WO2021118193A1 - 비분산적외선 방식의 이산화탄소 가스센서 - Google Patents

비분산적외선 방식의 이산화탄소 가스센서 Download PDF

Info

Publication number
WO2021118193A1
WO2021118193A1 PCT/KR2020/017792 KR2020017792W WO2021118193A1 WO 2021118193 A1 WO2021118193 A1 WO 2021118193A1 KR 2020017792 W KR2020017792 W KR 2020017792W WO 2021118193 A1 WO2021118193 A1 WO 2021118193A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
infrared sensor
optical waveguide
sensor
carbon dioxide
Prior art date
Application number
PCT/KR2020/017792
Other languages
English (en)
French (fr)
Inventor
박광범
이대성
임채록
송춘곤
윤기열
김석만
Original Assignee
주식회사 태성환경연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태성환경연구소 filed Critical 주식회사 태성환경연구소
Priority to US17/617,475 priority Critical patent/US20220236175A1/en
Publication of WO2021118193A1 publication Critical patent/WO2021118193A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present invention relates to a non-dispersive infrared type carbon dioxide gas sensor, and more particularly, to an infrared optical type gas sensor for selectively detecting a gas absorbing infrared light using non-dispersive infrared light, which is a specific infrared wavelength band. .
  • Existing gas sensors are a contact-type method that measures changes in physical properties that occur when gas molecules are adsorbed to a detection material and converts them into concentrations.
  • semiconductor-type gas sensors using metal chemicals and electrochemical gas sensors using electrolytes. have.
  • the response speed is fast and the weight can be reduced.
  • an optical method with high measurement accuracy and gas selectivity has recently been spotlighted by measuring the light absorption of gas molecules using a gas sensor method and converting it into a concentration.
  • NDIR non-dispersive infrared
  • the non-dispersive infrared type gas sensor has a relatively high component cost, thus lowering productivity, and has disadvantages in that it is impossible to measure monoatomic molecular gas.
  • a single power differential amplifier circuit having a high amplification ratio is configured in the non-dispersive infrared gas sensor. At this time, the initial output value of the measuring infrared detector and the reference infrared detector is large due to a large deviation. There is a problem in that a region in which the measurement of gas concentration is impossible occurs.
  • the present invention is to solve the problems of the prior art described above, and an object of the present invention is to adjust the intensity of infrared rays incident on the dual infrared sensor through the rotation of the infrared tilt mirror constituting the optical system of the non-dispersive infrared gas sensor. By doing so, it is to provide a carbon dioxide gas sensor capable of more stably driving gas measurement.
  • One aspect of the present invention is an optical fixing mechanism provided with an optical waveguide formed along the outer circumference of a circle; an infrared light source part installed at one end of the optical waveguide; an infrared sensor unit installed in the central space of the optical fixing mechanism and connected to the other end of the optical waveguide; an inclined mirror unit installed on the upper end of the infrared sensor unit and having a lower end mirror for injecting infrared rays reaching the other end of the optical waveguide into the infrared sensor unit; and a device cover part enclosing the upper part of the optical fixing mechanism and having a plurality of gas holes formed therein to allow gas to enter and exit the optical waveguide, wherein the infrared sensor part selectively passes infrared rays of a wavelength band to be measured It provides a carbon dioxide gas sensor of a non-dispersive infrared method, comprising a first infrared sensor having a filter, and a second infrared sensor having a filter that selectively passes infrare
  • the inclined mirror unit is installed to be rotatable in a clockwise or counterclockwise direction with the center of the infrared sensor unit as an axis to adjust the infrared incident area to the first infrared sensor and the second infrared sensor.
  • the optical fixing mechanism installed at the other end of the optical waveguide, may further include a light reflecting surface for refracting the traveling path of infrared rays into the central space.
  • the instrument cover part, a plurality of gas holes along the upper portion of the circular optical waveguide may be formed to be spaced apart at regular intervals.
  • the inner surface of the optical waveguide or the lower mirror may be coated with gold (Au).
  • the infrared sensor unit, the first infrared sensor and the second infrared sensor may form a single power differential amplifier circuit to indicate the output voltage (V 0 ).
  • a control arithmetic unit for controlling the clockwise or counterclockwise rotation of the inclined mirror unit, the control arithmetic unit, the detection voltage (V 1 ) of the first infrared sensor and the second infrared sensor the detected voltage by receiving the data from the (V 2) of the stage output voltage (V 0) according to the power differential amplifier circuit is necessary in order to have a positive value (+) of the first infrared sensor detects a voltage (V 1)
  • the change amount may be calculated and a control signal for the rotation direction or range may be transmitted to the inclined mirror unit.
  • the difference between the initial output value of the measurement infrared detector and the reference infrared detector of the dual infrared sensor used in the non-dispersive infrared sensor can be corrected by a simple rotational operation of the inclined mirror, so gas measurement is impossible One condition can be solved and the gas can be measured more stably.
  • FIG. 2 is a projected side view of the non-dispersive infrared type carbon dioxide gas sensor of FIG. 1 .
  • 3 (a) to (c) are regular views showing the change in the incident area of the infrared sensor unit according to the counterclockwise rotation of the inclined mirror unit according to an embodiment of the present invention as a hatched region.
  • FIG. 4 is a circuit diagram showing a single power differential amplifier circuit formed by the dual infrared sensor of the infrared sensor unit according to an embodiment of the present invention.
  • FIG. 1 (a) to (d) are regular views showing the non-dispersive infrared type carbon dioxide gas sensor according to the assembly procedure according to an embodiment of the present invention
