order to reduce the efficiency and noise of the fan 600 , the cross-sectional shape of the notch 640 preferably has a U-shape or a V-shape. The shape of the notch 640 will be described later.
  • the width W of the notch 640 may be extended from the bottom to the top.
  • the width W of the notch 640 may be gradually or stepwise expanded toward the top.
  • the width W of the notch 640 may be narrower as it approaches the pressure surface 631 .
  • the width W of the notch 640 may be expanded as it approaches the negative pressure surface 632 .
  • the notch 640 may extend radially with the same cross-sectional shape.
  • the notch 640 may have a curved shape, and the notch 640 may have the same cross-sectional shape and may extend in the circumferential direction.
  • the cross-sectional shape of the notch 640 may be a V-shape.
  • the notch 640 includes a first inclined surface 642; a second inclined surface 643 facing the first inclined surface 642; and a bottom line 641 to which the first inclined surface 642 and the second inclined surface 643 are connected.
  • the separation distance between the first inclined surface 642 and the second inclined surface 643 may increase in one direction.
  • the separation distance between the first inclined surface 642 and the second inclined surface 643 may be gradually increased or stepped away from each other.
  • the first inclined surface 642 and the second inclined surface 643 may be flat or curved.
  • the first inclined surface 642 and the second inclined surface 643 may have a triangular shape.
  • the notch 640 includes a first notch 640a, a second notch 640b positioned further from the hub 610 than the first notch 640a, and a second notch 640b farther from the hub 610 than the second notch 640b. a positioned third notch 640c.
  • a gap NG between the notches 640 may be 6 mm to 10 mm.
  • a gap NG between the notches 640 may be greater than a depth ND of the notch 640 and a width W of the notch 640 .
  • the leading edge 633 includes a first area A1 adjacent to the hub 610 and a second area A2 adjacent to the shroud 620 based on an edge center line CP passing through the center of the leading edge 633 . ), two of the three notches 640 may be located in the first area A1 , and the remaining notches 640 may be located in the second area A2 .
  • the first notch 640a and the second notch 640b may be located in the first area A1
  • the third notch 640c may be located in the second area A2 .
  • the first distance HG1 by which the first notch 640a is spaced apart from the hub 610 may be 19% to 23% of the length of the leading edge 633
  • the second notch 640b is separated from the hub 610 .
  • the spaced second distance HG2 may be 40% to 44% of the length of the leading edge 633
  • the third distance HG3 at which the third notch 640c is spaced apart from the hub 610 is the leading edge ( 633) may be 65% to 69% of the length.
  • each of the plurality of notches 640a, 640b, and 640c may be formed differently.
  • the plurality of notches 640a , 640b , and 640c may have a longer length NL as they move away from the hub 610 .
  • the length of the third notch 640c may be longer than the length of the second notch 640b, and the length of the second notch 640b may be longer than the length of the first notch 640a.
  • the bottom line 641 may extend in a tangential direction of any circumference centered on the rotation axis RX.
  • the bottom line 641 may extend along an arbitrary circumference centered on the rotation axis RX.
  • the bottom line 641 may form an arc centered on the rotation axis RX.
  • the bottom line 641 may extend in an arc shape on a horizontal plane perpendicular to the rotation axis RX.
  • the bottom line 641 may extend by the same length as the length NL of the notch 640 .
  • the extending direction of the bottom line 641 may be the extending direction of the notch 640 .
  • the extending direction of the bottom line 641 may be a direction for reducing flow separation occurring at the leading edge 633 and the negative pressure surface 632 and reducing air resistance.
  • the bottom line 641 may have a horizontal plane perpendicular to the rotation axis RX and an inclination of 0 degrees to 10 degrees.
  • the bottom line 641 may be formed parallel to a horizontal plane perpendicular to the rotation axis RX. Accordingly, the flow resistance according to the rotation of the blade 630 by the notch 640 can be reduced.
  • the depth ND of the notch 640 may become smaller as it moves away from the corner 644 .
  • the depth ND of the notch 640 may be highest at the corner 644 and may decrease as it moves away from the corner 644 .
  • the length NL of the bottom line 641 may be longer than the height BW of the leading edge 633 . If the length NL of the bottom line 641 is too short, flow separation occurring on the negative pressure surface 632 cannot be reduced, and if the length NL of the bottom line 641 is too long, the efficiency of the fan is reduced. to be.
  • the length NL of the notch 640 (the length NL of the bottom line 641 ) may be greater than the depth ND of the notch 640 and the width W of the notch 640 .
  • the length NL of the notch 640 may be 5 mm to 6.5 mm
  • the depth ND of the notch 640 may be 1.5 mm to 2.0 mm
  • the width W of the notch 640 is It may be 2.0mm to 2.2mm.
  • the length NL of the notch 640 may be 2.5 to 4.33 times the depth ND of the notch 640 , and the length NL of the notch 640 is 2.272 times the width W of the notch 640 . to 3.25 times.
  • the starting point SP of the bottom line 641 may be located at the leading edge 633 , and the ending point EP of the bottom line 641 may be located at the negative pressure surface 632 .
  • the position of the starting point SP of the bottom line 641 in the leading edge 633 may be a middle height of the leading edge 633 .
  • the first separation distance BD1 between the start point SP and the corner 644 may be smaller than the second separation distance BD2 between the end point EP and the corner 644 .
  • the position of the end point EP is preferably formed between 1/5 point and 1/10 point on the entire length of the negative pressure surface 632 .
  • the first notch angle ⁇ 6 between the bottom line 641 and the negative pressure surface 632 may be smaller than the second notch angle ⁇ 7 between the bottom line 641 and the leading edge 633 .
  • some of the air passing through the leading edge 633 may form a turbulence in the notch 640 , and the remaining air may be guided to flow along the negative pressure surface 632 of the blade 630 .
  • the air passing through the leading edge 633 does not directly rub against the surface of the blade 630, thereby suppressing flow separation and reducing the noise generated by the blade 630.
  • FIGS. 21 and 22 are graph showing the sharpness reduction effect by the notch 640
  • FIG. 22 is a graph showing the noise reduction effect by the notch 640 .
  • the sharpness of the fan 600 according to the embodiment in which the notch 640 is formed is smaller than that of the fan according to the comparative example in which the notch 640 is not formed.
  • the fan 600 according to the embodiment of the present invention in which the notch 640 is formed has a smaller sharpness compared to the comparative example, thereby suppressing flow separation at the leading edge 633 .
  • the noise of the fan 600 according to the embodiment in which the notch 640 is formed is smaller than that of the fan according to the comparative example in which the notch 640 is not formed.
  • the fan 600 according to the embodiment of the present invention in which the notch 640 is formed has less noise than the comparative example, so that the noise can be reduced while increasing the blowing performance.
  • FIG. 23 shows the shape of the fan 700 in which the notch 740 is formed.
  • the fan 700 includes a hub 710; shroud 720; and a blade 730 in which a positive pressure surface 731 , a negative pressure surface 732 , and a leading edge 733 are formed, respectively. Since the hub 710 and the shroud 720 are the same as the hub 510 and the shroud 520 of the fan 500 according to an embodiment of the present invention, a detailed description thereof will be omitted.
  • the blade 730 may be formed with a plurality of notches 740 that are recessed along the negative pressure surface 732 from the leading edge 733 .
  • the overall shape and design structure of the blade 730 are the same as the blade 530 of the fan 500 according to an embodiment of the present invention, and the shape and design structure of the notch 740 are the same according to another embodiment of the present invention. Since it is the same as the notch 640 of the fan 600, a detailed description thereof will be omitted.
  • FIGS. 24 and 25 are perspective views of a part of the fan assembly 400 cut in the longitudinal direction
  • FIG. 25 is an enlarged view of the diffuser 440 .
  • the fan assembly 400 may include a fan housing 450 having upper and lower sides opened, and the motor housing 430 being spaced apart from each other.
  • the diffuser 440 may be disposed between the fan housing 450 and the motor housing 430 .
  • the diffuser 440 may connect the fan housing 450 and the motor housing 430 .
  • a plurality of diffusers 440 may be disposed to be spaced apart from each other in the circumferential direction.
  • At least a portion of the diffuser 440 may be positioned between the upper hub 510b and the shroud edge 520b in the radial direction.
  • the inner edge 442 which will be described later, may be located radially outside the hub upper end 510b, and may be located radially inside the shroud edge 520b.
  • the diffuser 440 may extend obliquely in the vertical direction, and may be formed in an airfoil shape.
  • the diffuser 440 may guide the air discharged radially from the fans 500 , 600 , and 700 to flow upward.
  • the diffuser 440 includes an outer edge 441 connected to the fan housing 450, an inner edge 442 connected to the motor housing 430, and an upper side of the outer edge 441 and the inner edge 442.
  • a first diffuser surface 445 and a second diffuser surface 446 extending vertically between the upper edge 443 and the lower edge 444 and facing the first diffuser surface 445 may be included.
  • Each of the first diffuser surface 445 and the second diffuser surface 446 may be formed to have a curved surface.
  • the first diffuser surface 445 may be connected to the outer edge 441 , the inner edge 442 , the upper edge 443 , and the lower edge 444 , respectively, and may be formed to face one side.
  • the second diffuser surface 446 is connected to the outer edge 441, the inner edge 442, the upper edge 443 and the lower edge 444, respectively, and faces the first diffuser surface 445 in the opposite direction. can be formed to
  • a first diffuser surface 445 of each of the plurality of diffusers 440 may face a second diffuser surface 446 of an adjacent diffuser 440 .
  • the second diffuser surface 446 of each of the plurality of diffusers 440 may face the first diffuser surface 445 of the adjacent diffuser 440 .
  • the first diffuser surface 445 may be formed as a continuous curved surface, and a plurality of diffuser grooves 446a may be formed in the second diffuser surface 446 .
  • the diffuser groove 446a may extend in the vertical direction, and may be formed to be recessed from the second diffuser surface 446 toward the first diffuser surface 445 .
  • the plurality of diffuser grooves 446a may be formed to be spaced apart from each other in the horizontal direction.
  • a rib 446b protruding from the second diffuser surface 446 may be formed between the plurality of diffuser grooves 446a.
  • the diffuser groove 446a may be formed by being depressed between the plurality of ribs 446b.
  • the diffuser groove 446a may extend from the middle height of the second diffuser surface 446 to the lower edge 444 .
  • the diffuser groove 446a may be concavely formed from the second diffuser surface 446 toward the first diffuser surface 445 .
  • the groove upper end 446c of the diffuser groove 446a may be located lower than the upper edge 443 , and the groove lower end 446d may be located so as to be in contact with the lower edge 444 .
  • the groove upper ends 446c of the plurality of diffuser grooves 446a may be located on the same horizontal plane.
  • the plurality of groove lower ends 446d may be formed in an arc shape along the lower edge 444 .
  • the diffuser groove 446a may be formed to be bent at least once in the vertical direction.
  • a bent portion 440b to be described later may be formed on the second diffuser surface 446, and the diffuser groove 446a may be formed to be bent at a position corresponding to the bent portion 440b.
  • the upper edge 445 may extend horizontally. When the upper edge 445 extends horizontally, the upper edge 445 may effectively guide the air discharged through the fans 500 , 600 , and 700 in the upward direction to form an upward airflow.
  • the lower edge 444 may be formed in a curved shape.
  • the lower edge 444 may be formed in a curved shape concave from the lower side to the upper side.
  • the lower edge 444 may be concave toward the upper edge 445 .
  • the lower edge 444 may have an arc shape.
  • the lower edge 444 may form a concave lower end of the diffuser 440 .
  • the lower edge 444 may connect the outer edge 441 and the inner edge 442 . Both sides of the lower edge 444 connected to each of the outer edge 441 and the inner edge 442 may be located at the same height.
  • the lower edge 444 By forming the lower edge 444 in an arc shape, it is possible to minimize the flow resistance acting on the air discharged from the fans 500 , 600 , and 700 , and to reduce operating noise.
  • the lower edge 444 By forming the lower edge 444 in an arc shape, it is possible to increase the air volume or wind pressure of the air supplied to the first tower 220 and the second tower 230 .
  • a length between the upper edge 443 and the lower edge 444 is defined as a first diffuser length DL1.
  • the maximum separation length is defined as the second diffuser length DL2.
  • the second diffuser length DL2 may be formed to be 10% to 30% of the first diffuser length DL1 .
  • the first diffuser length DL1 may be 25 mm, and the second diffuser length DL2 may be 5 mm, which is 20% of the first diffuser length DL1.
  • the diffuser 440 may be formed to be curved in the vertical direction.
  • the diffuser 440 includes a first extension 440a extending downward from the upper edge 443; a second extension portion 440c extending upwardly from the lower edge 444; and a bent portion 440b connecting the first extension 440a and the second extension 440c.
  • the first diffuser surface 445 may extend to have a continuous distribution of radii of curvature in the vertical direction.
  • the second diffuser surface 446 may extend to have a discontinuous distribution of radius of curvature in the vertical direction, and the radius of curvature may be discontinuous at the bent portion 440b.
  • the lower edge 444 may be formed below the bent portion 440b, and may have an arc shape at the lower side of the bent portion 440b.
  • a vertical distance between the first lower point 441a and the bent portion 440b may be greater than the second diffuser length DL2.
  • a vertical distance between the second lower point 442a and the bent portion 440b may be greater than the second diffuser length DL2.
  • Figure 26 (a) is a graph comparing the air volume versus RPM for the comparative example
  • Figure 26 (b) is a graph comparing the air volume versus noise for the comparative example
  • Figure 27 (a) is a frequency in the comparative example It is a graph showing noise according to the frequency of the present invention
  • the comparison target fan is a case in which the bottom shape of the diffuser is formed horizontally, and in the fan according to the present embodiment, the shape of the lower edge 444 of the diffuser 440 is an arc shape.
  • the diffuser according to this embodiment produces a noise of about 0.1 dB compared to the comparison target. It can be confirmed that this is reduced.
  • Fig. 27 (a) is a noise graph according to a conventional diffuser having a flat lower end
  • Fig. 27 (b) is a noise graph according to a diffuser having an arc-shaped lower end as in the embodiment of the present invention.
  • BPF Blade Passing Frequency
  • BPF is a blade passing frequency, which is a peak noise that is harmonically generated at specific frequencies during rotation. Since BPF is a general description to those skilled in the art, detailed description thereof will be omitted.
  • the diffuser according to this embodiment can reduce noise by 2.6 dB compared to the comparison target in the primary BPF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention relates to a blower. A blower according to an embodiment of the present invention comprises: a lower case having a suction hole in through which air flows; an upper case which is disposed at the upper side of the lower case and which has a discharge port through which the air is discharged; a fan motor for providing rotating force; and a fan disposed inside the lower case and fixed to a motor shaft of the fan motor, wherein the fan includes: a hub having an outer surface, which is extended to be inclined at a first angle with respect to the motor shaft; a plurality of blades coupled to the hub; and a shroud having an inner surface which is extended to be inclined, with respect to the motor shaft, at a second angle that is greater than the first angle, and which faces the outer surface of the hub with respect to the blade, and thus the air discharged from the fan can change into an ascending current.

