WO2021117879A1 - Resin molded article, (meth)acrylic resin composition for molding material, (meth)acrylic resin composition, and resin composition for molding material - Google Patents

Resin molded article, (meth)acrylic resin composition for molding material, (meth)acrylic resin composition, and resin composition for molding material Download PDF

Info

Publication number
WO2021117879A1
WO2021117879A1 PCT/JP2020/046327 JP2020046327W WO2021117879A1 WO 2021117879 A1 WO2021117879 A1 WO 2021117879A1 JP 2020046327 W JP2020046327 W JP 2020046327W WO 2021117879 A1 WO2021117879 A1 WO 2021117879A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin composition
acrylic resin
mass
fatty acid
Prior art date
Application number
PCT/JP2020/046327
Other languages
French (fr)
Japanese (ja)
Inventor
祐次朗 濱田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2020570983A priority Critical patent/JPWO2021117879A1/ja
Publication of WO2021117879A1 publication Critical patent/WO2021117879A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a resin molded product, a (meth) acrylic resin composition for a molding material, a (meth) acrylic resin composition, and a resin composition for a molding material.
  • the present application claims priority based on Japanese Patent Application No. 2019-224164 filed in Japan on December 12, 2019 and Japanese Patent Application No. 2020-185151 filed in Japan on November 5, 2020. The contents are used here.
  • (Meta) Acrylic resin is a material for housing equipment such as vanities, bathtubs, flush toilets, etc.; building materials; vehicle parts such as interior and exterior materials of vehicles, etc. due to its excellent appearance, scratch resistance, and heat resistance. Widely used in many applications.
  • the product may be scratched by contact with a person or an object, and therefore, more excellent scratch resistance is required. In addition, excellent transparency is also required.
  • molding a (meth) acrylic resin using a known melt molding method such as extrusion molding or injection molding, molding obtained depending on molding conditions such as the temperature inside the extruder, the temperature of the mold, and the injection speed. There is a problem that the scratch resistance of the body changes. Therefore, the (meth) acrylic resin is required to have a small dependence on molding conditions.
  • Patent Document 1 discloses an acrylic resin composition for paints containing a polyvinylidene fluoride-based copolymer.
  • Patent Document 2 discloses an acrylic resin film containing a polyvinylidene fluoride-based copolymer.
  • Patent Document 3 discloses a methacrylic resin composition containing a fatty acid amide compound.
  • the acrylic resin composition for coatings disclosed in Patent Document 1 the acrylic resin film disclosed in Patent Document 2, and the methacrylic resin composition disclosed in Patent Document 3 are all scratch resistant. Adhesiveness and dependence on molding conditions were insufficient.
  • the present invention relates to a (meth) acrylic resin composition for a molding material, a (meth) acrylic resin composition, and a resin for a molding material, which can obtain a resin molded product having excellent scratch resistance, molding condition dependence, and transparency. It is an object of the present invention to provide a composition. Another object of the present invention is to provide a resin molded product having excellent scratch resistance, molding condition dependence, and transparency.
  • the present invention has the following aspects.
  • the coefficient of dynamic friction (F) measured in accordance with ISO 8295: 1995 is 0.150 or less.
  • the peak absorbance (P2) in the region of wave number 870 to 890 cm -1 and the peak absorbance in the region of wave number 1710 to 1730 cm -1 ( A resin molded body having an absorbance ratio (P2 / P3) with P3) of 0.0005 or more.
  • [3] [1] or [2] comprising a (meth) acrylic resin composition containing a (meth) acrylic polymer (A), a fluorine-containing olefin polymer (B), and a fatty acid compound (C). Resin molded body.
  • a (meth) acrylic resin composition for a molding material which comprises a fluorine atom-containing compound and a fatty acid compound (C).
  • C a fatty acid compound
  • the fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, a repeating unit derived from a vinylidene fluoride monomer, and a single amount copolymerizable with vinylidene fluoride.
  • the solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less, [6] to [ 9]
  • the (meth) acrylic resin composition for any of the molding materials is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less.
  • the content ratio of the (meth) acrylic polymer (A) is 60% by mass or more with respect to the total mass of the (meth) acrylic resin composition for the molding material, [14] to [16]. ] (Meta) acrylic resin composition for any of the molding materials.
  • the solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less (18).
  • Meta) Acrylic resin composition [20] The (meth) acrylic resin composition of [18] or [19], wherein the fatty acid compound (C) is a fatty acid amide compound (C1).
  • the fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, or a repeating unit derived from a vinylidene fluoride monomer and a monomer copolymerizable with vinylidene fluoride.
  • the content of the fluorine-containing olefin polymer (B) is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A), [23] or [24] (Meta) acrylic resin composition.
  • the content of the fatty acid compound (C) is 0.5 parts by mass or more and 10.0 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A).
  • the (meth) acrylic resin composition according to any one of [25].
  • the (meth) acrylic resin composition [28]
  • a resin composition for a molding material which comprises the (meth) acrylic resin composition according to any one of [18] to [27].
  • the (meth) acrylic resin composition for any of the molding materials of [6] to [17] or the (meth) acrylic resin composition of any of [18] to [27] is molded.
  • the (meth) acrylic resin composition for molding materials According to the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention, a resin having excellent scratch resistance, molding condition dependence, and transparency. A molded product is obtained.
  • the resin molded product of the present invention is excellent in scratch resistance, molding condition dependence, and transparency.
  • the "(meth) acrylic polymer” means at least one selected from the “acrylic polymer” and the “methacrylic polymer”.
  • “(meth) acrylate” means at least one selected from “acrylate” and “methacrylic acid”
  • “(meth) acrylic acid” is selected from “acrylic acid” and "methacrylic acid”.
  • “(Meta) acrylic resin” means at least one selected from “acrylic resin” and "methacrylic resin”.
  • the "monomer” means an unpolymerized compound
  • the "repeating unit” means a unit derived from the monomer formed by polymerizing the monomer.
  • the repeating unit may be a unit directly formed by a polymerization reaction, or a part of the unit may be converted into another structure by processing a polymer.
  • "% by mass” indicates the content ratio of a predetermined component contained in 100% by mass of the total amount.
  • the "obtained resin molded product” is any one of the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention. It means a molded product made by molding.
  • the (meth) acrylic resin composition according to the first aspect of the present invention contains the fatty acid compound (C) described later, and the content ratio of fluorine atoms is 0 with respect to the total mass of the (meth) acrylic resin composition. It is 5.5% by mass or more.
  • the "fluorine atom content ratio” is the content of fluorine atoms contained in the (meth) acrylic resin composition of the first aspect of the present invention and contained in the repeating unit constituting the polymer chain. It is defined as the content ratio (unit: mass%) of fluorine atoms to 100% by mass of the total mass of the (meth) acrylic resin composition.
  • the fluorine-containing olefin-based polymer (B) described later contains a fluorine atom in its structure
  • the fluorine-containing olefin-based polymer (B) is based on 100% by mass of the total mass of the (meth) acrylic resin composition. It refers to the content ratio of fluorine atoms in.
  • the content ratio of fluorine atoms in the (meth) acrylic resin composition is 0.5% by mass or more, the obtained resin molded product has excellent dependence on molding conditions, and the surface friction coefficient tends to decrease. Because it is located in, it has excellent scratch resistance.
  • the content ratio of the fluorine atom is preferably 0.7% by mass or more, more preferably 1.0% by mass or more, based on the total mass of the (meth) acrylic resin composition.
  • the upper limit of the content ratio of fluorine atoms is not particularly limited, but if it is 15% by mass or less, the hardness of the obtained resin molded product is not impaired, so that scratch resistance can be maintained satisfactorily.
  • the content ratio of the fluorine atom is more preferably 12% by mass or less, and further preferably 10% by mass or less, based on the total mass of the (meth) acrylic resin composition.
  • the upper and lower limits of the content ratio of fluorine atoms can be arbitrarily combined.
  • the content ratio of fluorine atoms to the total mass (100% by mass) of the (meth) acrylic resin composition is preferably 0.5% by mass or more and 15% by mass or less, and 0.7% by mass or more and 12% by mass or less. More preferably, it is 1.0% by mass or more and 10% by mass or less.
  • a method for controlling the content ratio of fluorine atoms in the (meth) acrylic resin composition a method of blending the fluorine-containing olefin polymer (B) described later into the (meth) acrylic resin composition or fluorination (meth) Examples thereof include a method of blending a polymer containing a meta) acrylate unit into a (meth) acrylic resin composition. From the viewpoint of excellent scratch resistance of the obtained resin molded product, a method of blending the fluorine-containing olefin polymer (B) with the (meth) acrylic resin composition is preferable.
  • the (meth) acrylic polymer (A) may be contained, and the fluorine-containing olefin polymer (B) described later may be contained.
  • the fluorine-containing olefin polymer (B) described later may be contained.
  • the (meth) acrylic resin composition of the present embodiment may contain an impact reinforcing material (D) described later, a silicone oil (E) described later, and carbon black (F) described later. May include.
  • the (meth) acrylic resin composition of the present embodiment is a (meth) acrylic polymer (A) or a fluorine-containing olefin polymer (as long as the compounding amount does not impair the performance of the resin molded product. Even if components other than B), the fatty acid compound (C), the impact reinforcing material (D), the silicone oil (E), and the carbon black (F) (hereinafter, also referred to as "other additives”) are further contained. Good.
  • the MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133-1: 2011 of the (meth) acrylic resin composition of the present embodiment is not particularly limited, but is usually 0.5 to 50 g. It is about / 10min.
  • the (meth) acrylic polymer (A) is one of the constituents of the (meth) acrylic resin composition of the present embodiment.
  • the (meth) acrylic polymer (A) means a polymer in which at least a part of the constituent units is a constituent unit based on the (meth) acrylic monomer.
  • the (meth) acrylic polymer (A) may further contain a structural unit based on a monomer other than the (meth) acrylic monomer (for example, a vinyl monomer such as styrene).
  • "(Meta) acrylic monomer” means a monomer having at least one of an acryloyl group and a methacryloyl group.
  • the (meth) acrylic polymer (A) preferably contains a structural unit based on a methacrylic monomer, and more preferably contains a repeating unit derived from methyl methacrylate (hereinafter, referred to as “methyl methacrylate unit”). preferable.
  • the content ratio of the methyl methacrylate unit is preferably 70% by mass or more with respect to the total mass of the (meth) acrylic polymer (A).
  • the (meth) acrylic polymer (A) in which the content ratio of the methyl methacrylate unit is 70% by mass or more with respect to the total mass of the (meth) acrylic polymer (A) is particularly "polymer (A1)". Also called.
  • the polymer (A1) is a homopolymer of methyl methacrylate; a methyl methacrylate unit of 70% by mass or more and less than 100% by mass, and more than 0% by mass and 30% by mass or less with respect to the total mass of the polymer (A1).
  • Examples thereof include a copolymer containing a repeating unit derived from another monomer (hereinafter, also referred to as “another monomer unit”).
  • the methyl methacrylate unit is based on the total mass of the polymer (A1).
  • a copolymer having a content of 90% by mass or more or a homopolymer of methyl methacrylate is preferable, and a copolymer having a content ratio of methyl methacrylate units of 95% by mass or more with respect to the total mass of the polymer (A1).
  • a homopolymer of methyl methacrylate is more preferable.
  • the other monomer is a monomer other than methyl methacrylate that can be copolymerized with methyl methacrylate.
  • the other monomer is not particularly limited as long as it can be copolymerized with methyl methacrylate, but for example, methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate.
  • N-butyl (meth) acrylate isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate , Benzyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, norbornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopenta (Meta) acrylate compounds other than methyl methacrylate such as nyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth)
  • a (meth) acrylate compound other than methyl methacrylate is preferable because the original performance of the (meth) acrylic resin is not easily impaired, and the obtained resin molded product has excellent heat-decomposability. Therefore, methyl acrylate, ethyl acrylate, and n-butyl acrylate are more preferable, and methyl acrylate and ethyl acrylate are even more preferable.
  • These other monomers may be used alone or in combination of two or more.
  • the content ratio of the other monomer units to the total mass of the polymer (A1) does not easily impair the original performance of the (meth) acrylic resin. It is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less, and further preferably more than 0% by mass and 5% by mass or less.
  • Examples of the method for producing the polymer (A1) include a massive polymerization method, a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method.
  • the massive polymerization method and the suspension polymerization method are preferable, and the massive polymerization method is more preferable, because they are excellent in productivity.
  • the mass average molecular weight of the polymer (A1) is preferably 20,000 to 200,000, more preferably 50,000 to 150,000.
  • the mass average molecular weight of the polymer (A1) is 20,000 or more, the mechanical properties of the obtained resin molded product are excellent. Further, when the mass average molecular weight of the polymer (A1) is 200,000 or less, the fluidity at the time of melt molding is excellent.
  • the mass average molecular weight is a value measured by using standard polystyrene as a standard sample and using gel permeation chromatography.
  • the obtained resin molded product has transparency, heat resistance, weather resistance, etc. From the viewpoint of maintaining the original performance of the (meth) acrylic resin, 60% by mass or more is preferable, 70% by mass or more is more preferable, and 90% by mass or more is further preferable.
  • the content ratio of the (meth) acrylic polymer (A) to the total mass (100% by mass) of the (meth) acrylic resin composition is 99 from the viewpoint of excellent scratch resistance of the obtained resin molded product. It is preferably 9% by mass or less, more preferably 98% by mass or less, and further preferably 97% by mass or less.
  • the upper and lower limits of the content ratio of the (meth) acrylic polymer (A) can be arbitrarily combined.
  • the content ratio of the (meth) acrylic polymer (A) with respect to the total mass (100% by mass) of the (meth) acrylic resin composition is preferably 60% by mass or more and 99% by mass or less, and 70% by mass or more and 98% by mass or more. More preferably, it is 90% by mass or more, and further preferably 97% by mass or less.
  • the fluorine-containing olefin polymer (B) is one of the optional constituents of the (meth) acrylic resin composition of the present embodiment.
  • the content ratio of fluorine atoms can be adjusted with respect to the total mass of the (meth) acrylic resin composition. It can be 0.5% by mass or more.
  • the fluorine-containing olefin-based polymer (B) is not particularly limited as long as it is an olefin-based polymer containing a fluorine atom, and conventionally known fluoroolefin-based copolymers can be used.
  • the fluorine-containing olefin polymer (B) has good solubility in the (meth) acrylic resin composition, and the obtained resin molded product has excellent scratch resistance. It is preferable to use a polymer having sufficiently high compatibility with the meta) acrylic polymer (A).
  • the state in which the compatibility between the fluoroolefin polymer (B) and the (meth) acrylic polymer (A) is sufficiently high is, for example, in accordance with ISO 3146: 2000, and the heat flow flux differential scanning calorific value.
  • the glass transition point of the (meth) acrylic resin composition was measured using a meter, the glass transition point derived from the (meth) acrylic polymer (A) and the fluorine-containing olefin polymer (B) were obtained. A state in which each of the derived glass transition points is not detected and only one glass transition point is detected can be mentioned.
  • the (meth) acrylic resin composition of the present embodiment has the effect of improving the scratch resistance of both the fluorine-containing olefin polymer (B) and the fatty acid compound (C) described later in combination. Combined with this, the scratch resistance of the obtained molded product can be further improved without increasing the content of the fluorine-containing olefin polymer (B), so that the transparency, heat resistance, weather resistance, etc. (meth) can be further improved. ) It does not easily impair the original performance of acrylic resin.
  • the obtained resin molded product has excellent scratch resistance even with a small blending amount, and the (meth) acrylic resin composition.
  • a vinylidene fluoride-based (co) polymer containing a vinylidene fluoride unit is preferable from the viewpoint that the melting temperature can be prevented from becoming too high and the original performance of the (meth) acrylic resin is not impaired.
  • the vinylidene fluoride-based (co) polymer includes a homopolymer of vinylidene fluoride; a repeating unit derived from a vinylidene fluoride monomer and a repeating unit derived from a monomer copolymerizable with vinylidene fluoride. Examples thereof include vinylidene fluoride-based copolymers.
  • the vinylidene fluoride-based copolymer includes a vinylidene fluoride unit and at least one simple substance selected from hexafluoropropylene, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, perfluoroalkyl vinyl ether, and ethylene. Examples thereof include vinylidene fluoride-based copolymers containing a repeating unit derived from a metric.
  • vinylidene fluoride-trifluoroethylene copolymer vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexa.
  • fluoropropylene-based copolymers fluoropropylene-based copolymers and vinylidene fluoride-chlorotrifluoroethylene-based copolymers.
  • the obtained resin molded product has excellent scratch resistance
  • the (meth) acrylic resin composition has a low melt viscosity and is easy to mold, so that it is a vinylidene fluoride-based (co) polymer.
  • a homopolymer of vinylidene fluoride, a binary copolymer of vinylidene fluoride unit 60-95% by mass and tetrafluoroethylene unit 5-40% by mass, vinylidene fluoride unit 60-95% by mass and hexafluoropropylene unit A binary copolymer with 5 to 40% by mass is preferable.
  • vinylidene fluoride-based (co) polymer one type can be used alone, or two or more types of polymers can be used in combination. Further, these vinylidene fluoride-based (co) polymers may be copolymers containing other components in the molecular chain, or copolymers in which other components are graft-bonded to the side chains. There may be.
  • the MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133: 2011 of the fluorine-containing olefin polymer (B) is not particularly limited, but is usually about 0.5 to 50 g / 10 min. Is.
  • homopolymer of vinylidene fluoride for example, commercially available products such as KFT # 850 and # 1000 manufactured by Kureha Corporation; Kynar (registered trademark) 705, 721, 761 and 301F manufactured by Arkema Corporation can be used. it can.
  • vinylidene fluoride-based copolymer for example, commercially available products such as KynarFlex2801 manufactured by Arkema Co., Ltd.; VP-50 manufactured by Daikin Industries, Ltd .; Solef (registered trademark) series manufactured by Solvay Co., Ltd. can be used.
  • the content of the fluoroolefin polymer (B) contained in the (meth) acrylic resin composition of the present embodiment is the (meth) acrylic weight from the viewpoint of excellent scratch resistance of the obtained resin molded product. 1 part by mass or more is preferable, and 1.5 parts by mass or more is more preferable with respect to 100 parts by mass of the total mass of the coalescence (A).
  • the content of the fluoroolefin polymer (B) is 100, the total mass of the (meth) acrylic polymer (A), from the viewpoint that the obtained resin molded product does not impair the original performance of the (meth) acrylic resin. It is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less with respect to parts by mass.
  • the upper and lower limits of the content of the fluorine-containing olefin polymer (B) can be arbitrarily combined.
  • the content of the fluorine-containing olefin polymer (B) contained in the (meth) acrylic resin composition of the present embodiment is based on 100 parts by mass of the total mass of the (meth) acrylic polymer (A). It is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 20 parts by mass or less, and further preferably 1.5 parts by mass or more and 10 parts by mass or less.
  • the fatty acid compound (C) is one of the constituents of the (meth) acrylic resin composition of the present embodiment.
  • the (meth) acrylic resin composition of the first aspect of the present invention contains the fatty acid compound (C)
  • the surface slipperiness of the obtained resin molded product is improved, and the scratch resistance is further improved. it can.
  • the scratch resistance improving effect of both is combined with the fatty acid compound. Since the scratch resistance of the obtained molded product can be further improved without increasing the content of (C), the original performance of the (meth) acrylic resin such as transparency, heat resistance, and weather resistance is impaired. Hateful.
  • the solubility parameter value of the fatty acid compound (C) is preferably 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less.
  • the solubility parameter value (SP value) is a solution parameter, which is a measure of solubility. The larger the SP value, the higher the polarity, and conversely, the smaller the value, the lower the polarity.
  • the SP value is calculated by the method proposed by Fedors et al. Specifically, it can be calculated by referring to "POLYMER ENGINEERING AND SCIENCE, FEBRARY, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 147 to 154)".
  • solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more, the compatibility with the (meth) acrylic polymer (A) tends to be excellent.
  • the resulting resin molded product has excellent scratch resistance.
  • the solubility parameter value of the fatty acid compound (C) is more preferably 16.8 (J / cm 3 ) 1/2 or more, and further preferably 17.4 (J / cm 3 ) 1/2 or more.
  • the solubility parameter value of the fatty acid compound (C) is 24.6 (J / cm 3 ) 1/2 or less, the compatibility with the (meth) acrylic polymer (A) tends to be excellent.
  • the obtained resin molded product can maintain good scratch resistance.
  • the solubility parameter value of the fatty acid compound (C) is more preferably 23.6 (J / cm 3 ) 1/2 or less, and further preferably 22.6 (J / cm 3 ) 1/2 or less.
  • the upper and lower limits of the solubility parameter value of the fatty acid compound (C) can be arbitrarily combined.
  • the solubility parameter value of the fatty acid compound (C) is preferably 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less, preferably 16.8 (J / cm 3). 3 ) 1/2 or more and 23.6 (J / cm 3 ) 1/2 or less is more preferable, 17.4 (J / cm 3 ) 1/2 or more and 22.6 (J / cm 3 ) 1/2 or less. More preferred.
  • the fatty acid compound (C) at least one selected from a carboxyl group, an amide group, an ester group, or a carbonyl group in the molecule is selected from the viewpoint of easily improving the scratch resistance of the obtained resin molded product.