  • FIG. 2 is the non-dispersive infrared type carbon dioxide gas of FIG. 1 .
  • a projection side view of the sensor is shown respectively.
  • the non-dispersive infrared carbon dioxide gas sensor has an optical fixing mechanism 10, an infrared light source unit 20, an infrared sensor unit 30, an inclined mirror unit 40 and a mechanism.
  • the cover portion 50 is included as a configuration constituting the basic structure of the invention.
  • the gas detection method of the carbon dioxide gas sensor according to the present invention is characterized in that it is a non-dispersive infrared (hereinafter referred to as 'NDIR').
  • 'NDIR' non-dispersive infrared
  • This is a method of calculating the concentration of carbon dioxide by measuring how much carbon dioxide molecules absorb the amount of light passing through the test gas. Since the NDIR method is obvious to those of ordinary skill in the art to which the present invention pertains, a detailed description thereof will be omitted.
  • Figure 1 (a) shows a state in which the infrared light source unit 20 is installed in the optical fixing mechanism 10 of the present invention.
  • the optical fixing mechanism 10 may be formed in a circular shape as shown in the configuration constituting the body frame of the carbon dioxide gas sensor according to the present invention.
  • a space 10b into which the infrared sensor unit 30 can be inserted is provided in the center, and a groove forming the optical waveguide 10a, which is a path through which infrared rays travel, may be formed along the outer edge.
  • One end of the optical waveguide (10a) is formed to be connected to the central space (10b) installed in the infrared sensor unit (30).
  • the optical waveguide 10a has a concentric circle with the central space 10b, and may be formed in a structure surrounding the central space 10b.
  • the infrared light source unit 20 is configured to emit infrared light necessary for gas measurement, and is installed at one end of the optical waveguide 10a opposite to the central space 10b in which the infrared sensor unit 30 is installed. Infrared rays emitted from the infrared light source unit 20 are reflected multiple times along the optical waveguide 10a and are incident on the infrared sensor unit 30 .
  • the optical waveguide 10a may be coated with gold (Au) in order to increase the reflection efficiency of infrared rays, which are multi-reflected from the inside.
  • Au gold
  • the optical fixing mechanism 10 may further include a light reflecting surface 10c that is installed at the other end of the optical waveguide 10a and refracts the traveling path of infrared rays to the central space 10b. have.
  • Figure 1 (b) shows a state in which the infrared light source unit 20 and the infrared sensor unit 30 are installed in the optical fixing mechanism 10 of the present invention.
  • the infrared sensor unit 30 is installed in the space 10b formed in the center of the optical fixing mechanism 10 described above. It is configured to receive infrared rays traveling along the optical waveguide 10a and sense the concentration of carbon dioxide.
  • the infrared sensor unit 30 is composed of a dual infrared sensor including a first infrared sensor 31 and a second infrared sensor 32 having different purposes. characterized. More specifically, a first infrared sensor 31 having a filter that can selectively pass infrared rays in a wavelength band to be measured, and a first infrared sensor 31 having a filter that can selectively pass infrared rays in a wavelength band that is not absorbed Two infrared sensors 32 may be configured to be arranged side by side.
  • the first infrared sensor 31 serves as a measurement infrared detector, and a first window 31a made of a narrow band filter capable of selectively passing infrared rays of a measurement wavelength band absorbed by gas is installed on the upper surface.
  • the second infrared sensor 32 serves as a reference infrared detector, and a second window 32a consisting of a narrow band filter capable of selectively passing infrared rays of a specific reference wavelength band that is not absorbed by gas is installed on the upper surface. do.
  • the first infrared sensor 31 and the second infrared sensor 32 constituting the dual infrared sensor may show a difference in the output of the initial detection.
  • there may be inconveniences such as having to modify the circuit every time, but this can be easily corrected by the rotation structure according to an embodiment of the inclined mirror unit 40 to be described later.
  • Fig. 1 (c) shows the direction P of the infrared rays along the optical waveguide 10a in a state in which the inclined mirror unit 40 is installed on the upper part of the infrared sensor unit 30 of the present invention.
  • the inclined mirror unit 40 is installed to surround a portion of the upper end of the infrared sensor unit 30 , and includes a lower mirror 40a for refracting infrared rays traveling along the optical waveguide 10a. More specifically, it has a predetermined area overlapping the windows 31a and 32a formed on the upper surface of the infrared sensor unit 30, and the lower mirror 40a is the infrared sensor unit ( 30) to be refracted.
  • the lower mirror 40a may be coated with gold (Au) in order to increase the reflective efficiency of infrared rays refracted in the infrared sensor unit 30 direction.
  • Au gold
  • a flat surface, a concave curved surface, or a parabolic shape may be applied.
  • the inclined mirror unit 40 may be positioned so as to surround both the first window 31a and the second window 32a of the infrared sensor unit 30, and clockwise or counterclockwise from it. It is formed to be rotatable, so that the incident area of infrared rays can be adjusted. A detailed description thereof will be given later.
  • Figure 1 (d) shows a state in which the cover-coupled mechanism cover 50 to the optical fixing mechanism 10 of the present invention.
  • the mechanism cover 50 is installed on the upper end of the optical fixing mechanism 10, the optical fixing mechanism 10 and the cover-coupled. Accordingly, the lower surface along the outer edge of the instrument cover part 50 forms the optical waveguide 10a together with the groove formed along the outer edge of the optical fixing mechanism 10 .