Description

블로어 blower
본 발명은 블로어에 관한 것으로, 보다 상세하게는 블로어에 배치되는 팬어셈블리에 관한 것이다.The present invention relates to a blower, and more particularly, to a fan assembly disposed on the blower.
블로어는 공기의 유동을 일으켜, 실내 공간에서 공기를 순환시키거나, 사용자를 향하는 기류를 형성한다. 블로어가 필터를 구비할 경우, 블로어는 실내의 오염된 공기를 정화하여, 실내 공기의 질을 개선시킬 수 있다.The blower causes a flow of air, circulating the air in the indoor space, or creating an airflow toward the user. When the blower is provided with a filter, the blower can purify the polluted air in the room, thereby improving the quality of the indoor air.
블로어의 내부에는 공기를 흡입하고, 흡입된 공기를 블로어의 외부로 송풍시키는 팬어셈블리가 배치된다.A fan assembly for sucking air and blowing the sucked air to the outside of the blower is disposed inside the blower.
실내공간으로 보다 많은 양의 정화된 공기를 공급하기 위하여, 블로어로부터 공기가 토출되는 영역은 상하방향으로 길게 연장된다.In order to supply a larger amount of purified air to the indoor space, the area from which the air is discharged from the blower is extended in the vertical direction.
하지만, 종래의 팬어셈블리는 하부에서 흡입된 공기에 대하여 균일한 상승기류를 형성하지 못함으로써, 상하로 길게 연장된 토출영역에 정화된 공기가 불균등하게 공급되는 문제점이 있었다.However, the conventional fan assembly fails to form a uniform upward airflow with respect to the air sucked from the lower part, so there is a problem in that the purified air is unevenly supplied to the discharge area extending up and down.
또한, 상승기류를 형성하는 과정에서, 블로어 내부 구조물과의 마찰 및 유동박리로 인하여, 송풍성능이 저하되고 과도한 소음이 발생되는 문제점이 있었다.In addition, in the process of forming the updraft, there was a problem in that the blowing performance was lowered and excessive noise was generated due to friction and flow separation with the internal structure of the blower.
한국등록특허 10-2058859는, 공기조화기에 장착되는 사류팬을 개시하고 있으나, 사류팬을 통해 상승기류를 형성하는 방식이 부재하여, 토출영역의 상하길이가 제한되는 문제점이 있었다.Korean Patent No. 10-2058859 discloses a double flow fan mounted on an air conditioner, but there is a problem in that the vertical length of the discharge area is limited because there is no method of forming an upward air flow through the double flow fan.
한국등록특허 10-1331487은, 코안다효과를 통해 전방으로 공기를 토출하는 팬어셈블리를 개시하고 있으나, 상승기류를 형성하는 과정에서 와류발생 및 유동박리를 억제하는 구조가 부재하여, 과도한 소음이 발생되는 문제점이 있었다.Korean Patent No. 10-1331487 discloses a fan assembly that discharges air forward through the Coanda effect, but there is no structure to suppress vortex generation and flow separation in the process of forming an updraft, resulting in excessive noise. There was a problem being
본 발명이 해결하고자 하는 과제는 팬으로부터 토출된 공기를 상승기류로 전환하여 타워에 공급하는 블로어를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a blower that converts air discharged from a fan into an updraft and supplies it to a tower.
본 발명의 다른 과제는 발생되는 소음이 줄어든 블로어를 제공하는 것이다.Another object of the present invention is to provide a blower with reduced noise generated.
본 발명의 또 다른 과제는 팬으로부터 토출되어 손실되는 공기의 유량이 줄어든 블로어를 제공하는 것이다.Another object of the present invention is to provide a blower in which the flow rate of air lost by being discharged from the fan is reduced.
본 발명의 또 다른 과제는 팬으로부터 토출된 공기의 유동방향을 안내하는 디퓨져가 구비된 블로어를 제공하는 것이다.Another object of the present invention is to provide a blower provided with a diffuser for guiding a flow direction of air discharged from a fan.
본 발명의 또 다른 과제는 형상변형이 최소화된 디퓨져를 구비한 블로어를 제공하는 것이다.Another object of the present invention is to provide a blower having a diffuser with a minimized shape deformation.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 블로어는, 공기가 유입되는 흡입홀이 형성된 하부케이스; 상기 하부케이스의 상측에 배치되고, 공기가 토출되는 토출구가 형성된 상부케이스를 포함한다.In order to achieve the above object, a blower according to an embodiment of the present invention includes a lower case having a suction hole through which air is introduced; It is disposed on the upper side of the lower case and includes an upper case having a discharge port through which air is discharged.
상기 블로어는, 회전력을 제공하는 팬모터와, 상기 하부케이스 내에 배치되고 상기 팬모터의 모터축에 고정되는 팬을 포함하여, 유입된 공기를 상부케이스로 공급할 수 있다.The blower may include a fan motor providing rotational force, and a fan disposed in the lower case and fixed to a motor shaft of the fan motor, and may supply the introduced air to the upper case.
상기 팬은, 상기 모터축에 대하여 제 1각도로 경사지게 연장된 외면을 갖는 허브와, 상기 허브와 결합되는 복수의 블레이드와, 상기 모터축에 대하여 상기 제 1각도보다 큰 제 2각도로 경사지게 연장되고 상기 블레이드를 기준으로 상기 허브의 외면과 대향되는 내면을 갖는 쉬라우드를 포함하여, 허브와 쉬라우드의 경사각 차이로 인해 유량손실을 최소화할 수 있다.The fan includes a hub having an outer surface inclined at a first angle with respect to the motor shaft, a plurality of blades coupled to the hub, and a second angle larger than the first angle with respect to the motor shaft. A flow rate loss can be minimized due to a difference in inclination angle between the hub and the shroud by including a shroud having an inner surface opposite to the outer surface of the hub with respect to the blade.
상기 허브는 반경방향 외측으로 연장되어 허브상단을 형성할 수 있고, 상기 쉬라우드는 반경방향 외측으로 연장되어 쉬라우드엣지를 형성할 수 있다.The hub may extend radially outward to form an upper end of the hub, and the shroud may extend radially outward to form a shroud edge.
상기 쉬라우드엣지는, 상기 허브상단보다 반경방향 외측에 위치될 수 있어, 공기가 쉬라우드의 외측으로 빠져나가는 현상을 방지할 수 있다.The shroud edge may be positioned radially outward from the top of the hub, thereby preventing air from escaping to the outside of the shroud.
상기 쉬라우드는, 원주방향으로 연장되는 림부; 및 상기 림부로부터 반경방향 외측으로 연장되는 지지부를 포함할 수 있다.The shroud may include a rim portion extending in a circumferential direction; and a support portion extending radially outwardly from the rim portion.
상기 림부는, 상기 허브상단보다 반경방향 외측에 위치될 수 있어, 림부를 통과한 공기가 허브에 의해 상측으로 안내될 수 있다.The rim portion may be positioned radially outside the upper end of the hub, so that air passing through the rim may be guided upward by the hub.
상기 허브는, 상기 허브의 중심에 상하측으로 각각 돌출되게 형성되고, 상기 모터축이 삽입되는 축결합부; 상기 축결합부로부터 외측으로 연장되는 제 1경사면; 및 상기 제 1경사면으로부터 외측으로 경사지게 연장되는 제 2경사면을 포함할 수 있다.The hub may include: a shaft coupling part formed to protrude upward and downward from the center of the hub, and into which the motor shaft is inserted; a first inclined surface extending outwardly from the shaft coupling part; and a second inclined surface inclinedly extending outwardly from the first inclined surface.
상기 축결합부는, 상기 허브의 중심에서 하측으로 돌출되어 허브하단을 형성할 수 있고, 상측으로 돌출되어 허브돌출부를 형성할 수 있다.The shaft coupling portion may protrude downward from the center of the hub to form a lower end of the hub, and may protrude upward to form a hub protrusion.
상기 쉬라우드엣지는, 상기 허브하단과 상기 허브돌출부 사이 높이에 위치될 수 있다.The shroud edge may be positioned at a height between the lower end of the hub and the hub protrusion.
상기 쉬라우드엣지는, 상기 허브하단과 상기 제 1안내면 사이 높이에 위치될 수 있어, 쉬라우드를 통해 유입된 공기가 제 1안내면을 타고 상측으로 유동될 수 있다.The shroud edge may be located at a height between the lower end of the hub and the first guide surface, so that air introduced through the shroud may flow upward along the first guide surface.
상기 쉬라우드는, 상기 림부와 상기 지지부를 연결하는 림부상단을 포함할 수 있다.The shroud may include an upper end of the rim that connects the rim and the support.
상기 축결합부는, 상기 림부상단보다 상측에 위치될 수 있어, 림부를 통과한 공기가 제 1안내면으로 안내될 수 있다.The shaft coupling part may be located above the upper end of the rim part, so that air passing through the rim part may be guided to the first guide surface.
상기 쉬라우드의 경사각은, 35도 내지 50도 범위 내에서 형성될 수 있다.The inclination angle of the shroud may be formed within a range of 35 degrees to 50 degrees.
상기 허브와 상기 쉬라우드 사이에는 확장각이 형성될 수 있어, 쉬라우드를 통해 유입된 공기가 블레이드에 의해 원활하게 가압될 수 있다.An expansion angle may be formed between the hub and the shroud, so that air introduced through the shroud may be smoothly pressurized by the blade.
상기 확장각은, 11도 내지 26도 범위 내에서 형성될 수 있다.The extension angle may be formed within a range of 11 degrees to 26 degrees.
본 발명의 실시예에 따른 블로어는, 상기 팬의 하류측에 배치되고, 상하방향으로 연장된 디퓨져를 포함하여, 팬으로부터 토출된 공기의 유동방향을 상승기류로 전환시킬 수 있다.The blower according to an embodiment of the present invention is disposed on the downstream side of the fan, and includes a diffuser extending in the vertical direction to convert the flow direction of air discharged from the fan into an upward airflow.
상기 디퓨져는, 상측으로 오목한 하단을 포함하여, 디퓨져에 도달한 공기가 오목하게 형성된 하단을 타고 디퓨져면으로 안내될 수 있다.The diffuser, including the lower end concave upwards, the air reaching the diffuser may be guided to the diffuser surface riding the concave lower end.
상기 블로어는, 상기 팬이 수용되는 팬하우징; 및 상기 팬에 동력을 부여하는 팬모터가 수용되는 모터하우징을 포함할 수 있다.The blower may include a fan housing in which the fan is accommodated; and a motor housing in which a fan motor for applying power to the fan is accommodated.
상기 디퓨져는, 상기 팬하우징과 상기 모터하우징 사이에 배치될 수 있어, 팬하우징 및 모터하우징에 의해 지지될 수 있다.The diffuser may be disposed between the fan housing and the motor housing, and may be supported by the fan housing and the motor housing.
상기 디퓨져는, 상하방향으로 굴곡지게 연장될 수 있어, 유동방향에 대한 적응성을 가질 수 있다.The diffuser may extend to be curved in the vertical direction, and thus may have adaptability to the flow direction.
상기 디퓨져는, 상단으로부터 하측으로 굴곡지게 연장되는 제 1연장부; 상기 하단으로부터 상측으로 연장되는 제 2연장부; 및 상기 제 1연장부와 상기 제 2연장부를 연결하는 절곡부를 포함할 수 있다.The diffuser may include: a first extension extending curvedly from an upper end to a lower side; a second extension extending upwardly from the lower end; and a bent part connecting the first extension part and the second extension part.
상기 디퓨져는, 적어도 일부가 반경방향을 기준으로, 상기 허브와 상기 쉬라우드 사이에 위치될 수 있어, 허브와 쉬라우드 사이에서 토출된 공기가 디퓨져를 향해 유동할 수 있다.At least a portion of the diffuser may be positioned between the hub and the shroud in a radial direction, so that air discharged between the hub and the shroud may flow toward the diffuser.
상측으로 오목하게 형성된 하단의 높이는, 상기 디퓨져 전체 높이의 10% 내지 30% 범위 내에서 형성될 수 있어, 로어엣지에 의한 유동마찰을 저감시킬 수 있다.The height of the lower end concave to the upper side may be formed within the range of 10% to 30% of the total height of the diffuser, thereby reducing flow friction caused by the lower edge.
상기 디퓨져는, 상하방향으로 연장되고, 상기 하단의 연장방향을 따라 서로 이격된 복수의 디퓨져홈이 형성될 수 있어, 디퓨져로 유동하는 공기가 상측으로 유동할 수 있다.The diffuser may extend in the vertical direction, and a plurality of diffuser grooves spaced apart from each other may be formed along the extending direction of the lower end, so that air flowing through the diffuser may flow upward.
상기 복수의 디퓨져홈 사이에는 리브가 형성될 수 있다.Ribs may be formed between the plurality of diffuser grooves.
상기 디퓨져홈의 홈하단은, 상기 디퓨져의 하단과 접하도록 형성될 수 있어, 디퓨져홈의 홈하단에 도달한 공기가 디퓨져홈을 타고 상측으로 유동할 수 있다.The lower end of the groove of the diffuser groove may be formed to be in contact with the lower end of the diffuser, so that air reaching the lower end of the groove of the diffuser groove may flow upward through the diffuser groove.
상기 디퓨져홈의 홈상단은, 상기 디퓨져 상단의 하측에 이격되게 형성될 수 있어, 상기 디퓨져의 상단에서 발생되는 유동마찰을 저감시킬 수 있다.The upper end of the groove of the diffuser groove may be formed to be spaced apart from the lower side of the upper end of the diffuser, thereby reducing flow friction generated at the upper end of the diffuser.
상기 복수의 디퓨져홈의 홈상단 각각은, 서로 동일한 수평면 상에 위치될 수 있다.Each of the upper grooves of the plurality of diffuser grooves may be located on the same horizontal plane.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.The details of other embodiments are included in the detailed description and drawings.
본 발명의 블로어에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.According to the blower of the present invention, there are one or more of the following effects.
첫째, 허브와 쉬라우드 사이에 확장각을 형성하고, 팬의 하류측에 디퓨져를 배치함으로써, 팬으로부터 토출된 공기를 상승기류로 전환할 수 있는 장점이 있다.First, there is an advantage in that the air discharged from the fan can be converted into an upward airflow by forming an extension angle between the hub and the shroud and arranging the diffuser on the downstream side of the fan.
둘째, 허브와 쉬라우드 사이에 확장각을 형성하고, 디퓨져의 하단을 아크형으로 형성시킴으로써, 유동마찰을 저감시켜 소음을 줄일 수 있는 장점도 있다.Second, by forming an angle of expansion between the hub and the shroud and forming the lower end of the diffuser in an arc shape, there is also the advantage of reducing flow friction and reducing noise.
셋째, 허브와 쉬라우드 사이에 확장각을 형성하고, 디퓨져의 하단을 아크형으로 형성시킴으로써, 유량손실을 줄여 풍량성능이 개선되는 장점도 있다.Third, by forming an angle of expansion between the hub and the shroud and forming the lower end of the diffuser in an arc shape, there is an advantage in that the flow rate loss is reduced and the airflow performance is improved.
넷째, 디퓨져의 하단을 아크형으로 형성시키고, 디퓨져에 홈을 형성시킴으로써, 안정적으로 상승기류를 형성할 수 있는 장점도 있다.Fourth, by forming the lower end of the diffuser in an arc shape and forming a groove in the diffuser, there is also an advantage of stably forming an upward airflow.
다섯째, 디퓨져의 하단구조만을 변형시킴으로써, 구조변형을 최소화할 수 있는 장점도 있다.Fifth, by deforming only the lower structure of the diffuser, there is an advantage that the structural deformation can be minimized.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 실시예에 따른 블로어의 사시도이다.1 is a perspective view of a blower according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 블로어의 종단면투시도이다.Figure 2 is a longitudinal cross-sectional perspective view of a blower according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 블로어의 또 다른 종단면투시도이다.3 is another longitudinal cross-sectional perspective view of a blower according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 블로어의 상방투시도이다.4 is a top perspective view of a blower according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 블로어의 횡단면투시도이다.5 is a cross-sectional perspective view of a blower according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 기류변환기가 도시된 블로어의 사시도이다.6 is a perspective view of a blower showing an airflow converter according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 기류변환기의 투시도이다.7 is a perspective view of an airflow converter according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 팬의 사시도이다.8 is a perspective view of a fan according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 팬의 하방투시도이다.9 is a bottom perspective view of a fan according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 팬의 종단면투시도이다.10 is a longitudinal cross-sectional perspective view of a fan according to an embodiment of the present invention.
도 11은 도 10에 도시된 M영역의 확대도이다.FIG. 11 is an enlarged view of region M shown in FIG. 10 .
도 12는 본 발명의 일 실시예에 따른 팬의 풍량성능을 나타내는 그래프이다.12 is a graph showing air volume performance of a fan according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 팬의 소음성능을 나타내는 그래프이다.13 is a graph showing noise performance of a fan according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 블레이드의 설계도이다.14 is a design diagram of a blade according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 블레이드 익형의 구조도이다.15 is a structural diagram of a blade airfoil according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 블레이드 최적설계를 나타내는 등고선도이다.16 is a contour diagram showing an optimal blade design according to an embodiment of the present invention.
도 17은 본 발명의 다른 실시예에 따른 팬의 사시도이다.17 is a perspective view of a fan according to another embodiment of the present invention.
도 18은 본 발명의 다른 실시예에 따른 블레이드의 확대도이다.18 is an enlarged view of a blade according to another embodiment of the present invention.
도 19는 본 발명의 다른 실시예에 따른 블레이드의 종단면투시도이다.19 is a longitudinal cross-sectional perspective view of a blade according to another embodiment of the present invention.
도 20은 본 발명의 다른 실시예에 따른 블레이드에서의 유동흐름을 설명하는 도이다.20 is a view for explaining the flow flow in the blade according to another embodiment of the present invention.
도 21은 본 발명의 다른 실시예에 따른 팬의 풍량성능을 나타내는 그래프이다.21 is a graph showing air volume performance of a fan according to another embodiment of the present invention.
도 22는 본 발명의 다른 실시예에 따른 팬의 소음성능을 나타내는 그래프이다.22 is a graph showing noise performance of a fan according to another embodiment of the present invention.
도 23은 본 발명의 또 다른 실시예에 따른 팬의 사시도이다.23 is a perspective view of a fan according to another embodiment of the present invention.
도 24는 본 발명의 실시예들에 따른 팬어셈블리의 종단면투시도이다.24 is a longitudinal cross-sectional perspective view of a fan assembly according to embodiments of the present invention.
도 25는 본 발명의 실시예들에 따른 디퓨져의 확대도이다.25 is an enlarged view of a diffuser according to embodiments of the present invention.
도 26은 본 발명의 실시예에 따른 디퓨져의 풍량 및 소음에 대한 효과를 설명하는 그래프이다.26 is a graph for explaining the effect on the air volume and noise of the diffuser according to the embodiment of the present invention.
도 27은 본 발명의 실시예에 따른 디퓨져의 풍량 및 소음에 대한 효과를 설명하는 그래프이다.27 is a graph for explaining the effect on the air volume and noise of the diffuser according to the embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
이하, 본 발명의 실시예들에 의하여 블로어를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for explaining a blower according to embodiments of the present invention.
도 1을 참조하여, 블로어(1)의 전체구조를 우선 설명한다. 도 1은 블로어(1)의 전체 외형을 나타낸 것이다.With reference to FIG. 1, the whole structure of the blower 1 is demonstrated first. Figure 1 shows the overall appearance of the blower (1).
블로어(1)는, 공기를 흡입하여 흡입된 공기를 순환시킨다는 점에서, 공기조화기, 에어클린팬, 공기청정기 등 다른 명칭으로 이름될 수도 있다.The blower 1 may be named by other names, such as an air conditioner, an air clean fan, an air purifier, etc. in that it sucks air and circulates the sucked air.
본 발명의 실시예에 따른 블로어(1)은 공기가 흡입되는 흡입모듈(100)과, 흡입된 공기가 토출되는 송풍모듈(200)을 포함할 수 있다.The blower 1 according to an embodiment of the present invention may include a suction module 100 through which air is sucked, and a blower module 200 through which the sucked air is discharged.
블로어(1)은 상부를 향할수록 직경이 작아지는 기둥 형상일 수 있고, 블로어(1)은 전체적으로 원뿔 또는 원뿔대(Truncated cone) 형상일 수 있다. 상측으로 갈수록 단면이 좁아질 경우, 무게중심이 낮아지고 외부 충력에 의한 전도의 위험이 저감되는 장점이 있다. 다만, 본 실시예와 달리 상측으로 갈수록 단면이 좁아지는 형태가 아니어도 무방하다.The blower 1 may have a columnar shape whose diameter decreases toward the top, and the blower 1 may have a conical or truncated cone shape as a whole. When the cross section becomes narrower toward the upper side, the center of gravity is lowered and the risk of overturning due to external impact is reduced. However, unlike the present embodiment, the cross section does not need to be in a form that becomes narrower toward the upper side.
흡입모듈(100)는 상단으로 갈수록 직경이 점진적으로 작아지게 형성될 수 있고, 송풍모듈(200) 역시 상단으로 갈수록 직경이 점진적으로 작아지게 형성될 수 있다.The suction module 100 may be formed to gradually decrease in diameter toward the upper end, and the blower module 200 may also be formed to have a gradually reduced diameter toward the upper end.
흡입모듈(100)은, 베이스(110)와, 베이스(110)의 상측에 배치되는 하부케이스(120)와, 하부케이스(120)의 내측에 배치되는 필터(130)를 포함할 수 있다.The suction module 100 may include a base 110 , a lower case 120 disposed above the base 110 , and a filter 130 disposed inside the lower case 120 .
베이스(110)는 지면에 안착될 수 있고, 블로어(1)의 하중을 지지할 수 있다. 하부케이스(120)와 필터(130)는 베이스(110)의 상측에 안착될 수 있다.The base 110 may be seated on the ground, and may support the load of the blower 1 . The lower case 120 and the filter 130 may be seated on the upper side of the base 110 .
하부케이스(120)의 외형은 원통형일 수 있고, 내부에 필터(130)가 배치되는 공간을 형성할 수 있다. 하부케이스(120)는, 하부케이스(120)의 내측으로 개구된 흡입홀(121)이 형성될 수 있다. 흡입홀(121)은, 하부케이스(120)의 둘레를 따라 복수개가 형성될 수 있다.The outer shape of the lower case 120 may be cylindrical, and may form a space in which the filter 130 is disposed. The lower case 120 may have a suction hole 121 opened to the inside of the lower case 120 . A plurality of suction holes 121 may be formed along the circumference of the lower case 120 .
필터(130)의 외형은 원통형일 수 있고, 흡입홀(121)을 통해 유입된 공기에 함유된 이물질을 걸러낼 수 있다.The outer shape of the filter 130 may be cylindrical, and may filter out foreign substances contained in the air introduced through the suction hole 121 .
송풍모듈(200)은 상하로 연장된 2개의 기둥 형태로 분리되어 배치될 수 있다. 송풍모듈(200)은 서로 이격되게 배치된 제 1타워(220)와 제 2타워(230)를 포함할 수 있다. 송풍모듈(200)은, 제 1타워(220) 및 제 2타워(230)를 흡입모듈(100)과 연결시키는 타워베이스(210)를 포함할 수 있다. 타워베이스(210)는 흡입모듈(100)의 상측에 배치될 수 있고, 제 1타워(220) 및 제 2타워(230)의 하측에 배치될 수 있다.The blowing module 200 may be disposed separately in the form of two columns extending up and down. The blowing module 200 may include a first tower 220 and a second tower 230 that are spaced apart from each other. The blowing module 200 may include a tower base 210 connecting the first tower 220 and the second tower 230 to the suction module 100 . The tower base 210 may be disposed on the upper side of the suction module 100 , and may be disposed on the lower side of the first tower 220 and the second tower 230 .
타워베이스(210)의 외형은 원통형일 수 있고, 흡입모듈(100)의 상측에 배치되어 흡입모듈(100)과 연속된 외둘레면을 형성할 수 있다.The outer shape of the tower base 210 may be cylindrical, and may be disposed on the upper side of the suction module 100 to form an outer peripheral surface continuous with the suction module 100 .
타워베이스(210)의 상면은 하측으로 오목하게 형성될 수 있고, 전후방으로 연장된 타워베이스상면(211)을 형성할 수 있다. 제 1타워(220)는 타워베이스상면(211)의 일측(211a)으로부터 상측으로 연장될 수 있고, 제 2타워(230)는 타워베이스상면(211)의 타측(211b)으로부터 상측으로 연장될 수 있다.The upper surface of the tower base 210 may be concave downwardly, and may form the upper surface 211 of the tower base extending forward and backward. The first tower 220 may extend upwardly from one side 211a of the tower base upper surface 211, and the second tower 230 may extend upwardly from the other side 211b of the tower base upper surface 211. have.
타워베이스(210)는 흡입모듈(100)의 내부로부터 공급된 여과공기를 분배하고, 상기 분배된 공기를 제 1타워(220)와 제 2타워(230)에 각각 제공할 수 있다.The tower base 210 may distribute the filtered air supplied from the inside of the suction module 100 and provide the distributed air to the first tower 220 and the second tower 230 , respectively.
타워베이스(210), 제 1타워(220) 및 제 2타워(230)는 각각 별개의 부품으로 제조될 수도 있고, 일체형으로 제조될 수도 있다. 타워베이스(210)와 제 1타워(220)는 블로어(1)의 연속된 외둘레면을 형성할 수 있고, 타워베이스(210)와 제 2타워(230)는 블로어(1)의 연속된 외둘레면을 형성할 수 있다.The tower base 210, the first tower 220, and the second tower 230 may be manufactured as separate parts, respectively, or may be manufactured integrally. The tower base 210 and the first tower 220 may form a continuous outer circumferential surface of the blower 1 , and the tower base 210 and the second tower 230 are continuous outer surfaces of the blower 1 . A circumferential surface may be formed.
본 실시예와 달리 제 1타워(220)와 제 2타워(230)는 타워베이스(210) 없이 흡입모듈(100)에 직접 조립될 수 있고, 흡입모듈(100)과 일체로 제작될 수도 있다.Unlike the present embodiment, the first tower 220 and the second tower 230 may be directly assembled to the suction module 100 without the tower base 210 , or may be manufactured integrally with the suction module 100 .
제 1타워(220)와 제 2타워(230)는 서로 이격되게 배치될 수 있고, 제 1타워(220)와 제 2타워(230) 사이에 블로잉스페이스(S)가 형성될 수 있다.The first tower 220 and the second tower 230 may be disposed to be spaced apart from each other, and a blowing space S may be formed between the first tower 220 and the second tower 230 .
블로잉스페이스(S)는, 전방, 후방 및 상방이 개구된 제 1타워(220)와 제 2타워(230) 사이의 공간으로서 이해될 수 있다.The blowing space (S) may be understood as a space between the first tower 220 and the second tower 230 in which the front, rear and upper sides are opened.
제 1타워(220), 제 2타워(230) 및 블로잉스페이스(S)로 이루어진 송풍모듈(200)의 외형은 원뿔대형일 수 있다.The first tower 220 , the second tower 230 , and the blower module 200 including the blowing space S may have a truncated cone shape.
제 1타워(220)와 제 2타워(230)에 각각 형성된 토출구(222)(232)은 블로잉스페이스(S)를 향해 공기를 토출할 수 있다. 토출구(222, 232)의 구분이 필요할 경우, 제 1타워(220)에 형성된 토출구를 제 1토출구(222)라 하고, 제 2타워(230)에 형성된 토출구를 제 2토출구(232)라 한다.The discharge ports 222 and 232 respectively formed in the first tower 220 and the second tower 230 may discharge air toward the blowing space (S). When it is necessary to distinguish between the outlets 222 and 232 , the outlet formed in the first tower 220 is referred to as a first outlet 222 , and the outlet formed in the second tower 230 is referred to as a second outlet 232 .
제 1타워(220)와 제 2타워(230)는 블로잉스페이스(S)를 기준으로 대칭되게배치될수 있다. 제 1타워(220)와 제 2타워(230)가 대칭되게 배치됨으로써, 블로잉스페이스(S) 내에서 유동이 균일하게 분배되어 수평기류 및 상승기류의 제어에 보다 유리하다.The first tower 220 and the second tower 230 may be symmetrically disposed with respect to the blowing space (S). By disposing the first tower 220 and the second tower 230 symmetrically, the flow is uniformly distributed in the blowing space S, which is more advantageous for controlling the horizontal airflow and the rising airflow.
제 1타워(220)는 제 1타워(220)의 외형을 형성하는 제 1타워케이스(221)를 포함할 수 있고, 제 2타워(230)는 제 2타워(230)의 외형을 형성하는 제 2타워케이스(231)를 포함할 수 있다. 제 1타워케이스(221)와 제 2타워케이스(231)는, 하부케이스(120)의 상측에 배치되고 공기가 토출되는 토출구(222)(232)가 각각 형성된 상부케이스로 이름될 수 있다.The first tower 220 may include a first tower case 221 forming the outer shape of the first tower 220 , and the second tower 230 may include a second tower case forming the outer shape of the second tower 230 . Two tower cases 231 may be included. The first tower case 221 and the second tower case 231 may be referred to as upper cases disposed on the upper side of the lower case 120 and having outlets 222 and 232 through which air is discharged, respectively.
제 1토출구(222)는 제 1타워(220)에 상하방향으로 연장되게 형성될 수 있고, 제 2토출구(232)는 제 2타워(230)에 상하방향으로 연장되게 형성될 수 있다.The first discharge port 222 may be formed to extend vertically to the first tower 220 , and the second discharge port 232 may be formed to extend vertically to the second tower 230 .
제 1타워(220)와 제 2타워(230)로부터 토출되는 공기의 유동방향은 전후방향으로 형성될 수 있다.The flow direction of the air discharged from the first tower 220 and the second tower 230 may be formed in the front-rear direction.
제 1타워(220)와 제 2타워(230) 사이의 간격인 블로잉스페이스(S)의 폭은 상하방향으로 동일하게 형성될 수 있다. 다만, 블로잉스페이스(S)의 상단 폭이 하단폭보다 좁게 형성되거나 넓게 형성되어도 무방하다.The width of the blowing space (S) that is the interval between the first tower 220 and the second tower 230 may be formed to be the same in the vertical direction. However, the upper width of the blowing space (S) may be formed to be narrower or wider than the lower width.
블로잉스페이스(S)의 폭을 상하방향을 따라 일정하게 형성시킴으로써, 블로잉스페이스(S)의 전방으로 유동하는 공기를 상하방향으로 고르게 분포시킬 수 있다.By forming the width of the blowing space (S) uniformly along the vertical direction, it is possible to evenly distribute the air flowing in the front of the blowing space (S) in the vertical direction.
상측의 폭과 하측의 폭이 다를 경우, 넓은 쪽의 유동속도가 낮게 형성될 수 있고, 상하 방향을 기준으로 속도의 편차가 발생될 수 있다. 상하 방향에 대해 공기의 유속편차가 발생될 경우, 공기가 토출되는 상하방향 위치에 따라 청정공기의 공급량이 달라질 수 있다.When the width of the upper side and the width of the lower side are different, the flow velocity of the wide side may be low, and a deviation of the velocity may occur based on the vertical direction. When the air flow velocity deviation occurs in the vertical direction, the amount of clean air supplied may vary depending on the vertical position at which the air is discharged.
제 1토출구(222)와 제 2토출구(232) 각각에서 토출된 공기는 블로잉스페이스(S)에서 합류된 후, 사용자에게 공급될 수 있다.The air discharged from each of the first discharge port 222 and the second discharge port 232 may be supplied to the user after being merged in the blowing space (S).
제 1토출구(222)로부터 토출된 공기와 제 2토출구(232)로부터 토출된 공기가 개별적으로 사용자에게 유동되지 않고, 블로잉스페이스(S)에서 합류된 후 사용자에게 공급될 수 있다.The air discharged from the first discharge port 222 and the air discharged from the second discharge port 232 do not individually flow to the user, but may be supplied to the user after they are merged in the blowing space (S).