  • a chain hydrocarbon compound having one is preferable.
  • the chain hydrocarbon compound means a compound in which a carbon atom to which a carboxyl group, an amide group, an ester group, or a carbonyl group is bonded is a constituent atom of the carbon chain.
  • the carbon chain in the chain hydrocarbon compound may be saturated or unsaturated, and may be linear or branched.
  • Examples of such a fatty acid compound (C) include fatty acids and derivatives thereof as chain hydrocarbon compounds having a carboxyl group in the molecule.
  • Examples of the chain hydrocarbon compound having an amide group in the molecule include fatty acid amides and derivatives thereof.
  • Examples of the chain hydrocarbon compound having an ester group or a carbonyl group in the molecule include a fatty acid alkyl ester and its derivative, or a fatty acid glyceride and its derivative.
  • the hydrogen atom in the chain hydrocarbon compound or a part or all of the side chain was replaced with another organic group. It is a compound of structure.
  • organic group examples include a polyether group, a polyalkyl group, an aralkyl group, and a polyester group, which may be used alone or in combination of two or more.
  • fatty acid amide derivative it can be appropriately selected and used from various compounds including, for example, monoamide and bisamide, depending on various situations. These fatty acid compounds (C) may be used alone or in combination of two or more.
  • fatty acid compound (C1) a fatty acid amide and a derivative thereof (hereinafter, these are collectively referred to as "fatty acid amide compound (C1)") are preferable.
  • Examples of the fatty acid amide compound (C1) include saturated fatty acid amide compounds, unsaturated fatty acid amide compounds, and bis fatty acid amide compounds.
  • One of these fatty acid amide compounds (C1) may be used alone, or two or more thereof may be used in combination.
  • saturated fatty acid amide compounds and unsaturated fatty acid amides are preferable, and saturated fatty acid amide compounds are more preferable, because the obtained resin molded product is excellent in scratch resistance.
  • fatty acid amide compound (C1) a compound represented by the following general formula (i) (hereinafter, also referred to as “compound (i)”) can be used.
  • Compound (i) is preferable from the viewpoint that the obtained resin molded product has excellent scratch resistance even with a small blending amount and the original performance of the (meth) acrylic resin is not impaired.
  • R-CONH 2 ... (i) (In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
  • the carbon number of R in the formula (i) of the fatty acid amide compound (C1) is excellent in compatibility with the (meth) acrylic polymer (A), and the obtained resin molded product is excellent in scratch resistance. 10 or more is preferable, 15 or more is more preferable, and 17 or more is further preferable.
  • the carbon number of R in the formula (i) of the fatty acid amide compound (C1) is such that the fatty acid amide compound (C1) has good dispersibility in the (meth) acrylic resin composition, and the obtained resin molded product is scratch resistant. From the viewpoint of maintaining good adhesion, 25 or less is preferable, 24 or less is more preferable, and 23 or less is further preferable.
  • the upper and lower limits of the carbon number of R in the formula (i) of the fatty acid amide compound (C1) can be arbitrarily combined.
  • the carbon number of R in the formula (i) of the fatty acid amide compound (C1) is preferably 10 to 25, more preferably 15 to 24, and even more preferably 17 to 23.
  • saturated fatty acid amide compound examples include lauric acid amide, palmitic acid amide, stearic acid amide, and behenic acid amide. These saturated fatty acid amide compounds may be used alone or in combination of two or more. Among these saturated fatty acid amide compounds, stearic acid amide, palmitic acid amide, and behenic acid amide are preferable because they are excellent in scratch resistance of the molded product.
  • unsaturated fatty acid amides examples include erucic acid amides, oleic acid amides, brassic acid amides, and elaidic acid amides. These unsaturated fatty acid amide compounds may be used alone or in combination of two or more. Among these unsaturated fatty acid amide compounds, erucic acid amide and oleic acid amide are preferable, and erucic acid amide is more preferable, because the obtained resin molded product is excellent in scratch resistance.
  • the bis fatty acid amide compound examples include bis fatty acid amides such as methylene bisstearic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide, and ethylene bisoleic acid amide; Acid amides can be mentioned.
  • bis fatty acid amide compounds may be used alone, or two or more thereof may be used in combination.
  • the content of the fatty acid compound (C) contained in the (meth) acrylic resin composition of the present embodiment is the (meth) acrylic polymer (A) from the viewpoint of excellent scratch resistance of the obtained resin molded product. 0.5 parts by mass or more is preferable, and 1.0 part by mass or more is more preferable with respect to 100 parts by mass of the total mass.
  • the content of the fatty acid compound (C) is based on 100 parts by mass of the total mass of the (meth) acrylic polymer (A) from the viewpoint that the obtained resin molded product does not impair the original performance of the (meth) acrylic resin. It is preferably 10 parts by mass or less, and more preferably 5 parts by mass.
  • the upper and lower limits of the content of the fatty acid compound (C) can be arbitrarily combined.
  • the content of the fatty acid compound (C) contained in the (meth) acrylic resin composition of the present embodiment is 0.5 mass by mass with respect to 100 parts by mass of the total mass of the (meth) acrylic polymer (A). 10 parts by mass or more is preferable, and 1.0 part by mass or more and 5.0 parts by mass or less is more preferable.
  • the impact reinforcing material (D) can be blended in the (meth) acrylic resin composition of the present embodiment. By blending the impact reinforcing material (D), the impact resistance of the obtained resin molded product becomes good.
  • the impact reinforcing material (D) a known impact resistance improving agent can be used, and for example, the impact reinforcing material (D) disclosed in the specification of International Publication No. 2018/016473 is used. Can be done.
  • Silicone oil (E) can be added to the (meth) acrylic resin composition of the present embodiment. By blending the silicone oil (E), the surface slipperiness of the obtained resin molded product can be improved, and the scratch resistance of the resin molded product can be made more excellent.
  • Silicone oil (E) is a polymer having a linear structure having a bifunctional siloxane unit as a main skeleton.
  • the silicone oil (E) a polymer having a molecular weight of 2000 or less is preferable.
  • the silicone oil (E) may be an unmodified silicone oil or a modified silicone oil.
  • Examples of the unmodified silicone oil include dimethyl silicone, methyl phenyl silicone, and methyl hydrogen silicone.
  • the modified silicone oil include organically modified silicone.
  • Examples of the organically modified silicone include reactive organically modified silicones and non-reactive organically modified silicones.
  • silicone oils a silicone oil containing at least one selected from the group consisting of dimethyl silicone, methyl phenyl silicone, and methyl hydrogen silicone because the obtained resin molded product tends to have excellent scratch resistance. Is preferable.
  • Carbon black (F) can be added to the (meth) acrylic resin composition of the present embodiment.
  • Carbon black (F) can be added to the (meth) acrylic resin composition of the present embodiment.
  • the jet-blackness of the obtained resin molded product can be made more excellent.
  • the carbon black (F) for example, the compatibility with the (meth) acrylic polymer (A) is improved, and the dispersibility of the carbon black (F) in the (meth) acrylic resin composition is enhanced. From the viewpoint that the obtained resin molded product can exhibit a deeper jet-blackness, carbon black coated with a surface coating agent is preferable.
  • the surface coating agent is not particularly limited, and is, for example, a group consisting of zinc stearate, magnesium stearate, calcium stearate, oleic acid amide, stearic acid amide, palmitate amide, methylene bisstearyl amide, and ethylene bisstearyl amide.
  • zinc stearate, magnesium stearate, calcium stearate, oleic acid amide, stearic acid amide, palmitate amide, methylene bisstearyl amide, and ethylene bisstearyl amide One or more selected from the above is preferable.
  • These surface coating agents may be used alone or in combination of two or more.
  • additives include, for example, UV absorbers, anti-aging agents, light stabilizers, plasticizers, light diffusers, matting agents, lubricants, mold release agents, antistatic agents, fluidity modifiers, sliding Examples include sex-imparting agents and colorants such as pigments and dyes. These other additives may be used alone or in combination of two or more.
  • the (meth) acrylic resin composition of the present embodiment includes, for example, a (meth) acrylic polymer (A), a fatty acid compound (C), and, if necessary, a fluorine-containing olefin polymer (B).
  • the melt-kneaded product may be pelletized using a pelletizer or the like.
  • Each component may be melt-kneaded directly by a melt-kneader without using the pre-mixing means.
  • the melt kneader include a twin-screw extruder such as a vent type twin-screw extruder, a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts.
  • the (meth) acrylic resin composition of the first aspect of the present invention contains the fatty acid compound (C), the obtained resin molded product has excellent scratch resistance. Further, since the (meth) acrylic resin composition of the first aspect of the present invention has a fluorine atom content of 0.5% by mass or more and further contains a fatty acid compound (C), the obtained resin molding The scratch resistance of the body and the dependence on molding conditions are excellent. In particular, if the (meth) acrylic resin composition contains the fatty acid compound (C) and further contains the fluorine-containing olefin polymer (B), the scratch resistance of the obtained resin molded product and the dependence on the molding conditions can be obtained. It will be better.
  • the (meth) acrylic resin composition according to the first aspect of the present invention is a resin obtained as compared with the case where the fluorine-containing olefin polymer (B) and the fatty acid compound (C) are contained alone.
  • the scratch resistance of the molded product is remarkably excellent. The reason is not clear, but the fluorine-containing olefin polymer (B) and the fatty acid compound (C) can interact with each other so that they can be present at a higher concentration on the surface of the obtained resin molded product and its vicinity. It is presumed that this is because the dynamic friction coefficient of the surface of the resin molded product is reduced.
  • the (meth) acrylic resin composition of the first aspect of the present invention is excellent in scratch resistance, it is not necessary to increase the content of the fluorine-containing olefin polymer (B), and the transparency is improved. It does not easily impair the original performance of (meth) acrylic resin such as heat resistance and weather resistance. Therefore, according to the (meth) acrylic resin composition of the first aspect of the present invention, a resin molded product having excellent scratch resistance, molding condition dependence, and transparency can be obtained.
  • the resin composition for a molding material according to the second aspect of the present invention includes the (meth) acrylic resin composition according to the first aspect of the present invention described above.
  • the content ratio of the (meth) acrylic resin composition according to the first aspect of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass, based on the total mass of the resin composition for molding materials. % Or more is more preferable.
  • the content ratio of the (meth) acrylic resin composition according to the first aspect of the present invention may be 100% by mass with respect to the total mass of the resin composition for molding materials.
  • the resin composition for a molding material may consist of the (meth) acrylic resin composition of the first aspect of the present invention, or may be a component other than the (meth) acrylic resin composition of the first aspect of the present invention. (Hereinafter, also referred to as "other components") may be contained.
  • other components contained in the resin composition for molding materials for example, (meth) acrylic polymer (A) and fluorine-containing olefin polymer (B) are excluded as long as the effects of the present invention are not impaired. Examples thereof include other thermoplastic resins such as polycarbonate-based resins and polystyrene-based resins.
  • the resin composition for molding material of the second aspect of the present invention contains the (meth) acrylic resin composition of the first aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency. A resin molded product is obtained.
  • the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention contains a fluorine atom-containing compound and a fatty acid compound (C), which will be described later.
  • the content ratio of fluorine atoms derived from the fluorine atom-containing compound is the total mass of the (meth) acrylic resin composition for molding materials. On the other hand, it is preferably 0.5% by mass or more.
  • the "content ratio of fluorine atoms" is defined as fluorine contained in the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention and contained in a repeating unit constituting a polymer chain. It is the content ratio of atoms, and is defined as the content ratio of fluorine atoms (unit: mass%) with respect to the total mass of 100% by mass of the (meth) acrylic resin composition for molding materials. Specifically, it refers to the content ratio of fluorine atoms derived from the fluorine atom-containing compound to 100% by mass of the total mass of the (meth) acrylic resin composition for molding materials.
  • the method is similar to the first aspect of the present invention.
  • the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention for example, a fluorine atom-containing compound, a (meth) acrylic polymer (A), and a fatty acid compound (C), which will be described later, are used. ) Is included.
  • the (meth) acrylic polymer (A) contained in the (meth) acrylic resin composition for molding material of the present embodiment and its content ratio are the (meth) acrylic resin composition of the first aspect of the present invention. This is the same as the (meth) acrylic polymer (A) exemplified above and its content ratio.
  • the fatty acid compound (C) and its content contained in the (meth) acrylic resin composition for molding material of the present embodiment are described first in the description of the (meth) acrylic resin composition of the first aspect of the present invention. It is the same as the example fatty acid compound (C) and its content.
  • the (meth) acrylic resin composition for a molding material of the present embodiment may further contain an impact reinforcing material (D), a silicone oil (E), and carbon black (F).
  • the (meth) acrylic resin composition for the molding material of the present embodiment is a (meth) acrylic polymer (A) or a fluorine atom-containing compound as long as the blending amount does not impair the performance of the resin molded product.
  • Fatty compound (C), impact reinforcing material (D), silicone oil (E), and components other than carbon black (F) hereinafter, also referred to as “other additives” may be further contained.
  • the impact reinforcing material (D), silicone oil (E), carbon black (F), and other additives contained in the (meth) acrylic resin composition for molding materials of the present embodiment are the first of the present invention, respectively. This is the same as the impact reinforcing material (D), the silicone oil (E), the carbon black (F), and other additives exemplified above in the description of the (meth) acrylic resin composition according to the above embodiment.
  • the MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133-1: 2011 of the (meth) acrylic resin composition for molding materials of the present embodiment is not particularly limited, but is usually 0. It is about 5 to 50 g / 10 min.
  • the fluorine atom-containing compound is one of the constituents of the (meth) acrylic resin composition for a molding material of the present embodiment.
  • the fluorine atom-containing compound include a fluorine-containing olefin polymer (B) and a polymer containing a fluorinated (meth) acrylate unit. These fluorine atom-containing compounds may be used alone or in combination of two or more. Among these fluorine atom-containing compounds, the fluorine-containing olefin polymer (B) is more preferable from the viewpoint of excellent scratch resistance of the obtained resin molded product.
  • the fluorine-containing olefin-based polymer (B) is the same as the fluorine-containing olefin-based polymer (B) exemplified above in the description of the (meth) acrylic resin composition of the first aspect of the present invention.
  • the content of the fluorine atom-containing compound contained in the (meth) acrylic resin composition for a molding material of the present embodiment has been exemplified above in the description of the (meth) acrylic resin composition of the first aspect of the present invention.
  • the content is the same as that of the fluorine-containing olefin polymer (B).
  • the (meth) acrylic resin composition for a molding material of the present embodiment includes, for example, a (meth) acrylic polymer (A), a fluorine atom-containing compound, a fatty acid compound (C), and impact reinforcement as required.
  • a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical device, or an extrusion mixer. It is produced by sufficiently mixing the mixture, granulating it with an extrusion granulator, a briquetting machine, or the like, and then melt-kneading it with a melt-kneader.
  • the melt-kneaded product may be pelletized using a pelletizer or the like.
  • Each component may be melt-kneaded directly by a melt-kneader without using the pre-mixing means.
  • the melt kneader include a twin-screw extruder such as a vent type twin-screw extruder, a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts.
  • the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention contains a fluorine atom-containing compound and a fatty acid compound (C), the obtained resin molded product has scratch resistance and molding conditions. The dependency becomes excellent. Further, the (meth) acrylic resin composition for a molding material of the third aspect has scratch resistance of the obtained resin molded product as compared with the case where the fluorine atom-containing compound and the fatty acid compound (C) are contained alone. The sex is remarkably excellent.
  • the fluorine-containing olefin polymer (B) and the fatty acid compound (C) interact with each other and are present in a higher concentration on the surface of the obtained resin molded product and in the vicinity thereof. It is presumed that this is possible because the dynamic friction coefficient on the surface of the resin molded product is reduced.
  • the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention has excellent scratch resistance, it is not necessary to increase the content of the fluorine atom-containing compound, and the transparency and heat resistance do not need to be increased. , And the original performance of (meth) acrylic resin such as weather resistance is not easily impaired. Therefore, according to the (meth) acrylic resin composition for a molding material of the third aspect, a resin molded product having excellent scratch resistance, molding condition dependence, and transparency can be obtained.
  • the dynamic friction coefficient (F) measured in accordance with ISO 8295: 1995 is 0.150 or less, and the surface of the resin molded body is infrared.
  • the peak absorbance refers to the absorbance at the top of the peak at the peak including the corresponding wave number.
  • the coefficient of kinetic friction (F) is 0.150 or less and the absorbance ratio (P2 / P3) is 0.0005 or more, the scratch resistance, molding condition dependence, and transparency of the resin molded product (1) are all all. It will be excellent.
  • the upper limit of the dynamic friction coefficient (F) is preferably 0.140 or less, more preferably 0.110 or less.
  • the lower limit of the dynamic friction coefficient (F) is preferably 0.010 or more, more preferably 0.020 or more, and even more preferably 0.030 or more.
  • the upper and lower limits of the dynamic friction coefficient (F) can be arbitrarily combined.
  • the dynamic friction coefficient (F) is preferably 0.010 or more and 0.150 or less, more preferably 0.020 or more and 0.140 or less, and further preferably 0.030 or more and 0.110 or less.
  • the coefficient of kinetic friction (F) is measured by the method described in Examples described later.
  • the lower limit of the absorbance ratio (P2 / P3) is preferably 0.0010 or more, more preferably 0.0020 or more.
  • the upper limit of the absorbance ratio (P2 / P3) is not particularly limited, but is preferably 0.1200 or less, more preferably 0.0500 or less, and even more preferably 0.0300 or less.
  • P2 / P3 is 0.02 or less, the content of the fluorine atom-containing compound such as the fluorine-containing olefin polymer (B) does not become too high on the surface of the resin molded product and in the vicinity of the surface, and the resin molded product does not become too high. The mechanical strength of the resin molded product is unlikely to decrease, and the scratch resistance of the resin molded product can be sufficiently improved.
  • the upper and lower limits of the absorbance ratio (P2 / P3) can be arbitrarily combined.
  • the absorbance ratio (P2 / P3) is preferably 0.0005 or more and 0.1200 or less, more preferably 0.0010 or more and 0.0500 or less, and further preferably 0.0020 or more and 0.0300 or less.
  • the absorbance ratio (P2 / P3) is a numerical value that is an index of the abundance of a fluorine atom-containing compound such as a fluorine-containing olefin polymer (B) on the surface of the resin molded product (1) and in the vicinity of the surface.
  • the absorbance ratio (P2 / P3) is measured by the method described in Examples described later.
  • the values of P2 / P3 are the blending amount of the fluorine atom-containing compound such as the fluorine-containing olefin polymer (B), various molding temperatures, and molding pressures in the production of the resin molded product of the present invention during injection molding. It can be controlled by adjusting the molding conditions including.
  • the resin molded body (1) a region having a wave number of 1630 to 1650 cm -1 in the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer on the surface of the resin molded body (1).
  • the absorbance ratio (P1 / P3) between the peak absorbance (P1) and the peak absorbance (P3) is 0.0005 or more and 0.0120 or less, and the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) are It is preferable to satisfy the following general formula (1).
  • the absorbance ratio (P1 / P3) is 0.0005 or more and 0.0120 or less, and the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the general formula (1), the resin molded product The scratch resistance, molding condition dependence, and transparency of (1) become more excellent.
  • the lower limit of the absorbance ratio (P1 / P3) is preferably 0.0010 or more, more preferably 0.0030 or more, and even more preferably 0.0070 or more.
  • the upper limit of the absorbance ratio (P1 / P3) is preferably 0.0110 or less, more preferably 0.0105 or less, and even more preferably 0.0100 or less.
  • the upper and lower limits of the absorbance ratio (P1 / P3) can be arbitrarily combined.
  • the absorbance ratio (P1 / P3) is preferably 0.0010 or more and 0.0110 or less, more preferably 0.0030 or more and 0.0105 or less, and further preferably 0.0070 or more and 0.0100 or less.
  • the absorbance ratio (P1 / P3) is a numerical value that is an index of the abundance of the fatty acid compound (C) on the surface of the resin molded product (1) and in the vicinity of the surface.
  • the general formula (1) defines the dynamic friction coefficient (F) according to the value of the absorbance ratio (P1 / P3), and the upper limit of the dynamic friction coefficient (F) is defined according to the abundance of the fatty acid compound (C). There is a value. If the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the general formula (1), the molding condition dependence and transparency of the resin molded product (1) become more excellent.
  • the absorbance ratio (P1 / P3) is measured by the method described in Examples described later.
  • the value of P1 / P3 is controlled by adjusting the compounding amount of the fatty acid compound (C), various molding temperatures, and molding conditions including molding pressure when injection molding the resin molded product of the present invention. it can.
  • the resin molded product (1) is preferably composed of a (meth) acrylic resin composition containing a (meth) acrylic polymer (A), a fluorine-containing olefin polymer (B), and a fatty acid compound (C). ..
  • the resin molded product (1) contains the fatty acid compound (C), and the content ratio of fluorine atoms is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition.
  • It is preferably composed of a (meth) acrylic resin composition.
  • examples of such a (meth) acrylic resin composition include the (meth) acrylic resin composition of the first aspect of the present invention described above.
  • the resin molded product (1) preferably comprises a (meth) acrylic resin composition for a molding material containing a fluorine atom-containing compound and a fatty acid compound (C).