  • the instrument cover portion 50 of the present invention is characterized in that a plurality of gas holes (50a) through which the gas to be detected can enter and exit is formed. That is, a gas to be detected can be smoothly introduced into and out of the optical waveguide 10a through the plurality of gas holes 50a.
  • the plurality of gas holes 50a may be formed to be spaced apart from each other at regular intervals along the circular optical waveguide 10a. This is to ensure that the concentration of the detection gas entering and leaving the path of the optical waveguide 10a is constant.
  • the inclined mirror unit 40 is rotatably installed in a clockwise or counterclockwise direction based on the center of the infrared sensor unit 30, and the first infrared sensor 31 and It may be characterized in that the infrared incident area to the second infrared sensor 32 is adjusted.
  • the output of each of the first infrared sensor 31 and the second infrared sensor 32 increases.
  • the carbon dioxide gas sensor receives the detection data of the infrared sensor unit 30, the operation control unit ( 60, not shown) may be further included.
  • 3A shows a state in which the inclined mirror unit 40 overlaps all of the windows 31a and 32a of the infrared sensor unit 30 according to an embodiment of the present invention. This is a position corresponding to the line A-A′ shown through (d) of FIG. 1 .
  • the first infrared sensor 31 and the second infrared sensor 32 have the same incident area from the reflective surface.
  • the inclined mirror unit 40 rotates counterclockwise, it can be seen that the incident areas of the windows of the first infrared sensor 31 and the second infrared sensor 32 are greatly reduced. can That is, the deviation of the initial output values of the first infrared sensor 31 and the second infrared sensor 32 may be corrected through the clockwise or counterclockwise rotation structure of the inclined mirror unit 40 as described above.
  • FIG. 4 is a circuit diagram of a single power differential amplifier circuit formed by the dual infrared sensor of the infrared sensor unit 30 according to an embodiment of the present invention in order to measure the weak signal of the dual infrared sensor.
  • the first infrared sensor 31 and the second infrared sensor 32 receives two input signals composed of a single power supply and outputs a difference between the two input signals. It may be a differential amplifier circuit. This is to output the signal difference at a high amplification ratio so that the weak signal of the infrared sensor can be measured.
  • the amplification ratio (Gain) of the corresponding differential amplifier circuit is the ratio of R 3 to R 1 ( ) becomes At this time, the output voltage V 0 of the single power differential amplifier circuit is calculated as in Equation 1 below.
  • V 1 is a voltage value detected by the first infrared sensor 31
  • V 2 is a voltage value detected by the second infrared sensor 32
  • V com is preset and input to the control operation unit each of the predetermined voltage values. Information on each of the detected or input voltage values is provided as operation data of the control operation unit.
  • the detection voltage value V 1 of the first infrared sensor 31 decreases.
  • the detection voltage value (V 2 ) of the second infrared sensor 32 is maintained at a constant value without change.
  • the detection voltage value (V 1 ) of the first infrared sensor 31 is greater than a predetermined value or more than the detection voltage value (V 2 ) of the second infrared sensor 32 , the value of the right term of the above equation (1) This becomes a negative (-) value.
  • the output voltage (V 0 ) of the single-supply differential amplifier circuit outputs a value of 0V.
  • a non-dispersive infrared type carbon dioxide gas sensor according to the present invention has a gas measurement impossible region in which gas cannot be measured.
  • the non-dispersive infrared type carbon dioxide gas sensor of the present invention in an initial state without gas rotates the inclined mirror unit 40 clockwise or counterclockwise as shown in FIG.
  • the intensity of infrared rays incident to the infrared sensor unit 30 may be adjusted.
  • the inclined mirror unit 40 adjusts the intensity of the infrared rays incident on each of the first infrared sensor 31 and the second infrared sensor 32, so that the right term of the above equation (1) is positive (+) in the initial state. It can be adjusted to output a value. As a result, the difference in the output values at the initial detection stage can be easily corrected by a simple rotating operation of the inclined mirror unit 40 without a separate circuit correction or pre-processing system. Accordingly, it is possible to solve the problem of inability to measure the initial gas concentration and, at the same time, increase productivity as a gas sensor for mass production.
  • the control operation unit 60 receives the detection voltage V 1 of the first infrared sensor 31 and the detection voltage value V 2 of the second infrared sensor 32 described above, respectively. Therefore, based on this, the detection voltage (V 1 ) of the first infrared sensor 31 required for the output voltage (V 0 ) by the single power differential amplifier circuit according to Equation (1) to have a positive (+) value. ) to calculate the amount of change.
  • control calculation unit 60 receives a control signal for a rotation direction or a rotation range required for the inclined mirror unit 40 in order to satisfy the calculated change amount of the detection voltage V 1 of the first infrared sensor 31 . It can be formed as a module that transmits.
  • the carbon dioxide gas sensor according to the present invention eliminates the gas measurement impossible region caused by the difference between the initial output values of the measurement infrared detector and the reference infrared detector of the dual infrared sensor used in the non-dispersive infrared sensor. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명의 일 실시예는 원형의 외곽을 따라 형성된 광도파관이 마련된 광학고정기구; 상기 광도파관의 일단에 설치되는 적외선광원부; 상기 광학고정기구의 중심공간에 설치되며, 상기 광도파관의 타단과 연결되는 적외선센서부; 상기 적외선센서부의 상단에 설치되며, 상기 광도파관의 타단에 도달한 적외선을 상기 적외선센서부로 입사시키는 하단미러를 구비하는 경사미러부; 및 상기 광학고정기구의 상부를 감싸되, 상기 광도파관 내로 가스가 출입할 수 있도록 하는 복수 개의 가스홀이 형성된 기구 커버부를 포함하되, 상기 적외선센서부는, 측정하는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제1적외선센서와, 흡수되지 않는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제2적외선센서를 포함하는, 비분산적외선 방식의 이산화탄소 가스센서을 제공한다.