블로잉스페이스(S)는 토출공기들이 합류되어 믹스(Mix)되는 공간으로 이용될 수 있다. 블로잉스페이스(S)로 토출되는 토출공기에 의해 블로어(1) 주위의 공기에 간접기류가 형성되어, 블로어(1) 주위의 공기도 블로잉스페이스(S)를 향해 유동할 수 있다.The blowing space (S) may be used as a space where the discharge air is mixed and mixed. An indirect air flow is formed in the air around the blower 1 by the discharge air discharged to the blowing space (S), and the air around the blower (1) can also flow toward the blowing space (S).
제 1토출구(222)의 토출공기와 제 2토출구(232)의 토출공기가 블로잉스페이스(S)에서 합류됨으로써 토출공기의 직진성을 향상시킬 수 있다. 제 1토출구(222)의 토출공기와 제 2토출구(232)의 토출공기를 블로잉스페이스(S)에서 합류시킴으로써, 제 1타워(220)와 제 2타워(230) 주변의 공기도 간접기류에 의해 송풍모듈(200)의 외둘레면을 따라 전방으로 유동하도록 유도될 수 있다.Since the discharge air of the first discharge port 222 and the discharge air of the second discharge port 232 are merged in the blowing space (S), it is possible to improve the straightness of the discharge air. By combining the discharge air of the first discharge port 222 and the discharge air of the second discharge port 232 in the blowing space (S), the air around the first tower 220 and the second tower 230 is also indirectly airflowed. It may be guided to flow forward along the outer circumferential surface of the blowing module 200 .
제 1타워케이스(221)는, 제 1타워(220)의 상측면을 형성하는 제 1타워상단(221a); 제 1타워(220)의 전방면을 형성하는 제 1타워전단(221b); 제 1타워(220)의 후방면을 형성하는 제 1타워후단(221c); 제 1타워(220)의 외둘레면을 형성하는 제 1외측벽(221d); 및 제 1타워(220)의 내측면을 형성하는 제 1내측벽(221e)을 포함할 수 있다.The first tower case 221, the first tower upper end (221a) forming the upper surface of the first tower (220); The first tower front end (221b) forming the front surface of the first tower (220); a first tower rear end (221c) forming a rear surface of the first tower (220); a first outer wall (221d) forming an outer circumferential surface of the first tower (220); and a first inner wall 221e forming an inner surface of the first tower 220 .
제 2타워케이스(231)는, 제 2타워(230)의 상측면을 형성하는 제 2타워상단(231a); 제 2타워(230)의 전방면을 형성하는 제 2타워전단(231b); 제 2타워(230)의 후방면을 형성하는 제 2타워후단(231c); 제 2타워(230)의 외둘레면을 형성하는 제 2외측벽(231d); 및 제 2타워(230)의 내측면을 형성하는 제 2내측벽(231e)을 포함할 수 있다.The second tower case 231, the second tower upper end (231a) forming the upper side of the second tower (230); The second tower front end (231b) forming the front surface of the second tower (230); a second tower rear end 231c forming a rear surface of the second tower 230; a second outer wall (231d) forming an outer peripheral surface of the second tower (230); and a second inner wall 231e forming an inner surface of the second tower 230 .
제 1외측벽(221d)과 제 2외측벽(231d)은, 반경방향 외측으로 볼록하게 형성되어, 제 1타워(220)와 제 2타워(230) 각각의 외둘레면을 형성할 수 있다.The first outer wall 221d and the second outer wall 231d may be convex outwardly in a radial direction to form an outer circumferential surface of each of the first tower 220 and the second tower 230 .
제 1내측벽(221e)과 제 2내측벽(231e)은, 반경방향 내측으로 볼록하게 형성되어, 제 1타워(220)와 제 2타워(230) 각각의 내둘레면을 형성할 수 있다.The first inner wall 221e and the second inner wall 231e may be convex in a radial direction to form inner peripheral surfaces of the first tower 220 and the second tower 230 , respectively.
제 1토출구(222)는, 제 1내측벽(221e)에 상하방향으로 연장되어 형성될 수 있고, 반경방향 내측으로 개구되게 형성될 수 있다. 제 2토출구(232)는, 제 2내측벽(231e)에 상하방향으로 연장되어 형성될 수 있고, 반경방향 내측으로 개구되게 형성될 수 있다.The first discharge port 222 may be formed to extend vertically to the first inner wall 221e, and may be formed to be opened radially inwardly. The second discharge port 232 may be formed to extend vertically on the second inner wall 231e, and may be formed to be opened radially inwardly.
제 1토출구(222)는, 제 1타워전단(221b)보다 제 1타워후단(221c)에 가까운 위치에 형성될 수 있다. 제 2토출구(232)는, 제 2타워전단(231b)보다 제 2타워후단(231c)에 가까운 위치에 형성될 수 있다.The first discharge port 222 may be formed at a position closer to the first tower rear end 221c than the first tower front end 221b. The second discharge port 232 may be formed at a position closer to the second tower rear end 231c than the second tower front end 231b.
후술할 제 1기류변환기(320)가 관통되는 제 1보드슬릿(223)은, 제 1내측벽(221e)에 상하방향으로 연장되어 형성될 수 있다. 후술할 제 2기류변환기(330)가 관통되는 제 2보드슬릿(233)은, 제 2내측벽(231e)에 상하방향으로 연장되어 형성될 수 있다. 제 1보드슬릿(223)과 제 2보드슬릿(233)은 반경방향 내측으로 개구되게 형성될 수 있다.The first board slit 223 through which the first airflow converter 320 to be described later passes may be formed to extend vertically on the first inner wall 221e. The second board slit 233 through which the second airflow converter 330, which will be described later, passes may be formed to extend vertically on the second inner wall 231e. The first board slit 223 and the second board slit 233 may be formed to open radially inwardly.
제 1보드슬릿(223)은, 제 1타워후단(221c)보다 제 1타워전단(221b)에 가까운 위치에 형성될 수 있다. 제 2보드슬릿(233)은, 제 2타워후단(231c)보다 제 2타워전단(231b)에 가까운 위치에 형성될 수 있다. 제 1보드슬릿(223)과 제 2보드슬릿(233)은 서로 마주보게 형성될 수 있다.The first board slit 223 may be formed at a position closer to the first tower front end 221b than the first tower rear end 221c. The second board slit 233 may be formed at a position closer to the second tower front end 231b than the second tower rear end 231c. The first board slit 223 and the second board slit 233 may be formed to face each other.
이하에서는 도 2 및 도 3을 참조하여, 블로어(1)의 내부구조를 설명한다. 도 2는 도 1에 도시된 P-P'선도를 따라 블로어(1)을 절개한 단면투시도이고, 도 3은 도 1에 도시된 Q-Q'선도를 따라 블로어(1)을 절개한 단면투시도이다.Hereinafter, the internal structure of the blower 1 will be described with reference to FIGS. 2 and 3 . 2 is a cross-sectional perspective view of the blower 1 cut along the P-P' line shown in FIG. 1, and FIG. 3 is a cross-sectional perspective view of the blower 1 cut along the Q-Q' line shown in FIG. to be.
도 2를 참조하면, 베이스(110)의 상측에는, 블로어(1)을 원주방향으로 회전시키는 구동모듈(150)이 배치될 수 있다. 베이스(110)의 상측에는, 구동모듈(150)이 배치되는 구동공간(100S)이 형성될 수 있다.Referring to FIG. 2 , a driving module 150 for rotating the blower 1 in the circumferential direction may be disposed on the upper side of the base 110 . A driving space 100S in which the driving module 150 is disposed may be formed on the upper side of the base 110 .
필터(130)는, 구동공간(100S)의 상측에 배치될 수 있다. 필터(130)의 외형은 원통형일 수 있고, 필터(130)의 내측에는 실린더형의 필터공(131)이 형성될 수 있다.The filter 130 may be disposed above the driving space 100S. The outer shape of the filter 130 may be cylindrical, and a cylindrical filter hole 131 may be formed inside the filter 130 .
흡입홀(121)을 통해 유입된 공기는, 필터(130)를 통과하여 필터공(131)으로 유동할 수 있다.Air introduced through the suction hole 121 may pass through the filter 130 and flow into the filter hole 131 .
필터(130)의 상측에는, 필터(130)를 통과하여 상측으로 유동하는 공기가 통과하는 흡입그릴(140)이 배치될 수 있다. 흡입그릴(140)은, 후술할 팬어셈블리(400)와 필터(130) 사이에 배치될 수 있다. 흡입그릴(140)은, 하부케이스(210)를 제거하고 필터(130)를 블로어(1)으로부터 분리할 시, 사용자의 손이 팬어셈블리(400)로 투입되는 것을 방지할 수 있다.A suction grill 140 through which air flowing upward through the filter 130 passes may be disposed on the upper side of the filter 130 . The suction grill 140 may be disposed between the fan assembly 400 and the filter 130 to be described later. The suction grill 140 can prevent the user's hand from being put into the fan assembly 400 when the lower case 210 is removed and the filter 130 is separated from the blower 1 .
팬어셈블리(400)는, 필터(130)의 상측에 배치될 수 있고, 블로어(1) 외부의 공기에 대한 흡입력을 발생시킬 수 있다.The fan assembly 400 may be disposed on the upper side of the filter 130 , and may generate suction force for the air outside the blower 1 .
팬어셈블리(400)의 구동에 의해, 블로어(1) 외부의 공기는 흡입홀(121)과 필터공(131)을 차례로 통과하여 제 1타워(220) 및 제 2타워(230)로 유동할 수 있다.By driving the fan assembly 400 , the air outside the blower 1 can flow through the suction hole 121 and the filter hole 131 in order to the first tower 220 and the second tower 230 . have.
필터(130)와 송풍모듈(200) 사이에는, 팬어셈블리(400)가 배치되는 가압공간(400s)이 형성될 수 있다.Between the filter 130 and the blowing module 200, a pressurized space 400s in which the fan assembly 400 is disposed may be formed.
제 1타워(220)의 내부에는 가압공간(400s)을 통과한 공기가 상측으로 유동하는 제 1분배공간(220s)이 형성될 수 있고, 제 2타워(230)의 내부에는 가압공간(400s)을 통과한 공기가 상측으로 유동하는 제 2분배공간(230s)이 형성될 수 있다. 타워베이스(210)는, 가압공간(400s)을 통과한 공기를 제 1분배공간(220s)과 제 2분배공간(230s)으로 분배할 수 있다. 타워베이스(210)는, 제 1, 2타워(220, 230)와 팬어셈블리(400)를 연결하는 채널(Channel)일 수 있다.A first distribution space (220s) in which the air passing through the pressurized space (400s) flows upwardly may be formed in the first tower 220, and the pressurized space (400s) inside the second tower 230 A second distribution space 230s in which the air passing through flows upward may be formed. The tower base 210 may distribute the air that has passed through the pressurized space 400s to the first distribution space 220s and the second distribution space 230s. The tower base 210 may be a channel connecting the first and second towers 220 and 230 and the fan assembly 400 .
제 1분배공간(220s)은, 제 1외측벽(221d)과 제 1내측벽(221e) 사이에 형성될 수 있다. 제 2분배공간(230s)은, 제 2외측벽(231d)과 제 2 내측벽(231e) 사이에 형성될 수 있다.The first distribution space 220s may be formed between the first outer wall 221d and the first inner wall 221e. The second distribution space 230s may be formed between the second outer wall 231d and the second inner wall 231e.
제 1타워(220)는, 제 1분배공간(220s) 내의 공기의 유동방향을 안내하는 제 1유동가이드(224)를 포함할 수 있다. 제 1유동가이드(224)는, 상하로 서로 이격되도록 복수개가 배치될 수 있다.The first tower 220 may include a first flow guide 224 for guiding the flow direction of the air in the first distribution space 220s. A plurality of first flow guides 224 may be disposed so as to be vertically spaced apart from each other.
제 1유동가이드(224)는, 제 1타워후단(221c)으로부터 제 1타워전단(221b)을 향하여 돌출되게 형성될 수 있다. 제 1유동가이드(224)는 제 1타워전단(221b)과 전후방으로 이격될 수 있다. 제 1유동가이드(224)는, 전방으로 갈수록 하측으로 경사지게 연장될 수 있다. 제 1유동가이드(224)의 전방면을 형성하는 제 1가이드전단(224a)은, 제 1유동가이드(224)의 후방면을 형성하는 제 1가이드후단(224b)보다 하측에 위치될 수 있다. 복수의 제 1유동가이드(224) 각각이 하측으로 기울어진 각도는, 상측에 배치된 것일수록 작을 수 있다.The first flow guide 224 may be formed to protrude from the first tower rear end 221c toward the first tower front end 221b. The first flow guide 224 may be spaced apart from the first tower front end (221b) in the front and rear. The first flow guide 224 may be inclined downwardly extending toward the front. The first guide front end 224a forming the front surface of the first flow guide 224 may be located below the first guide rear end 224b forming the rear surface of the first flow guide 224 . The angle at which each of the plurality of first flow guides 224 is inclined downward may be smaller as those disposed on the upper side.
제 2타워(230)는, 제 2분배공간(230s) 내의 공기의 유동방향을 안내하는 제 2유동가이드(234)를 포함할 수 있다. 제 2유동가이드(234)는, 상하로 서로 이격되도록 복수개가 배치될 수 있다.The second tower 230 may include a second flow guide 234 for guiding the flow direction of the air in the second distribution space 230s. A plurality of second flow guides 234 may be disposed so as to be vertically spaced apart from each other.
제 2유동가이드(234)는, 제 2타워후단(231c)으로부터 제 2타워전단(231b)을 향하여 돌출되게 형성될 수 있다. 제 2유동가이드(234)는 제 2타워전단(231b)과 전후방으로 이격될 수 있다. 제 2유동가이드(234)는, 전방으로 갈수록 하측으로 경사지게 연장될 수 있다. 제 2유동가이드(234)의 전방면을 형성하는 제 2가이드전단(234a)은, 제 2유동가이드(234)의 후방면을 형성하는 제 2가이드후단(234b)보다 하측에 위치될 수 있다. 복수의 제 2유동가이드(234) 각각이 하측으로 기울어진 각도는, 상측에 배치된 것일수록 작을 수 있다.The second flow guide 234 may be formed to protrude from the second tower rear end 231c toward the second tower front end 231b. The second flow guide 234 may be spaced apart from the second tower front end 231b in front and rear. The second flow guide 234 may extend to be inclined downward toward the front. The second guide front end 234a forming the front surface of the second flow guide 234 may be located below the second guide rear end 234b forming the rear surface of the second flow guide 234 . The angle at which each of the plurality of second flow guides 234 is inclined to the lower side may be smaller as it is disposed on the upper side.
제 1유동가이드(224)는, 팬어셈블리(400)로부터 토출된 공기가 제 1토출구(222)를 향해 유동하도록 안내할 수 있다. 제 2유동가이드(234)는, 팬어셈블리(400)로부터 토출된 공기가 제 2토출구(232)를 향해 유동하도록 안내할 수 있다.The first flow guide 224 may guide the air discharged from the fan assembly 400 to flow toward the first discharge port 222 . The second flow guide 234 may guide the air discharged from the fan assembly 400 to flow toward the second discharge port 232 .
도 3을 참조하면, 팬어셈블리(400)는, 동력을 발생시키는 팬모터(410); 팬모터(410)가 수용되는 모터하우징(430); 팬모터(410)로부터 동력을 인가받아 회전되는 팬(500); 및 팬(500)에 의해 가압된 공기의 유동방향을 안내하는 디퓨져(440)를 포함할 수 있다.Referring to FIG. 3 , the fan assembly 400 includes a fan motor 410 for generating power; a motor housing 430 in which the fan motor 410 is accommodated; a fan 500 which is rotated by receiving power from the fan motor 410; And it may include a diffuser 440 for guiding the flow direction of the air pressurized by the fan (500).
팬모터(410)는, 팬(500)의 상측에 배치될 수 있고, 팬모터(410)로부터 하측으로 연장된 모터축(411)을 통해 팬(500)과 연결될 수 있다.The fan motor 410 may be disposed on the upper side of the fan 500 , and may be connected to the fan 500 through a motor shaft 411 extending downward from the fan motor 410 .
모터하우징(430)은, 팬모터(410)의 상부를 커버하는 제 1모터하우징(431)과, 팬모터(410)의 하부를 커버하는 제 2모터하우징(432)을 포함할 수 있다.The motor housing 430 may include a first motor housing 431 covering an upper portion of the fan motor 410 and a second motor housing 432 covering a lower portion of the fan motor 410 .
제 1토출구(222)는, 타워베이스상면(211)의 일측(211a)으로부터 상측으로 연장될 수 있다. 제 1토출구하단(222d)은, 타워베이스상면(211)의 일측(211a)에 형성될 수 있다.The first outlet 222 may extend upwardly from one side 211a of the upper surface 211 of the tower base. The first outlet lower end 222d may be formed on one side 211a of the upper surface 211 of the tower base.
제 1토출구(222)는, 제 1타워상단(221a)의 하측에 이격되게 형성될 수 있다. 제 1토출구상단(222c)은, 제 1타워상단(221a)의 하측에 이격되게 형성될 수 있다.The first discharge port 222 may be formed to be spaced apart from the lower side of the first tower upper end 221a. The first discharge port upper end 222c may be formed to be spaced apart from the lower side of the first tower upper end 221a.
제 1토출구(222)는, 상하방향으로 경사지게 연장될 수 있다. 제 1토출구(222)는, 상측으로 갈수록 전방을 향하여 경사지게 형성될 수 있다. 제 1토출구(222)는, 상하방향으로 연장된 상하축(Z)에 대하여 후방으로 경사지게 연장될 수 있다.The first discharge port 222 may extend obliquely in the vertical direction. The first discharge port 222 may be formed to be inclined toward the front toward the upper side. The first discharge port 222 may extend obliquely backward with respect to the vertical axis Z extending in the vertical direction.
제 1토출구전단(222a)과 제 1토출구후단(222b)은 상하방향으로 경사지게 연장될 수 있고, 서로 나란하게 연장될 수 있다. 제 1토출구전단(222a)과 제 1토출구후단(222b)은 상하방향으로 연장된 상하축(Z)에 대하여 후방으로 경사지게 연장될 수 있다.The first outlet front end 222a and the first outlet rear end 222b may be inclined in the vertical direction and may extend in parallel with each other. The first outlet front end 222a and the first outlet rear end 222b may extend obliquely backward with respect to the vertical axis Z extending in the vertical direction.
제 1타워(220)는, 제 1분배공간(220s) 내의 공기를 제 1토출구(222)로 안내하는 제 1토출가이드(225)를 포함할 수 있다.The first tower 220 may include a first discharge guide 225 for guiding the air in the first distribution space 220s to the first discharge port 222 .
제 1타워(220)는, 블로잉스페이스(S)를 기준으로 제 2타워(230)와 대칭될 수 있고, 제 2타워(230)와 동일한 형상 및 구조를 가질 수 있다. 상술한 제 1타워(220)에 대한 설명은 제 2타워(230)에도 동일하게 적용될 수 있다.The first tower 220 may be symmetrical with the second tower 230 with respect to the blowing space S, and may have the same shape and structure as the second tower 230 . The above-described description of the first tower 220 may be equally applied to the second tower 230 .
이하에서는 도 4 및 도 5를 참조하여, 코안다 효과를 유발하기 위한 블로어(1)의 공기토출구조를 설명한다. 도 4는 블로어(1)을 상측에서 정하방으로 투시한 형태를 도시한 것이고, 도 5는 도 1에 도시된 R-R'선도를 따라 블로어(1)을 절개하여 상방으로 투시한 형태를 도시한 것이다.Hereinafter, an air discharge structure of the blower 1 for inducing the Coanda effect will be described with reference to FIGS. 4 and 5 . Figure 4 shows the blower (1) is shown in a perspective view from the top to the bottom, Figure 5 shows a form in which the blower (1) is cut along the R-R' line shown in FIG. did it
도 4를 참조하면, 제 1내측벽(221e)과 제 2내측벽(231e) 사이의 간격(D0, D1, D2)은, 블로잉스페이스(S)의 중심에 가까울수록 작아질 수 있다.Referring to FIG. 4 , the distances D0 , D1 , and D2 between the first inner wall 221e and the second inner wall 231e may become smaller as they are closer to the center of the blowing space S.
제 1내측벽(221e)과 제 2내측벽(231e)은 반경방향 내측을 향하여 볼록하게 형성될 수 있고, 제 1내측벽(221e)과 제 2내측벽(231e)의 꼭지점 사이에 최단거리(D0)가 형성될 수 있다. 상기 최단거리(D0)는, 블로잉스페이스(S)의 중심에 형성될 수 있다.The first inner wall 221e and the second inner wall 231e may be convex toward the radially inward direction, and the shortest distance between the vertices of the first inner wall 221e and the second inner wall 231e ( D0) may be formed. The shortest distance D0 may be formed in the center of the blowing space S.
제 1토출구(222)는, 최단거리(D0)가 형성된 위치보다 후방에 형성될 수 있다. 제 2토출구(232)는, 최단거리(D0)가 형성된 위치보다 후방에 형성될 수 있다.The first discharge port 222 may be formed behind a position where the shortest distance D0 is formed. The second discharge port 232 may be formed behind a position where the shortest distance D0 is formed.
제 1타워전단(221b)과 제 2타워전단(231b)은 제 1간격(D1)만큼 이격될 수 있다. 제 1타워후단(221c)과 제 2타워후단(231c)은 제 2간격(D2)만큼 이격될 수 있다.The first tower front end 221b and the second tower front end 231b may be spaced apart by a first interval D1. The first tower rear end 221c and the second tower rear end 231c may be spaced apart by a second interval D2.
제 1간격(D1)과 제 2간격(D2)은 동일할 수 있다. 제 1간격(D1)은 최단거리(D0)보다 클 수 있고, 제 2간격(D2)은 최단거리(D0)보다 클 수 있다.The first interval D1 and the second interval D2 may be the same. The first interval D1 may be greater than the shortest distance D0, and the second interval D2 may be greater than the shortest distance D0.
제 1내측벽(221e)과 제 2내측벽(231e) 사이의 간격은, 후단(221c, 231c)으로부터 상기 최단거리(D0)가 형성된 위치까지는 작아질 수 있고, 상기 최단거리(D0)가 형성된 위치로부터 전단(221b, 231b)까지는 커질 수 있다.The distance between the first inner wall 221e and the second inner wall 231e may be reduced from the rear ends 221c and 231c to the position where the shortest distance D0 is formed, and the shortest distance D0 is formed. From the position to the front end (221b, 231b) can be large.
제 1타워전단(221b)과 제 2타워전단(231b)은, 전후방축(X)에 대하여 경사지게 형성될 수 있다.The first tower front end (221b) and the second tower front end (231b) may be formed to be inclined with respect to the front and rear axis (X).
제 1타워전단(221b)과 제 2타워전단(231b) 각각에서 그은 접선은, 전후방축(X)에 대하여 소정의 경사각(A)을 가질 수 있다.A tangent line drawn at each of the first tower front end 221b and the second tower front end 231b may have a predetermined inclination angle A with respect to the front and rear axis X.
블로잉스페이스(S)를 통해 전방으로 토출되는 공기 중 일부는, 전후방축(X)에 대하여 상기 경사각(A)을 갖고 유동할 수 있다.Some of the air discharged forward through the blowing space (S) may flow with the inclination angle (A) with respect to the front and rear axis (X).
상술한 구조에 의해, 블로잉스페이스(S)를 통해 전방으로 토출되는 공기의 확산각이 증대될 수 있다.By the above-described structure, the diffusion angle of the air discharged forward through the blowing space (S) can be increased.
후술할 제 1기류변환기(320)는, 블로잉스페이스(S)를 통해 공기가 전방으로 토출될 때, 제 1보드슬릿(223) 내에 인입된 상태일 수 있다.The first airflow converter 320 to be described later may be in a state introduced into the first board slit 223 when air is discharged forward through the blowing space S.
후술할 제 2기류변환기(330)는, 블로잉스페이스(S)를 통해 공기가 전방으로 토출될 때, 제 2보드슬릿(233) 내에 인입된 상태일 수 있다.The second airflow converter 330 to be described later may be in a state introduced into the second board slit 233 when air is discharged forward through the blowing space S.
도 5를 참조하면, 블로잉스페이스(S)를 향해 토출되는 공기는 제 1토출가이드(225)와 제 2토출가이드(235)에 의해 유동방향을 안내받을 수 있다.Referring to FIG. 5 , the air discharged toward the blowing space S may be guided in a flow direction by the first discharge guide 225 and the second discharge guide 235 .
제 1토출가이드(225)는, 제 1내측벽(221e)과 연결되는 제 1이너가이드(225a)와, 제 1외측벽(221d)과 연결되는 제 1아우터가이드(225b)를 포함할 수 있다.The first discharge guide 225 may include a first inner guide 225a connected to the first inner wall 221e and a first outer guide 225b connected to the first outer wall 221d.
제 1이너가이드(225a)는, 제 1내측벽(221e)과 일체로 제조될 수 있으나, 별도의 부품으로 제조될 수도 있다.The first inner guide 225a may be manufactured integrally with the first inner wall 221e, but may also be manufactured as a separate component.
제 1아우터가이드(225b)는, 제 1외측벽(221d)과 일체로 제조될 수 있으나, 별도의 부품으로 제조될 수도 있다.The first outer guide 225b may be manufactured integrally with the first outer wall 221d, but may also be manufactured as a separate component.
제 1이너가이드(225a)는, 제 1내측벽(221e)으로부터 제 1분배공간(220s)을 향해 돌출되게 형성될 수 있다.The first inner guide 225a may be formed to protrude from the first inner wall 221e toward the first distribution space 220s.
제 1아우터가이드(225b)는, 제 1외측벽(221d)으로부터 제 1분배공간(220s)을 향해 돌출되게 형성될 수 있다. 제 1아우터가이드(225b)는, 제 1이너가이드(225a)의 외측에 이격되게 형성될 수 있고, 제 1이너가이드(225a)와의 사이에 제 1토출구(222)를 형성할 수 있다.The first outer guide 225b may be formed to protrude from the first outer wall 221d toward the first distribution space 220s. The first outer guide 225b may be formed to be spaced apart from the first inner guide 225a, and a first discharge port 222 may be formed between the first outer guide 225a and the first inner guide 225a.
제 1이너가이드(225a)의 곡률반경은, 제 1아우터가이드(225b)의 곡률반경보다 작게 형성될 수 있다.The radius of curvature of the first inner guide 225a may be smaller than the radius of curvature of the first outer guide 225b.
제 1분배공간(220s)의 공기는, 제 1이너가이드(225a)와 제 1아우터가이드(225b) 사이로 유동하여 제 1토출구(222)를 통해 블로잉스페이스(S)로 유동할 수 있다.The air in the first distribution space 220s may flow between the first inner guide 225a and the first outer guide 225b and may flow into the blowing space S through the first outlet 222 .
제 2토출가이드(235)는, 제 2내측벽(231e)과 연결되는 제 2이너가이드(235a)와, 제 2외측벽(231d)과 연결되는 제 2아우터가이드(235b)를 포함할 수 있다.The second discharge guide 235 may include a second inner guide 235a connected to the second inner wall 231e and a second outer guide 235b connected to the second outer wall 231d.
제 2이너가이드(235a)는, 제 2내측벽(231e)과 일체로 제조될 수 있으나, 별도의 부품으로 제조될 수도 있다.The second inner guide 235a may be manufactured integrally with the second inner wall 231e, but may also be manufactured as a separate component.
제 2아우터가이드(235b)는, 제 2외측벽(231d)과 일체로 제조될 수 있으나, 별도의 부품으로 제조될 수도 있다.The second outer guide 235b may be manufactured integrally with the second outer wall 231d, or may be manufactured as a separate component.
제 2이너가이드(235a)는, 제 2내측벽(231e)으로부터 제 2분배공간(230s)을 향해 돌출되게 형성될 수 있다.The second inner guide 235a may be formed to protrude from the second inner wall 231e toward the second distribution space 230s.
제 2아우터가이드(235b)는, 제 2외측벽(231d)으로부터 제 2분배공간(230s)을 향해 돌출되게 형성될 수 있다. 제 2아우터가이드(235b)는, 제 2이너가이드(235a)의 외측에 이격되게 형성될 수 있고, 제 2이너가이드(235a)와의 사이에 제 2토출구(232)를 형성할 수 있다.The second outer guide 235b may be formed to protrude from the second outer wall 231d toward the second distribution space 230s. The second outer guide 235b may be formed to be spaced apart from the second inner guide 235a, and a second discharge port 232 may be formed between the second outer guide 235a and the second inner guide 235a.
제 2이너가이드(235a)의 곡률반경은, 제 2아우터가이드(235b)의 곡률반경보다 작게 형성될 수 있다.The radius of curvature of the second inner guide 235a may be smaller than the radius of curvature of the second outer guide 235b.
제 2분배공간(230s)의 공기는, 제 2이너가이드(235a)와 제 2아우터가이드(235b) 사이로 유동하여 제 2토출구(232)를 통해 블로잉스페이스(S)로 유동할 수 있다.The air in the second distribution space 230s may flow between the second inner guide 235a and the second outer guide 235b and flow into the blowing space S through the second outlet 232 .
제 1토출구(222)의 폭(w1, w2, w3)은, 제 1토출가이드(225)의 입구로부터 출구를 향해 갈수록 점차 작아지다가 커지도록 형성될 수 있다.The widths w1 , w2 , and w3 of the first discharge port 222 may be formed to gradually decrease and then increase from the inlet to the outlet of the first discharge guide 225 .
제 1토출가이드(225)의 입구폭(w1)의 크기는, 제 1토출가이드(225)의 출구폭(w3)보다 클 수 있다. The size of the inlet width w1 of the first discharge guide 225 may be greater than the outlet width w3 of the first discharge guide 225 .
상기 입구폭(w1)은, 제 1이너가이드(225a)의 외측끝단과 제 1아우터가이드(225b)의 외측끝단 사이의 간격으로 정의될 수 있다. 상기 출구폭(w3)은, 제 1이너가이드(225a)의 내측끝단인 제 1토출구전단(222a)으로부터 제 1아우터가이드(225b)의 내측끝단인 제 1토출구후단(222b) 사이의 간격으로 정의될 수 있다.The inlet width w1 may be defined as a distance between the outer end of the first inner guide 225a and the outer end of the first outer guide 225b. The outlet width w3 is defined as the interval between the first outlet front end 222a, which is the inner end of the first inner guide 225a, and the first outlet rear end 222b, which is the inner end of the first outer guide 225b. can be
상기 입구폭(w1)과 상기 출구폭(w3)의 크기는, 제 1토출구(222)의 최단폭(w2)의 크기보다 클 수 있다.The inlet width w1 and the outlet width w3 may be larger than the smallest width w2 of the first outlet 222 .
상기 최단폭(w2)은, 제 1토출구후단(222b)과 제 1이너가이드(225a) 사이의 최단거리로 정의될 수 있다.The shortest width w2 may be defined as the shortest distance between the rear end 222b of the first outlet and the first inner guide 225a.
제 1토출구(222)의 폭은, 제 1토출가이드(225)의 입구로부터 최단폭(w2)이 형성된 위치까지는 점차 작아질 수 있고, 상기 최단폭(w2)이 형성된 위치로부터 제 1토출가이드(225)의 출구까지는 점차 커질 수 있다.The width of the first discharge port 222 may gradually decrease from the entrance of the first discharge guide 225 to the position where the shortest width w2 is formed, and from the position where the shortest width w2 is formed, the width of the first discharge guide ( 225) can be gradually increased.
제 2토출가이드(235)도 제 1토출가이드(225)와 마찬가지로, 제 2토출구전단(232a)과 제 2토출구후단(232b)이 형성될 수 있고, 제 1토출가이드(225)와 동일한 폭의 분포를 가질 수 있다.Like the first discharge guide 225 , the second discharge guide 235 may also have a second discharge port front end 232a and a second discharge port rear end 232b , and have the same width as the first discharge guide 225 . can have a distribution.
이하에서는 도 6 및 도 7을 참조하여, 기류변환기(300)에 의한 풍향전환에 대해 설명한다. 도 6은 기류변환기(300)가 블로잉스페이스(S)로 돌출되어 블로어(1)이 상승기류를 형성하는 형태를 도시한 것이고, 도 7은 기류변환기(300)의 작동원리를 설명하는 도이다.Hereinafter, the wind direction change by the airflow converter 300 will be described with reference to FIGS. 6 and 7 . FIG. 6 is a diagram illustrating a form in which the airflow converter 300 protrudes into the blowing space S and the blower 1 forms an upward airflow, and FIG. 7 is a diagram illustrating the operating principle of the airflow converter 300 .
도 6을 참조하면, 기류변환기(300)는 블로잉스페이스(S)를 향해 돌출될 수 있고, 블로잉스페이스(S)를 통해 전방으로 토출되는 공기의 흐름을 상승풍으로 전환시킬 수 있다.Referring to FIG. 6 , the airflow converter 300 may protrude toward the blowing space S, and may convert the flow of air discharged forward through the blowing space S into an upward wind.
기류변환기(300)는, 제 1타워케이스(221)에 배치되는 제 1기류변환기(320)와, 제 2타워케이스(231)에 배치되는 제 2기류변환기(330)를 포함할 수 있다.The airflow converter 300 may include a first airflow converter 320 disposed in the first tower case 221 and a second airflow converter 330 disposed in the second tower case 231 .