  • a (meth) acrylic resin composition for a molding material of the second aspect of the present invention or the (meth) acrylic resin composition for a molding material of the third aspect of the present invention can be used. Can be mentioned.
  • the resin molded product (1) As a method for producing the resin molded product (1), a known molding method for a resin composition can be adopted, and examples thereof include injection molding, extrusion molding, and pressure molding. Further, the obtained resin molded body (1) may be further subjected to, for example, secondary molding of compressed air molding or vacuum forming. Molding conditions including molding temperature and molding pressure may be appropriately set.
  • the resin molded product of the fourth aspect of the present invention for example, a resin molded product obtained by molding the (meth) acrylic resin composition of the first aspect of the present invention described above (2).
  • the manufacturing method of the resin molded body (2), the resin molded body (3), and the resin molded body (4) is the same as the manufacturing method of the resin molded body (1).
  • the resin molded product (2) is formed by molding the (meth) acrylic resin composition according to the first aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency. Since the resin molded product (3) is formed by molding the resin composition for a molding material according to the second aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency. Since the resin molded product (4) is formed by molding the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency.
  • the resin molded body (1), the resin molded body (2), the resin molded body (3), and the resin molded body (4) are collectively referred to as a "resin molded body".
  • the (meth) acrylic resin composition of the first aspect of the present invention, the resin composition for a molding material of the second aspect of the present invention, and the (meth) acrylic type for a molding material of the third aspect of the present invention are generically also referred to simply as "resin composition".
  • the resin molded body of the fourth aspect of the present invention is excellent in scratch resistance, molding condition dependence, and transparency, for example, a material for housing equipment such as a vanity, a bathtub, and a flush toilet; a building material; It is used as a vehicle member such as an interior / exterior material of a vehicle, and is particularly suitable as a vehicle member.
  • vehicle exterior materials include meter covers, door mirror housings, pillar covers (sash covers), licensed garnishes, front grilles, fog garnishes, emblems and the like.
  • the injection rate is defined by the injection resin volume / resin filling time (unit: cm 3 / sec).
  • the resin filling time is the change in distance according to the increase in injection time when plotting the distance from the screw to the nozzle while increasing the injection time with the injection time on the horizontal axis and the distance from the screw head to the nozzle head on the vertical axis. Refers to the injection time when is no longer recognized.
  • the content ratio of fluorine atoms in the resin composition was measured by the following method A or method B.
  • Method A When the fluorine-containing olefin-based polymer (B) is a homopolymer of vinylidene fluoride (polyvinylidene fluoride), the content ratio of fluorine atoms in the homopolymer of vinylidene fluoride is set to the homopolymer of vinylidene fluoride.
  • the content ratio of the fluorine-containing olefin polymer (B) contained in the resin composition is calculated by a simple desk calculation as 59.4% by mass with respect to the total mass of Calculated.
  • the fluorine-containing olefin-based polymer (B) is a (co) polymer containing at least one selected from vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units as a constituent unit in the polymer.
  • the content ratio of fluorine atoms in vinylidene fluoride units is 59.4% by mass, the content ratio of fluorine atoms in tetrafluoroethylene units is 76.0% by mass, and hexafluoropropylene units with respect to the total mass of each constituent unit.
  • the content ratio of fluorine atoms in the fluorine-containing olefin-based polymer (B) is based on the content ratio of each structural unit contained in the fluorine-containing olefin-based polymer (B). Was calculated by a simple desktop calculation.
  • the content ratio of each structural unit contained in the fluorine-containing olefin polymer (B) was measured by using an NMR method.
  • the fluoroolefin-containing polymer (B) is a (co) polymer containing a monomer unit other than vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene described above as a constituent unit in the polymer. It is also possible to measure by the following method B, and it is possible to obtain a measured value having substantially the same numerical value as the measured value calculated by the above-mentioned method A.
  • the fluorine atom-containing polymer (B) can be elementally analyzed by using known combustion ion chromatography to calculate the content ratio of fluorine atoms in the resin composition.
  • the fluorine-containing olefin-based polymer (B) contained in the resin composition using the fluorine atom content ratio calculated by elemental analysis using known combustion ion chromatography. From the content ratio of the polymer (B), the content ratio of fluorine atoms in the resin composition can be calculated by a simple desk calculation. It is also possible to directly perform elemental analysis of the resin composition using known combustion ion chromatography to measure the content ratio of fluorine atoms in the resin composition, which was obtained by the method described above. It is possible to obtain a measured value that is almost the same as the measured value.
  • the position of the peak in the wave number region of 880 ⁇ 900 cm -1 indicates the minimum absorbance and (x 2-1), a peak in the wave number region of 850 ⁇ 880 cm -1 is the minimum absorbance
  • a baseline was drawn between the indicated position (x 2-2 ), and the absorbance of the wave number at which the peak showed the maximum absorbance in the region of wave number 870 to 890 cm -1 was calculated as the peak absorbance (P2).
  • P2 peak absorbance
  • the coefficient of dynamic friction (F) was measured by the following method as an index of scratch resistance of the resin molded product. Using a scratch tester KK01 (manufactured by Kato Tech Co., Ltd.), a spherical indenter with a diameter of 1 mm is pressed against the surface of the resin molded product X1 in accordance with ISO 8295: 1995 to keep the horizontal load of the indenter constant (5. While maintaining 0N), the moving speed of the indenter was 100 mm / sec, the moving distance of the indenter was 70 mm, and the vertical load (unit: N) when the resin molded body X1 was moved on the surface was measured.
  • the coefficient of dynamic friction was defined as the value obtained by dividing the horizontal load (5.0 N) by the average value of the vertical load measured in the section of 10 to 60 mm starting from the starting point of the moving distance (70 mm). Using the three resin molded bodies X1, measurements were performed once for each resin molded body X1 to calculate the dynamic friction coefficient, and the average value was taken as the dynamic friction coefficient (F) of the resin molded body X1.
  • ⁇ Evaluation of scratch resistance> As an index of the scratch resistance of the resin molded product, the difference in haze value ( ⁇ haze) before and after the scratch resistance test was measured by the following method.
  • a friction tester for the scratch resistance test, a friction tester (friction tester S type for dyeing fastness, friction tester type II described in JIS L 0849: 2103 modified to a flat type, Toyo Seiki Seisakusho Co., Ltd.) was used.
  • As the friction element a flat friction element (length 20 mm, width 20 mm) and five pieces of gauze (trade name, medical gauze, 100% earth dragonfly cotton, manufactured by Yamato Factory Co., Ltd.) were used.
  • the resin molded body X1 is placed on a flat table, and as shown in FIG.
  • a haze meter (model name: NDH4000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) was used, and the central portion 3 of the resin molded body X1 (in the case of after the scratch resistance test).
  • the central portion of the surface on which the friction and wear processing portion 2 is formed) a light beam is incident in a direction parallel to the direction in which the friction element is reciprocated, and the haze of the resin molded body X1 is in accordance with ISO 14782: 1999. The value was measured.
  • the difference in haze value ( ⁇ haze) is calculated by subtracting the haze value (H1) before the scratch resistance test from the haze value (H2) after the scratch resistance test, and the ⁇ haze is 0.
  • a case of 5 or less was judged as "A”
  • a case of ⁇ haze exceeding 0.5 and 0.8 or less was judged as “B”
  • a case of ⁇ haze exceeding 0.8 was judged as “C”.
  • the smaller the ⁇ haze the better the scratch resistance.
  • ⁇ Haze Haze value of the resin molded product X1 after the scratch resistance test (H2) -Haze value of the resin molded product X1 before the scratch resistance test (H1) ...
  • the difference in haze value ( ⁇ haze) after the scratch resistance test for the resin molded product X1 and the resin molded product X2 obtained by changing the injection speed is determined by the following method. Measured in. In the same manner as the scratch resistance evaluation method described above, the surfaces of the resin molded body X1 and the resin molded body X2 are abraded using a friction element, and the surfaces of the resin molded body X1 and the resin molded body X2 are rubbed. A wear-treated part was formed.
  • the haze values of the resin molded body X1 and the resin molded body X2 after the scratch resistance test were measured in the same manner as in the scratch resistance evaluation method described above.
  • the haze value difference ( ⁇ haze) is obtained by subtracting the haze value (H3) of the resin molded body X1 after the scratch resistance test from the haze value (H4) of the resin molded body X2 after the scratch resistance test. ) Is calculated, "A” when ⁇ haze is 1.5 or less, “B” when ⁇ haze is more than 1.5 and 2.3 or less, and "B” when ⁇ haze is more than 2.3. It was judged as "C".
  • ⁇ Haze Haze value of the resin molded product X2 after the scratch resistance test (H4) -Haze value of the resin molded product X1 after the scratch resistance test (H3) ... (3)
  • fatty acid compound (C) The following compounds were used as the fatty acid compound (C).
  • -C-1 Fatty acid amide containing stearic acid amide as a main component (trade name: IncroMax (registered trademark) PS, manufactured by CRODA).
  • -C-2 Fatty acid amide containing stearic acid amide as a main component (trade name: fatty acid amide S, manufactured by Kao Corporation).
  • -C-3 Fatty acid amide containing behenic acid amide as a main component (trade name: BNT-22H, manufactured by Nippon Fine Chemical Co., Ltd.).
  • -C-4 Fatty acid amide containing erucic acid amide as a main component (trade name: Diamid (registered trademark) L, manufactured by Mitsubishi Chemical Corporation).
  • -C-5 Fatty acid amide containing methylene bisstearic acid amide as a main component (trade name: Bisamide LA, manufactured by Mitsubishi Chemical Corporation).
  • -S-1 Silicone compound (trade name: TEGOMER® H-Si 6441 P, manufactured by Ebonic, polyester-modified silicone in which a polyester group is added to the side chain of polydimethylsiloxane).
  • Example 1 A twin-screw extruder (model name:) containing 100 parts by mass of methacrylic resin (A-1), 2.0 parts by mass of fluoroolefin polymer (B-1), and 2.0 parts by mass of fatty acid amide (C-1). It was supplied to PCM30, manufactured by Ikegai Co., Ltd.) and kneaded at 250 ° C. to obtain a pellet-shaped resin composition. The content ratio of fluorine atoms in the obtained resin composition was determined. In addition, a resin molded product was prepared using the obtained resin composition, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2.
  • Examples 2 to 10 Comparative Examples 1 to 10
  • a pellet-shaped resin composition was produced in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1, a resin molded product was prepared, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2.
  • the fatty acid compound (C) was not blended in Reference Example A, and the pellets of the methacrylic resin (A-1) did not contain fluorine atoms, so that the obtained resin molding was obtained.
  • the body was inferior in scratch resistance and molding condition dependence.
  • the resin molded product obtained by molding the resin compositions obtained in Examples 1 to 10 was excellent in scratch resistance, molding condition dependence, and transparency. Since the resin composition obtained in Comparative Example 1 did not contain the fatty acid compound (C), the obtained resin molded product was inferior in scratch resistance and molding condition dependence. Since the resin compositions obtained in Comparative Examples 2 and 3 did not contain fluorine atoms, the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
  • the obtained resin molded product is inferior in scratch resistance and transparency.
  • the resin compositions obtained in Comparative Examples 5 to 6 did not contain fluorine atoms, the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
  • the resin compositions obtained in Comparative Examples 7 to 8 did not contain the fatty acid compound (C)
  • the obtained resin molded product was inferior in scratch resistance.
  • the resin composition obtained in Comparative Example 9 contained a small proportion of fluorine atoms, the obtained resin molded product was inferior in scratch resistance and dependence on molding conditions.
  • the resin composition obtained in Comparative Example 10 did not contain the fatty acid compound (C), the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
  • the (meth) acrylic resin composition for molding materials According to the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention, a resin having excellent scratch resistance, molding condition dependence, and transparency. A molded product is obtained. Since the resin molded body of the present invention is excellent in scratch resistance, molding condition dependence, and transparency, for example, materials for housing equipment such as vanities, bathtubs, flush toilets; building materials; vehicle interior / exterior materials. It is used for vehicle members such as, and is particularly suitable as a vehicle member. Examples of vehicle exterior materials include meter covers, door mirror housings, pillar covers (sash covers), licensed garnishes, front grilles, fog garnishes, emblems and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a (meth)acrylic resin composition for a molding material, a (meth)acrylic resin composition, and a resin composition for a molding material, which are used to obtain a resin molded article having excellent scratch resistance, molding condition dependency, and transparency; and a resin molded article having excellent scratch resistance, molding condition dependency, and transparency. For the resin molded article according to the present invention, the coefficient (F) of kinetic friction thereof is 0.150 or less as measured in accordance with ISO 8295:1995, and the absorbance ratio (P2/P3) of a peak absorbance (P2) in a region having a wave number of 870-890 cm-1 and a peak absorbance (P3) in a region having a wave number of 1710-1730 cm-1 thereof is 0.0005 or more in an infrared absorption spectrum as measured at the surface of the resin molded article by a single-reflection ATR surface reflection method using an infrared spectrophotometer. The (meth)acrylic resin composition for a molding material according to the present invention contains a fluorine atom-containing compound and a fatty acid compound (C). The (meth)acrylic resin composition according to the present invention contains the fatty acid compound (C), and has a fluorine atom content ratio of 0.5 mass% or more.

Description

樹脂成形体、成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物Resin molded articles, (meth) acrylic resin compositions for molding materials, (meth) acrylic resin compositions, and resin compositions for molding materials.
 本発明は、樹脂成形体、成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物に関する。
 本願は、2019年12月12日に日本に出願された特願2019-224164号、及び2020年11月5日に日本に出願された特願2020-185151号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin molded product, a (meth) acrylic resin composition for a molding material, a (meth) acrylic resin composition, and a resin composition for a molding material.
The present application claims priority based on Japanese Patent Application No. 2019-224164 filed in Japan on December 12, 2019 and Japanese Patent Application No. 2020-185151 filed in Japan on November 5, 2020. The contents are used here.
 (メタ)アクリル樹脂は、その優れた外観、耐傷付性、耐熱性から、洗面化粧台、浴槽、水洗便器等の住宅設備向け材料;建築材料;車両の内外装材料等の車両用部材などの多くの用途に広く用いられている。
 (メタ)アクリル樹脂は、上記用途に用いる場合、人や物との接触により製品に傷が付くことがあるため、より優れた耐傷付性が求められている。また、優れた透明性も求められている。
 さらに、(メタ)アクリル樹脂を、押出し成形や射出成形等の公知の溶融成形法を用いて成形する際に、押出機内の温度や金型の温度、射出速度等の成形条件によって、得られる成形体の耐傷付性が変化してしまうという課題がある。そのため、(メタ)アクリル樹脂には、成形条件依存性が小さいことが求められている。
(Meta) Acrylic resin is a material for housing equipment such as vanities, bathtubs, flush toilets, etc.; building materials; vehicle parts such as interior and exterior materials of vehicles, etc. due to its excellent appearance, scratch resistance, and heat resistance. Widely used in many applications.
When the (meth) acrylic resin is used for the above purposes, the product may be scratched by contact with a person or an object, and therefore, more excellent scratch resistance is required. In addition, excellent transparency is also required.
Further, when molding a (meth) acrylic resin using a known melt molding method such as extrusion molding or injection molding, molding obtained depending on molding conditions such as the temperature inside the extruder, the temperature of the mold, and the injection speed. There is a problem that the scratch resistance of the body changes. Therefore, the (meth) acrylic resin is required to have a small dependence on molding conditions.
 特許文献1には、ポリフッ化ビニリデン系共重合体を含む塗料用アクリル系樹脂組成物が開示されている。
 特許文献2には、ポリフッ化ビニリデン系共重合体を含むアクリル系樹脂フィルムが開示されている。
 特許文献3には、脂肪酸アミド化合物を含むメタクリル系樹脂組成物が開示されている。
Patent Document 1 discloses an acrylic resin composition for paints containing a polyvinylidene fluoride-based copolymer.
Patent Document 2 discloses an acrylic resin film containing a polyvinylidene fluoride-based copolymer.
Patent Document 3 discloses a methacrylic resin composition containing a fatty acid amide compound.
日本国特開平10-7866号公報Japanese Patent Application Laid-Open No. 10-7866 日本国特開2005-42066号公報Japanese Patent Application Laid-Open No. 2005-4206 日本国特開2015-131948号公報Japanese Patent Application Laid-Open No. 2015-131948
 しかしながら、特許文献1に開示されている塗料用アクリル系樹脂組成物、特許文献2に開示されているアクリル系樹脂フィルム、及び特許文献3に開示されているメタクリル系樹脂組成物は、いずれも耐傷付性や成形条件依存性が不充分であった。 However, the acrylic resin composition for coatings disclosed in Patent Document 1, the acrylic resin film disclosed in Patent Document 2, and the methacrylic resin composition disclosed in Patent Document 3 are all scratch resistant. Adhesiveness and dependence on molding conditions were insufficient.
 本発明は、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物を提供することを目的とする。
 また、本発明は、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体を提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention relates to a (meth) acrylic resin composition for a molding material, a (meth) acrylic resin composition, and a resin for a molding material, which can obtain a resin molded product having excellent scratch resistance, molding condition dependence, and transparency. It is an object of the present invention to provide a composition.
Another object of the present invention is to provide a resin molded product having excellent scratch resistance, molding condition dependence, and transparency.
 本発明は、下記の態様を有する。
[1]ISO 8295:1995に準拠して測定した動摩擦係数(F)が0.150以下であり、
 赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数870~890cm-1の領域のピーク吸光度(P2)と、波数1710~1730cm-1の領域のピーク吸光度(P3)との吸光度比率(P2/P3)が0.0005以上である、樹脂成形体。
[2]赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数1630~1650cm-1の領域のピーク吸光度(P1)と、前記ピーク吸光度(P3)との吸光度比率(P1/P3)が0.0005以上0.0120以下であり、
 前記吸光度比率(P1/P3)及び前記動摩擦係数(F)が、下記一般式(1)を満たす、[1]の樹脂成形体。
 F≦-15.5×(P1/P3)+0.21  ・・・(1)
[3](メタ)アクリル系重合体(A)、含フッ素オレフィン系重合体(B)、及び脂肪酸化合物(C)を含む(メタ)アクリル系樹脂組成物からなる、[1]又は[2]の樹脂成形体。
[4]フッ素原子含有化合物、及び脂肪酸化合物(C)を含む、成形材料用(メタ)アクリル系樹脂組成物からなる、[1]又は[2]の樹脂成形体。
[5]脂肪酸化合物(C)を含み、フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、(メタ)アクリル系樹脂組成物からなる、[1]又は[2]の樹脂成形体。
The present invention has the following aspects.
[1] The coefficient of dynamic friction (F) measured in accordance with ISO 8295: 1995 is 0.150 or less.
In the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer, the peak absorbance (P2) in the region of wave number 870 to 890 cm -1 and the peak absorbance in the region of wave number 1710 to 1730 cm -1 ( A resin molded body having an absorbance ratio (P2 / P3) with P3) of 0.0005 or more.
[2] Absorbance between the peak absorbance (P1) in the region of wave number 1630 to 1650 cm -1 and the peak absorbance (P3) in the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer. The ratio (P1 / P3) is 0.0005 or more and 0.0120 or less.
The resin molded product of [1], wherein the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the following general formula (1).
F ≦ -15.5 × (P1 / P3) +0.21 ・ ・ ・ (1)
[3] [1] or [2] comprising a (meth) acrylic resin composition containing a (meth) acrylic polymer (A), a fluorine-containing olefin polymer (B), and a fatty acid compound (C). Resin molded body.
[4] The resin molded product of [1] or [2], which comprises a (meth) acrylic resin composition for a molding material, which comprises a fluorine atom-containing compound and a fatty acid compound (C).
[5] From the (meth) acrylic resin composition containing the fatty acid compound (C) and having a fluorine atom content of 0.5% by mass or more based on the total mass of the (meth) acrylic resin composition. The resin molded product of [1] or [2].
[6]フッ素原子含有化合物、及び脂肪酸化合物(C)を含む、成形材料用(メタ)アクリル系樹脂組成物。
[7]前記フッ素原子含有化合物に由来するフッ素原子の含有割合が、前記成形材料用(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、[6]の成形材料用(メタ)アクリル系樹脂組成物。
[8]前記フッ素原子含有化合物が、含フッ素オレフィン系重合体(B)である、[6]又は[7]の成形材料用(メタ)アクリル系樹脂組成物。
[9]前記含フッ素オレフィン系重合体(B)が、フッ化ビニリデンの単独重合体であるか、又は、フッ化ビニリデン単量体由来の繰り返し単位、及びフッ化ビニリデンと共重合可能な単量体由来の繰り返し単位を含む共重合体である、[8]の成形材料用(メタ)アクリル系樹脂組成物。
[10]前記脂肪酸化合物(C)の溶解性パラメーター値が、16.4(J/cm1/2以上24.6(J/cm1/2以下である、[6]~[9]のいずれかの成形材料用(メタ)アクリル系樹脂組成物。
[11]前記脂肪酸化合物(C)が、脂肪酸アミド化合物(C1)である、[6]~[10]のいずれかの成形材料用(メタ)アクリル系樹脂組成物。
[12]前記脂肪酸アミド化合物(C1)が、下記一般式(i)で表される化合物である、[11]の成形材料用(メタ)アクリル系樹脂組成物。
 R-CONH  ・・・(i)
(一般式(i)中、Rは、置換基を有していてもよい炭素数10~25の炭化水素基である。)
[13]前記脂肪酸アミド化合物(C1)が、飽和脂肪酸アミド化合物である、[11]又は[12]の成形材料用(メタ)アクリル系樹脂組成物。
[14](メタ)アクリル系重合体(A)をさらに含む、[6]~[13]のいずれかの成形材料用(メタ)アクリル系樹脂組成物。
[15]前記フッ素原子含有化合物の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して1質量部以上30質量部以下である、[14]の成形材料用(メタ)アクリル系樹脂組成物。
[16]前記脂肪酸化合物(C)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して0.5質量部以上10.0質量部以下である、[14]又は[15]の成形材料用(メタ)アクリル系樹脂組成物。
[17]前記(メタ)アクリル系重合体(A)の含有割合が、前記成形材料用(メタ)アクリル系樹脂組成物の総質量に対して60質量%以上である、[14]~[16]のいずれかの成形材料用(メタ)アクリル系樹脂組成物。
[6] A (meth) acrylic resin composition for a molding material, which comprises a fluorine atom-containing compound and a fatty acid compound (C).