Description

비분산적외선 방식의 이산화탄소 가스센서
본 발명은 비분산적외선 방식의 이산화탄소 가스센서에 관한 것으로, 더욱 상세하게는 특정 적외선 파장 대역인 비분산적외선을 이용하여 적외선을 흡수하는 가스를 선택적으로 검출하기 위한 적외선 광학 방식의 가스센서에 관한 것이다.
기존의 가스센서는 가스 분자가 검지 물질에 흡착하게 되면 발생하는 물성변화를 측정하여 이를 농도로 환산하는 접촉식 방식으로, 금속화학물을 이용한 반도체식 가스센서, 전해질을 이용한 전기화학식 가스센서 등이 있다. 이러한 접촉식 가스센서의 경우에는 측정 가능한 가스의 종류가 많으며, 응답속도가 빠르고, 경량화가 가능하다는 장점이 있다.
다만 측정 정확성 및 가스 선택성이 떨어지며, 더욱이 금속산화물 또는 전해물질 등의 감지물질이 가스와 직접적으로 접촉 반응하기 때문에, 감지물질의 열화로 인해 사용 수명이 짧다는 문제가 있다. 또한, 대기중에 존재하는 수분은 대부분의 감지물질과 반응하여 탐지하고자 하는 가스의 탐지를 방해하는 문제점을 갖고 있어, 안정적으로 가스 검출을 위해서는 수분을 전처리 할 수 있는 별도의 시스템을 필요로 한다.
위와 같은 문제점에 해결하기 위해, 최근 가스 센서 방식으로 가스분자의 광 흡수도를 측정하고 이를 농도로 환산하여, 높은 측정 정확성 및 가스선택성을 갖는 광학식 방식이 각광을 받고 있다. 특히 이산화탄소 분자가 실험가스를 통과하는 빛의 광량을 얼마만큼 흡수하느냐를 측정하여 이산화탄소 농도를 계산하는 비분산적외선 방식(Non-Dispersive infrared, NDIR)의 가스센서가 개발되면서 기존의 가스센서를 점차적으로 대체하고 있다.
다만, 비분산적외선 방식의 가스센서는 부품원가가 상대적으로 높아 생산성이 떨어지며, 단원자 분자 가스의 측정이 불가하다는 단점이 있다. 특히 적외선 센서의 미약한 신호를 측정하기 위해 비분산적외선 방식의 가스센서에는 고증폭비를 갖는 단전원 차동 증폭회로를 구성하는데, 이때, 측정 적외선 검출기와 참조 적외선 검출기의 초기 출력값이 큰 편차로 인해 가스 농도의 측정이 불능한 영역이 생기는 문제가 있다.
기존의 선행기술인 대한민국 등록특허 제10-1753873호(명칭: 적외선광 산란보정 비분산형 연기감지장치)는 공기의 유동을 쉽게 하고 고가의 반사물질이 코팅된 금형물 없이 화재연기를 측정할 수 있도록 하되 수증기 및 먼지 등 비화재보 유발물질에 따른 영향을 최소화할 수 있는 기술을 개시한다.
다만, 상술한 선행기술에 의하더라도 기존의 듀얼 적외선센서 검출값의 초기 편차로 인한 가스 농도 측정 불능의 문제가 해결되지 않아, 위와 같은 편차를 최소화함으로써 가스측정 불능영역을 제거하는 과제해결수단의 제시가 기술적 과제로서 여전히 남아 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 비분산적외선 가스센서의 광학계를 구성하고 있는 적외선 경사 미러의 회전을 통해서 듀얼 적외선센서에 입사되는 적외선 세기를 조절할 수 있게 함으로써, 가스측정을 보다 안정적으로 구동시킬 수 있게 하는 이산화탄소 가스센서를 제공하는 것이다.
본 발명의 일 측면은 원형의 외곽을 따라 형성된 광도파관이 마련된 광학고정기구; 상기 광도파관의 일단에 설치되는 적외선광원부; 상기 광학고정기구의 중심공간에 설치되되, 상기 광도파관의 타단과 연결되는 적외선센서부; 상기 적외선센서부의 상단에 설치되며, 상기 광도파관의 타단에 도달한 적외선을 상기 적외선센서부로 입사시키는 하단미러를 구비하는 경사미러부; 및 상기 광학고정기구의 상부를 감싸되, 상기 광도파관 내로 가스가 출입할 수 있도록 하는 복수 개의 가스홀이 형성된 기구커버부를 포함하되, 상기 적외선센서부는, 측정하는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제1적외선센서와, 흡수되지 않는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제2적외선센서를 포함하는, 비분산적외선 방식의 이산화탄소 가스센서를 제공한다.
일 실시예에 있어서, 상기 경사미러부는 상기 적외선센서부의 중심을 축으로 하여 시계방향 또는 반시계 방향으로 회전 가능하게 설치되어, 상기 제1적외선센서와 상기 제2적외선센서로의 적외선 입사 면적을 조절하는 것일 수 있다.
일 실시예에 있어서, 상기 광학고정기구는, 상기 광도파관의 타단에 설치되어, 적외선의 진행경로를 중심공간으로 굴절시키는 광반사면을 더 포함하는 것일 수 있다.
일 실시예에 있어서, 상기 기구커버부는, 복수 개의 가스홀이 원형의 광도파관의 상부를 따라 일정한 간격을 두고 이격되어 형성되는 것일 수 있다.
일 실시예에 있어서, 상기 광도파관의 내부면 또는 상기 하단미러는 금(Au)으로 코팅되어 형성되는 것일 수 있다.
일 실시예에 있어서, 상기 적외선센서부는, 상기 제1적외선센서 및 상기 제2적외선센서가 단전원 차동증폭회로를 이루어 출력전압(V 0)을 나타내는 것일 수 있다.
일 실시예에 있어서, 상기 경사미러부의 시계방향 또는 반시계방향 회전을 제어하는 제어연산부를 더 포함하며, 상기 제어연산부는, 상기 제1적외선센서의 검출전압(V 1) 및 상기 제2적외선센서의 검출전압(V 2)의 데이터를 전달받아, 상기 단전원 차동증폭회로에 의한 출력전압(V 0)이 양(+)의 값을 갖기 위해 필요한 상기 제1적외선센서 검출전압(V 1)의 변화량을 연산하고, 상기 경사미러부에 회전 방향 또는 범위에 대한 제어신호를 전달하는 것일 수 있다.
본 발명의 일 측면에 따르면, 비분산적외선 방식의 센서에 사용되는 듀얼 적외선 센서의 측정 적외선 검출기와 참조 적외선 검출기의 초기 출력값의 차이를 간단한 경사미러의 회전동작으로 보정할 수 있어, 가스 측정이 불능한 상태를 해결하고 보다 안정적으로 가스를 측정할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1의 (a) 내지 (d)는 본 발명의 일 실시예에 의한 비분산적외선 방식의 이산화탄소 가스센서를 조립순서에 따라 나타낸 상시도이다.
도 2는 도 1의 비분산적외선 방식의 이산화탄소 가스센서의 투영 측면도이다.
도 3의 (a) 내지 (c)는 본 발명의 일 실시예에 의한 경사미러부의 반시계 방향의 회전에 따른 적외선센서부의 입사면적 변화를 빗금친 영역으로 나타낸 상시도이다.
도 4는 본 발명의 일실시 예에 의한 적외선센서부의 듀얼 적외선센서가 이루는 단전원 차동증폭회로를 나타내는 회로도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