제 1기류변환기(320)와 제 2기류변환기(330)는, 제 1타워(220)와 제 2타워(230) 각각으로부터 블로잉스페이스(S)를 향해 돌출되어, 블로잉스페이스(S)의 전방을 차단할 수 있다.The first airflow converter 320 and the second airflow converter 330 protrude toward the blowing space (S) from each of the first tower 220 and the second tower 230, the front of the blowing space (S). can be blocked
제 1기류변환기(320)와 제 2기류변환기(330)가 돌출되어 블로잉스페이스(S)의 전방을 차단하면, 제 1토출구(222)와 제 2토출구(232)를 통해 토출된 공기는 기류변환기(300)에 의해 가로막혀 상방(Z)으로 유동할 수 있다.When the first airflow converter 320 and the second airflow converter 330 protrude and block the front of the blowing space S, the air discharged through the first outlet 222 and the second outlet 232 is converted to the airflow converter It is blocked by 300 and can flow upward (Z).
제 1기류변환기(320)와 제 2기류변환기(330)가 제 1타워(220)와 제 2타워(230)에 각각 인입되어 블로잉스페이스(S)의 전방을 개방하면, 제 1토출구(222)와 제 2토출구(232)를 통해 토출된 공기는 블로잉스페이스(S)를 통해 전방(X)으로 유동할 수 있다.When the first airflow converter 320 and the second airflow converter 330 are introduced into the first tower 220 and the second tower 230, respectively, and open the front of the blowing space S, the first outlet 222 And the air discharged through the second discharge port 232 may flow forward (X) through the blowing space (S).
도 7을 참조하면, 기류변환기(320, 330)는, 블로잉스페이스(S)를 향해 돌출되는 보드(321); 보드(321)에 구동력을 제공하는 모터(322); 보드(321)의 이동방향을 안내하는 보드가이드(323); 및 모터(322)와 보드가이드(323)를 지지하는 커버(324)를 포함할 수 있다.Referring to FIG. 7 , the airflow converters 320 and 330 include a board 321 protruding toward the blowing space (S); a motor 322 providing a driving force to the board 321 ; Board guide 323 for guiding the moving direction of the board 321; and a cover 324 supporting the motor 322 and the board guide 323 .
이하에서는 제 1기류변환기(320)를 예로 들어 설명하나, 이하에서 설명할 제 1기류변환기(320)에 대한 설명은 제 2기류변환기(330)에도 동일하게 적용될 수 있다.Hereinafter, the first airflow converter 320 will be described as an example, but the description of the first airflow converter 320 to be described below may be equally applied to the second airflow converter 330 .
보드(321)는, 도 4 및 도 5에 도시된 바와 같이, 제 1보드슬릿(223) 내에 인입되어 있을 수 있다. 보드(321)는, 모터(322)가 구동되면, 제 1보드슬릿(223)을 통해 블로잉스페이스(S)로 돌출될 수 있다. 보드(321)는 횡단면의 형상이 호(arc)형인 아치(arch)형상을 가질 수 있다. 보드(321)는, 모터(322)가 구동되면, 원주방향으로 이동되어 블로잉스페이스(S)로 돌출될 수 있다.The board 321 may be inserted into the first board slit 223 as shown in FIGS. 4 and 5 . The board 321 may protrude into the blowing space S through the first board slit 223 when the motor 322 is driven. The board 321 may have an arch shape in which a cross-sectional shape is an arc shape. The board 321, when the motor 322 is driven, may be moved in the circumferential direction to protrude into the blowing space (S).
모터(322)는, 피니언기어(322a)와 연결되어 피니언기어(322a)를 회전시킬 수 있다. 모터(322)는 피니언기어(322a)를 시계방향으로 회전시킬 수도 있고, 반시계방향으로 회전시킬 수도 있다.The motor 322 may be connected to the pinion gear 322a to rotate the pinion gear 322a. The motor 322 may rotate the pinion gear 322a clockwise or counterclockwise.
보드가이드(323)는, 상하로 연장된 판형일 수 있다. 보드가이드(323)는, 상하로 경사지게 연장된 가이드슬릿(323a)과, 피니언기어(322a)를 향하여 돌출되게 형성된 랙(323b)을 포함할 수 있다.The board guide 323 may have a plate shape extending up and down. The board guide 323 may include a guide slit 323a extending obliquely up and down, and a rack 323b formed to protrude toward the pinion gear 322a.
랙(323b)은, 피니언기어(322a)와 맞물릴 수 있다. 모터(322)가 구동되어 피니언기어(322a)가 회전되면, 피니언기어(322a)와 맞물린 랙(323b)은 상하로 이동될 수 있다.The rack 323b may be engaged with the pinion gear 322a. When the motor 322 is driven to rotate the pinion gear 322a, the rack 323b engaged with the pinion gear 322a may move up and down.
보드(321)에 보드가이드(323)를 향해 돌출되게 형성된 가이드돌기(321a)는, 가이드슬릿(323a)에 삽입될 수 있다.The guide protrusion 321a formed on the board 321 to protrude toward the board guide 323 may be inserted into the guide slit 323a.
랙(323b)의 상하이동에 따라 보드가이드(323)가 상하로 이동되면, 가이드돌기(321a)는 가이드슬릿(323a)에 의해 힘을 받아 이동될 수 있다. 보드가이드(323)의 상하이동에 따라, 가이드돌기(321a)는 가이드슬릿(323a) 내에서 사선으로 이동될 수 있다.When the board guide 323 is moved up and down according to the vertical movement of the rack 323b, the guide protrusion 321a may be moved by receiving a force by the guide slit 323a. According to the vertical movement of the board guide 323, the guide projection 321a may be moved obliquely in the guide slit 323a.
랙(323b)이 상측으로 이동되면, 가이드돌기(321a)는 가이드슬릿(323a)을 따라 이동되어 가이드슬릿(323a)의 최하단에 위치될 수 있다. 가이드돌기(321a)가 가이드슬릿(323a)의 최하단에 위치되었을 때, 보드(321)는 도 4 및 도 5에 도시된 바와 같이 제 1타워(220) 내에 완전하게 은닉될 수 있다. 랙(323b)이 상측으로 이동될 때 가이드슬릿(323a) 또한 상측으로 이동되므로, 가이드돌기(321a)는 가이드슬릿(323a)을 따라 동일한 수평면 상에서 원주방향으로 이동될 수 있다.When the rack 323b is moved upward, the guide protrusion 321a may be moved along the guide slit 323a to be positioned at the lowermost end of the guide slit 323a. When the guide protrusion 321a is positioned at the lowermost end of the guide slit 323a, the board 321 may be completely hidden in the first tower 220 as shown in FIGS. 4 and 5 . When the rack 323b is moved upward, the guide slit 323a also moves upward, so the guide protrusion 321a may be moved in the circumferential direction on the same horizontal plane along the guide slit 323a.
랙(323b)이 하측으로 이동되면, 가이드돌기(321a)는 가이드슬릿(323a)을 따라 이동되어 가이드슬릿(323a)의 최상단에 위치될 수 있다. 가이드돌기(321a)가 가이드슬릿(323a)의 최상단에 위치되었을 때, 보드(321)는 도 6에 도시된 바와 같이 제 1타워(220)로부터 블로잉스페이스(S)를 향해 돌출될 수 있다. 랙(323b)이 하측으로 이동될 때 가이드슬릿(323a) 또한 하측으로 이동되므로, 가이드돌기(321a)는 가이드슬릿(323a)을 따라 동일한 수평면 상에서 원주방향으로 이동될 수 있다.When the rack 323b is moved downward, the guide protrusion 321a may be moved along the guide slit 323a to be positioned at the uppermost end of the guide slit 323a. When the guide protrusion 321a is positioned at the uppermost end of the guide slit 323a, the board 321 may protrude from the first tower 220 toward the blowing space S as shown in FIG. 6 . Since the guide slit 323a is also moved downward when the rack 323b is moved downward, the guide protrusion 321a may be moved in the circumferential direction on the same horizontal plane along the guide slit 323a.
커버(324)는, 보드가이드(323)의 외측에 배치되는 제 1커버(324a); 보드가이드(323)의 내측에 배치되어 제 1내측면(221e)에 밀착되는 제 2커버(324b); 제 1커버(324a)로부터 상측으로 연장되고, 모터(322)와 연결되는 모터지지판(324c); 및 보드가이드(323)의 상하이동을 제한하는 스토퍼(324d)를 포함할 수 있다.The cover 324 includes a first cover 324a disposed on the outside of the board guide 323; a second cover 324b disposed on the inside of the board guide 323 and in close contact with the first inner surface 221e; a motor support plate 324c extending upwardly from the first cover 324a and connected to the motor 322; and a stopper 324d for limiting vertical movement of the board guide 323 .
제 1커버(324a)는 보드가이드(323)의 외측을 커버할 수 있고, 제 2커버(324b)는 보드가이드(323)의 내측을 커버할 수 있다. 제 1커버(324a)는 보드가이드(323)가 배치되는 공간을 제 1분배공간(220s)으로부터 분리시킬 수 있다. 제 2커버(324b)는, 보드가이드(323)가 제 1내측벽(221e)과 접촉되는 것을 방지할 수 있다.The first cover 324a may cover the outside of the board guide 323 , and the second cover 324b may cover the inside of the board guide 323 . The first cover 324a may separate a space in which the board guide 323 is disposed from the first distribution space 220s. The second cover 324b may prevent the board guide 323 from coming into contact with the first inner wall 221e.
모터지지판(324c)은, 제 1커버(324a)로부터 상측으로 연장되어 모터(322)의 하중을 지지할 수 있다.The motor support plate 324c may extend upwardly from the first cover 324a to support the load of the motor 322 .
스토퍼(324d)는, 제 1커버(324a)로부터 보드가이드(323)를 향하여 돌출되게 형성될 수 있다. 보드가이드(323)의 일면에는 상하이동에 따라 스토퍼(324d)에 걸림되는 걸림돌기(미도시)가 형성될 수 있다. 보드가이드(323)가 상하이동될 때, 상기 걸림돌기(미도시)가 스토퍼(324d)에 걸림됨으로써, 보드가이드(323)의 상하이동이 제한될 수 있다.The stopper 324d may be formed to protrude from the first cover 324a toward the board guide 323 . A blocking projection (not shown) may be formed on one surface of the board guide 323 to be caught by the stopper 324d as it moves up and down. When the board guide 323 is vertically moved, the locking protrusion (not shown) is caught by the stopper 324d, whereby vertical movement of the board guide 323 may be limited.
이하에서는 도 8 및 도 9를 참조하여, 본 발명의 일 실시예에 따른 팬(500)을 설명한다. 도 8은 본 발명의 일 실시예에 따른 팬(500)의 사시도이고, 도 9는 본 발명의 일 실시예에 따른 팬(500)을 하측에서 상방으로 바라본 형태를 도시한 것이다.Hereinafter, a fan 500 according to an embodiment of the present invention will be described with reference to FIGS. 8 and 9 . 8 is a perspective view of the fan 500 according to an embodiment of the present invention, and FIG. 9 is a view showing the fan 500 according to an embodiment of the present invention as viewed from the bottom upward.
팬(500)은 사류팬을 사용할 수 있다. 다만, 팬(500)의 종류는 사류팬에 한정되지 않으며, 다른 종류의 팬이 사용될 수도 있다.The fan 500 may use a flow fan. However, the type of the fan 500 is not limited to the flow fan, and other types of fans may be used.
팬(500)은 팬모터(410)에 결합되는 허브(510)와, 허브(510)의 하측에 이격되어 배치되는 쉬라우드(520)와, 쉬라우드(520)와 허브(510)를 연결하는 복수개의 블레이드(530)를 포함할 수 있다.The fan 500 includes a hub 510 coupled to the fan motor 410 , a shroud 520 spaced apart from the lower side of the hub 510 , and connecting the shroud 520 and the hub 510 . A plurality of blades 530 may be included.
허브(510)의 중심에는 팬모터(410)의 모터축(411)이 결합되고, 팬모터(410)의 작동시 허브(510)가 모터축(411)과 함께 회전될 수 있다.A motor shaft 411 of the fan motor 410 is coupled to the center of the hub 510 , and when the fan motor 410 is operated, the hub 510 may rotate together with the motor shaft 411 .
팬(500)이 회전될 때 공기는 팬(500)의 쉬라우드(520) 측에서 허브(510)를 향하여 유동할 수 있다.When the fan 500 is rotated, air may flow from the shroud 520 side of the fan 500 toward the hub 510 .
허브(510)는 하측으로 오목한 보올(BOWL) 형상으로 형성될 수 있고, 팬모터(410)는 허브(510)의 상측에 배치될 수 있다.The hub 510 may be formed in the shape of a bowl concave downward, and the fan motor 410 may be disposed above the hub 510 .
허브(510)는, 쉬라우드(520)의 상측에 쉬라우드(520)와 마주보게 배치되는 제 1허브면(511)을 포함할 수 있다.The hub 510 may include a first hub surface 511 disposed on the upper side of the shroud 520 to face the shroud 520 .
제 1허브면(511)은, 하측으로 돌출된 원뿔 형상일 수 있고, 횡단면의 형상이 원형일 수 있고, 상단으로 갈수록 단면의 지름이 커지는 형상일 수 있다.The first hub surface 511 may have a conical shape protruding downward, a circular cross-section, and a shape in which a diameter of a cross-section increases toward an upper end.
쉬라우드(520)는 허브(510)의 하측에 이격배치될 수 있고, 허브(510)를 둘러싸도록 배치될 수 있다.The shroud 520 may be spaced apart from the lower side of the hub 510 and may be arranged to surround the hub 510 .
허브(510)의 적어도 일부는 쉬라우드(520)의 중심부로 삽입될 수 있다. 허브(510)의 직경은 쉬라우드(520)의 직경보다 작을 수 있다.At least a portion of the hub 510 may be inserted into the center of the shroud 520 . A diameter of the hub 510 may be smaller than a diameter of the shroud 520 .
쉬라우드(520)는, 원주방향으로 연장되는 림부(521)와, 림부(521)에서 상방으로 경사지게 연장되는 지지부(522)를 포함할 수 있다. 림부(521)와 지지부(522)는 사출성형을 통해 일체로 제작될 수 있다.The shroud 520 may include a rim part 521 extending in a circumferential direction and a support part 522 extending obliquely upward from the rim part 521 . The rim part 521 and the support part 522 may be integrally manufactured through injection molding.
림부(510)는 환형으로 형성될 수 있다. 림부(510)의 내측으로 공기가 흡입될 수 있다.The rim part 510 may be formed in an annular shape. Air may be sucked into the rim part 510 .
림부(521)는 두께에 비해 상하 높이가 더 길게 형성될 수 있다. 림부(521)는 상하로 수직하게 연장될 수 있다.The rim portion 521 may be formed to have a higher vertical height than its thickness. The rim part 521 may extend vertically up and down.
림부(511)가 상하방향으로 연장된 길이와 지지부(522)가 상방으로 경사지게 연장된 길이는 1:3의 비율을 가질 수 있다.A length in which the rim part 511 extends in the vertical direction and a length in which the support part 522 is inclined upwardly may have a ratio of 1:3.
블레이드(530)는, 서로 이격되게 배치된 허브(510)와 쉬라우드(520)를 연결할 수 있다. 블레이드(530)의 상단은 허브(510)와 결합될 수 있고, 하단은 쉬라우드(520)와 결합될 수 있다.The blade 530 may connect the hub 510 and the shroud 520 spaced apart from each other. The upper end of the blade 530 may be coupled to the hub 510 , and the lower end may be coupled to the shroud 520 .
블레이드(530)는, 허브(510)를 향하게 배치된 정압면(531); 쉬라우드(520)를 향하게 배치된 부압면(532); 허브(510)와 연결되는 루트부(535); 쉬라우드(520)와 연결되는 팁부(536); 루트부(535)의 일단과 팁부(536)의 일단을 연결하는 리딩엣지(533); 및 루트부(535)의 타단과 팁부(536)의 타단을 연결하는 트레일링엣지(534)를 포함할 수 있다.The blade 530 includes a positive pressure surface 531 disposed toward the hub 510; a negative pressure surface 532 disposed toward the shroud 520; a root portion 535 connected to the hub 510; a tip portion 536 connected to the shroud 520; a leading edge 533 connecting one end of the root portion 535 and one end of the tip portion 536; and a trailing edge 534 connecting the other end of the root portion 535 and the other end of the tip portion 536 .
루트부(535)와 팁부(536)는 익형(air foil)으로 형성될 수 있다.The root portion 535 and the tip portion 536 may be formed as an air foil.
리딩엣지(533)는, 허브(510)가 회전할 때 공기와 먼저 접촉하는 선단일 수 있고, 트레일링엣지(534)는, 허브(510)가 회전할 때 공기와 가장 나중에 접촉하는 후단일 수 있다.The leading edge 533 may be a front end that first contacts air when the hub 510 rotates, and the trailing edge 534 may be a rear end that comes into contact with air last when the hub 510 rotates. have.
리딩엣지(533)는 팬(500)의 회전중심을 향하게 배치될 수 있고, 트레일링엣지(534)는 팬(500)의 반경방향 외측을 향하게 배치될 수 있다.The leading edge 533 may be disposed toward the rotation center of the fan 500 , and the trailing edge 534 may be disposed toward the radially outward side of the fan 500 .
루트부(535)는, 허브(510)의 제 1허브면(511)에 대하여 기울어진 형태로 맞닿을 수 있다.The root portion 535 may be in contact with the first hub surface 511 of the hub 510 in an inclined shape.
팁부(536)는, 쉬라우드(520)의 지지부(522)에 대하여 기울어진 형태로 맞닿을 수 있다.The tip portion 536 may be in contact with the support portion 522 of the shroud 520 in an inclined form.
제 1허브면(511)의 경사지게 연장된 길이는 루트부(535)의 길이보다 짧을 수 있다. 루트부(535)는, 제 1허브면(1110)에 대하여 경사지게 연결될 수 있다.The inclinedly extended length of the first hub surface 511 may be shorter than the length of the root portion 535 . The root portion 535 may be connected to be inclined with respect to the first hub surface 1110 .
지지부(522)의 경사지게 연장된 길이는 팁부(536)의 길이보다 짧을 수 있다. 팁부(536)는, 지지부(522)에 대하여 경사지게 연결될 수 있다.The inclinedly extended length of the support part 522 may be shorter than the length of the tip part 536 . The tip portion 536 may be inclinedly connected with respect to the support portion 522 .
블레이드(530)는 복수개가 원주방향으로 이격되게 배치될 수 있다. 복수개 블레이드(530) 각각의 리딩엣지(533)는, 인접한 블레이드(530)의 트레일링엣지(534)와 적어도 일부가 상하로 마주보게 배치될 수 있다. 이에, 도 9와 같이 팬(500)을 하측에서 바라보았을 때, 어느 한 블레이드(530)의 리딩엣지(533)는, 인접한 블레이드(530)의 트레일링엣지(534)와 중첩되게 보일 수 있다.A plurality of blades 530 may be disposed to be spaced apart in the circumferential direction. The leading edge 533 of each of the plurality of blades 530 may be disposed to face at least a portion of the trailing edge 534 of the adjacent blade 530 up and down. Accordingly, when the fan 500 is viewed from the lower side as shown in FIG. 9 , the leading edge 533 of one blade 530 may overlap the trailing edge 534 of the adjacent blade 530 .
이하에서는 도 10 및 도 11을 참조하여, 허브(510)와 쉬라우드(520)의 위치관계에 대해 설명한다. 도 10은 팬(500)을 종방향으로 절개한 단면투시도이고, 도 11은 도 10에 도시된 'M'영역을 확대하여 도시한 것이다.Hereinafter, a positional relationship between the hub 510 and the shroud 520 will be described with reference to FIGS. 10 and 11 . 10 is a cross-sectional perspective view of the fan 500 cut in the longitudinal direction, and FIG. 11 is an enlarged view of region 'M' shown in FIG.
허브(510)는, 팬모터(410)를 향하게 배치된 제 2허브면(512)과, 모터축(411)이 결합되는 축결합부(513)를 포함할 수 있다.The hub 510 may include a second hub surface 512 disposed to face the fan motor 410 and a shaft coupling part 513 to which the motor shaft 411 is coupled.
제 1허브면(511)은 하측을 향하게 배치될 수 있고, 제 2허브면(512)은 상측을 향하게 배치될 수 있다. 팬모터(410)는, 제 2허브면(512)의 내측으로 삽입되어 허브(510)와 연결될 수 있다.The first hub surface 511 may be arranged to face downward, and the second hub surface 512 may be arranged to face upward. The fan motor 410 may be inserted into the second hub surface 512 to be connected to the hub 510 .
축결합부(513)에 팬모터(410)의 모터축(411)이 결합될 수 있다. 축결합부(513)는 상하방향으로 허브(510)를 관통하도록 배치될 수 있다. 축결합부(513)의 내측에 팬(500)의 회전중심이 형성될 수 있다. 축결합부(513)는, 제 1허브면(511) 및 제 2허브면(512)과 일체형으로 형성될 수 있다.The motor shaft 411 of the fan motor 410 may be coupled to the shaft coupling part 513 . The shaft coupling part 513 may be disposed to pass through the hub 510 in the vertical direction. A rotation center of the fan 500 may be formed inside the shaft coupling part 513 . The shaft coupling part 513 may be integrally formed with the first hub surface 511 and the second hub surface 512 .
축결합부(513)는, 제 1허브면(511)으로부터 하측으로 돌출되게 형성될 수 있고, 제 2허브면(512)으로부터 상측으로 돌출되게 형성될 수 있다.The shaft coupling portion 513 may be formed to protrude downward from the first hub surface 511 , and may be formed to protrude upward from the second hub surface 512 .
축결합부(513)는, 하측으로 돌출되어 허브하단(510a)을 형성할 수 있다. 축결합부(513)는, 상측으로 돌출되어 허브돌출단(510c)을 형성할 수 있다. 축결합부(513)는, 제 1허브면(511)과 연결되어 허브중단(510d)을 형성할 수 있다.The shaft coupling portion 513 may protrude downward to form a lower end of the hub 510a. The shaft coupling portion 513 may protrude upward to form a hub protruding end 510c. The shaft coupling part 513 may be connected to the first hub surface 511 to form a hub end 510d.
제 1허브면(511)과 제 2허브면(512)은 반경방향 외측으로 경사지게 연장될 수 있고, 허브상단(510b)을 형성할 수 있다.The first hub surface 511 and the second hub surface 512 may extend obliquely outwardly in the radial direction, and may form the hub upper end 510b.
허브(510)는 반경방향 외측을 향하여 경사지게 직선형으로 연장될 수 있다. 허브(510)의 경사진 연장방향을 L1이라 정의하고, 허브(510)의 경사진 각도를 허브경사각(θ1)으로 정의한다. 허브(510)는 반경방향 외측으로 갈수록 직경이 증가될 수 있고, 허브(510)의 내측공간은 상측으로 갈수록 확장될 수 있다. 허브경사각(θ1)은 45도 내지 60도 범위 내에서 형성될 수 있다.The hub 510 may extend in a straight line inclined toward a radially outward direction. The inclined extension direction of the hub 510 is defined as L1, and the inclined angle of the hub 510 is defined as the hub inclination angle θ1. The diameter of the hub 510 may increase toward the radially outward direction, and the inner space of the hub 510 may expand upwardly. The hub inclination angle θ1 may be formed within a range of 45 degrees to 60 degrees.
림부(521)는 상하방향으로 연장될 수 있고, 내측에 팬흡입구(500s)를 형성할 수 있다. 림부(521)는 팬흡입구(500s)의 하부를 구성하는 림부하단(520a)과, 지지부(522)와 연결되는 림부상단(520c)를 포함할 수 있다.The rim portion 521 may extend in the vertical direction, and a fan suction port 500s may be formed therein. The rim portion 521 may include a lower rim portion 520a constituting a lower portion of the fan inlet 500s and an upper rim portion 520c connected to the support portion 522 .
지지부(522)는 림부상단(520c)으로부터 반경방향 외측으로 경사지게 연장될 수 있고, 반경방향 최외측에 쉬라우드엣지(520b)를 형성할 수 있다. 림부상단(520c)은 림부(521)와 지지부(522)의 경계일 수 있다.The support portion 522 may extend obliquely outwardly in a radial direction from the upper end of the rim portion 520c, and may form a shroud edge 520b on the outermost side in the radial direction. The upper end of the rim 520c may be a boundary between the rim 521 and the support 522 .
쉬라우드(522)는 하측을 향해 배치된 제 1쉬라우드면(522a)과, 상측을 향해 배치된 제 2쉬라우드면(522b)을 포함할 수 있다. 제 1쉬라우드면(522a)은 흡입그릴(140)과 마주보게 형성될 수 있고, 제 2쉬라우드면(522b)은 제 1허브면(511)과 마주보게 형성될 수 있다. 림부(521)는 제 1쉬라우드면(522a)으로부터 하측으로 돌출될 수 있다. 블레이드(530)는, 제 2쉬라우드면(522b)에 결합될 수 있다.The shroud 522 may include a first shroud surface 522a arranged downward and a second shroud surface 522b arranged upward. The first shroud surface 522a may be formed to face the suction grill 140 , and the second shroud surface 522b may be formed to face the first hub surface 511 . The rim 521 may protrude downward from the first shroud surface 522a. The blade 530 may be coupled to the second shroud surface 522b.
반경방향을 기준으로 허브상단(510b)은 림부(521) 보다 내측에 배치될 수 있다. 허브상단(510b)과 쉬라우드엣지(520b)를 충분히 이격시켜 블레이드(530)의 길이를 충분히 확보하고, 풍량을 증가시킬 수 있다.Based on the radial direction, the hub upper end 510b may be disposed inside the rim portion 521 . The length of the blade 530 can be sufficiently secured and the air volume can be increased by sufficiently spaced apart from the hub top 510b and the shroud edge 520b.
후술할 디퓨져(440)의 적어도 일부는, 허브상단(510b)과 쉬라우드엣지(520b) 사이에 배치될 수 있다. 디퓨져(440)의 적어도 일부가 위치된 높이는, 허브상단(510b)과 쉬라우드엣지(520b) 사이에 형성될 수 있다.At least a portion of the diffuser 440 to be described later may be disposed between the hub top 510b and the shroud edge 520b. The height at which at least a portion of the diffuser 440 is positioned may be formed between the hub top 510b and the shroud edge 520b.
쉬라우드(520)는 반경방향 외측을 향하여 경사지게 직선형으로 연장될 수 있다. 쉬라우드(520)의 경사진 연장방향을 L2이라 정의하고, 쉬라우드(520)의 경사진 각도를 쉬라우드경사각(θ2)으로 정의한다. 쉬라우드(520)는 반경방향 외측으로 갈수록 직경이 증가될 수 있고, 쉬라우드(520)의 내측공간은 상측으로 갈수록 확장될 수 있다. 쉬라우드경사각(θ2)은 35도 내지 50도 범위 내에서 형성될 수 있다.The shroud 520 may extend in a straight line inclined toward the radially outward direction. The inclined extension direction of the shroud 520 is defined as L2, and the inclined angle of the shroud 520 is defined as the shroud inclination angle θ2. The diameter of the shroud 520 may increase toward the outside in the radial direction, and the inner space of the shroud 520 may expand toward the top. The shroud inclination angle θ2 may be formed within a range of 35 degrees to 50 degrees.
허브경사각(θ1)과 쉬라우드경사각(θ2)은 다르게 형성될 수 있고, 허브(510)와 쉬라우드(520) 사이에는 팬흡입구(500s)를 통해 유입된 공기가 유동되는 유로가 형성될 수 있다. 허브(510)와 쉬라우드(520)의 사이각을 확장각(θ3)으로 정의한다. 허브(510)와 쉬라우드(520)는 사이에 확장각(θ3)의 크기를 갖는 유동통로를 형성할 수 있다.The hub inclination angle θ1 and the shroud inclination angle θ2 may be formed differently, and a flow path through which the air introduced through the fan inlet 500s flows may be formed between the hub 510 and the shroud 520. . An angle between the hub 510 and the shroud 520 is defined as an extension angle θ3 . The hub 510 and the shroud 520 may form a flow passage having a size of an expansion angle θ3 between them.
허브경사각(θ1)은 쉬라우드경사각(θ2)보다 크게 형성될 수 있다. 허브경사각(θ1)을 쉬라우드경사각(θ2)보다 크게 형성시킴으로 인해, 확장각(θ3)의 크기를 증가시킬 수 있고, 팬흡입구(500s)를 통과한 공기에 작용하는 마찰저항을 줄일 수 있다.The hub inclination angle θ1 may be greater than the shroud inclination angle θ2. By making the hub inclination angle θ1 larger than the shroud inclination angle θ2, the size of the expansion angle θ3 can be increased, and the frictional resistance acting on the air passing through the fan inlet 500s can be reduced.
허브(510)는, 모터축(411)에 대하여 제 1각도(θ8)로 경사지게 연장된 외면(511)을 가질 수 있다. 상기 외면(511)은, 제 1허브면(511)일 수 있다.The hub 510 may have an outer surface 511 inclined at a first angle θ8 with respect to the motor shaft 411 . The outer surface 511 may be a first hub surface 511 .
쉬라우드(520)는, 모터축(411)에 대하여 제 1각도(θ8)보다 큰 제 2각도(θ9)로 경사지게 연장될 수 있다.The shroud 520 may extend obliquely at a second angle θ9 greater than the first angle θ8 with respect to the motor shaft 411 .
쉬라우드(520)의 지지부(522) 내면은, 블레이드(530)를 기준으로 허브(510)의 외면(511)과 대향될 수 있다.The inner surface of the support 522 of the shroud 520 may face the outer surface 511 of the hub 510 with respect to the blade 530 .
모터축(411)은, 축결합부(513)에 삽입되어 허브(510) 및 블레이드(530)를 회전시킬 수 있고, 팬(500)의 회전축(MX)을 형성할 수 있다.The motor shaft 411 may be inserted into the shaft coupling part 513 to rotate the hub 510 and the blade 530 , and may form the rotation shaft MX of the fan 500 .
허브상단(510b)은, 회전축(MX)으로부터 소정 각도 이격되어 허브영역(HA)을 형성할 수 있다. 쉬라우드엣지(520b)는, 회전축(MX)으로부터 소정 각도 이격되어 쉬라우드영역(SA)을 형성할 수 있다.The hub upper end 510b may be spaced apart from the rotation shaft MX by a predetermined angle to form the hub area HA. The shroud edge 520b may be spaced apart from the rotation shaft MX by a predetermined angle to form the shroud area SA.
쉬라우드영역(SA)의 크기는, 허브영역(HA)의 크기보다 클 수 있다.The size of the shroud area SA may be larger than the size of the hub area HA.
허브(510)는, 회전축(MX)과 나란하고 축결합부(513)를 지나는 제 1축(MX1)에 대하여 제 1각도(θ8)로 경사지게 연장될 수 있다.The hub 510 may extend to be inclined at a first angle θ8 with respect to the first shaft MX1 parallel to the rotation shaft MX and passing through the shaft coupling part 513 .
쉬라우드(520)는, 회전축(MX)과 나란하고 림부(521)를 지나는 제 2축(MX2)에 대하여 제 2각도(θ9)로 경사지게 연장될 수 있다.The shroud 520 may extend obliquely at a second angle θ9 with respect to the second axis MX2 parallel to the rotation axis MX and passing through the rim portion 521 .
제 1각도(θ8)의 크기는, 제 2각도(θ9)의 크기보다 작을 수 있다.The size of the first angle θ8 may be smaller than the size of the second angle θ9 .
허브경사각(θ1)과 제 1각도(θ8)의 합은 90도일 수 있고, 쉬라우드경사각(θ2)과 제 2각도(θ9)의 합은 90도일 수 있다.The sum of the hub inclination angle θ1 and the first angle θ8 may be 90 degrees, and the sum of the shroud inclination angle θ2 and the second angle θ9 may be 90 degrees.
림부상단(520c) 높이를 H1이라 하고, 허브하단(510a)의 높이를 H2라 하며, 쉬라우드엣지(520b)의 높이를 H3이라 하고, 허브중단(510d)의 높이를 H4이라 하며, 허브돌출단(510c) 높이를 H5라 정의한다.Let the height of the rim upper end 520c be H1, the height of the hub lower end 510a is referred to as H2, the height of the shroud edge 520b is referred to as H3, the height of the hub middle end 510d is referred to as H4, and the hub protrusion is referred to as H2. The height of the stage 510c is defined as H5.
팬(500)은, H5>H4>H3>H2>H1의 관계가 성립되는 형상을 가질 수 있다. 구체적으로, 림부상단(520c)보다 허브하단(510a)이 높게 형성될 수 있고, 허브하단(510a)보다 쉬라우드엣지(520b)가 높게 형성될 수 있고, 쉬라우드엣지(520b)보다 허브중단(510d)이 높게 형성될 수 있고, 허브중단(510d)보다 허브돌출단(510c)이 높게 형성될 수 있다.The fan 500 may have a shape in which the relationship H5>H4>H3>H2>H1 is established. Specifically, the hub lower end 510a may be formed higher than the rim upper end 520c, the shroud edge 520b may be formed higher than the hub lower end 510a, and the hub end than the shroud edge 520b ( 510d) may be formed to be high, and the hub protruding end 510c may be formed to be higher than the hub end 510d.
쉬라우드엣지(520b)의 높이(H3)는, 허브하단(510a)의 높이(H2)와 허브돌출단(510c)의 높이(H5) 사이에 형성될 수 있다. 쉬라우드엣지(520b)의 높이(H3)는, 허브하단(510a)의 높이(H2)와 허브중단(510d)의 높이(H4) 사이에 형성될 수 있다.The height H3 of the shroud edge 520b may be formed between the height H2 of the hub lower end 510a and the height H5 of the hub protruding end 510c. The height H3 of the shroud edge 520b may be formed between the height H2 of the lower end of the hub 510a and the height H4 of the middle end of the hub 510d.
제 1허브면(511)은, 축결합부(513)와 연결되는 제 1안내면(511a)과, 제 1안내면(511a)으로부터 상측으로 경사지게 연장되는 제 2안내면(511b)을 포함할 수 있다. 제 1안내면(511a)은, 축결합부(513)로부터 수평하게 연장될 수 있고, 제 2안내면(511b)은 제 1안내면(511a)의 외측단부로부터 상측으로 연장될 수 있다.The first hub surface 511 may include a first guide surface 511a connected to the shaft coupling part 513 and a second guide surface 511b that is inclined upwardly from the first guide surface 511a. The first guide surface 511a may extend horizontally from the shaft coupling portion 513 , and the second guide surface 511b may extend upward from the outer end of the first guide surface 511a.