[7] The molding of [6], wherein the content ratio of the fluorine atom derived from the fluorine atom-containing compound is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition for the molding material. (Meta) acrylic resin composition for materials.
[8] The (meth) acrylic resin composition for a molding material according to [6] or [7], wherein the fluorine atom-containing compound is a fluorine-containing olefin polymer (B).
[9] The fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, a repeating unit derived from a vinylidene fluoride monomer, and a single amount copolymerizable with vinylidene fluoride. The (meth) acrylic resin composition for a molding material according to [8], which is a copolymer containing a body-derived repeating unit.
[10] The solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less, [6] to [ 9] The (meth) acrylic resin composition for any of the molding materials.
[11] The (meth) acrylic resin composition for a molding material according to any one of [6] to [10], wherein the fatty acid compound (C) is a fatty acid amide compound (C1).
[12] The (meth) acrylic resin composition for a molding material according to [11], wherein the fatty acid amide compound (C1) is a compound represented by the following general formula (i).
R-CONH 2 ... (i)
(In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
[13] The (meth) acrylic resin composition for a molding material according to [11] or [12], wherein the fatty acid amide compound (C1) is a saturated fatty acid amide compound.
[14] The (meth) acrylic resin composition for a molding material according to any one of [6] to [13], further comprising the (meth) acrylic polymer (A).
[15] For the molding material (meth) of [14], wherein the content of the fluorine atom-containing compound is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). ) Acrylic resin composition.
[16] The content of the fatty acid compound (C) is 0.5 parts by mass or more and 10.0 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A), [14] or [15] The (meth) acrylic resin composition for a molding material.
[17] The content ratio of the (meth) acrylic polymer (A) is 60% by mass or more with respect to the total mass of the (meth) acrylic resin composition for the molding material, [14] to [16]. ] (Meta) acrylic resin composition for any of the molding materials.
[18]脂肪酸化合物(C)を含み、
 フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、(メタ)アクリル系樹脂組成物。
[19]前記脂肪酸化合物(C)の溶解性パラメーター値が、16.4(J/cm1/2以上24.6(J/cm1/2以下である、[18]の(メタ)アクリル系樹脂組成物。
[20]前記脂肪酸化合物(C)が、脂肪酸アミド化合物(C1)である、[18]又は[19]の(メタ)アクリル系樹脂組成物。
[21]前記脂肪酸アミド化合物(C1)が、下記一般式(i)で表される化合物である、[20]の(メタ)アクリル系樹脂組成物。
 R-CONH  ・・・(i)
(一般式(i)中、Rは、置換基を有していてもよい炭素数10~25の炭化水素基である。)
[22]前記脂肪酸アミド化合物(C1)が、飽和脂肪酸アミド化合物である、[20]又は[21]の(メタ)アクリル系樹脂組成物。
[23](メタ)アクリル系重合体(A)、及び含フッ素オレフィン系重合体(B)をさらに含む、[18]~[22]のいずれかの(メタ)アクリル系樹脂組成物。
[24]前記含フッ素オレフィン系重合体(B)が、フッ化ビニリデンの単独重合体であるか、又は、フッ化ビニリデン単量体由来の繰り返し単位及びフッ化ビニリデンと共重合可能な単量体由来の繰り返し単位を含む共重合体である、[23]の(メタ)アクリル系樹脂組成物。
[25]前記含フッ素オレフィン系重合体(B)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して1質量部以上30質量部以下である、[23]又は[24]の(メタ)アクリル系樹脂組成物。
[26]前記脂肪酸化合物(C)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して0.5質量部以上10.0質量部以下である、[23]~[25]のいずれかの(メタ)アクリル系樹脂組成物。
[27]前記(メタ)アクリル系重合体(A)の含有割合が、前記(メタ)アクリル系樹脂組成物の総質量に対して60質量%以上である、[23]~[26]のいずれかの(メタ)アクリル系樹脂組成物。
[28][18]~[27]のいずれかの(メタ)アクリル系樹脂組成物を含む、成形材料用樹脂組成物。
[29][6]~[17]のいずれかの成形材料用(メタ)アクリル系樹脂組成物、又は、[18]~[27]のいずれかの(メタ)アクリル系樹脂組成物を成形してなる、樹脂成形体。
[18] Containing the fatty acid compound (C),
A (meth) acrylic resin composition in which the content ratio of fluorine atoms is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition.
[19] The solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less (18). Meta) Acrylic resin composition.
[20] The (meth) acrylic resin composition of [18] or [19], wherein the fatty acid compound (C) is a fatty acid amide compound (C1).
[21] The (meth) acrylic resin composition of [20], wherein the fatty acid amide compound (C1) is a compound represented by the following general formula (i).
R-CONH 2 ... (i)
(In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
[22] The (meth) acrylic resin composition of [20] or [21], wherein the fatty acid amide compound (C1) is a saturated fatty acid amide compound.
[23] The (meth) acrylic resin composition according to any one of [18] to [22], further comprising a (meth) acrylic polymer (A) and a fluorine-containing olefin polymer (B).
[24] The fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, or a repeating unit derived from a vinylidene fluoride monomer and a monomer copolymerizable with vinylidene fluoride. The (meth) acrylic resin composition of [23], which is a copolymer containing a repeating unit of origin.
[25] The content of the fluorine-containing olefin polymer (B) is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A), [23] or [24] (Meta) acrylic resin composition.
[26] The content of the fatty acid compound (C) is 0.5 parts by mass or more and 10.0 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). The (meth) acrylic resin composition according to any one of [25].
[27] Any of [23] to [26], wherein the content ratio of the (meth) acrylic polymer (A) is 60% by mass or more with respect to the total mass of the (meth) acrylic resin composition. The (meth) acrylic resin composition.
[28] A resin composition for a molding material, which comprises the (meth) acrylic resin composition according to any one of [18] to [27].
[29] The (meth) acrylic resin composition for any of the molding materials of [6] to [17] or the (meth) acrylic resin composition of any of [18] to [27] is molded. A resin molded product.
 本発明の成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物によれば、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる。
 本発明の樹脂成形体は、耐傷付性、成形条件依存性、及び透明性に優れる。
According to the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention, a resin having excellent scratch resistance, molding condition dependence, and transparency. A molded product is obtained.
The resin molded product of the present invention is excellent in scratch resistance, molding condition dependence, and transparency.
樹脂成形体の表面について、フーリエ変換赤外線分光光度計を用いて測定した、波数1630~1650cm-1の領域の赤外吸収スペクトルの一例である。This is an example of an infrared absorption spectrum in the region of 1630 to 1650 cm-1 with a wave number measured on the surface of the resin molded product using a Fourier transform infrared spectrophotometer. 樹脂成形体の表面について、フーリエ変換赤外線分光光度計を用いて測定した、波数870~890cm-1の領域の赤外吸収スペクトルの一例である。This is an example of an infrared absorption spectrum in the region of 870 to 890 cm -1 with a wave number measured on the surface of the resin molded product using a Fourier transform infrared spectrophotometer. 樹脂成形体の表面について、フーリエ変換赤外線分光光度計を用いて測定した、波数1710~1730cm-1の領域の赤外吸収スペクトルの一例である。This is an example of an infrared absorption spectrum in the region of wave number 1710 to 1730 cm -1 measured by using a Fourier transform infrared spectrophotometer on the surface of the resin molded product. 実施例及び比較例における耐傷付性試験の概要を説明する模式図である。It is a schematic diagram explaining the outline of the scratch resistance test in an Example and a comparative example.
 以下、本発明の実施形態を説明する。
 本発明において「(メタ)アクリル系重合体」は、「アクリル系重合体」及び「メタクリル系重合体」から選ばれる少なくとも1種を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」から選ばれる少なくとも1種を意味し、「(メタ)アクリル酸」は、「アクリル酸」及び「メタクリル酸」から選ばれる少なくとも1種を意味し、「(メタ)アクリル樹脂」は、「アクリル樹脂」及び「メタクリル樹脂」から選ばれる少なくとも1種を意味する。
 本発明において、「単量体」は未重合の化合物を意味し、「繰り返し単位」は単量体が重合することによって形成された前記単量体に由来する単位を意味する。繰り返し単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換されたものであってもよい。
 本発明において、「質量%」は全体量100質量%中に含まれる所定の成分の含有割合を示す。
 本明細書において、「得られた樹脂成形体」は、本発明の成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物のいずれかを成形してなる成形体を意味する。
Hereinafter, embodiments of the present invention will be described.
In the present invention, the "(meth) acrylic polymer" means at least one selected from the "acrylic polymer" and the "methacrylic polymer".
In the present specification, "(meth) acrylate" means at least one selected from "acrylate" and "methacrylic acid", and "(meth) acrylic acid" is selected from "acrylic acid" and "methacrylic acid". "(Meta) acrylic resin" means at least one selected from "acrylic resin" and "methacrylic resin".
In the present invention, the "monomer" means an unpolymerized compound, and the "repeating unit" means a unit derived from the monomer formed by polymerizing the monomer. The repeating unit may be a unit directly formed by a polymerization reaction, or a part of the unit may be converted into another structure by processing a polymer.
In the present invention, "% by mass" indicates the content ratio of a predetermined component contained in 100% by mass of the total amount.
In the present specification, the "obtained resin molded product" is any one of the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention. It means a molded product made by molding.
[(メタ)アクリル系樹脂組成物]
 本発明の第一の態様の(メタ)アクリル系樹脂組成物は、後述する脂肪酸化合物(C)を含み、フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である。
[(Meta) acrylic resin composition]
The (meth) acrylic resin composition according to the first aspect of the present invention contains the fatty acid compound (C) described later, and the content ratio of fluorine atoms is 0 with respect to the total mass of the (meth) acrylic resin composition. It is 5.5% by mass or more.
 ここで、「フッ素原子の含有割合」とは、本発明の第一の態様の(メタ)アクリル系樹脂組成物に含まれ、且つ、高分子鎖を構成する繰り返し単位に含まれるフッ素原子の含有割合であり、(メタ)アクリル系樹脂組成物の総質量100質量%に対する、フッ素原子の含有割合(単位:質量%)と定義する。
 例えば、後述する含フッ素オレフィン系重合体(B)がその構造中にフッ素原子を含む場合は、(メタ)アクリル系樹脂組成物の総質量100質量%に対する、含フッ素オレフィン系重合体(B)中のフッ素原子の含有割合のことをいう。
Here, the "fluorine atom content ratio" is the content of fluorine atoms contained in the (meth) acrylic resin composition of the first aspect of the present invention and contained in the repeating unit constituting the polymer chain. It is defined as the content ratio (unit: mass%) of fluorine atoms to 100% by mass of the total mass of the (meth) acrylic resin composition.
For example, when the fluorine-containing olefin-based polymer (B) described later contains a fluorine atom in its structure, the fluorine-containing olefin-based polymer (B) is based on 100% by mass of the total mass of the (meth) acrylic resin composition. It refers to the content ratio of fluorine atoms in.
 (メタ)アクリル系樹脂組成物のフッ素原子の含有割合が、0.5質量%以上であれば、得られた樹脂成形体は、成形条件依存性に優れ、また、表面摩擦係数が低下する傾向にあるので、耐傷付性に優れる。
 フッ素原子の含有割合は、(メタ)アクリル系樹脂組成物の総質量に対して0.7質量%以上が好ましく、1.0質量%以上がより好ましい。一方、フッ素原子の含有割合の上限は特に制限されないが、15質量%以下であれば、得られた樹脂成形体は、硬度が損なわれないので、耐傷付性を良好に維持できる。フッ素原子の含有割合は、(メタ)アクリル系樹脂組成物の総質量に対して12質量%以下がより好ましく、10質量%以下がさらに好ましい。
 フッ素原子の含有割合の上限及び下限は任意に組み合わせることができる。例えば、(メタ)アクリル系樹脂組成物の総質量(100質量%)に対するフッ素原子の含有割合は、0.5質量%以上15質量%以下が好ましく、0.7質量%以上12質量%以下がより好ましく、1.0質量%以上10質量%以下がさらに好ましい。
When the content ratio of fluorine atoms in the (meth) acrylic resin composition is 0.5% by mass or more, the obtained resin molded product has excellent dependence on molding conditions, and the surface friction coefficient tends to decrease. Because it is located in, it has excellent scratch resistance.
The content ratio of the fluorine atom is preferably 0.7% by mass or more, more preferably 1.0% by mass or more, based on the total mass of the (meth) acrylic resin composition. On the other hand, the upper limit of the content ratio of fluorine atoms is not particularly limited, but if it is 15% by mass or less, the hardness of the obtained resin molded product is not impaired, so that scratch resistance can be maintained satisfactorily. The content ratio of the fluorine atom is more preferably 12% by mass or less, and further preferably 10% by mass or less, based on the total mass of the (meth) acrylic resin composition.
The upper and lower limits of the content ratio of fluorine atoms can be arbitrarily combined. For example, the content ratio of fluorine atoms to the total mass (100% by mass) of the (meth) acrylic resin composition is preferably 0.5% by mass or more and 15% by mass or less, and 0.7% by mass or more and 12% by mass or less. More preferably, it is 1.0% by mass or more and 10% by mass or less.
 (メタ)アクリル系樹脂組成物のフッ素原子の含有割合を制御する方法としては、後述する含フッ素オレフィン系重合体(B)を(メタ)アクリル系樹脂組成物に配合する方法や、フッ素化(メタ)アクリレート単位を含む重合体を(メタ)アクリル系樹脂組成物に配合する方法が挙げられる。得られた樹脂成形体の耐傷付性に優れる観点から、含フッ素オレフィン系重合体(B)を(メタ)アクリル系樹脂組成物に配合する方法が好ましい。 As a method for controlling the content ratio of fluorine atoms in the (meth) acrylic resin composition, a method of blending the fluorine-containing olefin polymer (B) described later into the (meth) acrylic resin composition or fluorination (meth) Examples thereof include a method of blending a polymer containing a meta) acrylate unit into a (meth) acrylic resin composition. From the viewpoint of excellent scratch resistance of the obtained resin molded product, a method of blending the fluorine-containing olefin polymer (B) with the (meth) acrylic resin composition is preferable.
 本発明の第一の態様の(メタ)アクリル系樹脂組成物の一実施形態としては、(メタ)アクリル系重合体(A)を含んでいてもよく、後述する含フッ素オレフィン系重合体(B)を含んでいてもよく、例えば、後述する(メタ)アクリル系重合体(A)、後述する含フッ素オレフィン系重合体(B)、及び後述する脂肪酸化合物(C)を含むものが挙げられる。
 本実施形態の(メタ)アクリル系樹脂組成物は、後述する衝撃補強材(D)を含んでいてもよく、後述するシリコーンオイル(E)を含んでいてもよく、後述するカーボンブラック(F)を含んでいてもよい。
 また、本実施形態の(メタ)アクリル系樹脂組成物は、樹脂成形体の性能を損なわない配合量の範囲であれば、(メタ)アクリル系重合体(A)、含フッ素オレフィン系重合体(B)、脂肪酸化合物(C)、衝撃補強材(D)、シリコーンオイル(E)、及びカーボンブラック(F)以外の成分(以下、「他の添加剤」ともいう。)をさらに含んでいてもよい。
As one embodiment of the (meth) acrylic resin composition of the first aspect of the present invention, the (meth) acrylic polymer (A) may be contained, and the fluorine-containing olefin polymer (B) described later may be contained. ) May be contained, and examples thereof include those containing a (meth) acrylic polymer (A) described later, a fluorine-containing olefin polymer (B) described later, and a fatty acid compound (C) described later.
The (meth) acrylic resin composition of the present embodiment may contain an impact reinforcing material (D) described later, a silicone oil (E) described later, and carbon black (F) described later. May include.
Further, the (meth) acrylic resin composition of the present embodiment is a (meth) acrylic polymer (A) or a fluorine-containing olefin polymer (as long as the compounding amount does not impair the performance of the resin molded product. Even if components other than B), the fatty acid compound (C), the impact reinforcing material (D), the silicone oil (E), and the carbon black (F) (hereinafter, also referred to as "other additives") are further contained. Good.
 本実施形態の(メタ)アクリル系樹脂組成物のISO 1133-1:2011に準じ、温度230℃、荷重3.8kgの条件で測定したMFRは、特に限定されないが、通常は0.5~50g/10min程度である。 The MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133-1: 2011 of the (meth) acrylic resin composition of the present embodiment is not particularly limited, but is usually 0.5 to 50 g. It is about / 10min.
<(メタ)アクリル系重合体(A)>
 (メタ)アクリル系重合体(A)は、本実施形態の(メタ)アクリル系樹脂組成物の構成成分の1つである。
 (メタ)アクリル系重合体(A)は、構成単位の少なくとも一部が(メタ)アクリル系単量体に基づく構成単位である重合体を意味する。(メタ)アクリル系重合体(A)は、(メタ)アクリル系単量体以外の単量体(例えばスチレン等のビニル系単量体)に基づく構成単位をさらに含んでいてもよい。「(メタ)アクリル系単量体」は、アクリロイル基及びメタクリロイル基の少なくとも一方を有する単量体を意味する。
 (メタ)アクリル系重合体(A)としては、メタクリル系単量体に基づく構成単位を含むことが好ましく、メチルメタクリレート由来の繰り返し単位(以下、「メチルメタクリレート単位」という。)を含むことがより好ましい。メチルメタクリレート単位の含有割合は、(メタ)アクリル系重合体(A)の総質量に対して70質量%以上が好ましい。
 以下、メチルメタクリレート単位の含有割合が、(メタ)アクリル系重合体(A)の総質量に対して70質量%以上である(メタ)アクリル系重合体(A)を特に「重合体(A1)」ともいう。
<(Meta) acrylic polymer (A)>
The (meth) acrylic polymer (A) is one of the constituents of the (meth) acrylic resin composition of the present embodiment.
The (meth) acrylic polymer (A) means a polymer in which at least a part of the constituent units is a constituent unit based on the (meth) acrylic monomer. The (meth) acrylic polymer (A) may further contain a structural unit based on a monomer other than the (meth) acrylic monomer (for example, a vinyl monomer such as styrene). "(Meta) acrylic monomer" means a monomer having at least one of an acryloyl group and a methacryloyl group.
The (meth) acrylic polymer (A) preferably contains a structural unit based on a methacrylic monomer, and more preferably contains a repeating unit derived from methyl methacrylate (hereinafter, referred to as “methyl methacrylate unit”). preferable. The content ratio of the methyl methacrylate unit is preferably 70% by mass or more with respect to the total mass of the (meth) acrylic polymer (A).
Hereinafter, the (meth) acrylic polymer (A) in which the content ratio of the methyl methacrylate unit is 70% by mass or more with respect to the total mass of the (meth) acrylic polymer (A) is particularly "polymer (A1)". Also called.
(重合体(A1))
 重合体(A1)としては、メチルメタクリレートの単独重合体;重合体(A1)の総質量に対して、70質量%以上100質量%未満のメチルメタクリレート単位と、0質量%を超え30質量%以下の他の単量体由来の繰り返し単位(以下、「他の単量体単位」ともいう。)とを含む共重合体が挙げられる。
(Polymer (A1))
The polymer (A1) is a homopolymer of methyl methacrylate; a methyl methacrylate unit of 70% by mass or more and less than 100% by mass, and more than 0% by mass and 30% by mass or less with respect to the total mass of the polymer (A1). Examples thereof include a copolymer containing a repeating unit derived from another monomer (hereinafter, also referred to as “another monomer unit”).
 これらの重合体(A1)の中でも、(メタ)アクリル樹脂である(メタ)アクリル系重合体(A)本来の性能を損ないにくいことから、重合体(A1)の総質量に対してメチルメタクリレート単位の含有割合が90質量%以上である共重合体若しくはメチルメタクリレートの単独重合体が好ましく、重合体(A1)の総質量に対してメチルメタクリレート単位の含有割合が95質量%以上である共重合体若しくはメチルメタクリレートの単独重合体がより好ましい。 Among these polymers (A1), since the original performance of the (meth) acrylic polymer (A), which is a (meth) acrylic resin, is not easily impaired, the methyl methacrylate unit is based on the total mass of the polymer (A1). A copolymer having a content of 90% by mass or more or a homopolymer of methyl methacrylate is preferable, and a copolymer having a content ratio of methyl methacrylate units of 95% by mass or more with respect to the total mass of the polymer (A1). Alternatively, a homopolymer of methyl methacrylate is more preferable.