이하, 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1의 (a) 내지 (d)는 본 발명의 일 실시예에 의한 비분산적외선 방식의 이산화탄소 가스센서를 조립순서에 따라 나타낸 상시도를, 도 2는 도 1의 비분산적외선 방식의 이산화탄소 가스센서의 투영 측면도를 각각 도시한다.
도시된 바와 같이, 본 발명의 일 실시예에 의한 비분산적외선 방식의 이산화탄소 가스센서는 광학고정기구(10), 적외선광원부(20), 적외선센서부(30), 경사미러부(40) 및 기구커버부(50)를 발명의 기본 구조를 이루는 구성으로 포함한다.
본 발명에 의한 이산화탄소 가스센서의 가스검출 방식은 비분산 적외선(Non-dispersive infrared, 이하 'NDIR')인 것을 특징으로 한다. 이는 이산화탄소 분자가 실험가스를 통과하는 빛의 광량을 얼마만큼 흡수하느냐를 측정하여, 이산화탄소의 농도를 계산하는 방식이다. 상기 NDIR 방식은 이 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 자명한 사항이므로 자세한 설명은 생략한다.
도 1의 (a)는 본 발명의 광학고정기구(10)에 적외선광원부(20)가 설치된 상태를 도시한다.
광학고정기구(10)는 본 발명에 의한 이산화탄소 가스센서의 본체 프레임을 이루는 구성으로 도시된 바와 같이 원형으로 형성될 수 있다. 중심부에는 적외선센서부(30)가 투입될 수 있는 공간(10b)이 마련되며, 외곽의 가장자리를 따라서는 적외선이 진행하는 경로인 광도파관(10a)을 이루는 홈이 형성될 수 있다.
광도파관(10a)의 한쪽 끝은 상기 적외선센서부(30)에 설치되는 중심공간(10b)과 연결되도록 형성된다. 도시된 바와 같이, 상기 광도파관(10a)은 상기 중심공간(10b)과 동심원을 갖으며, 상기 중심공간(10b)을 감싸는 구조로 형성될 수 있다.
적외선광원부(20)는 가스 측정을 위해 필요한 적외선을 발광하는 구성으로, 광도파관(10a)의 적외선센서부(30)이 설치되는 중심공간(10b)의 반대측 일단에 설치된다. 상기 적외선광원부(20)로부터 발광된 적외선은 상기 광도파관(10a)을 따라 다중 반사되며 진행되고, 적외선센서부(30)로 입사하게 된다.
본 발명의 일 실시예에 의한 광도파관(10a)은 안쪽에서 다중 반사로 진행되는 적외선의 반사 효율을 높이기 위해 금(Au)으로 코팅되는 것일 수 있다.
본 발명의 일 실시예에 의한 광학고정기구(10)는, 광도파관(10a)의 타단에 설치되어, 적외선의 진행경로를 중심공간(10b)으로 굴절시키는 광반사면(10c)을 더 포함할 수 있다.
도 1의 (b)는 본 발명의 광학고정기구(10)에 적외선광원부(20) 및 적외선센서부(30)가 설치된 상태를 도시한다.
적외선센서부(30)는 전술한 광학고정기구(10)의 중심부에 형성된 공간(10b)에 설치된다. 광도파관(10a)을 따라 진행되어 온 적외선을 전달받아, 이산화탄소의 농도 등을 감지하는 구성이다.
본 발명에 의한 일 실시예에 의한 적외선센서부(30)는, 서로 다른 목적을 가진 제1적외선센서(31)와 제2적외선센서(32)를 포함하는 듀얼(Dual) 적외선 센서로 구성되는 것을 특징으로 한다. 보다 상세하게는, 측정하는 파장 대역의 적외선을 선택적으로 통과시킬 수 있는 필터를 구비하는 제1적외선센서(31)와, 흡수되지 않는 파장 대역의 적외선을 선택적으로 통과시킬 수 있는 필터를 구비하는 제2적외선센서(32)가 나란히 배열되도록 구성될 수 있다.
제1적외선센서(31)는 측정 적외선 검출기로서 역할을 하며, 상부면에는 가스에 흡수되는 측정 파장 대역의 적외선을 선택적으로 통과시킬 수 있는 협대역 필터로 이루어진 제1원도우(31a)가 설치된다.
제2적외선센서(32)는 참조 적외선 검출기로서 역할을 하며, 상부면에는 가스에 흡수되지 않는 특정 참조 파장 대역의 적외선을 선택적으로 통과시킬 수 있는 협대역 필터로 이루어진 제2원도우(32a)가 설치된다.
위와 같이 듀얼 적외선센서를 이루는 제1적외선센서(31)와 제2적외선센서(32)는, 각각 검출 초기의 출력에서 차이를 보일 수 있다. 이를 보상하기 위하여 매번 회로를 수정하여야 하는 등의 번거로움이 있을 수 있으나, 이는 후술하는 경사미러부(40)의 일 실시예에 의한 회전구조에 의하여 손쉽게 보정될 수 있다.
도 1의 (c)는 본 발명의 적외선센서부(30)의 상부에 경사미러부(40)가 설치된 상태로, 광도파관(10a)에 따른 적외선의 진행방향(P)을 나타낸다.
경사미러부(40)는 적외선센서부(30) 상단의 일부를 감싸도록 설치되며, 광도파관(10a)을 따라 진행한 적외선을 굴절시키는 하단미러(40a)를 구비한다. 보다 구체적으로는, 상기 적외선센서부(30)의 상부면에 형성된 윈도우(31a, 32a)와 겹쳐지는 소정의 면적은 갖으며, 상기 하단미러(40a)는 적외선이 하부에 위치한 상기 적외선센서부(30)에 입사하도록 굴절시킨다.
본 발명의 일 실시예에 의한 하단미러(40a)는 적외선센서부(30) 방향으로 굴절되는 적외선의 반사 효율을 높이기 위해 금(Au)으로 코팅되는 것일 수 있다. 더불어, 평면, 오목곡면 또는 포물면 형상 등의 적용될 수 있다.
도시된 바와 같이, 경사미러부(40)는 적외선센서부(30)의 제1윈도우(31a) 및 제2윈도우(32a)를 모두 감싸도록 위치할 수 있으며, 이로부터 시계방향 또는 반시계방향으로 회전 가능하도록 형성되어, 적외선의 입사면적을 조절할 수 있도록 할 수 있다. 이에 대한 자세한 설명은 후술한다.
도 1의 (d)는 본 발명의 광학고정기구(10)에 기구커버부(50)가 커버 결합된 상태를 도시한다.
기구커버부(50)는 광학고정기구(10)의 상단에 설치되어, 광학고정기구(10)와 커버 결합한다. 이에 따라 상기 기구커버부(50)의 외곽 가장자리에 따른 하부면은, 상기 광학고정기구(10)의 외곽 가장자리를 따라 형성된 홈과 함께 광도파관(10a)을 이룬다.
본 발명의 기구커버부(50)는 탐지대상이 되는 가스가 출입할 수 있도록 하는 복수 개의 가스홀(50a)이 형성되는 것을 특징으로 한다. 즉, 상기 복수 개의 가스홀(50a)을 통해, 광도파관(10a)의 내외부로 탐지대상이 되는 가스가 원활하게 출입할 수 있게 된다.
이 때, 본 발명의 일실시예에 의한 복수 개의 가스홀(50a)은, 원형의 광도파관(10a)을 따라 일정한 간격을 두고 이격되어 형성되는 것일 수 있다. 이는, 상기 광도파관(10a)의 진행경로에 출입하는 탐지가스의 농도가 일정하게 하도록 하기 위함이다.