상술한 구조로 인하여, 팬흡입구(500s)를 통해 유입되어 제 1안내면(511a)에 도달한 공기가 쉬라우드엣지(520b)의 상측으로 빠져나가지 않고 제 2안내면(511b)을 따라 상측으로 유동할 수 있다. 팬흡입구(500s)를 통해 유입된 공기는, 쉬라우드엣지(520b)를 통해 팬(500)의 외부로 빠져나가지 않고, 확장각(θ3) 범위 내에서 유동되도록 안내될 수 있어 유동손실을 저감시킬 수 있다.Due to the above-described structure, air flowing in through the fan inlet 500s and reaching the first guide surface 511a flows upward along the second guide surface 511b without escaping to the upper side of the shroud edge 520b. can The air introduced through the fan inlet (500s) can be guided to flow within the range of the expansion angle (θ3) without escaping to the outside of the fan (500) through the shroud edge (520b), thereby reducing the flow loss. can
이하에서는 도 12 및 도 13을 참조하여, 쉬라우드경사각(θ2)에 따른 풍량 및 소음에 대한 작용효과를 설명한다. 도 12는 쉬라우드경사각(θ2)에 따른 풍량을 그래프로 나타낸 것이고, 도 13은 쉬라우드경사각(θ2)에 따른 소음을 그래프로 나타낸 것이다.Hereinafter, with reference to FIGS. 12 and 13 , the effect on the air volume and noise according to the shroud inclination angle θ2 will be described. 12 is a graph showing the air volume according to the shroud inclination angle θ2, and FIG. 13 is a graph showing the noise according to the shroud inclination angle θ2.
쉬라우드각(F2)Shroud angle (F2) RPM (@10CMM)RPM (@10CMM) dB(@10CMM)dB (@10CMM) sharpness(@10CMM)sharpness (@10CMM)
2020 22502250 41.941.9 1.171.17
3030 22452245 42.342.3 1.071.07
3535 22312231 43.343.3 1.061.06
표 1은 풍량이 10CMM일 때 팬(500)의 회전수, 소음 및 샤프니스 실험값이다.도 13을 참조하면, 쉬라우드경사각(θ2)이 각각 20도, 30도, 및 35도일 때, RPM이 증가될 수록 풍량이 증가하는 것을 확인할 수 있다.Table 1 shows experimental values for the rotation speed, noise, and sharpness of the fan 500 when the air volume is 10CMM. Referring to FIG. 13, when the shroud inclination angle θ2 is 20 degrees, 30 degrees, and 35 degrees, respectively, the RPM increases It can be seen that the air volume increases as the time increases.
도 14를 참조하면, 쉬라우드경사각(θ2)이 각각 20도, 30도, 및 35도일 때, 풍량이 증가할 수록 소음도 함께 증가하는 것을 확인할 수 있다. 다만, 쉬라우드경사각(θ2)이 작을 수록 소음이 크고, 쉬라우드경사각(θ2)이 클수록 소음이 저감되는 것을 확인할 수 있다.Referring to FIG. 14 , when the shroud inclination angle θ2 is 20 degrees, 30 degrees, and 35 degrees, respectively, it can be seen that the noise also increases as the air volume increases. However, it can be seen that the smaller the shroud inclination angle θ2, the greater the noise, and the larger the shroud inclination angle θ2, the lower the noise.
소음 및 풍량을 고려하여 확장각(θ3)은 11도 내지 26도 범위 내에서 설정될 수 있고, 바람직하게 확장각(θ3)은 12도일 수 있다.In consideration of noise and air volume, the expansion angle θ3 may be set within a range of 11 degrees to 26 degrees, and preferably, the expansion angle θ3 may be 12 degrees.
이하에서는 도 14 및 도 15를 참조하여, 본 발명의 일 실시예에 따른 블레이드(530)에 대해 설명한다. 도 14는 하나의 블레이드(530)를 나타낸 것이고, 도 15는 하나의 블레이드(530)를 구성하는 복수의 익형(535, 536, 537 ,538)을 나타낸 것이다.Hereinafter, a blade 530 according to an embodiment of the present invention will be described with reference to FIGS. 14 and 15 . FIG. 14 shows one blade 530 , and FIG. 15 shows a plurality of airfoils 535 , 536 , 537 , 538 constituting one blade 530 .
블레이드(530)는 루트부(535)와 팁부(536)까지 무수히 많은 익형(Airfoil)이 형성될 수 있고, 블레이드(530)는 복수의 익형의 집합체로서 이해될 수 있다. 익형은 블레이드(530)의 단면형상으로 이해될 수도 있다. 루트부(535)와 팁부(536)는 복수의 익형에 포함될 수 있다.In the blade 530 , countless airfoils may be formed up to the root portion 535 and the tip portion 536 , and the blade 530 may be understood as an aggregate of a plurality of airfoils. The airfoil may be understood as a cross-sectional shape of the blade 530 . The root portion 535 and the tip portion 536 may be included in a plurality of airfoils.
상기 복수의 익형 중, 루트부(535)와 팁부(536) 사이의 어느 하나의 익형을 기준익형(537, 538)으로 정의할 수 있다.Among the plurality of airfoils, any one airfoil between the root portion 535 and the tip portion 536 may be defined as the reference airfoils 537 and 538 .
기준익형(537, 538)은, 루트부(535)와 팁부(536)까지의 거리가 일정한 기준비율을 이루는 익형으로 정의할 수 있다.The reference airfoils 537 and 538 may be defined as airfoils in which the distance between the root portion 535 and the tip portion 536 forms a constant reference ratio.
기준익형(537, 538)으로부터 루트부(535)까지의 거리를 제 1거리, 기준익형으로부터 팁부(536)까지의 거리를 제 2거리라 할 수 있다. 상기 제 1거리와 상기 제 2거리의 비율은 1:2일 수 있고, 이 때의 기준익형(537)을 제 1기준익형(537)으로 정의할 수 있다. 상기 제 1거리와 상기 제 2거리의 비율은 2:1일 수 있고, 이 때의 기준익형(538)을 제 2기준익형(538)으로 정의할 수 있다.The distance from the reference spar 537 and 538 to the root portion 535 may be referred to as a first distance, and the distance from the reference spar to the tip portion 536 may be referred to as a second distance. A ratio of the first distance and the second distance may be 1:2, and the reference spar 537 at this time may be defined as the first reference spar 537 . A ratio of the first distance to the second distance may be 2:1, and the reference spar 538 at this time may be defined as the second reference spar 538 .
리딩엣지(533)는, 복수의 익형(535, 536, 537, 538)을 따라 굴곡지게 형성될 수 있다.The leading edge 533 may be formed to be curved along the plurality of airfoils 535 , 536 , 537 , 538 .
루트부(535)는 리딩엣지(533)와 제 1교차점(535a)을 형성할 수 있고, 팁부(536)는 리딩엣지(533)와 제 2교차점(536a)을 형성할 수 있다. 리딩엣지(533)는, 제 1교차점(535a)으로부터 제 2교차점(536a)까지 굴곡지게 연장될 수 있다.The root portion 535 may form a leading edge 533 and a first intersection point 535a, and the tip portion 536 may form a leading edge 533 and a second intersection point 536a. The leading edge 533 may extend curvedly from the first intersection 535a to the second intersection 536a.
제 1교차점(535a)과 제 2교차점(536a)을 잇는 가상의 리딩선도(L3)가 형성될 수 있다. 리딩엣지(533)는, 상기 리딩선도(L3)와 이격되게 형성될 수 있다.A virtual leading line L3 connecting the first intersection 535a and the second intersection 536a may be formed. The leading edge 533 may be formed to be spaced apart from the leading line L3.
제 1기준익형(537)은 리딩엣지(533)와 제 3교차점(537a)을 형성할 수 있고, 제 2기준익형(538)은 리딩엣지(533)와 제 4교차점(538a)을 형성할 수 있다.The first reference spar 537 may form a leading edge 533 and a third intersection 537a, and the second reference spar 538 may form a leading edge 533 and a fourth intersection 538a. have.
제 3교차점(537a)은, 제 1기준익형(537)의 제 1평균캠버라인(Mean Camber Line, CL1)이 리딩엣지(533)와 교차되는 점으로서 이해될 수 있다.The third intersection 537a may be understood as a point where the first average camber line CL1 of the first reference spar 537 intersects the leading edge 533 .
제 4교차점(538a)은, 제 2기준익형(538)의 제 2평균캠버라인(Mean Camber Line, CL2)이 리딩엣지(533)와 교차되는 점으로서 이해될 수 있다.The fourth intersection 538a may be understood as a point where the second average camber line CL2 of the second reference spar 538 intersects the leading edge 533 .
제 3교차점(537a)과 제 4교차점(538a)은, 상기 리딩선도(L3)와 이격되게 형성될 수 있다.The third intersection 537a and the fourth intersection 538a may be formed to be spaced apart from the leading line L3.
팬(500)의 회전에 의해 형성되는 교차점(535a, 536a, 537a, 538a)의 자취는 모터축(411)을 중심으로 원을 형성할 수 있다. 교차점(535a, 536a, 537a, 538a)의 자취는 리딩엣지(533)의 자취의 일부를 구성하는 것으로서 이해될 수 있다.The traces of the intersection points 535a , 536a , 537a , and 538a formed by the rotation of the fan 500 may form a circle around the motor shaft 411 . The traces of intersections 535a , 536a , 537a , 538a may be understood as constituting part of the traces of the leading edge 533 .
제 3교차점(537a)은 팬(500)의 회전에 의해 원형의 제 1자취(C1)를 형성할 수 있다. 제 4교차점(538a)은 팬(500)의 회전에 의해 원형의 제 2자취(C2)를 형성할 수 있다.The third intersection 537a may form a circular first trace C1 by rotation of the fan 500 . The fourth intersection 538a may form a circular second trace C2 by rotation of the fan 500 .
블레이드(530)는, 기준익형(537, 538)의 입구각(θ4, θ5)을 기준으로 하여 리딩엣지(533)를 설계할 수 있다.The blade 530 may design the leading edge 533 on the basis of the inlet angles θ4 and θ5 of the reference airfoils 537 and 538 .
제 1기준익형(537)의 제 1입구각(θ4)은, 제 1평균캠버라인(CL1)의 연장선과 제 1자취(C1)가 이루는 각을 의미할 수 있다.The first entrance angle θ4 of the first reference airfoil 537 may mean an angle formed between the extension line of the first average camber line CL1 and the first trace C1 .
제 1평균캠버라인(CL1)의 제 3교차점(537a)에서의 접선을 제 1접선(T1)으로 정의하고, 제 1자취(C1)의 제 3교차점(537a)에서의 접선을 제 1베이스라인(B1)으로 정의한다.The tangent line at the third intersection 537a of the first average camber line CL1 is defined as the first tangent T1, and the tangent line at the third intersection 537a of the first trace C1 is defined as the first baseline. It is defined as (B1).
제 1기준익형(537)의 제 1입구각(θ4)은, 제 1접선(T1)과 제 1베이스라인(B1) 사이의 각으로 이해될 수 있다.The first entrance angle θ4 of the first reference airfoil 537 may be understood as an angle between the first tangent T1 and the first baseline B1.
제 2기준익형(538)의 제 2입구각(θ5)은, 제 2평균캠버라인(CL2)의 연장선과 제 2자취(C2)가 이루는 각을 의미할 수 있다.The second entrance angle θ5 of the second reference airfoil 538 may mean an angle between the extension line of the second average camber line CL2 and the second trace C2 .
제 2평균캠버라인(CL2)의 제 4교차점(538a)에서의 접선을 제 2접선(T2)으로 정의하고, 제 2자취(C2)의 제 4교차점(538a)에서의 접선을 제 2베이스라인(B2)으로 정의한다.A tangent line at the fourth intersection 538a of the second average camber line CL2 is defined as the second tangent T2, and the tangent line at the fourth intersection 538a of the second trace C2 is defined as the second baseline. It is defined as (B2).
제 2기준익형(538)의 제 2입구각(θ5)은, 제 2접선(T2)과 제 2베이스라인(B2) 사이의 각으로 이해될 수 있다.The second entrance angle θ5 of the second reference spar 538 may be understood as an angle between the second tangent T2 and the second baseline B2.
블레이드(530)는, 입구각이 스팬(Span) 방향을 따라 가변되도록 형성될 수 있다. 입구각은 스팬(Span) 방향을 따라 연속적으로 가변될 수 있다. 상기 스팬(Span) 방향은, 제 1교차점(537a)으로부터 제 2교차점(538a)을 향하여 굴곡지게 형성된 리딩엣지(533)의 연장방향을 의미할 수 있다.The blade 530 may be formed so that the entrance angle is variable along the span direction. The entrance angle may be continuously varied along the span direction. The span direction may refer to an extension direction of the leading edge 533 formed to be curved from the first intersection point 537a toward the second intersection point 538a.
리딩엣지(533)의 서로 다른 위치에서의 다른 유동의 특성에 따라 해당 위치에서의 적절한 익형을 구현하기 위해 블레이드(530)의 스팬 방향에 따라 입구각을 다르게 형성할 수 있다. 블레이드(530)의 스팬 방향에 따라 입구각을 다르게 형성함으로써, 리딩엣지(533)의 형상이 굴곡지게 형성될 수 있다.In order to implement an appropriate airfoil at the corresponding position according to different flow characteristics at different positions of the leading edge 533 , the inlet angle may be formed differently depending on the span direction of the blade 530 . By forming a different entrance angle according to the span direction of the blade 530, the shape of the leading edge 533 may be formed to be curved.
리딩엣지가 스팬 방향을 따라 동일한 입구각을 가지도록 연장되는 가상의 블레이드를 "제 1비교블레이드"라 정의할 수 있다. 제 1비교블레이드의 모든 익형에서의 입구각은 동일하다.A virtual blade extending so that the leading edge has the same entrance angle along the span direction may be defined as a “first comparison blade”. The entrance angle in all airfoils of the first comparison blade is the same.
본 발명의 실시예에 따른 블레이드(530) 기준익형(537, 538)의 입구각(θ4, θ5)은 상기 제 1비교블레이드의 입구각보다 클 수 있다.The entrance angles θ4 and θ5 of the reference blades 537 and 538 of the blade 530 according to the embodiment of the present invention may be greater than the entrance angles of the first comparison blade.
리딩엣지가 루트부로부터 팁부까지 직선으로 연장되는 블레이드를 "제 2비교블레이드"라고 정의할 수 있다. 상기 제 2비교블레이드는, 본 발명의 설명에서 정의한 리딩선도(L3)가 리딩엣지(533)와 일치할 수 있다.A blade having a leading edge extending in a straight line from the root portion to the tip portion may be defined as a “second comparison blade”. In the second comparison blade, the leading line L3 defined in the description of the present invention may coincide with the leading edge 533 .
상기 제 1비교블레이드와 상기 제 2비교블레이드는, 본 발명의 루트부(535)와 본 발명의 팁부(536)와 동일한 비교루트부와 비교팁부를 가질 수 있다.The first comparison blade and the second comparison blade may have the same comparison root part and comparison tip part as the root part 535 of the present invention and the tip part 536 of the present invention.
본 발명의 블레이드(530)와 비교블레이드의 동일한 위치에서의 입구각을 비교하면, 본 발명의 블레이드(530)의 입구각은 비교블레이드의 입구각보다 더 클 수 있다.Comparing the entrance angle of the blade 530 of the present invention and the comparison blade at the same position, the entrance angle of the blade 530 of the present invention may be larger than the entrance angle of the comparison blade.
구분division 익형의 입구각(˚)Airfoil entrance angle (˚) 소음 결과값(dB@10CMM)Noise result value (dB@10CMM)
비교 블레이드comparison blade 24.524.5 47.2(-)47.2(-)
본 발명의 블레이드blade of the present invention 17.5<θ≤20.517.5<θ≤20.5 47.5(↑0.3)47.5 (↑0.3)
20.5<θ≤23.520.5<θ≤23.5 47.3(↑0.1)47.3 (↑0.1)
23.5<θ≤26.523.5<θ≤26.5 47.2(-)47.2(-)
26.5<θ≤29.526.5<θ≤29.5 47.0(↓0.2)47.0 (↓0.2)
29.5<θ≤32.529.5<θ≤32.5 46.7(↓0.5)46.7 (↓0.5)
표 2는, 익형의 입구각에 따른 소음결과값을 나타낸 표이다.비교대상이 되는 익형의 입구각은, 루트부와 팁부의 2/3지점(본 발명의 제 2기준익형(538)의 위치)에 위치한 익형의 입구각을 의미한다.Table 2 is a table showing the noise result values according to the inlet angle of the airfoil. The inlet angle of the airfoil to be compared is 2/3 of the root and tip (the position of the second reference airfoil 538 of the present invention). ) means the entrance angle of the airfoil.
비교블레이드 익형의 입구각은 24.5˚일 수 있고, 비교블레이드 익형의 입구각을 대조군으로 설정하고, 제 2기준익형(538)의 입구각(θ5)을 실험군으로 하여 소음 결과값을 측정할 수 있다.The entrance angle of the comparison blade airfoil may be 24.5˚, the entrance angle of the comparison blade airfoil is set as a control group, and the noise result value can be measured using the entrance angle θ5 of the second reference airfoil 538 as the experimental group. .
소음결과값은, 풍량이 10CMM일 때의 데시벨(dB)을 측정한 값이다.The noise result value is a value measured in decibels (dB) when the air volume is 10CMM.
표 2에 따르면, 제 2기준익형(538)의 입구각(θ5)이 29.5˚초과 32.5˚이하일 때 소음결과값이 46.7dB로 가장 낮게 형성될 수 있다.According to Table 2, when the entrance angle θ5 of the second reference airfoil 538 is greater than 29.5˚ and less than or equal to 32.5˚, the noise result value may be the lowest at 46.7dB.
제 2기준익형(538)의 입구각(θ5)은, 29.5˚초과 32.5˚이하의 값을 가질 수 있다.The inlet angle θ5 of the second reference airfoil 538 may have a value greater than 29.5° and less than or equal to 32.5°.
제 2기준익형(538)의 입구각(θ5)이 더 큰 값을 가질 때, 소음이 감소되는 경향을 가진다.When the inlet angle θ5 of the second reference airfoil 538 has a larger value, the noise tends to be reduced.
다만, 블레이드의 면적, 두께, 길이 등의 다른 요인이 복합적으로 소음에 영향을 미치는 바, 제 2기준익형(538)의 입구각(θ5)이 33˚를 넘어가게 되면, 소음이 다시 커지는 경향성을 보인다.However, since other factors such as the area, thickness, and length of the blade complexly affect the noise, when the entrance angle θ5 of the second reference airfoil 538 exceeds 33˚, the tendency of the noise to increase again see.
제 1기준익형(537)은 루트부(535)와 팁부(536)의 1/3지점에서의 익형일 수 있고, 제 2기준익형(538)은 루트부(535)와 팁부(536)의 2/3지점에서의 익형일 수 있다.The first reference spar 537 may be a spar at 1/3 of the root portion 535 and the tip portion 536 , and the second reference spar 538 is two of the root portion 535 and the tip portion 536 . It could be an airfoil at the /3 point.
제 1기준익형(537)의 제 1입구각(θ4)과 제 2기준익형(538)의 제 2입구각(θ5)를 기준으로 하여 블레이드(530)를 설계할 수 있다.The blade 530 may be designed based on the first entrance angle θ4 of the first reference spar 537 and the second entrance angle θ5 of the second reference spar 538 .
블레이드(530)는, 제 2입구각(θ5)을 기준으로 하여 1차로 최적의 입구각을 선정한 후, 2인자 2수준 실험을 통해 제 1입구각(θ4)을 선정할 수 있다.The blade 530 may first select an optimal entrance angle based on the second entrance angle θ5 and then select the first entrance angle θ4 through a 2-factor 2-level experiment.
제 2기준익형(538)의 제 2입구각(θ5)에 대하여 실험을 진행하여 가장 소음이 적게 발생하는 제 2입구각(θ5)을 산정하고, 해당 제 2입구각(θ5)을 가진 상태에서 제 1입구각(θ4)을 변화시켜가며 최적 실험을 진행할 수 있다.Experiments are conducted on the second entrance angle θ5 of the second reference airfoil 538 to calculate the second entrance angle θ5 that generates the least noise, and in the state with the second entrance angle θ5 An optimal experiment can be performed by changing the first entrance angle θ4.
상기 최적 실험은 풍량이 3CMM일 때의 측정된 데시벨(dB)을 기준으로 할 수 있다.The optimal experiment may be based on measured decibels (dB) when the air volume is 3CMM.
최적의 제 1입구각(θ4)과 제 2입구각(θ5)을 산정하기 위하여, 비교블레이드 루트부와 팁부의 1/3지점에서의 비교대상 입구각은 21.5˚내외, 루트부와 팁부의 2/3지점에서의 비교대상 입구각은 24.5˚내외인 것을 기준으로 실험을 진행할 수 있다.In order to calculate the optimal first entrance angle (θ4) and second entrance angle (θ5), the comparison target entry angle at 1/3 of the comparison blade root and tip is around 21.5˚, and the root and tip are 2 The experiment can be carried out on the basis that the entrance angle to be compared at the /3 point is around 24.5˚.
루트부와 팁부의 2/3지점에서의 비교대상 입구각이 24.5˚때를 기준으로 제 2입구각(θ5)의 값을 변화시켜가며 최적값을 산정할 수 있다. 실험에 따라 1차로 선정된 최적의 제 2입구각(θ5)은 29.5˚초과 32.5˚이하일 수 있다.The optimum value can be calculated by changing the value of the second entrance angle (θ5) based on the comparison target entrance angle at 2/3 of the root and tip portions of 24.5°. The optimal second entrance angle θ5 primarily selected according to the experiment may be greater than 29.5˚ and less than or equal to 32.5˚.
그 후, 최적의 제 1입구각(θ4)과 제 2입구각(θ5)을 선정하기 위하여 상기 비교블레이드의 루트부와 팁부의 1/3지점에서의 비교대상 입구각인 21.5˚와, 상기 선정된 최적의 제 2입구각(θ5) 중 하나인 32.5˚를 기준으로 하여 실험을 진행할 수 있다.Then, in order to select the optimal first entrance angle θ4 and second entrance angle θ5, the comparison target entrance angle 21.5° at 1/3 of the root and tip portions of the comparison blade and the selected The experiment can be carried out on the basis of 32.5˚, which is one of the optimal second entrance angles θ5.
상세히, 제 1입구각(θ4)과 제 2입구각(θ5)이 (21.5˚, 32.5˚)인 점을 기준으로 잡고, 제 1입구각(θ4)과 제 2입구각(θ5)의 크기에 변화를 주면서 소음결과값(y)을 측정할 수 있다.In detail, assuming that the first entrance angle θ4 and the second entrance angle θ5 are (21.5˚, 32.5˚) as a reference, the size of the first entrance angle θ4 and the second entrance angle θ5 is You can measure the noise result value (y) while making a change.
제1기준익형의 입구각(˚)Entrance angle (˚) of the first reference wing type 제2기준익형의 입구각(˚)Entrance angle (˚) of the 2nd reference wing type 소음 결과값(dB@3.0CMM)Noise result value (dB@3.0CMM)
19<θ1≤20.519<θ1≤20.5 29<θ2≤30.529<θ2≤30.5 42.8<y42.8<y
19<θ1≤20.519<θ1≤20.5 33.5<θ2≤3533.5<θ2≤35 42.7<y42.7<y
20.5<θ1≤23.520.5<θ1≤23.5 30.5<θ2≤33.530.5<θ2≤33.5 42.4<y≤42.642.4<y≤42.6
23.5<θ1≤2523.5<θ1≤25 29<θ2≤30.529<θ2≤30.5 y≤42.4y≤42.4
23.5<θ1≤2523.5<θ1≤25 33.5<θ2≤3533.5<θ2≤35 42.4<y≤42.642.4<y≤42.6
표 3은 상술한 방식으로 진행된 제 1입구각(θ4)과 제 2입구각(θ5)에 대한 실험결과를 표로 나타낸 것이다.Table 3 shows the experimental results for the first entrance angle θ4 and the second entrance angle θ5 conducted in the above-described manner.
실험 결과에 따르면, 제 1입구각(θ4)이 설정한 기준에 비해 작아지면 소음은 커지는 경향만을 보인다. 그러나, 제 1입구각(θ4)이 설정한 기준에 비해 커지면, 소음은 제 2입구각(θ5)의 영향을 받는다.According to the experimental results, when the first entrance angle θ4 is smaller than the set standard, the noise tends to increase. However, when the first entrance angle θ4 becomes larger than the set reference, the noise is affected by the second entrance angle θ5 .
실험 결과에 따르면, 최적의 제 1입구각(θ4)은 23.5˚초과 25˚이하, 제 2입구각(θ5)은 29˚초과 30.5˚이하일 수 있다.According to the experimental results, the optimal first entrance angle θ4 may be greater than 23.5˚ and less than or equal to 25˚, and the second entrance angle θ5 may be greater than 29˚ and less than or equal to 30.5˚.
제 1입구각(θ4)이 23.5˚초과 25˚이하, 제 2입구각(θ5)이 29˚초과 30.5˚이하일 때, 소음결과값(y)는 42.4dB이하이다.When the first entrance angle θ4 is greater than 23.5˚ and less than or equal to 25˚ and the second entrance angle θ5 is greater than 29˚ and less than or equal to 30.5˚, the resulting noise value y is 42.4dB or less.
도 16을 참조하면, 상술한 방식에 의한 실험을 반복하여 측정한 소음 결과값을 등고선으로 확인할 수 있다.Referring to FIG. 16 , the noise result measured by repeating the experiment according to the above-described method can be confirmed as a contour line.
도 16에 따르면, 소음이 42.4dB이하로 감소하는 영역에 해당하는 제 1입구각(θ4)과 제 2입구각(θ5)이 소음저감에 있어 적절한 값일 수 있다.Referring to FIG. 16 , the first entrance angle θ4 and the second entrance angle θ5 corresponding to the region in which the noise is reduced to 42.4 dB or less may be appropriate values for noise reduction.
소음이 42.4dB이하로 감소하는 영역은, 제 1입구각(θ4)과 제 2입구각(θ5)이 (23.5˚,29.2), (24.5˚30.5˚), (25˚, 29.5˚)인 세 점을 완만하게 연결하는 영역으로 이루어질 수 있다.In the region where the noise is reduced to 42.4dB or less, the first entrance angle (θ4) and the second entrance angle (θ5) are (23.5˚, 29.2), (24.5˚30.5˚), (25˚, 29.5˚) It may consist of a region that gently connects the points.
소음이 42.4dB이하로 감소하는 영역 중에서 가장 낮은 소음값을 가지는 최적의 영역(R)은, 제 1입구각(θ4)과 제 2입구각(θ5)이 (23.5˚,0)와 (24.5˚30.5˚)인 두 점을 연결하는 로그함수, (23.5˚,0)와 (24.5˚,0)인 두 점을 잇는 직선 및 (24.5˚,0)와 (24.5˚,30.5˚)인 두 점을 잇는 직선으로 이루어질 수 있다.The optimal region (R) having the lowest noise value among the regions where the noise is reduced to 42.4 dB or less, the first entrance angle (θ4) and the second entrance angle (θ5) are (23.5˚,0) and (24.5˚) 30.5˚), the log function connecting the two points, (23.5˚,0) and (24.5˚,0), the straight line connecting the two points, and the two points (24.5˚,0) and (24.5˚,30.5˚) It can be made of a straight line connecting
이하에서는 도 17을 참조하여, 본 발명의 다른 실시예에 따른 팬(600)을 설명한다. 도 17은 본 발명의 다른 실시예에 따른 팬(600)의 사시도이다.Hereinafter, a fan 600 according to another embodiment of the present invention will be described with reference to FIG. 17 . 17 is a perspective view of a fan 600 according to another embodiment of the present invention.
팬(600)은, 모터축(411)과 연결되는 허브(610); 허브(610)와 이격되게 배치되는 쉬라우드(620); 허브(610)와 쉬라우드(620)를 연결하는 복수의 블레이드(630); 및 복수의 블레이드에 형성된 노치(640)를 포함할 수 있다.The fan 600 includes a hub 610 connected to the motor shaft 411; a shroud 620 disposed to be spaced apart from the hub 610; a plurality of blades 630 connecting the hub 610 and the shroud 620; and notches 640 formed in the plurality of blades.
팬(600)은, 회전축(RX)을 중심으로 원주방향으로 회전된다.The fan 600 is rotated in the circumferential direction about the rotation axis RX.
쉬라우드(620)는, 원주방향으로 연장된 림부(621)와; 림부(621)로부터 경사지게 연장된 지지부(622)를 포함할 수 있다.The shroud 620 includes a rim portion 621 extending in the circumferential direction; It may include a support portion 622 inclinedly extending from the rim portion 621 .
허브(610)는, 팬(600) 내로 흡입된 공기의 유동방향을 안내하는 제 1허브면(611)을 포함할 수 있다.The hub 610 may include a first hub surface 611 guiding the flow direction of the air sucked into the fan 600 .
본 발명의 다른 실시예에 따른 팬(600)에 있어서, 허브(610)와 쉬라우드(620)는 본 발명의 일 실시예에 따른 허브(510)와 쉬라우드(520)와 동일하므로 자세한 설명은 생략한다.In the fan 600 according to another embodiment of the present invention, the hub 610 and the shroud 620 are the same as the hub 510 and the shroud 520 according to an embodiment of the present invention, so a detailed description is given below. omit
이하에서는 도 18 내지 도 20을 참조하여, 노치(640)에 대해 설명한다. 도 18은 블레이드(630)를 확대하여 도시한 것이고, 도 19는 도 18에 도시된 F-F'선도를 따라 블레이드(630)를 절개하여 도시한 것이고, 도 20은 노치(640)에 의한 공기의 흐름을 설명하는 도이다. 이하에서 노치(640)를 설명하는 데 있어서, 상하방향은 도 17 내지 도 20에 도시된 방향을 기준으로 한다.Hereinafter, the notch 640 will be described with reference to FIGS. 18 to 20 . 18 is an enlarged view of the blade 630, FIG. 19 is a cutaway view of the blade 630 along the line F-F' shown in FIG. 18, and FIG. 20 is the air by the notch 640. A diagram illustrating the flow of In the description of the notch 640 below, the vertical direction is based on the direction shown in FIGS. 17 to 20 .
블레이드(630)는, 블레이드(630)의 일측면을 형성하는 리딩엣지(633); 리딩엣지(633)와 대향되는 트레일링엣지(634); 리딩엣지(633)의 상단과 트레일링엣지(634)의 상단을 연결하는 부압면(632); 및 리딩엣지(633)의 하단과 트레일링엣지(634)의 하단을 연결하고 부압면(632)과 대향되는 압력면(631)을 포함할 수 있다.The blade 630 includes a leading edge 633 forming one side of the blade 630; a trailing edge 634 opposite to the leading edge 633; a negative pressure surface 632 connecting the upper end of the leading edge 633 and the upper end of the trailing edge 634; and a pressure surface 631 connecting the lower end of the leading edge 633 and the lower end of the trailing edge 634 and opposing the negative pressure surface 632 .
본 발명의 다른 실시예에 따른 팬(600)에 있어서, 압력면(631), 부압면(632), 리딩엣지(633) 및 트레일링엣지(634)에 대한 설명은, 노치(640)에 관한 것을 제외하고는, 본 발명의 일 실시예에 따른 압력면(531), 부압면(532), 리딩엣지(533) 및 트레일링엣지(534)에 대한 설명이 동일하게 적용될 수 있다.In the fan 600 according to another embodiment of the present invention, the description of the pressure surface 631 , the negative pressure surface 632 , the leading edge 633 and the trailing edge 634 is related to the notch 640 . Except for that, the descriptions of the pressure surface 531 , the negative pressure surface 532 , the leading edge 533 , and the trailing edge 534 according to an embodiment of the present invention may be equally applied.
복수의 블레이드(630) 각각에는 팬(600)에서 발생되는 소음과 소음의 샤프니스를 줄이기 위해 복수 개의 노치(640)가 형성될 수 있다.A plurality of notches 640 may be formed in each of the plurality of blades 630 to reduce noise generated by the fan 600 and the sharpness of the noise.
노치(640)는 리딩엣지(633)의 일부와 부압면(632)의 일부에 걸쳐 형성될 수 있다. 노치(640)는, 리딩엣지(633)와 부압면(632)이 만나는 코너(644)가 하부 방향으로 함몰되어 형성될 수도 있다. 노치(640)는 리딩엣지(633)의 중상단 부분과 부압면(632)에서 리딩엣지(633)에 인접한 일부 영역에 걸쳐 형성될 수 있다.The notch 640 may be formed over a portion of the leading edge 633 and a portion of the negative pressure surface 632 . The notch 640 may be formed by recessing a corner 644 where the leading edge 633 and the negative pressure surface 632 meet in the downward direction. The notch 640 may be formed over an upper middle portion of the leading edge 633 and a partial region adjacent to the leading edge 633 on the negative pressure surface 632 .
노치(640)는, 부압면(632)으로부터 압력면(631)을 향하여 함몰되게 형성될 수 있다.The notch 640 may be formed to be recessed from the negative pressure surface 632 toward the pressure surface 631 .
노치(640)의 단면 형상은 제한이 없고, 다양한 형상을 가질 수 있다. 다만, 팬(600)의 효율과 소음을 줄이기 위해 노치(640)의 단면 형상은 U자 형상, 또는 V자 형상을 가지는 것이 바람직하다. 노치(640)의 형상에 대해서는 후술한다.The cross-sectional shape of the notch 640 is not limited and may have various shapes. However, in order to reduce the efficiency and noise of the fan 600 , the cross-sectional shape of the notch 640 preferably has a U-shape or a V-shape. The shape of the notch 640 will be described later.
노치(640)의 폭(W)은 하부에서 상부로 갈수록 확장될 수 있다. 노치(640)의 폭(W)은 상부로 갈수록 점진적 또는 계단식으로 확장될 수 있다.The width W of the notch 640 may be extended from the bottom to the top. The width W of the notch 640 may be gradually or stepwise expanded toward the top.
노치(640)의 폭(W)은, 압력면(631)에 가까울수록 좁아질 수 있다. 노치(640)의 폭(W)은, 부압면(632)에 가까울수록 확장될 수 있다.The width W of the notch 640 may be narrower as it approaches the pressure surface 631 . The width W of the notch 640 may be expanded as it approaches the negative pressure surface 632 .
노치(640)는, 동일한 단면 형상이 반경방향으로 연장될 수 있다.The notch 640 may extend radially with the same cross-sectional shape.
노치(640)는 곡선형상을 가질 수 있고, 노치(640)는 동일한 단면 형상이 원주방향으로 연장될 수 있다.The notch 640 may have a curved shape, and the notch 640 may have the same cross-sectional shape and may extend in the circumferential direction.
노치(640)의 단면 형상은 V자 형상일 수 있다.The cross-sectional shape of the notch 640 may be a V-shape.
노치(640)는, 제 1경사면(642); 제 1경사면(642)과 마주보는 제 2경사면(643); 및 제 1경사면(642)과 제 2경사면(643)이 연결되는 바텀라인(641)을 포함할 수 있다.The notch 640 includes a first inclined surface 642; a second inclined surface 643 facing the first inclined surface 642; and a bottom line 641 to which the first inclined surface 642 and the second inclined surface 643 are connected.