 他の単量体は、メチルメタクリレートと共重合可能な、メチルメタクリレート以外の単量体である。
 他の単量体としては、メチルメタクリレートと共重合可能であれば特に制限されるものではないが、例えば、メチルアクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のメチルメタクリレート以外の(メタ)アクリレート化合物;(メタ)アクリル酸;(メタ)アクリロニトリル;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;スチレン、α-メチルスチレン等の芳香族ビニル化合物;ビニルメチルエーテル、ビニルエチルエーテル、2-ヒドロキシエチルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル化合物;エチレン、プロピレン、ブテン、イソブテン等のオレフィン化合物が挙げられる。これらの他の単量体の中でも、(メタ)アクリル樹脂本来の性能が損なわれにくいことから、メチルメタクリレート以外の(メタ)アクリレート化合物が好ましく、得られた樹脂成形体の耐熱分解性に優れることから、メチルアクリレート、エチルアクリレート、n-ブチルアクリレートがより好ましく、メチルアクリレート、エチルアクリレートがさらに好ましい。
 これらの他の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
The other monomer is a monomer other than methyl methacrylate that can be copolymerized with methyl methacrylate.
The other monomer is not particularly limited as long as it can be copolymerized with methyl methacrylate, but for example, methyl acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate. , N-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate , Benzyl (meth) acrylate, isobornyl (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, norbornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopenta (Meta) acrylate compounds other than methyl methacrylate such as nyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate; (meth) acrylic acid; (meth) acrylonitrile; (meth) acrylamide , N, N-Dimethyl (meth) acrylamide and other (meth) acrylamide compounds; styrene, α-methylstyrene and other aromatic vinyl compounds; vinyl methyl ether, vinyl ethyl ether, 2-hydroxyethyl vinyl ether and other vinyl ether compounds; acetic acid Vinyl carboxylate compounds such as vinyl and vinyl butylate; olefin compounds such as ethylene, propylene, butene and isobutene can be mentioned. Among these other monomers, a (meth) acrylate compound other than methyl methacrylate is preferable because the original performance of the (meth) acrylic resin is not easily impaired, and the obtained resin molded product has excellent heat-decomposability. Therefore, methyl acrylate, ethyl acrylate, and n-butyl acrylate are more preferable, and methyl acrylate and ethyl acrylate are even more preferable.
These other monomers may be used alone or in combination of two or more.
 重合体(A1)が他の単量体単位を含む場合、重合体(A1)の総質量に対する他の単量体単位の含有割合は、(メタ)アクリル樹脂本来の性能を損ないにくいことから、0質量%を超えて20質量%以下が好ましく、0質量%を超えて10質量%以下がより好ましく、0質量%を超えて5質量%以下がさらに好ましい。 When the polymer (A1) contains other monomer units, the content ratio of the other monomer units to the total mass of the polymer (A1) does not easily impair the original performance of the (meth) acrylic resin. It is preferably more than 0% by mass and 20% by mass or less, more preferably more than 0% by mass and 10% by mass or less, and further preferably more than 0% by mass and 5% by mass or less.
 重合体(A1)の製造方法としては、例えば、塊状重合法、懸濁重合法、乳化重合法、溶液重合法が挙げられる。これらの重合方法の中でも、生産性に優れることから、塊状重合法、懸濁重合法が好ましく、塊状重合法がより好ましい。 Examples of the method for producing the polymer (A1) include a massive polymerization method, a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method. Among these polymerization methods, the massive polymerization method and the suspension polymerization method are preferable, and the massive polymerization method is more preferable, because they are excellent in productivity.
 重合体(A1)の質量平均分子量は、20,000~200,000が好ましく、50,000~150,000がより好ましい。重合体(A1)の質量平均分子量が20,000以上であると、得られた樹脂成形体の機械特性に優れる。また、重合体(A1)の質量平均分子量が200,000以下であると、溶融成形時の流動性に優れる。
 本明細書において、質量平均分子量は、標準試料として標準ポリスチレンを用い、ゲルパーミエーションクロマトグラフィーを用いて測定した値とする。
The mass average molecular weight of the polymer (A1) is preferably 20,000 to 200,000, more preferably 50,000 to 150,000. When the mass average molecular weight of the polymer (A1) is 20,000 or more, the mechanical properties of the obtained resin molded product are excellent. Further, when the mass average molecular weight of the polymer (A1) is 200,000 or less, the fluidity at the time of melt molding is excellent.
In the present specification, the mass average molecular weight is a value measured by using standard polystyrene as a standard sample and using gel permeation chromatography.
 (メタ)アクリル系樹脂組成物の総質量(100質量%)に対する(メタ)アクリル系重合体(A)の含有割合は、得られた樹脂成形体が、透明性、耐熱性、及び耐侯性等の(メタ)アクリル樹脂本来の性能を良好に維持できる観点から、60質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。また、(メタ)アクリル系樹脂組成物の総質量(100質量%)に対する(メタ)アクリル系重合体(A)の含有割合は、得られた樹脂成形体の耐傷付性に優れる観点から、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下がさらに好ましい。
 (メタ)アクリル系重合体(A)の含有割合の上限及び下限は任意に組み合わせることができる。例えば、(メタ)アクリル系樹脂組成物の総質量(100質量%)に対する(メタ)アクリル系重合体(A)の含有割合は、60質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、90質量%以上97質量%以下がさらに好ましい。
Regarding the content ratio of the (meth) acrylic polymer (A) to the total mass (100% by mass) of the (meth) acrylic resin composition, the obtained resin molded product has transparency, heat resistance, weather resistance, etc. From the viewpoint of maintaining the original performance of the (meth) acrylic resin, 60% by mass or more is preferable, 70% by mass or more is more preferable, and 90% by mass or more is further preferable. The content ratio of the (meth) acrylic polymer (A) to the total mass (100% by mass) of the (meth) acrylic resin composition is 99 from the viewpoint of excellent scratch resistance of the obtained resin molded product. It is preferably 9% by mass or less, more preferably 98% by mass or less, and further preferably 97% by mass or less.
The upper and lower limits of the content ratio of the (meth) acrylic polymer (A) can be arbitrarily combined. For example, the content ratio of the (meth) acrylic polymer (A) with respect to the total mass (100% by mass) of the (meth) acrylic resin composition is preferably 60% by mass or more and 99% by mass or less, and 70% by mass or more and 98% by mass or more. More preferably, it is 90% by mass or more, and further preferably 97% by mass or less.
<含フッ素オレフィン系重合体(B)>
 含フッ素オレフィン系重合体(B)は、本実施形態の(メタ)アクリル系樹脂組成物の任意構成成分の1つである。
 (メタ)アクリル系樹脂組成物中の、含フッ素オレフィン系重合体(B)の含有割合を調整することで、フッ素原子の含有割合を、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上とすることができる。
<Fluorine-containing olefin polymer (B)>
The fluorine-containing olefin polymer (B) is one of the optional constituents of the (meth) acrylic resin composition of the present embodiment.
By adjusting the content ratio of the fluorine-containing olefin polymer (B) in the (meth) acrylic resin composition, the content ratio of fluorine atoms can be adjusted with respect to the total mass of the (meth) acrylic resin composition. It can be 0.5% by mass or more.
 含フッ素オレフィン系重合体(B)としては、フッ素原子を含むオレフィン系重合体であれば特には限定されず、従来公知であるフッ化オレフィン系共重合体を用いることができる。 The fluorine-containing olefin-based polymer (B) is not particularly limited as long as it is an olefin-based polymer containing a fluorine atom, and conventionally known fluoroolefin-based copolymers can be used.
 さらに含フッ素オレフィン系重合体(B)としては、(メタ)アクリル系樹脂組成物中への溶解性が良好となり、得られた樹脂成形体の耐擦傷性が優れたものとなる観点から、(メタ)アクリル系重合体(A)との相溶性が充分に高いものを用いることが好ましい。
 ここで、含フッ素オレフィン系重合体(B)と(メタ)アクリル系重合体(A)との相溶性が充分に高い状態とは、例えば、ISO 3146:2000に準拠し、熱流束示差走査熱量計を用いて、(メタ)アクリル系樹脂組成物のガラス転移点を測定したときに、(メタ)アクリル系重合体(A)に由来するガラス転移点と含フッ素オレフィン系重合体(B)に由来するガラス転移点のそれぞれが検出されず、ガラス転移点が1つだけ検出される状態が挙げられる。
Further, the fluorine-containing olefin polymer (B) has good solubility in the (meth) acrylic resin composition, and the obtained resin molded product has excellent scratch resistance. It is preferable to use a polymer having sufficiently high compatibility with the meta) acrylic polymer (A).
Here, the state in which the compatibility between the fluoroolefin polymer (B) and the (meth) acrylic polymer (A) is sufficiently high is, for example, in accordance with ISO 3146: 2000, and the heat flow flux differential scanning calorific value. When the glass transition point of the (meth) acrylic resin composition was measured using a meter, the glass transition point derived from the (meth) acrylic polymer (A) and the fluorine-containing olefin polymer (B) were obtained. A state in which each of the derived glass transition points is not detected and only one glass transition point is detected can be mentioned.
 特に、本実施形態の(メタ)アクリル系樹脂組成物は、含フッ素オレフィン系重合体(B)と後述する脂肪酸化合物(C)とを併用することにより、その両者が有する耐擦傷性向上効果が相まって、含フッ素オレフィン系重合体(B)の含有量を増量することなく、得られる成形体の耐傷付性をさらに良好なものにできるので、透明性、耐熱性、及び耐侯性等の(メタ)アクリル樹脂本来の性能を損ないにくい。 In particular, the (meth) acrylic resin composition of the present embodiment has the effect of improving the scratch resistance of both the fluorine-containing olefin polymer (B) and the fatty acid compound (C) described later in combination. Combined with this, the scratch resistance of the obtained molded product can be further improved without increasing the content of the fluorine-containing olefin polymer (B), so that the transparency, heat resistance, weather resistance, etc. (meth) can be further improved. ) It does not easily impair the original performance of acrylic resin.
 含フッ素オレフィン系重合体(B)の具体的な一実施態様としては、少ない配合量であっても得られた樹脂成形体の耐擦傷性が優れ、また、(メタ)アクリル系樹脂組成物の溶融温度が高くなりすぎるのを防ぐことができ、(メタ)アクリル樹脂本来の性能を損ないにくい観点から、フッ化ビニリデン単位を含有するフッ化ビニリデン系(共)重合体が好ましい。 As a specific embodiment of the fluoroolefin polymer (B), the obtained resin molded product has excellent scratch resistance even with a small blending amount, and the (meth) acrylic resin composition. A vinylidene fluoride-based (co) polymer containing a vinylidene fluoride unit is preferable from the viewpoint that the melting temperature can be prevented from becoming too high and the original performance of the (meth) acrylic resin is not impaired.
 フッ化ビニリデン系(共)重合体としては、フッ化ビニリデンの単独重合体;フッ化ビニリデン単量体由来の繰り返し単位と、フッ化ビニリデンと共重合可能な単量体由来の繰り返し単位とを含むフッ化ビニリデン系共重合体が挙げられる。 The vinylidene fluoride-based (co) polymer includes a homopolymer of vinylidene fluoride; a repeating unit derived from a vinylidene fluoride monomer and a repeating unit derived from a monomer copolymerizable with vinylidene fluoride. Examples thereof include vinylidene fluoride-based copolymers.
 前記フッ化ビニリデン系共重合体としては、フッ化ビニリデン単位と、ヘキサフルオロプロピレン、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、パーフルオロアルキルビニルエーテル、及びエチレンから選択される少なくとも1種の単量体に由来する繰り返し単位とを含むフッ化ビニリデン系共重合体が挙げられる。
 具体的には、フッ化ビニリデン-トリフルオロエチレン系共重合体、フッ化ビニリデン-テトラフルオロエチレン系共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン-クロロトリフルオロエチレン系共重合体が挙げられる。
The vinylidene fluoride-based copolymer includes a vinylidene fluoride unit and at least one simple substance selected from hexafluoropropylene, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, perfluoroalkyl vinyl ether, and ethylene. Examples thereof include vinylidene fluoride-based copolymers containing a repeating unit derived from a metric.
Specifically, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexa. Examples thereof include fluoropropylene-based copolymers and vinylidene fluoride-chlorotrifluoroethylene-based copolymers.
 これらの中でも、得られた樹脂成形体の耐擦傷性が優れ、さらに、(メタ)アクリル系樹脂組成物の溶融粘度が低く成形加工し易い点から、フッ化ビニリデン系(共)重合体としては、フッ化ビニリデンの単独重合体、フッ化ビニリデン単位60~95質量%とテトラフルオロエチレン単位5~40質量%との二元共重合体、フッ化ビニリデン単位60~95質量%とヘキサフルオロプロピレン単位5~40質量%との二元共重合体が好ましい。 Among these, the obtained resin molded product has excellent scratch resistance, and the (meth) acrylic resin composition has a low melt viscosity and is easy to mold, so that it is a vinylidene fluoride-based (co) polymer. , A homopolymer of vinylidene fluoride, a binary copolymer of vinylidene fluoride unit 60-95% by mass and tetrafluoroethylene unit 5-40% by mass, vinylidene fluoride unit 60-95% by mass and hexafluoropropylene unit A binary copolymer with 5 to 40% by mass is preferable.
 上述したフッ化ビニリデン系(共)重合体は、1種を単独で使用することもできるし、2種以上の重合体を組み合わせて使用することもできる。また、これらのフッ化ビニリデン系(共)重合体は、分子鎖中に他の成分を含んだ共重合体であってもよいし、側鎖に他の成分をグラフト結合させた共重合体であってもよい。 As the above-mentioned vinylidene fluoride-based (co) polymer, one type can be used alone, or two or more types of polymers can be used in combination. Further, these vinylidene fluoride-based (co) polymers may be copolymers containing other components in the molecular chain, or copolymers in which other components are graft-bonded to the side chains. There may be.
 含フッ素オレフィン系重合体(B)のISO 1133-1:2011に準じ、温度230℃、荷重3.8kgの条件で測定したMFRは、特に限定されないが、通常は0.5~50g/10min程度である。 The MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133: 2011 of the fluorine-containing olefin polymer (B) is not particularly limited, but is usually about 0.5 to 50 g / 10 min. Is.
 フッ化ビニリデンの単独重合体としては、例えば、株式会社クレハ製のKFT #850、#1000;アルケマ株式会社製のKynar(登録商標) 705、721、761、301F等の市販品を使用することができる。
 フッ化ビニリデン系共重合体としては、例えば、アルケマ株式会社製のKynarFlex2801;ダイキン工業株式会社製のVP-50;Solvay社製のSolef(登録商標)シリーズ等の市販品を使用することができる。
As the homopolymer of vinylidene fluoride, for example, commercially available products such as KFT # 850 and # 1000 manufactured by Kureha Corporation; Kynar (registered trademark) 705, 721, 761 and 301F manufactured by Arkema Corporation can be used. it can.
As the vinylidene fluoride-based copolymer, for example, commercially available products such as KynarFlex2801 manufactured by Arkema Co., Ltd.; VP-50 manufactured by Daikin Industries, Ltd .; Solef (registered trademark) series manufactured by Solvay Co., Ltd. can be used.
 本実施形態の(メタ)アクリル系樹脂組成物に含まれる含フッ素オレフィン系重合体(B)の含有量は、得られた樹脂成形体の耐傷付性に優れる観点から、(メタ)アクリル系重合体(A)の総質量100質量部に対して1質量部以上が好ましく、1.5質量部以上がより好ましい。また含フッ素オレフィン系重合体(B)の含有量は、得られた樹脂成形体が(メタ)アクリル樹脂本来の性能を損なわない観点から、(メタ)アクリル系重合体(A)の総質量100質量部に対して30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。
 含フッ素オレフィン系重合体(B)の含有量の上限及び下限は任意に組み合わせることができる。例えば、本実施形態の(メタ)アクリル系樹脂組成物に含まれる含フッ素オレフィン系重合体(B)の含有量は、(メタ)アクリル系重合体(A)の総質量100質量部に対して1質量部以上30質量部以下が好ましく、1質量部以上20質量部以下がより好ましく、1.5質量部以上10質量部以下がさらに好ましい。
The content of the fluoroolefin polymer (B) contained in the (meth) acrylic resin composition of the present embodiment is the (meth) acrylic weight from the viewpoint of excellent scratch resistance of the obtained resin molded product. 1 part by mass or more is preferable, and 1.5 parts by mass or more is more preferable with respect to 100 parts by mass of the total mass of the coalescence (A). The content of the fluoroolefin polymer (B) is 100, the total mass of the (meth) acrylic polymer (A), from the viewpoint that the obtained resin molded product does not impair the original performance of the (meth) acrylic resin. It is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and further preferably 10 parts by mass or less with respect to parts by mass.
The upper and lower limits of the content of the fluorine-containing olefin polymer (B) can be arbitrarily combined. For example, the content of the fluorine-containing olefin polymer (B) contained in the (meth) acrylic resin composition of the present embodiment is based on 100 parts by mass of the total mass of the (meth) acrylic polymer (A). It is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 20 parts by mass or less, and further preferably 1.5 parts by mass or more and 10 parts by mass or less.
<脂肪酸化合物(C)>
 脂肪酸化合物(C)は、本実施形態の(メタ)アクリル系樹脂組成物の構成成分の1つである。
 本発明の第一の態様の(メタ)アクリル系樹脂組成物が脂肪酸化合物(C)を含むことで、得られた樹脂成形体の表面滑り性が向上し、耐傷付性をより優れたものにできる。
<Fatty acid compound (C)>
The fatty acid compound (C) is one of the constituents of the (meth) acrylic resin composition of the present embodiment.
When the (meth) acrylic resin composition of the first aspect of the present invention contains the fatty acid compound (C), the surface slipperiness of the obtained resin molded product is improved, and the scratch resistance is further improved. it can.
 特に、(メタ)アクリル系樹脂組成物が脂肪酸化合物(C)と上述した含フッ素オレフィン系重合体(B)とを併有していれば、両者が有する耐擦傷性向上効果が相まって、脂肪酸化合物(C)の含有量を増量することなく、得られる成形体の耐傷付性をさらに良好なものにできるので、透明性、耐熱性、及び耐侯性等の(メタ)アクリル樹脂本来の性能を損ないにくい。 In particular, if the (meth) acrylic resin composition contains both the fatty acid compound (C) and the above-mentioned fluorine-containing olefin polymer (B), the scratch resistance improving effect of both is combined with the fatty acid compound. Since the scratch resistance of the obtained molded product can be further improved without increasing the content of (C), the original performance of the (meth) acrylic resin such as transparency, heat resistance, and weather resistance is impaired. Hateful.
 脂肪酸化合物(C)の溶解性パラメーター値は、16.4(J/cm1/2以上24.6(J/cm1/2以下であることが好ましい。
 溶解性パラメーター値(SP値)は、Solubility Parameterであり、溶解性の尺度となるものである。SP値は数値が大きいほど極性が高く、逆に数値が小さいほど極性が低いことを示す。本発明において、SP値は、Fedorsらが提案した方法によって算出する。具体的には「POLYMER ENGINEERING AND SCIENCE,FEBRUARY,1974,Vol.14,No.2,ROBERT F.FEDORS.(147~154頁)」を参照して算出することができる。
The solubility parameter value of the fatty acid compound (C) is preferably 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less.
The solubility parameter value (SP value) is a solution parameter, which is a measure of solubility. The larger the SP value, the higher the polarity, and conversely, the smaller the value, the lower the polarity. In the present invention, the SP value is calculated by the method proposed by Fedors et al. Specifically, it can be calculated by referring to "POLYMER ENGINEERING AND SCIENCE, FEBRARY, 1974, Vol. 14, No. 2, ROBERT F. FEDORS. (Pages 147 to 154)".
 脂肪酸化合物(C)の溶解性パラメーター値が16.4(J/cm1/2以上であれば、(メタ)アクリル系重合体(A)との相溶性に優れる傾向にあるので、得られた樹脂成形体は耐傷付性に優れる。脂肪酸化合物(C)の溶解性パラメーター値は、16.8(J/cm1/2以上がより好ましく、17.4(J/cm1/2以上がさらに好ましい。一方、脂肪酸化合物(C)の溶解性パラメーター値が24.6(J/cm1/2以下であれば、(メタ)アクリル系重合体(A)との相溶性に優れる傾向にあるので、得られた樹脂成形体は、耐傷付性を良好に維持できる。脂肪酸化合物(C)の溶解性パラメーター値は、23.6(J/cm1/2以下がより好ましく、22.6(J/cm1/2以下がさらに好ましい。
 脂肪酸化合物(C)の溶解性パラメーター値の上限及び下限は任意に組み合わせることができる。例えば、脂肪酸化合物(C)の溶解性パラメーター値は、16.4(J/cm1/2以上24.6(J/cm1/2以下が好ましく、16.8(J/cm1/2以上23.6(J/cm1/2以下がより好ましく、17.4(J/cm1/2以上22.6(J/cm1/2以下がさらに好ましい。
If the solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more, the compatibility with the (meth) acrylic polymer (A) tends to be excellent. The resulting resin molded product has excellent scratch resistance. The solubility parameter value of the fatty acid compound (C) is more preferably 16.8 (J / cm 3 ) 1/2 or more, and further preferably 17.4 (J / cm 3 ) 1/2 or more. On the other hand, if the solubility parameter value of the fatty acid compound (C) is 24.6 (J / cm 3 ) 1/2 or less, the compatibility with the (meth) acrylic polymer (A) tends to be excellent. The obtained resin molded product can maintain good scratch resistance. The solubility parameter value of the fatty acid compound (C) is more preferably 23.6 (J / cm 3 ) 1/2 or less, and further preferably 22.6 (J / cm 3 ) 1/2 or less.