이하, 도 3 및 도 4를 참조하여 본 발명의 일 실시예에 의해 듀얼 적외선 센서의 초기 출력 차이를 보정하기 위한 기술적 특징을 자세히 설명한다.
도 3의 (a) 내지 (c)는 본 발명의 일 실시예에 의한 경사미러부(40)의 반시계 방향의 회전에 따른 적외선센서부(30)의 입사면적 변화를 빗금친 영역으로 나타낸 상시도를 도시한다.
본 발명의 일 실시예에 의한 경사미러부(40)는 상기 적외선센서부(30)의 중심을 기준으로 하여 시계방향 또는 반시계 방향으로 회전 가능하게 설치되어, 상기 제1적외선센서(31)와 상기 제2적외선센서(32)로의 적외선 입사 면적을 조절하는 것을 특징으로 할 수 있다.
입사 면적이 넓을수록 상기 제1적외선센서(31) 및 상기 제2적외선센서(32) 각각 검출기에서의 출력이 증가하게 된다.
또한, 본 발명의 일 실시예에 의한 이산화탄소 가스센서는 적외선센서부(30)의 검출데이터를 수신하여, 경사미러부(40)의 시계방향 또는 반시계방향으로의 회전값을 연산하는 연산제어부(60, 미도시)를 더 포함할 수 있다.
도 3의 (a)는 본 발명의 일실시예에 의해 경사미러부(40)가 적외선센서부(30)의 윈도우(31a, 32a) 전부와 겹쳐지는 상태를 나타낸다. 이는 도 1의 (d)를 통해 도시된 A-A`선과 대응하는 위치이다.
이와 같은 상태에서는 제1적외선센서(31)와 제2적외선센서(32)가 반사면으로부터 동일한 입사면적을 갖는다.
이후, 도 3의 (b)와 (c)는 경사미러부(40)가 반시계방향으로 각각 22.5도, 45도만큼 회전한 상태에서 적외선센서부(30)의 윈도우(31a, 32a) 일부와 겹쳐지는 상태를 나타낸다.
도 3을 통해 나타난 바와 같이, 경사미러부(40)가 반시계방향으로 회전함에 따라서, 제1적외선센서(31)와 제2적외선센서(32)의 윈도우에 대한 입사 면적이 크게 감소하는 것을 알 수 있다. 즉, 위와 같은 상기 경사미러부(40)의 시계방향 또는 반시계방향 회전구조를 통하여, 상기 제1적외선센서(31)와 상기 제2적외선센서(32)의 초기 출력값 편차를 보정할 수 있다.
도 4는 듀얼 적외선 센서의 미약한 신호를 측정하기 위해, 본 발명의 일실시예에 의한 적외선센서부(30)의 듀얼 적외선센서가 이루는 단전원 차동증폭회로의 회로도를 도시한다.
본 발명의 일 실시예에 의한 적외선센서부(30)는 제1적외선센서(31)과 제2적외선센서(32)가 단전원으로 구성된 두 개의 입력 신호를 받아서 입력된 두 신호의 차이를 출력하는 차동증폭회로인 것일 수 있다. 이는 신호의 차이를 고증폭비로 출력하여, 적외선센서의 미약한 신호를 측정할 수 있도록 하기 위함이다.
도 4에 도시된 저항 간의 관계가 R 1=R 2, R 3=R 4로 설정되면, 해당 차동증폭회로의 증폭비(Gain)은 R 1에 대한 R 3 의 비율(
Figure PCTKR2020017792-appb-img-000001
)이 된다. 이 때, 단전원 차동증폭회로의 출력전압 V 0는 아래의 식 1과 같이 계산된다.
Figure PCTKR2020017792-appb-img-000002
- 식 (1)
위 식 (1)에서 V 1은 제1적외선센서(31)에서 검출되는 전압값을, V 2는 제2적외선센서(32)에서 검출되는 전압값을, V com은 제어연산부에 기설정되어 입력되는 소정의 전압값을 각각 의미한다. 상기 각각의 검출 또는 입력 전압값에 대한 정보는 제어연산부의 연산데이터로 제공된다.
광도파관(10a)의 가스 농도가 증가하게 되면, 가스에 흡수되는 적외선 량이 증가하게 되고, 이에 따라 상기 제1적외선센서(31)의 검출전압값(V 1)이 감소하게 된다. 이와 달리, 제2적외선센서(32)의 검출전압값(V 2)은 변동 없이 일정한 값을 유지하게 된다.
이때, 제1적외선센서(31)의 검출전압값(V 1)이 제2적외선센서(32)의 검출전압값(V 2)보다 일정한 값 이상으로 크게 되면, 위 식 (1)의 우측항의 값이 음(-)의 값이 된다. 그 결과, 단전원 차동증폭회로의 출력전압(V 0)는 0V 값이 출력되게 된다.
따라서, 가스 농도가 충분히 높아 상기 제1적외선센서(31)의 검출전압값(V 1)이 감소하게 되어, 위 식 (1)의 우측항의 값이 양(+)의 값을 출력할 때까지는, 본 발명에 의한 비분산적외선 방식의 이산화탄소 가스센서가 가스를 측정하지 못하게 되는 가스 측정 불능 영역이 생기게 된다.
위와 같은 문제를 해결하기 위하여, 가스가 없는 초기상태에서 본 발명의 비분산적외선 방식의 이산화탄소 가스센서는, 도 3에 도시된 바와 같이 경사미러부(40)를 시계방향 또는 반시계방향으로 회전시켜 적외선 입사 면적을 조정함으로써, 적외선센서부(30) 입사되는 적외선 세기를 조절할 수 있다.
즉, 경사미러부(40)는 제1적외선센서(31)와 제2적외선센서(32) 각각에 입사되는 적외선 세기를 조절함으로써, 초기 상태에서 위 식 (1)의 우측 항이 양(+)의 값을 출력하도록 조절할 수 있다. 그 결과, 각각 검출 초기의 출력 값에서의 차이를 별도의 회로 수정이나 전처리 시스템 없이 상기 경사미러부(40)에 대한 간단한 돌림동작으로 손쉽게 보정할 수 있다. 이에 따라, 초기가스 농도 측정의 불능문제를 해결함고 동시에, 대량 생산을 위한 가스센서로서 생산성을 높일 수 있다.
본 발명의 일 실시예에 의한 제어연산부(60)는, 전술한 제1적외선센서(31)의 검출전압(V 1) 및 제2적외선센서(32)의 검출전압값(V 2)을 각각 수신하여, 이를 기초로 위 식 (1)에 따른 단전원 차동증폭회로에 의한 출력전압(V 0)이 양(+)의 값을 갖기 위해 필요한 상기 제1적외선센서(31)의 검출전압(V 1)의 변화량을 연산하는 것일 수 있다.
이후, 제어연산부(60)는 연산된 제1적외선센서(31)의 검출전압(V 1)의 변화량을 만족시키기 위하여, 경사미러부(40)에 대하여 필요한 회전방향 또는 회전범위에 대한 제어신호를 전달하는 모듈로 형성될 수 있다.
전술한 다양한 실시예에 따라, 본 발명에 의한 이산화탄소 가스센서는 비분산적외선 방식의 센서에 사용되는 듀얼 적외선센서의 측정 적외선 검출기와 참조 적외선 검출기의 초기 출력값 차이로 인해 발생하는 가스측정 불능영역을 제거할 수 있다.
또한, 비분산적외선 방식의 가스센서를 대량 생산하는 경우에 전술한 초기 출력값 차이를 보상하기 위하여 매번 회로를 수정하여야 하는 번거로움이 없으며, 별도의 전처리 시스템이 필요치 않게 되어 생산성을 높일 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (7)