제 1경사면(642)과 제 2경사면(643) 간의 이격거리는 일방향으로 갈수록 멀어질 수 있다. 제 1경사면(642)과 제 2경사면(643) 간의 이격거리는 점진적으로 멀어지거나 계단식으로 멀어질 수 있다. 제 1경사면(642) 및 제 2경사면(643)은 평면 또는 곡면일 수 있다. 제 1경사면(642)과 제 2경사면(643)은 삼각 형상일 수 있다.The separation distance between the first inclined surface 642 and the second inclined surface 643 may increase in one direction. The separation distance between the first inclined surface 642 and the second inclined surface 643 may be gradually increased or stepped away from each other. The first inclined surface 642 and the second inclined surface 643 may be flat or curved. The first inclined surface 642 and the second inclined surface 643 may have a triangular shape.
노치(640)는 3개가 형성될 수 있다. 노치(640)는, 제 1 노치(640a)와, 제 1노치(640a) 보다 허브(610)에서 멀게 위치된 제 2노치(640b)와, 제 2노치(640b) 보다 허브(610)에서 멀게 위치된 제 3노치(640c)를 포함할 수 있다. 각 노치(640)들 사이의 간격(NG)은 6mm 내지 10mm 일 수 있다. 각 노치(640)들 사이의 간격(NG)은 노치(640)의 깊이(ND) 및 노치(640)의 폭(W) 보다 클 수 있다.Three notches 640 may be formed. The notch 640 includes a first notch 640a, a second notch 640b positioned further from the hub 610 than the first notch 640a, and a second notch 640b farther from the hub 610 than the second notch 640b. a positioned third notch 640c. A gap NG between the notches 640 may be 6 mm to 10 mm. A gap NG between the notches 640 may be greater than a depth ND of the notch 640 and a width W of the notch 640 .
리딩엣지(633)는, 리딩엣지(633)의 중심을 지나는 엣지중심선(CP)을 기준으로 허브(610)에 인접한 제 1영역(A1)과, 쉬라우드(620)에 인접한 제 2영역(A2)으로 구분될 수 있고, 3개의 노치(640) 중 2개는 제 1영역(A1)에 위치될 수 있고, 나머지 노치(640)는 제 2영역(A2)에 위치될 수 있다.The leading edge 633 includes a first area A1 adjacent to the hub 610 and a second area A2 adjacent to the shroud 620 based on an edge center line CP passing through the center of the leading edge 633 . ), two of the three notches 640 may be located in the first area A1 , and the remaining notches 640 may be located in the second area A2 .
제 1노치(640a)와 제 2노치(640b)는, 제 1영역(A1)에 위치될 수 있고, 제 3노치(640c)는 제 2영역(A2)에 위치될 수 있다. 제 1노치(640a)가 허브(610)로부터 이격된 제 1거리(HG1)는 리딩엣지(633)의 길이 대비 19% 내지 23% 일 수 있고, 제 2노치(640b)가 허브(610)로부터 이격된 제 2거리(HG2)는 리딩엣지(633)의 길이 대비 40% 내지 44% 일 수 있고, 제 3노치(640c)가 허브(610)로부터 이격된 제 3거리(HG3)는 리딩엣지(633)의 길이 대비 65% 내지 69% 일 수 있다.The first notch 640a and the second notch 640b may be located in the first area A1 , and the third notch 640c may be located in the second area A2 . The first distance HG1 by which the first notch 640a is spaced apart from the hub 610 may be 19% to 23% of the length of the leading edge 633 , and the second notch 640b is separated from the hub 610 . The spaced second distance HG2 may be 40% to 44% of the length of the leading edge 633 , and the third distance HG3 at which the third notch 640c is spaced apart from the hub 610 is the leading edge ( 633) may be 65% to 69% of the length.
복수개 노치(640a, 640b, 640c) 각각의 길이(NL)는 서로 다르게 형성될 수 있다. 복수개의 노치(640a, 640b, 640c)는, 허브(610)에서 멀어질수록 길이(NL)가 길 수 있다. 제 3노치(640c)의 길이는 제 2노치(640b)의 길이보다 길 수 있고, 제 2노치(640b)의 길이는 제 1노치(640a)의 길이 보다 길 수 있다.The length NL of each of the plurality of notches 640a, 640b, and 640c may be formed differently. The plurality of notches 640a , 640b , and 640c may have a longer length NL as they move away from the hub 610 . The length of the third notch 640c may be longer than the length of the second notch 640b, and the length of the second notch 640b may be longer than the length of the first notch 640a.
상술한 노치(640)의 형상, 배치 및 개수를 통해 팬(600)의 블레이드(630)에서 발생되는 유동박리를 줄이고, 결과적으로, 팬(600)에서 발생하는 소음을 줄일 수 있다.Through the shape, arrangement, and number of the notch 640 described above, flow separation generated in the blade 630 of the fan 600 can be reduced, and consequently, noise generated from the fan 600 can be reduced.
바텀라인(641)은 회전축(RX)을 중심으로 하는 임의의 원주의 접선방향으로 연장될 수 있다. 바텀라인(641)은, 회전축(RX)을 중심으로 하는 임의의 원주를 따라 연장될 수도 있다. 바텀라인(641)이 회전축(RX)을 중심으로 하는 호(arc)를 형성할 수 있다. 바텀라인(641)은, 회전축(RX)과 수직한 수평면 상에서 호(arc)형으로 연장될 수 있다.The bottom line 641 may extend in a tangential direction of any circumference centered on the rotation axis RX. The bottom line 641 may extend along an arbitrary circumference centered on the rotation axis RX. The bottom line 641 may form an arc centered on the rotation axis RX. The bottom line 641 may extend in an arc shape on a horizontal plane perpendicular to the rotation axis RX.
바텀라인(641)은 노치(640)의 길이(NL)와 동일한 길이만큼 연장될 수 있다. 바텀라인(641)의 연장방향은 노치(640)의 연장방향일 수 있다. 바텀라인(641)의 연장방향은 리딩엣지(633) 및 부압면(632)에서 발생하는 유동 박리를 줄이고, 공기의 저항을 줄이기 위한 방향이 될 수 있다.The bottom line 641 may extend by the same length as the length NL of the notch 640 . The extending direction of the bottom line 641 may be the extending direction of the notch 640 . The extending direction of the bottom line 641 may be a direction for reducing flow separation occurring at the leading edge 633 and the negative pressure surface 632 and reducing air resistance.
바텀라인(641)은 회전축(RX)과 수직인 수평면과 0도 내지 10 도의 기울기를 가질 수 있다. 바람직하게는, 바텀라인(641)은 회전축(RX)과 수직인 수평면과 평행하게 형성될 수 있다. 이에 따라, 노치(640)에 의해 블레이드(630)의 회전에 따른 유동저항을 줄일 수 있다.The bottom line 641 may have a horizontal plane perpendicular to the rotation axis RX and an inclination of 0 degrees to 10 degrees. Preferably, the bottom line 641 may be formed parallel to a horizontal plane perpendicular to the rotation axis RX. Accordingly, the flow resistance according to the rotation of the blade 630 by the notch 640 can be reduced.
노치(640)의 깊이(ND)는 코너(644)에서 멀어질수록 작아질 수 있다. 노치(640)의 깊이(ND)는 코너(644)에서 가장 높고 코너(644)에서 멀어질수록 낮아질 수 있다.The depth ND of the notch 640 may become smaller as it moves away from the corner 644 . The depth ND of the notch 640 may be highest at the corner 644 and may decrease as it moves away from the corner 644 .
바텀라인(641)의 길이(NL)는 리딩엣지(633)의 높이(BW) 보다 길 수 있다. 바텀라인(641)의 길이(NL)가 너무 짧으면, 부압면(632)에서 발생하는 유동박리는 줄일 수 없고, 바텀라인(641)의 길이(NL)가 너무 길면, 팬의 효율이 저하되기 때문이다.The length NL of the bottom line 641 may be longer than the height BW of the leading edge 633 . If the length NL of the bottom line 641 is too short, flow separation occurring on the negative pressure surface 632 cannot be reduced, and if the length NL of the bottom line 641 is too long, the efficiency of the fan is reduced. to be.
노치(640)의 길이(NL)(바텀라인(641)의 길이(NL))는 노치(640)의 깊이(ND) 및 노치(640)의 폭(W) 보다 클 수 있다. 바람직하게는 노치(640)의 길이(NL)는 5mm 내지 6.5 mm일 수 있고, 노치(640)의 깊이(ND)는 1.5mm 내지 2.0mm 일 수 있고, 노치(640)의 폭(W)은 2.0mm 내지 2.2mm 일 수 있다.The length NL of the notch 640 (the length NL of the bottom line 641 ) may be greater than the depth ND of the notch 640 and the width W of the notch 640 . Preferably, the length NL of the notch 640 may be 5 mm to 6.5 mm, the depth ND of the notch 640 may be 1.5 mm to 2.0 mm, and the width W of the notch 640 is It may be 2.0mm to 2.2mm.
노치(640)의 길이(NL)는 노치(640)의 깊이(ND) 대비 2.5 배 내지 4.33 배일 수 있고, 노치(640)의 길이(NL)는 노치(640)의 폭(W) 대비 2.272 배 내지 3.25 배일 수 있다.The length NL of the notch 640 may be 2.5 to 4.33 times the depth ND of the notch 640 , and the length NL of the notch 640 is 2.272 times the width W of the notch 640 . to 3.25 times.
바텀라인(641)의 시작점(SP)은 리딩엣지(633)에 위치되고, 바텀라인(641)의 종착점(EP)은 부압면(632)에 위치될 수 있다. 리딩엣지(633)에서 바텀라인(641)의 시작점(SP)의 위치는 리딩엣지(633)의 중간 높이일 수 있다.The starting point SP of the bottom line 641 may be located at the leading edge 633 , and the ending point EP of the bottom line 641 may be located at the negative pressure surface 632 . The position of the starting point SP of the bottom line 641 in the leading edge 633 may be a middle height of the leading edge 633 .
시작점(SP)과 코너(644) 사이의 제 1이격거리(BD1)는, 종착점(EP)과 코너(644) 사이의 제 2이격거리(BD2)보다 작을 수 있다. The first separation distance BD1 between the start point SP and the corner 644 may be smaller than the second separation distance BD2 between the end point EP and the corner 644 .
종착점(EP)의 위치는, 부압면(632)의 전체 길이 상에서 1/5 지점 내지 1/10 지점 사이에 형성되는 것이 바람직하다.The position of the end point EP is preferably formed between 1/5 point and 1/10 point on the entire length of the negative pressure surface 632 .
바텀라인(641)과 부압면(632)이 이루는 제 1노치각도(θ6)는, 바텀라인(641)과 리딩엣지(633)가 이루는 제 2노치각도(θ7) 보다 작을 수 있다.The first notch angle θ6 between the bottom line 641 and the negative pressure surface 632 may be smaller than the second notch angle θ7 between the bottom line 641 and the leading edge 633 .
도 20을 참조하면, 리딩엣지(633)를 통과하는 공기 중 일부는 노치(640)에서 난류를 형성시켜, 나머지 공기가 블레이드(630)의 부압면(632)을 타고 유동하도록 안내할 수 있다. 또한, 노치(640)에서 형성된 난류로 인하여, 리딩엣지(633)를 통과하는 공기가 블레이드(630) 표면과 직접 마찰되지 않음으로써, 유동박리를 억제하고 블레이드(630)에서 발생되는 소음을 저감시킬 수 있다.Referring to FIG. 20 , some of the air passing through the leading edge 633 may form a turbulence in the notch 640 , and the remaining air may be guided to flow along the negative pressure surface 632 of the blade 630 . In addition, due to the turbulence formed in the notch 640, the air passing through the leading edge 633 does not directly rub against the surface of the blade 630, thereby suppressing flow separation and reducing the noise generated by the blade 630. can
이하에서는 도 21 및 도 22를 참조하여, 본 발명의 다른 실시예에 따른 팬(600)의 샤프니스(Sharpness)와 소음에 대한 작용효과를 설명한다. 도 21은 노치(640)에 의한 샤프니스의 저감효과를 나타내는 그래프이고, 도 22는 노치(640)에 의한 소음 저감효과를 나타내는 그래프이다.Hereinafter, an action effect on sharpness and noise of the fan 600 according to another embodiment of the present invention will be described with reference to FIGS. 21 and 22 . 21 is a graph showing the sharpness reduction effect by the notch 640 , and FIG. 22 is a graph showing the noise reduction effect by the notch 640 .
도 21을 참조하면, 노치(640)가 형성된 본 발명의 실시예에 따른 팬(600)의 샤프니스가, 노치(640)가 형성되지 않은 비교예에 따른 팬의 샤프니스보다 작게 형성된 것을 확인할 수 있다. 동일한 풍량일 때, 노치(640)가 형성된 본 발명의 실시예에 따른 팬(600)이 상기 비교예에 비해 작은 샤프니스를 가짐으로써, 리딩엣지(633)에서의 유동박리가 억제됨을 확인할 수 있다.Referring to FIG. 21 , it can be seen that the sharpness of the fan 600 according to the embodiment in which the notch 640 is formed is smaller than that of the fan according to the comparative example in which the notch 640 is not formed. When the air volume is the same, it can be seen that the fan 600 according to the embodiment of the present invention in which the notch 640 is formed has a smaller sharpness compared to the comparative example, thereby suppressing flow separation at the leading edge 633 .
도 22를 참조하면, 노치(640)가 형성된 본 발명의 실시예에 따른 팬(600)의 소음이, 노치(640)가 형성되지 않은 비교예에 따른 팬의 소음보다 작게 형성된 것을 확인할 수 있다. 동일한 풍량일 때, 노치(640)가 형성된 본 발명의 실시예에 따른 팬(600)이 상기 비교예에 비해 작은 소음을 가짐으로써, 송풍성능은 증가시키면서 소음은 저감시킬 수 있다.Referring to FIG. 22 , it can be seen that the noise of the fan 600 according to the embodiment in which the notch 640 is formed is smaller than that of the fan according to the comparative example in which the notch 640 is not formed. When the air volume is the same, the fan 600 according to the embodiment of the present invention in which the notch 640 is formed has less noise than the comparative example, so that the noise can be reduced while increasing the blowing performance.
이하에서는 도 23을 참조하여, 본 발명의 또 다른 실시예에 따른 팬(700)을 설명한다. 도 23은 노치(740)가 형성된 팬(700)의 형태를 도시한 것이다.Hereinafter, a fan 700 according to another embodiment of the present invention will be described with reference to FIG. 23 . 23 shows the shape of the fan 700 in which the notch 740 is formed.
본 발명의 또 다른 실시예에 따른 팬(700)은, 허브(710); 쉬라우드(720); 및 정압면(731), 부압면(732) 및 리딩엣지(733)가 각각 형성된 블레이드(730)를 포함할 수 있다. 허브(710)와 쉬라우드(720)는, 본 발명의 일 실시예에 따른 팬(500)의 허브(510), 쉬라우드(520)와 동일하므로 자세한 설명은 생략한다.The fan 700 according to another embodiment of the present invention includes a hub 710; shroud 720; and a blade 730 in which a positive pressure surface 731 , a negative pressure surface 732 , and a leading edge 733 are formed, respectively. Since the hub 710 and the shroud 720 are the same as the hub 510 and the shroud 520 of the fan 500 according to an embodiment of the present invention, a detailed description thereof will be omitted.
블레이드(730)는, 리딩엣지(733)로부터 부압면(732)을 따라 함몰되게 형성된 복수의 노치(740)가 형성될 수 있다.The blade 730 may be formed with a plurality of notches 740 that are recessed along the negative pressure surface 732 from the leading edge 733 .
블레이드(730)의 전체적인 형상 및 설계구조는 본 발명의 일 실시예에 따른 팬(500)의 블레이드(530)와 동일하고, 노치(740)의 형상 및 설계구조는 본 발명의 다른 실시예에 따른 팬(600)의 노치(640)와 동일하므로 자세한 설명은 생략한다.The overall shape and design structure of the blade 730 are the same as the blade 530 of the fan 500 according to an embodiment of the present invention, and the shape and design structure of the notch 740 are the same according to another embodiment of the present invention. Since it is the same as the notch 640 of the fan 600, a detailed description thereof will be omitted.
이하에서는 도 24 및 도 25를 참조하여, 팬어셈블리(400)의 디퓨져(440)에 대해 설명한다. 도 24는 팬어셈블리(400)의 일부분을 종방향으로 절개하여 투시한 것이고, 도 25는 디퓨져(440)를 확대하여 도시한 것이다.Hereinafter, the diffuser 440 of the fan assembly 400 will be described with reference to FIGS. 24 and 25 . 24 is a perspective view of a part of the fan assembly 400 cut in the longitudinal direction, and FIG. 25 is an enlarged view of the diffuser 440 .
팬어셈블리(400)는, 상측과 하측이 개구되고, 내측에 모터하우징(430)이 이격되어 배치되는 팬하우징(450)을 포함할 수 있다.The fan assembly 400 may include a fan housing 450 having upper and lower sides opened, and the motor housing 430 being spaced apart from each other.
디퓨져(440)는, 팬하우징(450)과 모터하우징(430) 사이에 배치될 수 있다. 디퓨져(440)는 팬하우징(450)과 모터하우징(430)을 연결할 수 있다. 디퓨져(440)는, 원주방향을 따라 서로 이격되도록 복수개가 배치될 수 있다.The diffuser 440 may be disposed between the fan housing 450 and the motor housing 430 . The diffuser 440 may connect the fan housing 450 and the motor housing 430 . A plurality of diffusers 440 may be disposed to be spaced apart from each other in the circumferential direction.
디퓨져(440)의 적어도 일부는, 반경방향을 기준으로 허브상단(510b)과 쉬라우드엣지(520b) 사이에 위치될 수 있다. 후술할 이너엣지(442)는, 허브상단(510b)보다 반경방향 외측에 위치될 수 있고, 쉬라우드엣지(520b)보다 반경방향 내측에 위치될 수 있다.At least a portion of the diffuser 440 may be positioned between the upper hub 510b and the shroud edge 520b in the radial direction. The inner edge 442, which will be described later, may be located radially outside the hub upper end 510b, and may be located radially inside the shroud edge 520b.
디퓨져(440)는 상하 방향으로 경사지게 연장될 수 있고, 에어포일(Airfoil) 형상으로 형성될 수 있다.The diffuser 440 may extend obliquely in the vertical direction, and may be formed in an airfoil shape.
디퓨져(440)는, 팬(500, 600, 700)으로부터 방사형으로 토출된 공기가 상방으로 유동하도록 안내할 수 있다.The diffuser 440 may guide the air discharged radially from the fans 500 , 600 , and 700 to flow upward.
디퓨져(440)는, 팬하우징(450)에 연결되는 아우터엣지(441)와, 모터하우징(430)에 연결되는 이너엣지(442)와, 아우터엣지(441)와 이너엣지(442)의 상측을 연결하는 어퍼엣지(443)와, 아우터엣지(441)와 이너엣지(442)의 하측을 연결하는 로어엣지(444)와, 어퍼엣지(443)와 로어엣지(444) 사이에서 상하로 연장된 제 1디퓨져면(445)와, 어퍼엣지(443)와 로어엣지(444) 사이에서 상하로 연장되고 제 1디퓨져면(445)과 대향되는 제 2디퓨져면(446)을 포함할 수 있다.The diffuser 440 includes an outer edge 441 connected to the fan housing 450, an inner edge 442 connected to the motor housing 430, and an upper side of the outer edge 441 and the inner edge 442. The upper edge 443 connecting, the lower edge 444 connecting the lower side of the outer edge 441 and the inner edge 442, and the third extending up and down between the upper edge 443 and the lower edge 444 A first diffuser surface 445 and a second diffuser surface 446 extending vertically between the upper edge 443 and the lower edge 444 and facing the first diffuser surface 445 may be included.
제 1디퓨져면(445)과 제 2디퓨져면(446)은 각각 곡면으로 형성될 수 있다.Each of the first diffuser surface 445 and the second diffuser surface 446 may be formed to have a curved surface.
제 1디퓨져면(445)은, 아우터엣지(441), 이너엣지(442), 어퍼엣지(443) 및 로어엣지(444)와 각각 연결되고, 일측을 향하도록 형성될 수 있다. 제 2디퓨져면(446)은, 아우터엣지(441), 이너엣지(442), 어퍼엣지(443) 및 로어엣지(444)와 각각 연결되고, 제 1디퓨져면(445)과 반대되는 방향을 향하도록 형성될 수 있다.The first diffuser surface 445 may be connected to the outer edge 441 , the inner edge 442 , the upper edge 443 , and the lower edge 444 , respectively, and may be formed to face one side. The second diffuser surface 446 is connected to the outer edge 441, the inner edge 442, the upper edge 443 and the lower edge 444, respectively, and faces the first diffuser surface 445 in the opposite direction. can be formed to
복수의 디퓨져(440) 각각의 제 1디퓨져면(445)은, 인접한 디퓨져(440)의 제 2디퓨져면(446)과 마주볼 수 있다. 복수의 디퓨져(440) 각각의 제 2디퓨져면(446)은, 인접한 디퓨져(440)의 제 1디퓨져면(445)와 마주볼 수 있다.A first diffuser surface 445 of each of the plurality of diffusers 440 may face a second diffuser surface 446 of an adjacent diffuser 440 . The second diffuser surface 446 of each of the plurality of diffusers 440 may face the first diffuser surface 445 of the adjacent diffuser 440 .
제 1디퓨져면(445)은 연속된 곡면으로 형성될 수 있고, 제 2디퓨져면(446)에는 복수개의 디퓨져홈(446a)이 형성될 수 있다. 디퓨져홈(446a)은 상하방향으로 연장될 수 있고, 제 2디퓨져면(446)으로부터 제 1디퓨져면(445)을 향하여 함몰되게 형성될 수 있다. 복수의 디퓨져홈(446a)은, 수평방향으로 서로 이격되게 형성될 수 있다.The first diffuser surface 445 may be formed as a continuous curved surface, and a plurality of diffuser grooves 446a may be formed in the second diffuser surface 446 . The diffuser groove 446a may extend in the vertical direction, and may be formed to be recessed from the second diffuser surface 446 toward the first diffuser surface 445 . The plurality of diffuser grooves 446a may be formed to be spaced apart from each other in the horizontal direction.
복수의 디퓨져홈(446a)들의 사이에는 제 2디퓨져면(446)으로부터 돌출된 리브(446b)가 형성될 수 있다. 디퓨져홈(446a)은 복수의 리브(446b) 사이에 함몰되어 형성될 수 있다.A rib 446b protruding from the second diffuser surface 446 may be formed between the plurality of diffuser grooves 446a. The diffuser groove 446a may be formed by being depressed between the plurality of ribs 446b.
디퓨져홈(446a)은, 제 2디퓨져면(446)의 중간높이에서 로어엣지(444)까지 연장될 수 있다.The diffuser groove 446a may extend from the middle height of the second diffuser surface 446 to the lower edge 444 .
디퓨져홈(446a)은, 제 2디퓨져면(446)에서 제 1디퓨져면(445) 측으로 오목하게 형성될 수 있다.The diffuser groove 446a may be concavely formed from the second diffuser surface 446 toward the first diffuser surface 445 .
디퓨져홈(446a)의 홈상단(446c)은, 어퍼엣지(443) 보다 하측에 위치될 수 있고, 홈하단(446d)는 로어엣지(444)와 접하도록 위치될 수 있다. 복수개의 디퓨져홈(446a)의 홈상단(446c)들은 동일한 수평면 상에 위치될 수 있다. 복수개의 홈하단(446d)은, 로어엣지(444)를 따라 아크형태로 형성될 수 있다.The groove upper end 446c of the diffuser groove 446a may be located lower than the upper edge 443 , and the groove lower end 446d may be located so as to be in contact with the lower edge 444 . The groove upper ends 446c of the plurality of diffuser grooves 446a may be located on the same horizontal plane. The plurality of groove lower ends 446d may be formed in an arc shape along the lower edge 444 .
디퓨져홈(446a)은, 상하방향으로 적어도 한 번 절곡되게 형성될 수 있다. 제 2디퓨져면(446)은 후술할 절곡부(440b)가 형성될 수 있고, 절곡부(440b)에 해당하는 위치에서 디퓨져홈(446a)은 절곡되게 형성될 수 있다.The diffuser groove 446a may be formed to be bent at least once in the vertical direction. A bent portion 440b to be described later may be formed on the second diffuser surface 446, and the diffuser groove 446a may be formed to be bent at a position corresponding to the bent portion 440b.
어퍼엣지(445)는 수평하게 연장될 수 있다. 어퍼엣지(445)이 수평하게 연장될 경우, 어퍼엣지(445)가 팬(500, 600, 700)을 통해 토출된 공기를 상측방향으로 효과적으로 안내하여 상승기류를 형성할 수 있다.The upper edge 445 may extend horizontally. When the upper edge 445 extends horizontally, the upper edge 445 may effectively guide the air discharged through the fans 500 , 600 , and 700 in the upward direction to form an upward airflow.
로어엣지(444)는 곡면형으로 형성될 수 있다. 로어엣지(444)은 하측에서 상방으로 오목하게 형성된 곡면형으로 형성될 수 있다. 로어엣지(444)는 어퍼엣지(445)를 향하여 오목하게 형성될 수 있다. 로어엣지(444)의 형상은 아크형일 수 있다. 로어엣지(444)는 디퓨져(440)의 오목한 하단을 형성할 수 있다.The lower edge 444 may be formed in a curved shape. The lower edge 444 may be formed in a curved shape concave from the lower side to the upper side. The lower edge 444 may be concave toward the upper edge 445 . The lower edge 444 may have an arc shape. The lower edge 444 may form a concave lower end of the diffuser 440 .
로어엣지(444)는, 아우터엣지(441)와 이너엣지(442)를 연결할 수 있다. 아우터엣지(441)와 이너엣지(442) 각각에 연결된 로어엣지(444)의 양측은 동일한 높이에 위치될 수 있다.The lower edge 444 may connect the outer edge 441 and the inner edge 442 . Both sides of the lower edge 444 connected to each of the outer edge 441 and the inner edge 442 may be located at the same height.
로어엣지(444)가 직면형으로 형성될 경우, 곡면형일 때에 비해, 팬(500, 600, 700)에서 토출된 공기에 상대적으로 큰 유동저항을 발생시키고, 발생된 유동저항에 의해 송풍성능이 저하되고 소음이 발생된다.When the lower edge 444 is formed in a face-to-face type, a relatively large flow resistance is generated in the air discharged from the fans 500 , 600 , 700 compared to when the lower edge 444 is formed in a facing type, and the blowing performance is lowered by the generated flow resistance. and noise is generated.
로어엣지(444)를 아크형태로 형성시킴으로서, 팬(500, 600, 700)에서 토출된 공기에 작용하는 유동저항을 최소화시킬 수 있고, 작동소음을 저감할 수 있다. By forming the lower edge 444 in an arc shape, it is possible to minimize the flow resistance acting on the air discharged from the fans 500 , 600 , and 700 , and to reduce operating noise.
로어엣지(444)를 아크형태로 형성시킴으로서, 제 1타워(220)와 제 2타워(230) 측에 공급되는 공기의 풍량 또는 풍압을 증가시킬 수 있다. By forming the lower edge 444 in an arc shape, it is possible to increase the air volume or wind pressure of the air supplied to the first tower 220 and the second tower 230 .
어퍼엣지(443)와 로어엣지(444) 사이의 길이를 제 1디퓨져길이(DL1)로 정의한다.A length between the upper edge 443 and the lower edge 444 is defined as a first diffuser length DL1.
아우터엣지(441)의 최하측을 구성하는 제 1로어포인트(441a)와 이너엣지(442)의 최하측을 구성하는 제 2로어포인트(442a)를 잇는 가상의 수평선과 로어엣지(444) 사이의 최대 이격길이를 제 2디퓨져길이(DL2)로 정의한다.Between the imaginary horizontal line connecting the first lower point 441a constituting the lowermost side of the outer edge 441 and the second lower point 442a constituting the lowermost side of the inner edge 442 and the lower edge 444 . The maximum separation length is defined as the second diffuser length DL2.
제 2디퓨져길이(DL2)는, 제 1디퓨져길이(DL1)의 10% 내지 30%로 형성될 수 있다. 제 1디퓨져길이(DL1)는 25mm일 수 있고, 제 2디퓨져길이(DL2)는 제 1디퓨져길이(DL1)의 20%인 5mm일 수 있다.The second diffuser length DL2 may be formed to be 10% to 30% of the first diffuser length DL1 . The first diffuser length DL1 may be 25 mm, and the second diffuser length DL2 may be 5 mm, which is 20% of the first diffuser length DL1.
디퓨져(440)는, 상하방향으로 굴곡지게 형성될 수 있다. 디퓨져(440)는, 어퍼엣지(443)로부터 하측으로 연장되는 제 1연장부(440a); 로어엣지(444)로부터 상측으로 연장되는 제 2연장부(440c); 및 제 1연장부(440a)와 제 2연장부(440c)를 연결하는 절곡부(440b)를 포함할 수 있다.The diffuser 440 may be formed to be curved in the vertical direction. The diffuser 440 includes a first extension 440a extending downward from the upper edge 443; a second extension portion 440c extending upwardly from the lower edge 444; and a bent portion 440b connecting the first extension 440a and the second extension 440c.
제 1디퓨져면(445)은, 상하방향으로 연속된 곡률반경분포를 가지도록 연장될 수 있다. 제 2디퓨져면(446)은, 상하방향으로 불연속된 곡률반경분포를 가지도록 연장될 수 있고, 절곡부(440b)에서 곡률반경이 불연속적일 수 있다.The first diffuser surface 445 may extend to have a continuous distribution of radii of curvature in the vertical direction. The second diffuser surface 446 may extend to have a discontinuous distribution of radius of curvature in the vertical direction, and the radius of curvature may be discontinuous at the bent portion 440b.
로어엣지(444)는, 절곡부(440b)보다 하측에 형성될 수 있고, 절곡부(440b)의 하측에서 아크형상을 가질 수 있다.The lower edge 444 may be formed below the bent portion 440b, and may have an arc shape at the lower side of the bent portion 440b.
제 1로어포인트(441a)와 절곡부(440b) 사이의 상하간격은, 제 2디퓨져길이(DL2)보다 클 수 있다. 제 2로어포인트(442a)와 절곡부(440b) 사이의 상하간격은, 제 2디퓨져길이(DL2)보다 클 수 있다.A vertical distance between the first lower point 441a and the bent portion 440b may be greater than the second diffuser length DL2. A vertical distance between the second lower point 442a and the bent portion 440b may be greater than the second diffuser length DL2.
이하에서는 도 26 및 도 27을 참조하여, 풍량과 소음에 대한 디퓨져(440)의 작용효과에 대해 설명한다. 도 26(a)는 비교예에 대하여 RPM 대비 풍량을 비교한 그래프이고, 도 26(b)는 비교예에 대하여 풍량 대비 소음을 비교한 그래프이고, 도 27(a)는 비교예에서의 주파수에 따른 소음을 나타낸 그래프이고, 도 27(b)는 본 발명의 실시예에서의 주파수에 따른 소음을 나타낸 그래프이다.Hereinafter, with reference to FIGS. 26 and 27, the effect of the diffuser 440 on air volume and noise will be described. Figure 26 (a) is a graph comparing the air volume versus RPM for the comparative example, Figure 26 (b) is a graph comparing the air volume versus noise for the comparative example, Figure 27 (a) is a frequency in the comparative example It is a graph showing noise according to the frequency of the present invention, and FIG.
비교대상 팬은 디퓨저의 하단 형상이 수평하게 형성된 경우이고, 본 실시예에 따른 팬은 디퓨져(440)의 로어엣지(444)의 형상이 아크형태이다.The comparison target fan is a case in which the bottom shape of the diffuser is formed horizontally, and in the fan according to the present embodiment, the shape of the lower edge 444 of the diffuser 440 is an arc shape.
도 26의 (a)를 참조하면, 팬의 회전수가 증가할 수록 풍량이 증가하는 것을 확인할 수 있고, 비교대상과 실시예 간의 차이가 거의 없음을 알 수 있다. Referring to (a) of FIG. 26 , it can be seen that the air volume increases as the rotation speed of the fan increases, and it can be seen that there is little difference between the comparative object and the example.
도 26의 (b)와 표 4를 참조하면, 팬의 풍량이 증가할 수록 소음이 증가함을 확인할 수 있고, 동일한 풍량을 가질 때 본 실시예에 따른 디퓨져가 비교대상에 비해 0.1dB정도의 소음이 저감되는 것을 확인할 수 있다.Referring to (b) of FIG. 26 and Table 4, it can be seen that the noise increases as the air volume of the fan increases, and when the air volume of the fan is the same, the diffuser according to this embodiment produces a noise of about 0.1 dB compared to the comparison target. It can be confirmed that this is reduced.
RPM(@10CMM)RPM (@10CMM) dB(@10CMM)dB (@10CMM) 1차 BPFPrimary BPF 3차 BPFTertiary BPF
종래 디퓨져conventional diffuser 22472247 42.142.1 29.129.1 26.626.6
아크형 디퓨져arc diffuser 22472247 42.0(↓0.1dB)42.0 (↓0.1dB) 26.526.5 26.626.6
도 27의 (a)는 종래의 편평한 하단을 갖는 디퓨져에 따른 소음그래프이고, 도 27의 (b)는 본 발명의 실시예와 같이 아크형의 하단을 갖는 디퓨져에 따른 소음그래프이다.BPF(Blade Passing Frequency)는 블레이드 통과 주파수로서, 회전 시 특정 주파수들에서 하모닉하게 발생하는 피크성 소음이다. BPF는 당업자에게 일반적인 기술내용이기 때문에 상세한 설명을 생략한다. Fig. 27 (a) is a noise graph according to a conventional diffuser having a flat lower end, and Fig. 27 (b) is a noise graph according to a diffuser having an arc-shaped lower end as in the embodiment of the present invention. BPF (Blade) Passing Frequency) is a blade passing frequency, which is a peak noise that is harmonically generated at specific frequencies during rotation. Since BPF is a general description to those skilled in the art, detailed description thereof will be omitted.
도 27의 (b)와 표 4를 참조하면, 본 실시예에 다른 디퓨져는 1차 BPF에서 비교대상에 비하여 2.6dB의 소음을 저감할 수 있다.Referring to (b) of FIG. 27 and Table 4, the diffuser according to this embodiment can reduce noise by 2.6 dB compared to the comparison target in the primary BPF.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and in the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Various modifications may be made by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.