The upper and lower limits of the solubility parameter value of the fatty acid compound (C) can be arbitrarily combined. For example, the solubility parameter value of the fatty acid compound (C) is preferably 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less, preferably 16.8 (J / cm 3). 3 ) 1/2 or more and 23.6 (J / cm 3 ) 1/2 or less is more preferable, 17.4 (J / cm 3 ) 1/2 or more and 22.6 (J / cm 3 ) 1/2 or less. More preferred.
 脂肪酸化合物(C)としては、得られた樹脂成形体の耐傷付性を優れたものにしやすい観点から、分子内にカルボキシル基、アミド基、エステル基、又はカルボニル基から選ばれる少なくとも一種を、少なくとも1個有する鎖状炭化水素化合物が好ましい。
 鎖状炭化水素化合物とは、カルボキシル基、アミド基、エステル基、又はカルボニル基が結合する炭素原子が炭素鎖の構成原子となっている化合物を意味する。鎖状炭化水素化合物中の炭素鎖は、飽和であっても不飽和であってもよく、また、直鎖状であっても分枝鎖状であってもよい。
As the fatty acid compound (C), at least one selected from a carboxyl group, an amide group, an ester group, or a carbonyl group in the molecule is selected from the viewpoint of easily improving the scratch resistance of the obtained resin molded product. A chain hydrocarbon compound having one is preferable.
The chain hydrocarbon compound means a compound in which a carbon atom to which a carboxyl group, an amide group, an ester group, or a carbonyl group is bonded is a constituent atom of the carbon chain. The carbon chain in the chain hydrocarbon compound may be saturated or unsaturated, and may be linear or branched.
 このような脂肪酸化合物(C)としては、例えば、分子内にカルボキシル基を有する鎖状炭化水素化合物として、脂肪酸とその誘導体が挙げられる。分子内にアミド基を有する鎖状炭化水素化合物としては、脂肪酸アミドとその誘導体が挙げられる。分子内にエステル基又はカルボニル基を有する鎖状炭化水素化合物としては、脂肪酸アルキルエステルとその誘導体、又は脂肪酸グリセリドとその誘導体が挙げられる。
 脂肪酸の誘導体、脂肪酸アミドの誘導体、脂肪酸アルキルエステルの誘導体、及び脂肪酸グリセリドの誘導体としては、鎖状炭化水素化合物における水素原子、若しくは、側鎖の一部又は全部を、他の有機基に置き換えた構造の化合物である。有機基としては、例えば、ポリエーテル基、ポリアルキル基、アラルキル基、ポリエステル基が挙げられ、これらは、単独でも又は2種類以上の組み合わせでもよい。
 さらに、脂肪酸アミドの誘導体としては、各種状況に応じて、例えば、モノアミドやビスアミドを含む様々な化合物の中から適宜選択して用いることができる。
 これらの脂肪酸化合物(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of such a fatty acid compound (C) include fatty acids and derivatives thereof as chain hydrocarbon compounds having a carboxyl group in the molecule. Examples of the chain hydrocarbon compound having an amide group in the molecule include fatty acid amides and derivatives thereof. Examples of the chain hydrocarbon compound having an ester group or a carbonyl group in the molecule include a fatty acid alkyl ester and its derivative, or a fatty acid glyceride and its derivative.
As the fatty acid derivative, the fatty acid amide derivative, the fatty acid alkyl ester derivative, and the fatty acid glyceride derivative, the hydrogen atom in the chain hydrocarbon compound or a part or all of the side chain was replaced with another organic group. It is a compound of structure. Examples of the organic group include a polyether group, a polyalkyl group, an aralkyl group, and a polyester group, which may be used alone or in combination of two or more.
Further, as the fatty acid amide derivative, it can be appropriately selected and used from various compounds including, for example, monoamide and bisamide, depending on various situations.
These fatty acid compounds (C) may be used alone or in combination of two or more.
 これらの中でも、(メタ)アクリル系重合体(A)との相溶性、(メタ)アクリル系樹脂組成物の流動性、及び、得られた樹脂成形体の耐傷付性に優れる傾向にあることから、脂肪酸化合物(C)としては、脂肪酸アミドとその誘導体(以下、これらを総称して「脂肪酸アミド化合物(C1)」ともいう。)が好ましい。 Among these, the compatibility with the (meth) acrylic polymer (A), the fluidity of the (meth) acrylic resin composition, and the scratch resistance of the obtained resin molded product tend to be excellent. As the fatty acid compound (C), a fatty acid amide and a derivative thereof (hereinafter, these are collectively referred to as "fatty acid amide compound (C1)") are preferable.
 脂肪酸アミド化合物(C1)としては、例えば、飽和脂肪酸アミド化合物、不飽和脂肪酸アミド化合物、ビス脂肪酸アミド化合物が挙げられる。
 これらの脂肪酸アミド化合物(C1)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの脂肪酸アミド化合物(C1)の中でも、得られた樹脂成形体の耐傷付性に優れることから、飽和脂肪酸アミド化合物及び不飽和脂肪酸アミドが好ましく、飽和脂肪酸アミド化合物がより好ましい。
Examples of the fatty acid amide compound (C1) include saturated fatty acid amide compounds, unsaturated fatty acid amide compounds, and bis fatty acid amide compounds.
One of these fatty acid amide compounds (C1) may be used alone, or two or more thereof may be used in combination.
Among these fatty acid amide compounds (C1), saturated fatty acid amide compounds and unsaturated fatty acid amides are preferable, and saturated fatty acid amide compounds are more preferable, because the obtained resin molded product is excellent in scratch resistance.
 脂肪酸アミド化合物(C1)としては、下記一般式(i)で表される化合物(以下、「化合物(i)」ともいう。)を用いることができる。化合物(i)は、少ない配合量であっても得られた樹脂成形体の耐擦傷性が優れ、(メタ)アクリル樹脂本来の性能を損ないにくい観点から、好ましい。
 R-CONH  ・・・(i)
(一般式(i)中、Rは、置換基を有していてもよい炭素数10~25の炭化水素基である。)
As the fatty acid amide compound (C1), a compound represented by the following general formula (i) (hereinafter, also referred to as “compound (i)”) can be used. Compound (i) is preferable from the viewpoint that the obtained resin molded product has excellent scratch resistance even with a small blending amount and the original performance of the (meth) acrylic resin is not impaired.
R-CONH 2 ... (i)
(In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
 脂肪酸アミド化合物(C1)の式(i)におけるRの炭素数は、(メタ)アクリル系重合体(A)との相溶性に優れ、得られた樹脂成形体の耐傷付性に優れる観点から、10以上が好ましく、15以上がより好ましく、17以上がさらに好ましい。脂肪酸アミド化合物(C1)の式(i)におけるRの炭素数は、(メタ)アクリル系樹脂組成物中への脂肪酸アミド化合物(C1)の分散性が良好となり、得られた樹脂成形体の耐傷付性を良好に維持できる観点から、25以下が好ましく、24以下がより好ましく、23以下がさらに好ましい。
 脂肪酸アミド化合物(C1)の式(i)におけるRの炭素数の上限及び下限は任意に組み合わせることができる。例えば、脂肪酸アミド化合物(C1)の式(i)におけるRの炭素数は、10~25が好ましく、15~24がより好ましく、17~23がより好ましい。
The carbon number of R in the formula (i) of the fatty acid amide compound (C1) is excellent in compatibility with the (meth) acrylic polymer (A), and the obtained resin molded product is excellent in scratch resistance. 10 or more is preferable, 15 or more is more preferable, and 17 or more is further preferable. The carbon number of R in the formula (i) of the fatty acid amide compound (C1) is such that the fatty acid amide compound (C1) has good dispersibility in the (meth) acrylic resin composition, and the obtained resin molded product is scratch resistant. From the viewpoint of maintaining good adhesion, 25 or less is preferable, 24 or less is more preferable, and 23 or less is further preferable.
The upper and lower limits of the carbon number of R in the formula (i) of the fatty acid amide compound (C1) can be arbitrarily combined. For example, the carbon number of R in the formula (i) of the fatty acid amide compound (C1) is preferably 10 to 25, more preferably 15 to 24, and even more preferably 17 to 23.
 飽和脂肪酸アミド化合物としては、例えば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミドが挙げられる。
 これらの飽和脂肪酸アミド化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの飽和脂肪酸アミド化合物の中でも、成形体の耐傷付性に優れることから、ステアリン酸アミド、パルミチン酸アミド、ベヘン酸アミドが好ましい。
Examples of the saturated fatty acid amide compound include lauric acid amide, palmitic acid amide, stearic acid amide, and behenic acid amide.
These saturated fatty acid amide compounds may be used alone or in combination of two or more.
Among these saturated fatty acid amide compounds, stearic acid amide, palmitic acid amide, and behenic acid amide are preferable because they are excellent in scratch resistance of the molded product.
 不飽和脂肪酸アミドとしては、例えば、エルカ酸アミド、オレイン酸アミド、ブラシジン酸アミド、エライジン酸アミドが挙げられる。
 これらの不飽和脂肪酸アミド化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの不飽和脂肪酸アミド化合物の中でも、得られた樹脂成形体の耐傷付性に優れることから、エルカ酸アミド、オレイン酸アミドが好ましく、エルカ酸アミドがより好ましい。
Examples of unsaturated fatty acid amides include erucic acid amides, oleic acid amides, brassic acid amides, and elaidic acid amides.
These unsaturated fatty acid amide compounds may be used alone or in combination of two or more.
Among these unsaturated fatty acid amide compounds, erucic acid amide and oleic acid amide are preferable, and erucic acid amide is more preferable, because the obtained resin molded product is excellent in scratch resistance.
 ビス脂肪酸アミド化合物としては、例えば、メチレンビスステアリン酸アミド、メチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド等のビス脂肪酸アミド;ステアリルステアリン酸アミド、ステアリルエルカ酸アミド、オレイルパルミチン酸アミドが挙げられる。
 これらのビス脂肪酸アミド化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the bis fatty acid amide compound include bis fatty acid amides such as methylene bisstearic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide, and ethylene bisoleic acid amide; Acid amides can be mentioned.
One of these bis fatty acid amide compounds may be used alone, or two or more thereof may be used in combination.
 本実施形態の(メタ)アクリル系樹脂組成物に含まれる脂肪酸化合物(C)の含有量は、得られた樹脂成形体の耐傷付性に優れる観点から、(メタ)アクリル系重合体(A)の総質量100質量部に対し、0.5質量部以上が好ましく、1.0質量部以上がより好ましい。また脂肪酸化合物(C)の含有量は、得られた樹脂成形体が(メタ)アクリル樹脂本来の性能を損なわない観点から、(メタ)アクリル系重合体(A)の総質量100質量部に対し、10質量部以下が好ましく、5質量部がより好ましい。
 脂肪酸化合物(C)の含有量の上限及び下限は任意に組み合わせることができる。例えば、本実施形態の(メタ)アクリル系樹脂組成物に含まれる脂肪酸化合物(C)の含有量は、(メタ)アクリル系重合体(A)の総質量100質量部に対し、0.5質量部以上10質量部以下が好ましく、1.0質量部以上5.0質量部以下がより好ましい。
The content of the fatty acid compound (C) contained in the (meth) acrylic resin composition of the present embodiment is the (meth) acrylic polymer (A) from the viewpoint of excellent scratch resistance of the obtained resin molded product. 0.5 parts by mass or more is preferable, and 1.0 part by mass or more is more preferable with respect to 100 parts by mass of the total mass. The content of the fatty acid compound (C) is based on 100 parts by mass of the total mass of the (meth) acrylic polymer (A) from the viewpoint that the obtained resin molded product does not impair the original performance of the (meth) acrylic resin. It is preferably 10 parts by mass or less, and more preferably 5 parts by mass.
The upper and lower limits of the content of the fatty acid compound (C) can be arbitrarily combined. For example, the content of the fatty acid compound (C) contained in the (meth) acrylic resin composition of the present embodiment is 0.5 mass by mass with respect to 100 parts by mass of the total mass of the (meth) acrylic polymer (A). 10 parts by mass or more is preferable, and 1.0 part by mass or more and 5.0 parts by mass or less is more preferable.
<衝撃補強材(D)>
 本実施形態の(メタ)アクリル系樹脂組成物には、衝撃補強材(D)を配合することができる。衝撃補強材(D)を配合することで、得られた樹脂成形体の耐衝撃性が良好となる。
<Impact reinforcement (D)>
The impact reinforcing material (D) can be blended in the (meth) acrylic resin composition of the present embodiment. By blending the impact reinforcing material (D), the impact resistance of the obtained resin molded product becomes good.
 衝撃補強材(D)としては、公知の耐衝撃性改良剤を用いることができ、例えば、国際公開第2018/016473号の明細書中に開示されている衝撃補強材(D)を使用することができる。 As the impact reinforcing material (D), a known impact resistance improving agent can be used, and for example, the impact reinforcing material (D) disclosed in the specification of International Publication No. 2018/016473 is used. Can be done.
<シリコーンオイル(E)>
 本実施形態の(メタ)アクリル系樹脂組成物には、シリコーンオイル(E)を配合することができる。シリコーンオイル(E)を配合することで、得られた樹脂成形体の表面滑り性が向上し、樹脂成形体の耐傷付性をより優れたものとすることができる。
<Silicone oil (E)>
Silicone oil (E) can be added to the (meth) acrylic resin composition of the present embodiment. By blending the silicone oil (E), the surface slipperiness of the obtained resin molded product can be improved, and the scratch resistance of the resin molded product can be made more excellent.
 シリコーンオイル(E)は、2官能性シロキサン単位を主骨格とする直鎖構造を有する重合体である。シリコーンオイル(E)としては、分子量2000以下である重合体が好ましい。
 シリコーンオイル(E)は、未変性シリコーンオイルであってもよいし、変性シリコーンオイルであってもよい。
Silicone oil (E) is a polymer having a linear structure having a bifunctional siloxane unit as a main skeleton. As the silicone oil (E), a polymer having a molecular weight of 2000 or less is preferable.
The silicone oil (E) may be an unmodified silicone oil or a modified silicone oil.
 未変性シリコーンオイルとしては、例えば、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーンが挙げられる。
 変性シリコーンオイルとしては、有機変性シリコーンが挙げられる。有機変性シリコーンとしては、反応性の有機変性シリコーン及び非反応性の有機変性シリコーンが挙げられる。
 これらのシリコーンオイルの中でも、得られた樹脂成形体の耐傷付性に優れる傾向にあることから、ジメチルシリコーン、メチルフェニルシリコーン、及びメチルハイドロジェンシリコーンからなる群より選ばれる少なくとも1種を含むシリコーンオイルが好ましい。
Examples of the unmodified silicone oil include dimethyl silicone, methyl phenyl silicone, and methyl hydrogen silicone.
Examples of the modified silicone oil include organically modified silicone. Examples of the organically modified silicone include reactive organically modified silicones and non-reactive organically modified silicones.
Among these silicone oils, a silicone oil containing at least one selected from the group consisting of dimethyl silicone, methyl phenyl silicone, and methyl hydrogen silicone because the obtained resin molded product tends to have excellent scratch resistance. Is preferable.
 ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーンとしては、市販品を使用することができる。 Commercially available products can be used as dimethyl silicone, methyl phenyl silicone, and methyl hydrogen silicone.
<カーボンブラック(F)>
 本実施形態の(メタ)アクリル系樹脂組成物には、カーボンブラック(F)を配合することができる。カーボンブラック(F)を配合することで、得られた樹脂成形体の漆黒性をより優れたものとすることができる。
 カーボンブラック(F)としては、例えば、(メタ)アクリル系重合体(A)との相溶性を向上させて、(メタ)アクリル系樹脂組成物中へのカーボンブラック(F)の分散性を高め、得られた樹脂成形体がより深みのある漆黒性を発現できる観点から、表面コーティング剤によりコーティングされたカーボンブラックが好ましい。
<Carbon black (F)>
Carbon black (F) can be added to the (meth) acrylic resin composition of the present embodiment. By blending carbon black (F), the jet-blackness of the obtained resin molded product can be made more excellent.
As the carbon black (F), for example, the compatibility with the (meth) acrylic polymer (A) is improved, and the dispersibility of the carbon black (F) in the (meth) acrylic resin composition is enhanced. From the viewpoint that the obtained resin molded product can exhibit a deeper jet-blackness, carbon black coated with a surface coating agent is preferable.
 前記表面コーティング剤としては、特に限定されないが、例えば、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、オレイン酸アミド、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアリルアミド、及びエチレンビスステアリルアミドからなる群より選ばれる1種以上が好ましい。
 これらの表面コーティング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
The surface coating agent is not particularly limited, and is, for example, a group consisting of zinc stearate, magnesium stearate, calcium stearate, oleic acid amide, stearic acid amide, palmitate amide, methylene bisstearyl amide, and ethylene bisstearyl amide. One or more selected from the above is preferable.
These surface coating agents may be used alone or in combination of two or more.
<他の添加剤>
 他の添加剤としては、例えば、紫外線吸収剤、老化防止剤、光安定剤、可塑剤、光拡散剤、艶消剤、滑剤、離型剤、帯電防止剤、流動性改質剤、摺動性付与剤、顔料や染料等の着色剤が挙げられる。
 これらの他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Other additives>
Other additives include, for example, UV absorbers, anti-aging agents, light stabilizers, plasticizers, light diffusers, matting agents, lubricants, mold release agents, antistatic agents, fluidity modifiers, sliding Examples include sex-imparting agents and colorants such as pigments and dyes.
These other additives may be used alone or in combination of two or more.
<製造方法>
 本実施形態の(メタ)アクリル系樹脂組成物は、例えば、(メタ)アクリル系重合体(A)と、脂肪酸化合物(C)と、必要に応じて含フッ素オレフィン系重合体(B)と、衝撃補強材(D)、シリコーンオイル(E)、カーボンブラック(F)、及び他の添加剤の1つ以上とを、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機等の予備混合手段を用いて充分に混合し、場合により押出造粒器やブリケッティングマシーン等により造粒し、その後、溶融混練機で溶融混練することにより製造される。
 また、必要に応じてペレタイザー等を用いて溶融混練物をペレット化してもよい。予備混合手段を用いず、各成分を直接、溶融混練機で溶融混練してもよい。
 溶融混練機としては、ベント式二軸押出機等の二軸押出機、バンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機等が挙げられる。
<Manufacturing method>
The (meth) acrylic resin composition of the present embodiment includes, for example, a (meth) acrylic polymer (A), a fatty acid compound (C), and, if necessary, a fluorine-containing olefin polymer (B). Pre-mixing means for impact reinforcing material (D), silicone oil (E), carbon black (F), and one or more of other additives, such as V-type blenders, Henschel mixers, mechanochemical devices, extrusion mixers, etc. It is produced by sufficiently mixing using the above, granulating with an extrusion granulator, a briquetting machine, or the like, and then melt-kneading with a melt-kneader.
Further, if necessary, the melt-kneaded product may be pelletized using a pelletizer or the like. Each component may be melt-kneaded directly by a melt-kneader without using the pre-mixing means.
Examples of the melt kneader include a twin-screw extruder such as a vent type twin-screw extruder, a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts.
<作用効果>
 本発明の第一の態様の(メタ)アクリル系樹脂組成物は、脂肪酸化合物(C)を含むので、得られた樹脂成形体の耐傷付性は優れたものとなる。
 さらに、本発明の第一の態様の(メタ)アクリル系樹脂組成物は、フッ素原子の含有割合が0.5質量%以上であり、さらに脂肪酸化合物(C)を含むので、得られた樹脂成形体の耐傷付性、及び成形条件依存性が優れたものとなる。特に、(メタ)アクリル系樹脂組成物が脂肪酸化合物(C)を含み、さらに含フッ素オレフィン系重合体(B)を含めば、得られた樹脂成形体の耐傷付性、及び成形条件依存性がより優れたものとなる。
 さらに、本発明の第一の態様の(メタ)アクリル系樹脂組成物は、含フッ素オレフィン系重合体(B)、及び脂肪酸化合物(C)をそれぞれ単独に含む場合に比べて、得られた樹脂成形体の耐傷付性が顕著に優れたものとなる。その理由は、定かではないが、含フッ素オレフィン系重合体(B)と脂肪酸化合物(C)が、相互作用することで、得られた樹脂成形体の表面及びその近傍により高濃度に存在できるようになり、樹脂成形体の表面の動摩擦係数が減少するためと推測している。
 また、本発明の第一の態様の(メタ)アクリル系樹脂組成物は、耐傷付性に優れることから、含フッ素オレフィン系重合体(B)の含有量を増量する必要がなく、透明性、耐熱性、及び耐侯性等の(メタ)アクリル樹脂本来の性能を損ないにくい。
 よって、本発明の第一の態様の(メタ)アクリル系樹脂組成物によれば、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる。
<Effect>
Since the (meth) acrylic resin composition of the first aspect of the present invention contains the fatty acid compound (C), the obtained resin molded product has excellent scratch resistance.