  1. 원형의 외곽을 따라 형성된 광도파관이 마련된 광학고정기구;
    상기 광도파관의 일단에 설치되는 적외선광원부;
    상기 광학고정기구의 중심공간에 설치되며, 상기 광도파관의 타단과 연결되는 적외선센서부;
    상기 적외선센서부의 상단에 설치되며, 상기 광도파관의 타단에 도달한 적외선을 상기 적외선센서부로 입사시키는 하단미러를 구비하는 경사미러부; 및
    상기 광학고정기구의 상부를 감싸되, 상기 광도파관 내로 가스가 출입할 수 있도록 하는 복수 개의 가스홀이 형성된 기구커버부를 포함하되,
    상기 적외선센서부는, 측정하는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제1적외선센서와, 흡수되지 않는 파장 대역의 적외선을 선택적으로 통과시키는 필터를 구비하는 제2적외선센서를 포함하는, 비분산적외선 방식의 이산화탄소 가스센서.
  2. 제1항에 있어서.
    상기 경사미러부는 상기 적외선센서부의 중심을 축으로 하여 시계방향 또는 반시계 방향으로 회전 가능하게 설치되어, 상기 제1적외선센서와 상기 제2적외선센서로의 적외선 입사 면적을 조절하는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
  3. 제2항에 있어서,
    상기 광학고정기구는, 상기 광도파관의 타단에 설치되어, 적외선의 진행경로를 중심공간으로 굴절시키는 광반사면을 더 포함하는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
  4. 제2항에 있어서,
    상기 기구커버부는, 복수 개의 가스홀이 원형의 광도파관의 상부를 따라 일정한 간격을 두고 이격되어 형성되는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
  5. 제2항에 있어서,
    상기 광도파관의 내부면 또는 상기 하단미러는 금(Au)으로 코팅되어 형성되는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
  6. 제2항에 있어서,
    상기 적외선센서부는, 상기 제1적외선센서 및 상기 제2적외선센서가 단전원 차동증폭회로를 이루어 출력전압(V 0)을 나타내는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
  7. 제6항에 있어서,
    상기 경사미러부의 시계방향 또는 반시계방향 회전을 제어하는 제어연산부를 더 포함하며,
    상기 제어연산부는, 상기 제1적외선센서의 검출전압(V 1) 및 상기 제2적외선센서의 검출전압(V 2)의 데이터를 전달받아, 상기 단전원 차동증폭회로에 의한 출력전압(V 0)가 양(+)의 값을 갖기 위해 필요한 상기 제1적외선센서 검출전압(V 1)의 변화량을 연산하고, 상기 경사미러부에 회전 방향 또는 범위에 대한 제어신호를 전달하는 것을 특징으로 하는, 비분산적외선 방식의 이산화탄소 가스센서.
PCT/KR2020/017792 2019-12-11 2020-12-07 비분산적외선 방식의 이산화탄소 가스센서 WO2021118193A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/617,475 US20220236175A1 (en) 2019-12-11 2020-12-07 Nondispersive infrared-type carbon dioxide gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0164506 2019-12-11
KR1020190164506A KR102267044B1 (ko) 2019-12-11 2019-12-11 비분산적외선 방식의 이산화탄소 가스센서