Claims (20)

  1. 공기가 유입되는 흡입홀이 형성된 하부케이스;a lower case having a suction hole through which air is introduced;
    상기 하부케이스의 상측에 배치되고, 공기가 토출되는 토출구가 형성된 상부케이스;an upper case disposed on the upper side of the lower case and having a discharge port through which air is discharged;
    회전력을 제공하는 팬모터;a fan motor providing rotational force;
    상기 하부케이스의 내부에 배치되고, 상기 팬모터의 모터축에 고정되는 팬을 포함하고,a fan disposed inside the lower case and fixed to a motor shaft of the fan motor;
    상기 팬은,the fan,
    상기 모터축에 대하여 제 1각도로 경사지게 연장된 외면을 갖는 허브;a hub having an outer surface inclined at a first angle with respect to the motor shaft;
    상기 허브와 결합되는 복수의 블레이드; 및a plurality of blades coupled to the hub; and
    상기 모터축에 대하여 상기 제 1각도보다 큰 제 2각도로 경사지게 연장되고 상기 블레이드를 기준으로 상기 허브의 외면과 대향되는 내면을 갖는 쉬라우드를 포함하는 블로어.and a shroud extending obliquely at a second angle greater than the first angle with respect to the motor shaft and having an inner surface opposite to an outer surface of the hub with respect to the blade.
  2. 제 1항에 있어서,The method of claim 1,
    상기 허브는 반경방향 외측으로 연장되어 허브상단을 형성하고,The hub extends radially outward to form an upper end of the hub;
    상기 쉬라우드는 반경방향 외측으로 연장되어 쉬라우드엣지를 형성하고,The shroud extends radially outward to form a shroud edge,
    상기 쉬라우드엣지는, 상기 허브상단보다 반경방향 외측에 위치되는 블로어.The shroud edge is a blower located radially outward than the top of the hub.
  3. 제 1항에 있어서,The method of claim 1,
    상기 쉬라우드는,The shroud is
    원주방향으로 연장되는 림부; 및a rim portion extending in the circumferential direction; and
    상기 림부로부터 반경방향 외측으로 연장되는 지지부를 포함하고,a support portion extending radially outwardly from the rim portion;
    상기 림부는,The rim part,
    상기 허브가 반경방향 외측으로 연장되어 형성하는 허브상단보다 반경방향 외측에 위치되는 블로어.A blower positioned radially outward than an upper end of the hub formed by extending radially outwardly from the hub.
  4. 제 1항에 있어서,The method of claim 1,
    상기 허브는,The hub is
    상기 허브의 중심에 상하측으로 각각 돌출되게 형성되고, 상기 모터축이 삽입되는 축결합부;a shaft coupling part formed to protrude upward and downward from the center of the hub, respectively, into which the motor shaft is inserted;
    상기 축결합부로부터 외측으로 연장되는 제 1경사면; 및a first inclined surface extending outwardly from the shaft coupling part; and
    상기 제 1경사면으로부터 외측으로 경사지게 연장되는 제 2경사면을 포함하는 블로어.A blower comprising a second inclined surface extending obliquely outward from the first inclined surface.
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 축결합부는,The shaft coupling portion,
    상기 허브의 중심에서 하측으로 돌출되어 허브하단을 형성하고, 상측으로 돌출되어 허브돌출부를 형성하고,It protrudes downward from the center of the hub to form a lower end of the hub, and protrudes upward to form a hub protrusion,
    상기 쉬라우드는,The shroud is
    상기 허브하단과 상기 허브돌출부 사이 높이에 위치되는 쉬라우드엣지가 형성된 블로어.A blower having a shroud edge positioned at a height between the lower end of the hub and the protrusion of the hub.
  6. 제 4항에 있어서,5. The method of claim 4,
    상기 쉬라우드는,The shroud is
    상기 축결합부가 상기 허브의 중심에서 하측으로 돌출되어 형성하는 허브하단과 상기 제 1안내면 사이 높이에 위치되는 쉬라우드엣지가 형성된 블로어.A blower having a shroud edge positioned at a height between the lower end of the hub formed by the shaft coupling portion protruding downward from the center of the hub and the first guide surface.
  7. 제 4항에 있어서,5. The method of claim 4,
    상기 쉬라우드는,The shroud is
    원주방향으로 연장되는 림부와, 상기 림부로부터 외측으로 연장되는 지지부와, 상기 림부와 상기 지지부를 연결하는 림부상단을 포함하고,a rim portion extending in the circumferential direction, a support portion extending outwardly from the rim portion, and an upper end of the rim portion connecting the rim portion and the support portion,
    상기 축결합부는,The shaft coupling portion,
    상기 림부상단보다 상측에 위치되는 블로어.A blower positioned above the upper end of the rim.
  8. 제 1항에 있어서,The method of claim 1,
    상기 쉬라우드의 수평면에 대한 경사각은, 35도 내지 50도 범위 내에서 형성된 블로어.The angle of inclination with respect to the horizontal plane of the shroud is a blower formed within the range of 35 degrees to 50 degrees.
  9. 제 1항에 있어서,The method of claim 1,
    상기 허브와 상기 쉬라우드 사이에는 확장각이 형성된 블로어.An expansion angle is formed between the hub and the shroud.
  10. 제 9항에 있어서,10. The method of claim 9,
    상기 확장각은, 11도 내지 26도 범위 내에서 형성된 블로어.The expansion angle is a blower formed within the range of 11 degrees to 26 degrees.
  11. 공기가 유입되는 흡입홀이 형성된 하부케이스;a lower case having a suction hole through which air is introduced;
    상기 하부케이스의 상측에 배치되고, 공기가 토출되는 토출구가 형성된 상부케이스;an upper case disposed on the upper side of the lower case and having a discharge port through which air is discharged;
    상기 하부케이스의 내부에 배치되고, 복수의 블레이드를 구비한 팬;a fan disposed inside the lower case and having a plurality of blades;
    상기 팬의 하류측에 배치되고, 상하방향으로 연장된 디퓨져를 포함하고,and a diffuser disposed on the downstream side of the fan and extending in the vertical direction,
    상기 디퓨져는,The diffuser is
    상측으로 오목한 하단을 포함하는 블로어.A blower with an upwardly concave bottom.
  12. 제 11항에 있어서,12. The method of claim 11,
    상기 팬이 수용되는 팬하우징; 및a fan housing in which the fan is accommodated; and
    상기 팬에 동력을 부여하는 팬모터가 수용되는 모터하우징을 더 포함하고,Further comprising a motor housing in which a fan motor for applying power to the fan is accommodated,
    상기 디퓨져는,The diffuser is
    상기 팬하우징과 상기 모터하우징 사이에 배치되는 블로어.A blower disposed between the fan housing and the motor housing.
  13. 제 11항에 있어서,12. The method of claim 11,
    상기 디퓨져는,The diffuser is
    상하방향으로 굴곡지게 연장되는 블로어.A blower that extends curved in the vertical direction.
  14. 제 11항에 있어서,12. The method of claim 11,
    상기 디퓨져는,The diffuser is
    상단으로부터 하측으로 굴곡지게 연장되는 제 1연장부;a first extension extending curvedly from the upper end to the lower side;
    상기 하단으로부터 상측으로 연장되는 제 2연장부; 및a second extension extending upwardly from the lower end; and
    상기 제 1연장부와 상기 제 2연장부를 연결하는 절곡부를 포함하는 블로어.A blower including a bent portion connecting the first extension and the second extension.
  15. 제 11항에 있어서,12. The method of claim 11,
    상기 팬은,the fan,
    팬모터의 모터축이 삽입되는 허브와, 상기 허브의 하측에 이격되게 배치되는 쉬라우드를 포함하고,A hub into which the motor shaft of the fan motor is inserted, and a shroud spaced apart from the lower side of the hub,
    상기 디퓨져는,The diffuser is
    적어도 일부가 반경방향을 기준으로, 상기 허브와 상기 쉬라우드 사이에 위치되는 블로어.A blower at least partially positioned between the hub and the shroud with respect to a radial direction.
  16. 제 11항에 있어서,12. The method of claim 11,
    상측으로 오목하게 형성된 하단의 높이는, 상기 디퓨져 전체 높이의 10% 내지 30% 범위 내에서 형성된 블로어.The height of the lower end concave upwardly is formed within the range of 10% to 30% of the total height of the diffuser.
  17. 제 11항에 있어서,12. The method of claim 11,
    상기 디퓨져는,The diffuser is
    상하방향으로 연장되고, 상기 하단의 연장방향을 따라 서로 이격된 복수의 디퓨져홈이 형성되고,A plurality of diffuser grooves extending in the vertical direction and spaced apart from each other along the extending direction of the lower end are formed,
    상기 복수의 디퓨져홈 사이에 리브가 형성된 블로어.A blower having ribs formed between the plurality of diffuser grooves.
  18. 제 17항에 있어서,18. The method of claim 17,
    상기 디퓨져홈의 홈하단은, 상기 디퓨져의 하단과 접하도록 형성되는 블로어.The lower end of the groove of the diffuser groove is a blower formed to contact the lower end of the diffuser.
  19. 제 17항에 있어서,18. The method of claim 17,
    상기 디퓨져홈의 홈상단은, 상기 디퓨져 상단의 하측에 이격되게 형성되는 블로어.The upper groove of the diffuser groove is a blower formed to be spaced apart from the lower side of the upper end of the diffuser.
  20. 제 17항에 있어서,18. The method of claim 17,
    상기 복수의 디퓨져홈의 홈상단 각각은, 서로 동일한 수평면 상에 위치되는 블로어.Each of the upper grooves of the plurality of diffuser grooves is a blower positioned on the same horizontal plane.
PCT/KR2020/017875 2019-12-09 2020-12-08 Blower WO2021118210A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20898981.4A EP4074980A4 (en) 2019-12-09 2020-12-08 Blower
US17/783,385 US20230051322A1 (en) 2019-12-09 2020-12-08 Blower
CN202080085128.6A CN114829782B (en) 2019-12-09 2020-12-08 Blower fan