Further, since the (meth) acrylic resin composition of the first aspect of the present invention has a fluorine atom content of 0.5% by mass or more and further contains a fatty acid compound (C), the obtained resin molding The scratch resistance of the body and the dependence on molding conditions are excellent. In particular, if the (meth) acrylic resin composition contains the fatty acid compound (C) and further contains the fluorine-containing olefin polymer (B), the scratch resistance of the obtained resin molded product and the dependence on the molding conditions can be obtained. It will be better.
Further, the (meth) acrylic resin composition according to the first aspect of the present invention is a resin obtained as compared with the case where the fluorine-containing olefin polymer (B) and the fatty acid compound (C) are contained alone. The scratch resistance of the molded product is remarkably excellent. The reason is not clear, but the fluorine-containing olefin polymer (B) and the fatty acid compound (C) can interact with each other so that they can be present at a higher concentration on the surface of the obtained resin molded product and its vicinity. It is presumed that this is because the dynamic friction coefficient of the surface of the resin molded product is reduced.
Further, since the (meth) acrylic resin composition of the first aspect of the present invention is excellent in scratch resistance, it is not necessary to increase the content of the fluorine-containing olefin polymer (B), and the transparency is improved. It does not easily impair the original performance of (meth) acrylic resin such as heat resistance and weather resistance.
Therefore, according to the (meth) acrylic resin composition of the first aspect of the present invention, a resin molded product having excellent scratch resistance, molding condition dependence, and transparency can be obtained.
[成形材料用樹脂組成物]
 本発明の第二の態様の成形材料用樹脂組成物は、上述した本発明の第一の態様の(メタ)アクリル系樹脂組成物を含む。
 本発明の第一の態様の(メタ)アクリル系樹脂組成物の含有割合は、成形材料用樹脂組成物の総質量に対して80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。本発明の第一の態様の(メタ)アクリル系樹脂組成物の含有割合は、成形材料用樹脂組成物の総質量に対して100質量%であってもよい。
[Resin composition for molding material]
The resin composition for a molding material according to the second aspect of the present invention includes the (meth) acrylic resin composition according to the first aspect of the present invention described above.
The content ratio of the (meth) acrylic resin composition according to the first aspect of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass, based on the total mass of the resin composition for molding materials. % Or more is more preferable. The content ratio of the (meth) acrylic resin composition according to the first aspect of the present invention may be 100% by mass with respect to the total mass of the resin composition for molding materials.
 成形材料用樹脂組成物は、本発明の第一の態様の(メタ)アクリル系樹脂組成物からなるものでもよいし、本発明の第一の態様の(メタ)アクリル系樹脂組成物以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。
 成形材料用樹脂組成物に含まれる他の成分としては、本発明の効果を損なわない範囲で、例えば、(メタ)アクリル系重合体(A)及び含フッ素オレフィン系重合体(B)を除く、ポリカーボネート系樹脂、ポリスチレン系樹脂等の他の熱可塑性樹脂が挙げられる。
The resin composition for a molding material may consist of the (meth) acrylic resin composition of the first aspect of the present invention, or may be a component other than the (meth) acrylic resin composition of the first aspect of the present invention. (Hereinafter, also referred to as "other components") may be contained.
As other components contained in the resin composition for molding materials, for example, (meth) acrylic polymer (A) and fluorine-containing olefin polymer (B) are excluded as long as the effects of the present invention are not impaired. Examples thereof include other thermoplastic resins such as polycarbonate-based resins and polystyrene-based resins.
 本発明の第二の態様の成形材料用樹脂組成物は、本発明の第一の態様の(メタ)アクリル系樹脂組成物を含むので、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる。 Since the resin composition for molding material of the second aspect of the present invention contains the (meth) acrylic resin composition of the first aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency. A resin molded product is obtained.
[成形材料用(メタ)アクリル系樹脂組成物]
 本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物は、後述するフッ素原子含有化合物、及び脂肪酸化合物(C)を含む。
[(Meta) Acrylic Resin Composition for Molding Material]
The (meth) acrylic resin composition for a molding material according to the third aspect of the present invention contains a fluorine atom-containing compound and a fatty acid compound (C), which will be described later.
 本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物は、フッ素原子含有化合物に由来するフッ素原子の含有割合が、成形材料用(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上であることが好ましい。
 ここで、「フッ素原子の含有割合」とは、本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物に含まれ、且つ、高分子鎖を構成する繰り返し単位に含まれるフッ素原子の含有割合であり、成形材料用(メタ)アクリル系樹脂組成物の総質量100質量%に対する、フッ素原子の含有割合(単位:質量%)と定義する。
 具体的には、成形材料用(メタ)アクリル系樹脂組成物の総質量100質量%に対する、フッ素原子含有化合物に由来するフッ素原子の含有割合のことをいう。
In the (meth) acrylic resin composition for molding materials according to the third aspect of the present invention, the content ratio of fluorine atoms derived from the fluorine atom-containing compound is the total mass of the (meth) acrylic resin composition for molding materials. On the other hand, it is preferably 0.5% by mass or more.
Here, the "content ratio of fluorine atoms" is defined as fluorine contained in the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention and contained in a repeating unit constituting a polymer chain. It is the content ratio of atoms, and is defined as the content ratio of fluorine atoms (unit: mass%) with respect to the total mass of 100% by mass of the (meth) acrylic resin composition for molding materials.
Specifically, it refers to the content ratio of fluorine atoms derived from the fluorine atom-containing compound to 100% by mass of the total mass of the (meth) acrylic resin composition for molding materials.
 成形材料用(メタ)アクリル系樹脂組成物のフッ素原子の含有割合を0.5質量%以上とすることで得られる効果、フッ素原子の含有割合の上限及び下限、フッ素原子の含有割合を制御する方法は、本発明の第一の態様と同様である。 The effect obtained by setting the content ratio of fluorine atoms in the (meth) acrylic resin composition for molding materials to 0.5% by mass or more, the upper and lower limits of the content ratio of fluorine atoms, and the content ratio of fluorine atoms are controlled. The method is similar to the first aspect of the present invention.
 本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物の一実施形態としては、例えば後述するフッ素原子含有化合物、(メタ)アクリル系重合体(A)、及び脂肪酸化合物(C)を含むものが挙げられる。
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物に含まれる(メタ)アクリル系重合体(A)及びその含有割合は、本発明の第一の態様の(メタ)アクリル系樹脂組成物の説明において先に例示した(メタ)アクリル系重合体(A)及びその含有割合と同様である。
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物に含まれる脂肪酸化合物(C)及びその含有量は、本発明の第一の態様の(メタ)アクリル系樹脂組成物の説明において先に例示した脂肪酸化合物(C)及びその含有量と同様である。
As one embodiment of the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention, for example, a fluorine atom-containing compound, a (meth) acrylic polymer (A), and a fatty acid compound (C), which will be described later, are used. ) Is included.
The (meth) acrylic polymer (A) contained in the (meth) acrylic resin composition for molding material of the present embodiment and its content ratio are the (meth) acrylic resin composition of the first aspect of the present invention. This is the same as the (meth) acrylic polymer (A) exemplified above and its content ratio.
The fatty acid compound (C) and its content contained in the (meth) acrylic resin composition for molding material of the present embodiment are described first in the description of the (meth) acrylic resin composition of the first aspect of the present invention. It is the same as the example fatty acid compound (C) and its content.
 また、本実施形態の成形材料用(メタ)アクリル系樹脂組成物は、衝撃補強材(D)、シリコーンオイル(E)、及びカーボンブラック(F)をさらに含んでいてもよい。
 また、本実施形態の成形材料用(メタ)アクリル系樹脂組成物は、樹脂成形体の性能を損なわない配合量の範囲であれば、(メタ)アクリル系重合体(A)、フッ素原子含有化合物、脂肪酸化合物(C)、衝撃補強材(D)、シリコーンオイル(E)、及びカーボンブラック(F)以外の成分(以下、「他の添加剤」ともいう。)をさらに含んでいてもよい。
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物に含まれる衝撃補強材(D)、シリコーンオイル(E)、カーボンブラック(F)、及び他の添加剤は、それぞれ本発明の第一の態様の(メタ)アクリル系樹脂組成物の説明において先に例示した衝撃補強材(D)、シリコーンオイル(E)、カーボンブラック(F)、及び他の添加剤と同様である。
Further, the (meth) acrylic resin composition for a molding material of the present embodiment may further contain an impact reinforcing material (D), a silicone oil (E), and carbon black (F).
Further, the (meth) acrylic resin composition for the molding material of the present embodiment is a (meth) acrylic polymer (A) or a fluorine atom-containing compound as long as the blending amount does not impair the performance of the resin molded product. , Fatty compound (C), impact reinforcing material (D), silicone oil (E), and components other than carbon black (F) (hereinafter, also referred to as “other additives”) may be further contained.
The impact reinforcing material (D), silicone oil (E), carbon black (F), and other additives contained in the (meth) acrylic resin composition for molding materials of the present embodiment are the first of the present invention, respectively. This is the same as the impact reinforcing material (D), the silicone oil (E), the carbon black (F), and other additives exemplified above in the description of the (meth) acrylic resin composition according to the above embodiment.
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物のISO 1133-1:2011に準じ、温度230℃、荷重3.8kgの条件で測定したMFRは、特に限定されないが、通常は0.5~50g/10min程度である。 The MFR measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg according to ISO 1133-1: 2011 of the (meth) acrylic resin composition for molding materials of the present embodiment is not particularly limited, but is usually 0. It is about 5 to 50 g / 10 min.
<フッ素原子含有化合物>
 フッ素原子含有化合物は、本実施形態の成形材料用(メタ)アクリル系樹脂組成物の構成成分の1つである。
 フッ素原子含有化合物としては、例えば、含フッ素オレフィン系重合体(B)、フッ素化(メタ)アクリレート単位を含む重合体が挙げられる。
 これらのフッ素原子含有化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらのフッ素原子含有化合物の中でも、得られた樹脂成形体の耐傷付性に優れる観点から、含フッ素オレフィン系重合体(B)がより好ましい。
 含フッ素オレフィン系重合体(B)は、本発明の第一の態様の(メタ)アクリル系樹脂組成物の説明において先に例示した含フッ素オレフィン系重合体(B)と同様である。
<Fluorine atom-containing compound>
The fluorine atom-containing compound is one of the constituents of the (meth) acrylic resin composition for a molding material of the present embodiment.
Examples of the fluorine atom-containing compound include a fluorine-containing olefin polymer (B) and a polymer containing a fluorinated (meth) acrylate unit.
These fluorine atom-containing compounds may be used alone or in combination of two or more.
Among these fluorine atom-containing compounds, the fluorine-containing olefin polymer (B) is more preferable from the viewpoint of excellent scratch resistance of the obtained resin molded product.
The fluorine-containing olefin-based polymer (B) is the same as the fluorine-containing olefin-based polymer (B) exemplified above in the description of the (meth) acrylic resin composition of the first aspect of the present invention.
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物に含まれるフッ素原子含有化合物の含有量は、本発明の第一の態様の(メタ)アクリル系樹脂組成物の説明において先に例示した含フッ素オレフィン系重合体(B)の含有量と同様である。 The content of the fluorine atom-containing compound contained in the (meth) acrylic resin composition for a molding material of the present embodiment has been exemplified above in the description of the (meth) acrylic resin composition of the first aspect of the present invention. The content is the same as that of the fluorine-containing olefin polymer (B).
<製造方法>
 本実施形態の成形材料用(メタ)アクリル系樹脂組成物は、例えば、(メタ)アクリル系重合体(A)と、フッ素原子含有化合物と、脂肪酸化合物(C)と、必要に応じて衝撃補強材(D)、シリコーンオイル(E)、カーボンブラック(F)、及び他の添加剤の1つ以上とを、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機等の予備混合手段を用いて充分に混合し、場合により押出造粒器やブリケッティングマシーン等により造粒し、その後、溶融混練機で溶融混練することにより製造される。また、必要に応じてペレタイザー等を用いて溶融混練物をペレット化してもよい。予備混合手段を用いず、各成分を直接、溶融混練機で溶融混練してもよい。
 溶融混練機としては、ベント式二軸押出機等の二軸押出機、バンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機等が挙げられる。
<Manufacturing method>
The (meth) acrylic resin composition for a molding material of the present embodiment includes, for example, a (meth) acrylic polymer (A), a fluorine atom-containing compound, a fatty acid compound (C), and impact reinforcement as required. One or more of the material (D), silicone oil (E), carbon black (F), and other additives are mixed by a premixing means such as a V-type blender, a Henschel mixer, a mechanochemical device, or an extrusion mixer. It is produced by sufficiently mixing the mixture, granulating it with an extrusion granulator, a briquetting machine, or the like, and then melt-kneading it with a melt-kneader. Further, if necessary, the melt-kneaded product may be pelletized using a pelletizer or the like. Each component may be melt-kneaded directly by a melt-kneader without using the pre-mixing means.
Examples of the melt kneader include a twin-screw extruder such as a vent type twin-screw extruder, a Banbury mixer, a kneading roll, a single-screw extruder, and a multi-screw extruder having three or more shafts.
<作用効果>
 本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物は、フッ素原子含有化合物、及び脂肪酸化合物(C)を含むので、得られた樹脂成形体の耐傷付性、及び成形条件依存性が優れたものとなる。
 さらに、第三の態様の成形材料用(メタ)アクリル系樹脂組成物は、フッ素原子含有化合物、及び脂肪酸化合物(C)をそれぞれ単独に含む場合に比べて、得られた樹脂成形体の耐傷付性が顕著に優れたものとなる。その理由は、定かではないが、含フッ素オレフィン系重合体(B)と脂肪酸化合物(C)が、相互作用することで、得られた樹脂成形体の表面及びその近傍に、より高濃度に存在できるようになり、樹脂成形体の表面の動摩擦係数が減少するためと推測している。
 また、本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物は、耐傷付性に優れることから、フッ素原子含有化合物の含有量を増量する必要がなく、透明性、耐熱性、及び耐侯性等の(メタ)アクリル樹脂本来の性能を損ないにくい。
 よって、第三の態様の成形材料用(メタ)アクリル系樹脂組成物によれば、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる。
<Effect>
Since the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention contains a fluorine atom-containing compound and a fatty acid compound (C), the obtained resin molded product has scratch resistance and molding conditions. The dependency becomes excellent.
Further, the (meth) acrylic resin composition for a molding material of the third aspect has scratch resistance of the obtained resin molded product as compared with the case where the fluorine atom-containing compound and the fatty acid compound (C) are contained alone. The sex is remarkably excellent. The reason is not clear, but the fluorine-containing olefin polymer (B) and the fatty acid compound (C) interact with each other and are present in a higher concentration on the surface of the obtained resin molded product and in the vicinity thereof. It is presumed that this is possible because the dynamic friction coefficient on the surface of the resin molded product is reduced.
Further, since the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention has excellent scratch resistance, it is not necessary to increase the content of the fluorine atom-containing compound, and the transparency and heat resistance do not need to be increased. , And the original performance of (meth) acrylic resin such as weather resistance is not easily impaired.
Therefore, according to the (meth) acrylic resin composition for a molding material of the third aspect, a resin molded product having excellent scratch resistance, molding condition dependence, and transparency can be obtained.
[樹脂成形体]
 本発明の第四の態様の樹脂成形体の一実施形態は、ISO 8295:1995に準拠して測定した動摩擦係数(F)が0.150以下であり、前記樹脂成形体の表面において、赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数870~890cm-1の領域のピーク吸光度(P2)と、波数1710~1730cm-1の領域のピーク吸光度(P3)との吸光度比率(P2/P3)が0.0005以上である樹脂成形体(1)である。
 本発明において、ピーク吸光度とは該当する波数を含むピークにおけるピークトップの吸光度を指す。
[Resin molded product]
In one embodiment of the resin molded body of the fourth aspect of the present invention, the dynamic friction coefficient (F) measured in accordance with ISO 8295: 1995 is 0.150 or less, and the surface of the resin molded body is infrared. Peak absorbance (P2) in the region of wavenumber 870 to 890 cm -1 and peak absorbance (P3) in the region of wavenumber 1710 to 1730 cm -1 in the infrared absorption spectrum measured by the single reflection ATR surface reflection method using a spectrophotometer. It is a resin molded body (1) having an absorbance ratio (P2 / P3) of 0.0005 or more.
In the present invention, the peak absorbance refers to the absorbance at the top of the peak at the peak including the corresponding wave number.
 動摩擦係数(F)が0.150以下であり、吸光度比率(P2/P3)が0.0005以上であれば、樹脂成形体(1)の耐傷付性、成形条件依存性、及び透明性が全て優れたものになる。
 動摩擦係数(F)の上限は、0.140以下が好ましく、0.110以下がより好ましい。また、動摩擦係数(F)の下限は、0.010以上が好ましく、0.020以上がより好ましく、0.030以上がさらに好ましい。
 動摩擦係数(F)の上限及び下限は任意に組み合わせることができる。例えば、動摩擦係数(F)は、0.010以上0.150以下が好ましく、0.020以上0.140以下がより好ましく、0.030以上0.110以下がさらに好ましい。
 動摩擦係数(F)は、後述する実施例に記載の方法により測定される。
If the coefficient of kinetic friction (F) is 0.150 or less and the absorbance ratio (P2 / P3) is 0.0005 or more, the scratch resistance, molding condition dependence, and transparency of the resin molded product (1) are all all. It will be excellent.
The upper limit of the dynamic friction coefficient (F) is preferably 0.140 or less, more preferably 0.110 or less. The lower limit of the dynamic friction coefficient (F) is preferably 0.010 or more, more preferably 0.020 or more, and even more preferably 0.030 or more.
The upper and lower limits of the dynamic friction coefficient (F) can be arbitrarily combined. For example, the dynamic friction coefficient (F) is preferably 0.010 or more and 0.150 or less, more preferably 0.020 or more and 0.140 or less, and further preferably 0.030 or more and 0.110 or less.
The coefficient of kinetic friction (F) is measured by the method described in Examples described later.
 吸光度比率(P2/P3)の下限は、0.0010以上が好ましく、0.0020以上がより好ましい。また、吸光度比率(P2/P3)の上限は、特に限定されないが、0.1200以下が好ましく、0.0500以下がより好ましく、0.0300以下がさらに好ましい。P2/P3が0.02以下であれば、樹脂成形体の表面及び表面の近傍における、含フッ素オレフィン系重合体(B)等のフッ素原子含有化合物の含有量が高くなりすぎず、樹脂成形体の機械的強度が低下しにくく、樹脂成形体の耐傷付性を十分に良好にできる。
 吸光度比率(P2/P3)の上限及び下限は任意に組み合わせることができる。例えば、吸光度比率(P2/P3)は、0.0005以上0.1200以下が好ましく、0.0010以上0.0500以下がより好ましく、0.0020以上0.0300以下がさらに好ましい。
 吸光度比率(P2/P3)は、樹脂成形体(1)の表面及び表面の近傍における、含フッ素オレフィン系重合体(B)等のフッ素原子含有化合物の存在量の指標となる数値である。
 吸光度比率(P2/P3)は、後述する実施例に記載の方法により測定される。
The lower limit of the absorbance ratio (P2 / P3) is preferably 0.0010 or more, more preferably 0.0020 or more. The upper limit of the absorbance ratio (P2 / P3) is not particularly limited, but is preferably 0.1200 or less, more preferably 0.0500 or less, and even more preferably 0.0300 or less. When P2 / P3 is 0.02 or less, the content of the fluorine atom-containing compound such as the fluorine-containing olefin polymer (B) does not become too high on the surface of the resin molded product and in the vicinity of the surface, and the resin molded product does not become too high. The mechanical strength of the resin molded product is unlikely to decrease, and the scratch resistance of the resin molded product can be sufficiently improved.
The upper and lower limits of the absorbance ratio (P2 / P3) can be arbitrarily combined. For example, the absorbance ratio (P2 / P3) is preferably 0.0005 or more and 0.1200 or less, more preferably 0.0010 or more and 0.0500 or less, and further preferably 0.0020 or more and 0.0300 or less.
The absorbance ratio (P2 / P3) is a numerical value that is an index of the abundance of a fluorine atom-containing compound such as a fluorine-containing olefin polymer (B) on the surface of the resin molded product (1) and in the vicinity of the surface.
The absorbance ratio (P2 / P3) is measured by the method described in Examples described later.
 P2/P3の値は、本発明の樹脂成形体の製造において、射出成形する際の、含フッ素オレフィン系重合体(B)等のフッ素原子含有化合物の配合量や、各種の成形温度、成形圧力を含む成形条件を調整することにより制御できる。 The values of P2 / P3 are the blending amount of the fluorine atom-containing compound such as the fluorine-containing olefin polymer (B), various molding temperatures, and molding pressures in the production of the resin molded product of the present invention during injection molding. It can be controlled by adjusting the molding conditions including.