Publications (1)

Publication Number Publication Date
WO2021118193A1 true WO2021118193A1 (ko) 2021-06-17

Family

ID=76328939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017792 WO2021118193A1 (ko) 2019-12-11 2020-12-07 비분산적외선 방식의 이산화탄소 가스센서

Country Status (3)

Country Link
US (1) US20220236175A1 (ko)
KR (1) KR102267044B1 (ko)
WO (1) WO2021118193A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006450U (ko) * 1989-09-28 1991-04-25 유림전원공업 주식회사 플러그
JP2005221416A (ja) * 2004-02-06 2005-08-18 Horiba Ltd 赤外線ガス分析計の校正方法
KR20060112510A (ko) * 2005-04-27 2006-11-01 헵시바주식회사 비분산적외선 가스측정장치
KR101256381B1 (ko) * 2011-11-11 2013-04-25 서울시립대학교 산학협력단 광경로 가변형 가스농도측정장치
KR101907393B1 (ko) * 2017-06-29 2018-10-15 한국교통대학교산학협력단 소수성 박막을 증착한 비분산적외선 이산화탄소 가스센서

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155757U (ko) * 1985-03-20 1986-09-27
US5060508A (en) * 1990-04-02 1991-10-29 Gaztech Corporation Gas sample chamber
GB9320756D0 (en) * 1993-10-08 1993-12-01 Geotechnical Instr Uk Ltd Gas analyser
US6876305B2 (en) * 1999-12-08 2005-04-05 Gentex Corporation Compact particle sensor
US6778091B2 (en) * 2001-01-09 2004-08-17 Qualey, Iii James R. Smoke chamber
GB2372099B (en) * 2001-02-08 2003-11-05 Status Scient Controls Ltd Gas sensor
GB2396405B (en) * 2002-12-05 2006-03-08 E2V Tech Uk Ltd Gas sensors
US7244939B2 (en) * 2003-12-09 2007-07-17 Dynament Limited Gas sensor
GB201000756D0 (en) * 2010-01-18 2010-03-03 Gas Sensing Solutions Ltd Gas sensor with radiation guide
ITMI20130478A1 (it) * 2013-03-29 2014-09-30 N E T Srl Rilevatore ottico di gas a geometria variabile
US9804084B2 (en) * 2013-11-11 2017-10-31 Amphenol Thermometrics, Inc. Optical gas sensor
EP2960642A1 (fr) * 2014-06-26 2015-12-30 Schneider Electric Industries SAS Chambre optique pour dispositif de détection de gaz
KR101753873B1 (ko) 2016-06-08 2017-07-04 주식회사 미들테크 적외선광 산란보정 비분산형 연기감지장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006450U (ko) * 1989-09-28 1991-04-25 유림전원공업 주식회사 플러그
JP2005221416A (ja) * 2004-02-06 2005-08-18 Horiba Ltd 赤外線ガス分析計の校正方法
KR20060112510A (ko) * 2005-04-27 2006-11-01 헵시바주식회사 비분산적외선 가스측정장치
KR101256381B1 (ko) * 2011-11-11 2013-04-25 서울시립대학교 산학협력단 광경로 가변형 가스농도측정장치
KR101907393B1 (ko) * 2017-06-29 2018-10-15 한국교통대학교산학협력단 소수성 박막을 증착한 비분산적외선 이산화탄소 가스센서

Also Published As

Publication number Publication date
US20220236175A1 (en) 2022-07-28
KR102267044B1 (ko) 2021-06-18

Similar Documents

Publication Publication Date Title
US11193822B2 (en) Air quality monitoring system and enhanced spectrophotometric chemical sensor
US20120182545A1 (en) Method and device for measuring optical characteristic variables of transparent, scattering measurement objects
CN108020521B (zh) 确定呼吸气体混合物中的至少一种气体组分的浓度的装置
US5453620A (en) Nondispersive infrared gas analyzer and gas sample chamber used therein
WO2021118193A1 (ko) 비분산적외선 방식의 이산화탄소 가스센서
JP3270537B2 (ja) 濁度測定および比色測定を実施するための分光計
JP2007333567A (ja) 多重反射型セルおよび赤外線式ガス検知器
JP2004138499A (ja) ガス濃度検出センサ
WO2023163296A1 (ko) 도파관을 이용한 흡입식 복합 가스 감지기
KR102334769B1 (ko) 외부 환경의 영향을 최소화할 수 있는 가스센서용 광 공동 및 이 광 공동을 갖는 가스센서
JPS58113839A (ja) 露点検出装置
JP4216110B2 (ja) 多重反射式セルおよび赤外線式ガス検知装置
JP2000187786A (ja) 火災検出装置及び火災検出装置における汚れ補償方法
US7139075B2 (en) Method and apparatus for measuring the size distribution and concentration of particles in a fluid
KR102381817B1 (ko) 복수의 타원 반사체를 포함하는 광 도파관
JPH0529061B2 (ko)
WO2017010581A1 (ko) 복수의 독립된 광 경로를 갖는 광 도파관 및 그를 이용한 광학적 가스센서
JP2022017606A (ja) 濃度センサ
KR102622208B1 (ko) 비분산적외선 기법에 의한 다중가스 탐지용 센서
GB2395260A (en) Gas sensor having respective optical windows for its light source and optical detector
CN217931345U (zh) 一种激光甲烷气体传感器
CN116660183B (zh) 基于分段式光纤的大气污染物检测系统
JPS62119434A (ja) ガス配管内ダストモニタ装置
JPH11250308A (ja) 紙葉類反射センサ
Bernard et al. Modified NDIR technique for HF monitoring in an industrial environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900135

Country of ref document: EP

Kind code of ref document: A1