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2019-0162890 2019-12-09
KR1020190162890A KR102630061B1 (en) 2019-12-09 2019-12-09 Mixed flow fan
KR10-2020-0065091 2020-05-29
KR1020200065091A KR102630058B1 (en) 2020-05-29 2020-05-29 Fan for Air conditoner
KR10-2020-0066278 2020-06-02
KR1020200066279A KR102644819B1 (en) 2020-06-02 2020-06-02 Air cean fan
KR10-2020-0066279 2020-06-02
KR1020200066280A KR102658127B1 (en) 2020-06-02 2020-06-02 Air cean fan
KR10-2020-0066280 2020-06-02
KR1020200066278A KR102658126B1 (en) 2020-06-02 2020-06-02 Air cean fan
KR10-2020-0129518 2020-10-07
KR1020200129518A KR102655312B1 (en) 2020-10-07 2020-10-07 air clean FAN

Publications (1)

Publication Number Publication Date
WO2021118210A1 true WO2021118210A1 (en) 2021-06-17

Family

ID=76328948

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2020/017873 WO2021118208A1 (en) 2019-12-09 2020-12-08 Blower
PCT/KR2020/017875 WO2021118210A1 (en) 2019-12-09 2020-12-08 Blower

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017873 WO2021118208A1 (en) 2019-12-09 2020-12-08 Blower

Country Status (4)

Country Link
US (2) US11959488B2 (en)
EP (2) EP4074981A4 (en)
CN (2) CN114829782B (en)
WO (2) WO2021118208A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739760B2 (en) * 2020-06-02 2023-08-29 Lg Electronics Inc. Blower
US20240060507A1 (en) * 2022-08-22 2024-02-22 FoxRES LLC Sculpted Low Solidity Vaned Diffuser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329871A1 (en) * 2008-02-22 2010-12-30 Horton, Inc. Hybrid flow fan apparatus
KR101331487B1 (en) 2009-03-04 2013-11-20 다이슨 테크놀러지 리미티드 A fan assembly
JP2015040541A (en) * 2013-08-23 2015-03-02 日立アプライアンス株式会社 Electric blower and vacuum cleaner including the same
US20150322964A1 (en) * 2014-05-07 2015-11-12 Johnson Electric S.A. Diffuser
KR102043068B1 (en) * 2015-10-30 2019-11-11 엘지전자 주식회사 Mechanical fan and Air conditioner comprising the same
KR102053227B1 (en) * 2018-05-31 2019-12-06 엘지전자 주식회사 Air cleaning apparatus
KR102058859B1 (en) 2012-07-02 2019-12-27 삼성전자주식회사 Indoor Unit of Air Conditioner

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1141198A (en) 1966-03-04 1969-01-29 Colchester Woods Improvements in or relating to impellers, especially for ventilators
JP2924372B2 (en) 1991-11-26 1999-07-26 松下電器産業株式会社 Axial fan motor fan
EP0945625B1 (en) * 1998-03-23 2004-03-03 SPAL S.r.l. Axial flow fan
JP4035237B2 (en) * 1998-09-30 2008-01-16 東芝キヤリア株式会社 Axial blower
JP4374897B2 (en) * 2003-05-12 2009-12-02 株式会社日立製作所 Axial fan
US7381129B2 (en) 2004-03-15 2008-06-03 Airius, Llc. Columnar air moving devices, systems and methods
EP2980414B1 (en) * 2005-10-06 2020-05-27 Mitsubishi Electric Corporation Turbofan and air conditioner
JP4973249B2 (en) 2006-03-31 2012-07-11 ダイキン工業株式会社 Multi-wing fan
CN101535657B (en) * 2006-05-31 2013-06-05 罗伯特·博世有限公司 Axial fan assembly and axial fan
DE102006055869A1 (en) * 2006-11-23 2008-05-29 Rolls-Royce Deutschland Ltd & Co Kg Rotor and guide blades designing method for turbo-machine i.e. gas turbine engine, involves running skeleton curve in profile section in sectional line angle distribution area lying between upper and lower limit curves
JP4962079B2 (en) 2007-03-26 2012-06-27 パナソニック株式会社 Blower impeller
US20090155076A1 (en) * 2007-12-18 2009-06-18 Minebea Co., Ltd. Shrouded Dual-Swept Fan Impeller
JP5357492B2 (en) * 2008-10-16 2013-12-04 三菱重工業株式会社 Propeller fan
US8128359B2 (en) * 2009-03-12 2012-03-06 Listan Asia Inc. Air fan module and a flow directing blade assembly thereof
US20160052621A1 (en) * 2009-07-10 2016-02-25 Peter Ireland Energy efficiency improvements for turbomachinery
US8317497B2 (en) 2010-03-03 2012-11-27 Ametek, Inc. Motor-fan assembly having a tapered stationary fan with a concave underside
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
KR101761311B1 (en) 2010-09-02 2017-07-25 엘지전자 주식회사 A turbo fan for air conditioner
JP5111582B2 (en) 2010-09-28 2013-01-09 日立アプライアンス株式会社 Centrifugal fan, air conditioner equipped with the same and centrifugal fan mold
JP2012255413A (en) * 2011-06-10 2012-12-27 Panasonic Corp Electric blower and vacuum cleaner using the same
JP5828134B2 (en) 2011-07-06 2015-12-02 パナソニックIpマネジメント株式会社 Blower
JP5929522B2 (en) * 2012-05-31 2016-06-08 株式会社デンソー Axial blower
US10125783B2 (en) * 2013-02-25 2018-11-13 Greenheck Fan Corporation Fan assembly and fan wheel assemblies
KR101645178B1 (en) 2013-05-10 2016-08-03 엘지전자 주식회사 Centrifugal fan and manufacturing method thereof
DE102014006756A1 (en) * 2014-05-05 2015-11-05 Ziehl-Abegg Se Impeller for diagonal or centrifugal fans, injection molding tool for producing such an impeller and device with such an impeller
KR20150133077A (en) * 2014-05-19 2015-11-27 엘지전자 주식회사 Brower apparatus and air conditioner having the same
JP5964885B2 (en) * 2014-06-11 2016-08-03 株式会社シーエー産商 Fanless fan
JP6409666B2 (en) * 2014-09-18 2018-10-24 株式会社デンソー Blower
GB2535462B (en) 2015-02-13 2018-08-22 Dyson Technology Ltd A fan
CN107407290B (en) * 2015-04-08 2019-07-26 雷顿股份公司 Fan blade and correlation technique
JP6621194B2 (en) * 2015-06-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. Turbofan and blower using the turbofan
CN107850083B (en) 2015-08-10 2021-05-28 三菱电机株式会社 Blower and air conditioner equipped with same
KR102032192B1 (en) 2015-10-23 2019-10-15 삼성전자주식회사 Air Conditioner
KR102381724B1 (en) * 2015-10-30 2022-04-01 엘지전자 주식회사 apparatus for both humidification and air cleaning
EP3163178B1 (en) * 2015-10-30 2020-10-07 LG Electronics Inc. Air conditioner
EP3211343B1 (en) 2016-02-26 2020-09-09 LG Electronics Inc. Air cleaner
KR102021391B1 (en) 2016-06-13 2019-09-16 엘지전자 주식회사 Air cleaning apparatus
CN206877265U (en) 2017-06-26 2018-01-12 华北电力大学(保定) A kind of Novel bladeless fan radiator for high-performance CPU
CN108105152B (en) * 2017-12-11 2024-05-14 珠海格力电器股份有限公司 Cross-flow fan blade, cross-flow fan blade, indoor unit and air conditioner
CN207761990U (en) 2017-12-28 2018-08-24 浙江绍兴苏泊尔生活电器有限公司 Axial flow fan and induction cooker
CN112204261B (en) * 2018-03-27 2022-11-11 Lg电子株式会社 Mixed flow fan and fan assembly
DE102020114387A1 (en) * 2020-05-28 2021-12-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan wheel with three-dimensionally curved impeller blades

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329871A1 (en) * 2008-02-22 2010-12-30 Horton, Inc. Hybrid flow fan apparatus
KR101331487B1 (en) 2009-03-04 2013-11-20 다이슨 테크놀러지 리미티드 A fan assembly
KR102058859B1 (en) 2012-07-02 2019-12-27 삼성전자주식회사 Indoor Unit of Air Conditioner
JP2015040541A (en) * 2013-08-23 2015-03-02 日立アプライアンス株式会社 Electric blower and vacuum cleaner including the same
US20150322964A1 (en) * 2014-05-07 2015-11-12 Johnson Electric S.A. Diffuser
KR102043068B1 (en) * 2015-10-30 2019-11-11 엘지전자 주식회사 Mechanical fan and Air conditioner comprising the same
KR102053227B1 (en) * 2018-05-31 2019-12-06 엘지전자 주식회사 Air cleaning apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4074980A4

Also Published As

Publication number Publication date
EP4074980A4 (en) 2024-05-15
US20230051322A1 (en) 2023-02-16
EP4074981A1 (en) 2022-10-19
CN114867944A (en) 2022-08-05
CN114829782A (en) 2022-07-29
WO2021118208A1 (en) 2021-06-17
CN114829782B (en) 2024-04-05
EP4074981A4 (en) 2024-02-21
EP4074980A1 (en) 2022-10-19
US11959488B2 (en) 2024-04-16
US20230015272A1 (en) 2023-01-19
CN114867944B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2021118210A1 (en) Blower
WO2016178521A1 (en) Air conditioner and method for controlling the same
WO2017179925A1 (en) Dust collecting apparatus and vacuum cleaner having same
WO2015099350A1 (en) Cleaning device
WO2018066805A1 (en) Washing and drying machine
WO2020214004A1 (en) Condensing duct, and washing and drying machine including the same
WO2019212189A1 (en) Nozzle of cleaner
WO2021107696A1 (en) Air conditioner
WO2018217069A1 (en) Ceiling type air conditioner
WO2019045221A1 (en) Flow generating device
WO2017074142A1 (en) Humidifying and cleaning device
WO2019045222A1 (en) Flow generating device
WO2022025363A1 (en) Fan motor and hair dryer comprising same
WO2021177507A1 (en) Blower
WO2019045212A1 (en) Flow generating device
WO2019013506A1 (en) Efem and efem system
WO2019045226A1 (en) Flow generating device
WO2017074141A1 (en) Apparatus for humidification and purification
WO2017074132A1 (en) Humidifying and cleaning device
WO2021182733A1 (en) Fan module, and portable air purifier having same
WO2021157779A1 (en) Portable air purifier
WO2021149872A1 (en) Portable air purifier and fan module provided therein
WO2018105815A1 (en) Gas sensor
WO2019221491A1 (en) Flow generating device
WO2023033477A1 (en) Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020898981

Country of ref document: EP

Effective date: 20220711