 樹脂成形体(1)においては、前記樹脂成形体(1)の表面において、赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数1630~1650cm-1の領域のピーク吸光度(P1)と、前記ピーク吸光度(P3)との吸光度比率(P1/P3)が0.0005以上0.0120以下であり、吸光度比率(P1/P3)及び動摩擦係数(F)が、下記一般式(1)を満たすことが好ましい。
 F≦-15.5×(P1/P3)+0.21  ・・・(1)
In the resin molded body (1), a region having a wave number of 1630 to 1650 cm -1 in the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer on the surface of the resin molded body (1). The absorbance ratio (P1 / P3) between the peak absorbance (P1) and the peak absorbance (P3) is 0.0005 or more and 0.0120 or less, and the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) are It is preferable to satisfy the following general formula (1).
F ≦ -15.5 × (P1 / P3) +0.21 ・ ・ ・ (1)
 吸光度比率(P1/P3)が0.0005以上0.0120以下であり、且つ、吸光度比率(P1/P3)及び動摩擦係数(F)が、前記一般式(1)を満たすことにより、樹脂成形体(1)の耐傷付性、成形条件依存性、及び透明性はより優れたものになる。 When the absorbance ratio (P1 / P3) is 0.0005 or more and 0.0120 or less, and the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the general formula (1), the resin molded product The scratch resistance, molding condition dependence, and transparency of (1) become more excellent.
 吸光度比率(P1/P3)の下限は、0.0010以上が好ましく、0.0030以上がより好ましく、0.0070以上がさらに好ましい。また、吸光度比率(P1/P3)の上限は、0.0110以下が好ましく、0.0105以下がより好ましく、0.0100以下がさらに好ましい。
 吸光度比率(P1/P3)の上限及び下限は任意に組み合わせることができる。例えば、吸光度比率(P1/P3)は、0.0010以上0.0110以下が好ましく、0.0030以上0.0105以下がより好ましく、0.0070以上0.0100以下がさらに好ましい。
The lower limit of the absorbance ratio (P1 / P3) is preferably 0.0010 or more, more preferably 0.0030 or more, and even more preferably 0.0070 or more. The upper limit of the absorbance ratio (P1 / P3) is preferably 0.0110 or less, more preferably 0.0105 or less, and even more preferably 0.0100 or less.
The upper and lower limits of the absorbance ratio (P1 / P3) can be arbitrarily combined. For example, the absorbance ratio (P1 / P3) is preferably 0.0010 or more and 0.0110 or less, more preferably 0.0030 or more and 0.0105 or less, and further preferably 0.0070 or more and 0.0100 or less.
 吸光度比率(P1/P3)は、樹脂成形体(1)の表面及び表面の近傍における、脂肪酸化合物(C)の存在量の指標となる数値である。
 一般式(1)は、吸光度比率(P1/P3)の値に応じて、動摩擦係数(F)を規定したもので、脂肪酸化合物(C)の存在量に応じて、動摩擦係数(F)の上限値が存在する。吸光度比率(P1/P3)及び動摩擦係数(F)が一般式(1)を満たせば、樹脂成形体(1)の成形条件依存性、及び透明性がより優れたものになる。
 吸光度比率(P1/P3)は、後述する実施例に記載の方法により測定される。
The absorbance ratio (P1 / P3) is a numerical value that is an index of the abundance of the fatty acid compound (C) on the surface of the resin molded product (1) and in the vicinity of the surface.
The general formula (1) defines the dynamic friction coefficient (F) according to the value of the absorbance ratio (P1 / P3), and the upper limit of the dynamic friction coefficient (F) is defined according to the abundance of the fatty acid compound (C). There is a value. If the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the general formula (1), the molding condition dependence and transparency of the resin molded product (1) become more excellent.
The absorbance ratio (P1 / P3) is measured by the method described in Examples described later.
 P1/P3の値は、本発明の樹脂成形体を製造において、射出成形する際の、脂肪酸化合物(C)の配合量や、各種の成形温度、成形圧力を含む成形条件を調整することにより制御できる。 The value of P1 / P3 is controlled by adjusting the compounding amount of the fatty acid compound (C), various molding temperatures, and molding conditions including molding pressure when injection molding the resin molded product of the present invention. it can.
 樹脂成形体(1)は、(メタ)アクリル系重合体(A)、含フッ素オレフィン系重合体(B)、及び脂肪酸化合物(C)を含む(メタ)アクリル系樹脂組成物からなることが好ましい。 The resin molded product (1) is preferably composed of a (meth) acrylic resin composition containing a (meth) acrylic polymer (A), a fluorine-containing olefin polymer (B), and a fatty acid compound (C). ..
 別の態様として、樹脂成形体(1)は、脂肪酸化合物(C)を含み、フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、(メタ)アクリル系樹脂組成物からなることが好ましい。
 このような(メタ)アクリル系樹脂組成物としては、例えば、上述した本発明の第一の態様の(メタ)アクリル系樹脂組成物が挙げられる。
As another embodiment, the resin molded product (1) contains the fatty acid compound (C), and the content ratio of fluorine atoms is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition. , It is preferably composed of a (meth) acrylic resin composition.
Examples of such a (meth) acrylic resin composition include the (meth) acrylic resin composition of the first aspect of the present invention described above.
 さらに別の態様として、樹脂成形体(1)は、フッ素原子含有化合物、及び脂肪酸化合物(C)を含む、成形材料用(メタ)アクリル系樹脂組成物からなることが好ましい。
 このような(メタ)アクリル系樹脂組成物としては、本発明の第二の態様の成形材料用樹脂組成物、又は本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物が挙げられる。
In still another aspect, the resin molded product (1) preferably comprises a (meth) acrylic resin composition for a molding material containing a fluorine atom-containing compound and a fatty acid compound (C).
As such a (meth) acrylic resin composition, the resin composition for a molding material of the second aspect of the present invention or the (meth) acrylic resin composition for a molding material of the third aspect of the present invention can be used. Can be mentioned.
 樹脂成形体(1)の製造方法としては、公知の樹脂組成物の成形方法を採用することができ、例えば、射出成形、押出成形、加圧成形が挙げられる。
 また、得られた樹脂成形体(1)は、さらに、例えば、圧空成形や真空成形の二次成形に付されてもよい。
 成形温度、成形圧力を含む成形条件は、適宜設定すればよい。
As a method for producing the resin molded product (1), a known molding method for a resin composition can be adopted, and examples thereof include injection molding, extrusion molding, and pressure molding.
Further, the obtained resin molded body (1) may be further subjected to, for example, secondary molding of compressed air molding or vacuum forming.
Molding conditions including molding temperature and molding pressure may be appropriately set.
 本発明の第四の態様の樹脂成形体の他の実施形態としては、例えば、上述した本発明の第一の態様の(メタ)アクリル系樹脂組成物を成形してなる樹脂成形体(2)、上述した本発明の第二の態様の成形材料用樹脂組成物を成形してなる樹脂成形体(3)、上述した本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物を成形してなる樹脂成形体(4)が挙げられる。
 樹脂成形体(2)、樹脂成形体(3)、及び樹脂成形体(4)の製造方法は、樹脂成形体(1)の製造方法と同様である。
As another embodiment of the resin molded product of the fourth aspect of the present invention, for example, a resin molded product obtained by molding the (meth) acrylic resin composition of the first aspect of the present invention described above (2). , A resin molded body (3) obtained by molding the resin composition for a molding material of the second aspect of the present invention described above, and a (meth) acrylic resin composition for a molding material of the third aspect of the present invention described above. (4) is mentioned.
The manufacturing method of the resin molded body (2), the resin molded body (3), and the resin molded body (4) is the same as the manufacturing method of the resin molded body (1).
 樹脂成形体(2)は、本発明の第一の態様の(メタ)アクリル系樹脂組成物を成形してなるので、耐傷付性、成形条件依存性、及び透明性に優れる。
 樹脂成形体(3)は、本発明の第二の態様の成形材料用樹脂組成物を成形してなるので、耐傷付性、成形条件依存性、及び透明性に優れる。
 樹脂成形体(4)は、本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物を成形してなるので、耐傷付性、成形条件依存性、及び透明性に優れる。
Since the resin molded product (2) is formed by molding the (meth) acrylic resin composition according to the first aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency.
Since the resin molded product (3) is formed by molding the resin composition for a molding material according to the second aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency.
Since the resin molded product (4) is formed by molding the (meth) acrylic resin composition for a molding material according to the third aspect of the present invention, it is excellent in scratch resistance, molding condition dependence, and transparency.
 樹脂成形体(1)、樹脂成形体(2)、樹脂成形体(3)、及び樹脂成形体(4)を総称して、単に「樹脂成形体」ともいう。
 また、本発明の第一の態様の(メタ)アクリル系樹脂組成物、本発明の第二の態様の成形材料用樹脂組成物、本発明の第三の態様の成形材料用(メタ)アクリル系樹脂組成物を総称して、単に「樹脂組成物」ともいう。
The resin molded body (1), the resin molded body (2), the resin molded body (3), and the resin molded body (4) are collectively referred to as a "resin molded body".
Further, the (meth) acrylic resin composition of the first aspect of the present invention, the resin composition for a molding material of the second aspect of the present invention, and the (meth) acrylic type for a molding material of the third aspect of the present invention. The resin composition is generically also referred to simply as "resin composition".
 本発明の第四の態様の樹脂成形体は、耐傷付性、成形条件依存性、及び透明性に優れることから、例えば、洗面化粧台、浴槽、水洗便器等の住宅設備向け材料;建築材料;車両の内外装材料等の車両用部材に用いられ、特に、車両用部材として好適である。
 車両外装材料としては、例えば、メーターカバー、ドアミラーハウジング、ピラーカバー(サッシュカバー)、ライセンスガーニッシュ、フロントグリル、フォグガーニッシュ、エンブレム等が挙げられる。
Since the resin molded body of the fourth aspect of the present invention is excellent in scratch resistance, molding condition dependence, and transparency, for example, a material for housing equipment such as a vanity, a bathtub, and a flush toilet; a building material; It is used as a vehicle member such as an interior / exterior material of a vehicle, and is particularly suitable as a vehicle member.
Examples of vehicle exterior materials include meter covers, door mirror housings, pillar covers (sash covers), licensed garnishes, front grilles, fog garnishes, emblems and the like.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例における各種測定及び評価は、以下の方法により実施した。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Various measurements and evaluations in Examples and Comparative Examples were carried out by the following methods.
[測定・評価方法]
<樹脂成形体X1の作製>
 実施例及び比較例で得られた樹脂組成物を、80℃で約4時間熱風乾燥した後に、射出成形機(機種名:EC75SX-III」、芝浦機械株式会社製)を用い、成形温度250℃、金型温度60℃、射出速度23.3cm/秒、成形時間60秒の条件で射出成形し、長さ100mm、幅100mm、厚さ3mmの樹脂成形体X1を得た。
 本発明において、射出速度は、射出樹脂体積/樹脂充填時間(単位:cm/秒)で定義される。樹脂充填時間とは、射出時間を横軸、スクリューヘッドからノズルヘッドの距離を縦軸として射出時間を増加させながらスクリューからノズルまでの距離をプロットした時に、射出時間の増加に応じた距離の変化が認められなくなる射出時間のことをいう。
[Measurement / evaluation method]
<Preparation of resin molded product X1>
The resin compositions obtained in Examples and Comparative Examples were dried with hot air at 80 ° C. for about 4 hours, and then molded at a molding temperature of 250 ° C. using an injection molding machine (model name: EC75SX-III, manufactured by Shibaura Machinery Co., Ltd.). , Mold temperature 60 ° C., injection speed 23.3 cm 3 / sec, molding time 60 seconds, injection molding was carried out to obtain a resin molded body X1 having a length of 100 mm, a width of 100 mm and a thickness of 3 mm.
In the present invention, the injection rate is defined by the injection resin volume / resin filling time (unit: cm 3 / sec). The resin filling time is the change in distance according to the increase in injection time when plotting the distance from the screw to the nozzle while increasing the injection time with the injection time on the horizontal axis and the distance from the screw head to the nozzle head on the vertical axis. Refers to the injection time when is no longer recognized.
<樹脂成形体X2の作製>
 実施例及び比較例で得られた樹脂組成物を、80℃で約4時間熱風乾燥した後に、射出成形機(機種名:EC75SX-III」、芝浦機械株式会社製)を用い、成形温度250℃、金型温度60℃、射出速度54.4cm/秒、成形時間60秒の条件で射出成形し、長さ100mm、幅100mm、厚さ3mmの樹脂成形体X2を得た。
<Preparation of resin molded product X2>
The resin compositions obtained in Examples and Comparative Examples were dried with hot air at 80 ° C. for about 4 hours, and then molded at a molding temperature of 250 ° C. using an injection molding machine (model name: EC75SX-III, manufactured by Shibaura Machinery Co., Ltd.). , Mold temperature 60 ° C., injection speed 54.4 cm 3 / sec, molding time 60 seconds, injection molding was carried out to obtain a resin molded body X2 having a length of 100 mm, a width of 100 mm and a thickness of 3 mm.
<フッ素原子の含有割合の算出>
 樹脂組成物中のフッ素原子の含有割合は、下記の方法A又は方法Bで測定した。
(方法A)
 含フッ素オレフィン系重合体(B)がフッ化ビニリデンの単独重合体(ポリフッ化ビニリデン)である場合は、フッ化ビニリデンの単独重合体のフッ素原子の含有割合を、該フッ化ビニリデンの単独重合体の総質量に対して59.4質量%として、樹脂組成物に含まれる含フッ素オレフィン系重合体(B)の含有割合から、樹脂組成物中のフッ素原子の含有割合を単純な机上の計算により算出した。
 含フッ素オレフィン系重合体(B)が、フッ化ビニリデン単位、テトラフルオロエチレン単位、及びヘキサフルオロプロピレン単位から選ばれる少なくとも1種を、重合体中の構成単位として含む(共)重合体である場合は、各構成単位の総質量に対して、フッ化ビニリデン単位のフッ素原子の含有割合を59.4質量%、テトラフルオロエチレン単位のフッ素原子の含有割合を76.0質量%、ヘキサフルオロプロピレン単位のフッ素原子の含有割合を76.0質量%として、含フッ素オレフィン系重合体(B)に含まれる各構成単位の含有割合から、含フッ素オレフィン系重合体(B)中のフッ素原子の含有割合を単純な机上の計算により算出した。含フッ素オレフィン系重合体(B)に含まれる各構成単位の含有割合は、NMR法を用いて測定した。
 含フッ素オレフィン系重合体(B)が、上述したフッ化ビニリデン、テトラフルオロエチレン、及びヘキサフルオロプロピレン以外の単量体単位を、重合体中の構成単位として含む(共)重合体である場合は、下記の方法Bで測定することも可能であり、上述した方法Aで算出した測定値とほぼ同じ数値の測定値を得ることができる。
<Calculation of fluorine atom content>
The content ratio of fluorine atoms in the resin composition was measured by the following method A or method B.
(Method A)
When the fluorine-containing olefin-based polymer (B) is a homopolymer of vinylidene fluoride (polyvinylidene fluoride), the content ratio of fluorine atoms in the homopolymer of vinylidene fluoride is set to the homopolymer of vinylidene fluoride. From the content ratio of the fluorine-containing olefin polymer (B) contained in the resin composition, the content ratio of fluorine atoms in the resin composition is calculated by a simple desk calculation as 59.4% by mass with respect to the total mass of Calculated.
When the fluorine-containing olefin-based polymer (B) is a (co) polymer containing at least one selected from vinylidene fluoride units, tetrafluoroethylene units, and hexafluoropropylene units as a constituent unit in the polymer. The content ratio of fluorine atoms in vinylidene fluoride units is 59.4% by mass, the content ratio of fluorine atoms in tetrafluoroethylene units is 76.0% by mass, and hexafluoropropylene units with respect to the total mass of each constituent unit. The content ratio of fluorine atoms in the fluorine-containing olefin-based polymer (B) is based on the content ratio of each structural unit contained in the fluorine-containing olefin-based polymer (B). Was calculated by a simple desktop calculation. The content ratio of each structural unit contained in the fluorine-containing olefin polymer (B) was measured by using an NMR method.
When the fluoroolefin-containing polymer (B) is a (co) polymer containing a monomer unit other than vinylidene fluoride, tetrafluoroethylene, and hexafluoropropylene described above as a constituent unit in the polymer. It is also possible to measure by the following method B, and it is possible to obtain a measured value having substantially the same numerical value as the measured value calculated by the above-mentioned method A.
(方法B)
 含フッ素オレフィン系重合体(B)を公知の燃焼イオンクロマトグラフィーを用いて元素分析して、樹脂組成物中のフッ素原子の含有割合を算出することができる。
 具体的には、含フッ素オレフィン系重合体(B)について、公知の燃焼イオンクロマトグラフィーを用いて元素分析して算出したフッ素原子の含有割合を用いて、樹脂組成物に含まれる含フッ素オレフィン系重合体(B)の含有割合から、樹脂組成物中のフッ素原子の含有割合を単純な机上の計算により算出することができる。
 また、樹脂組成物を、直接、公知の燃焼イオンクロマトグラフィーを用いて元素分析して、該樹脂組成物中のフッ素原子の含有割合を測定することも可能であり、上述した方法で得られた測定値とほぼ同じ数値の測定値を得ることができる。
(Method B)
The fluorine atom-containing polymer (B) can be elementally analyzed by using known combustion ion chromatography to calculate the content ratio of fluorine atoms in the resin composition.
Specifically, the fluorine-containing olefin-based polymer (B) contained in the resin composition using the fluorine atom content ratio calculated by elemental analysis using known combustion ion chromatography. From the content ratio of the polymer (B), the content ratio of fluorine atoms in the resin composition can be calculated by a simple desk calculation.
It is also possible to directly perform elemental analysis of the resin composition using known combustion ion chromatography to measure the content ratio of fluorine atoms in the resin composition, which was obtained by the method described above. It is possible to obtain a measured value that is almost the same as the measured value.
<ピーク吸光度(P1、P2,P3)の測定>
 樹脂成形体の表面のピーク吸光度(P1、P2,P3)について、フーリエ変換赤外線分光光度計(ATR:サーモフィッシャーサイエンティフィック社製、型式:Niclet iS10)を用いて、1回反射ATR表面反射法で、樹脂成形体X1の表面について、波数2000~500cm-1の赤外吸収(IR)スペクトルを測定した。
 なお、1回反射ATR表面反射法による測定条件は、以下の通りである。 
  光源 :赤外光(IR)
  検出器 :DTGS-KBr
  ビームスプリッタ :KBr
  分解能 :4cm-1
  付属装置 :1回反射型水平状ATR(Smart-iTR,サーモフィッシャーサイエンティフィック社製)
  プリズム :ダイヤモンド
  入射角 :45゜
  偏光 :なし
 得られたIRスペクトルについて、図1に示すように、波数1650~1660cm-1の領域にあるピークが最小吸光度を示す位置(x1-1)と、波数1630cm-1の位置(x1-2)との間でベースラインを引き、波数1630~1650cm-1の領域においてピークが最大吸光度を示す波数の吸光度をピーク吸光度(P1)として算出した。
 同様に、図2に示すように、波数880~900cm-1の領域にあるピークが最小吸光度を示す位置(x2-1)と、波数850~880cm-1の領域にあるピークが最小吸光度を示す位置(x2-2)との間でベースラインを引き、波数870~890cm-1の領域においてピークが最大吸光度を示す波数の吸光度をピーク吸光度(P2)として算出した。
 同様に、図3に示すように、波数1770cm-1の位置(x3-1)と、波数1550cm-1の位置(x3-2)との間でベースラインを引き、波数1710~1730cm-1の領域においてピークが最大吸光度を示す波数の吸光度をピーク吸光度(P3)として算出した。
 前記P2を前記P3で除して、吸光度比率(P2/P3)を算出した。
 前記P1を前記P3で除して、吸光度比率(P1/P3)を算出した。
 なお、波数1650~1660cm-1の領域、波数880~900cm-1の領域、及び波数1710~1730cm-1の領域において、ピークが検出されない場合を「-」とした。
<Measurement of peak absorbance (P1, P2, P3)>
For the peak absorbance (P1, P2, P3) on the surface of the resin molded body, a single reflection ATR surface reflection method using a Fourier transform infrared spectrophotometer (ATR: Thermo Fisher Scientific Co., Ltd., model: Nicklet iS10). Then, the infrared absorption (IR) spectrum of the wave number 2000 to 500 cm -1 was measured on the surface of the resin molded body X1.
The measurement conditions by the single reflection ATR surface reflection method are as follows.
Light source: Infrared light (IR)
Detector: DTGS-KBr
Beam splitter: KBr
Resolution: 4 cm-1
Auxiliary device: 1-reflection horizontal ATR (Smart-iTR, manufactured by Thermo Fisher Scientific)
Prism: Diamond Incident angle: 45 ° Polarization: None Regarding the obtained IR spectrum, as shown in FIG. 1, the position (x 1-1 ) where the peak in the region of wave number 1650 to 1660 cm -1 shows the minimum absorbance and drawing a baseline between a position of the wave number 1630cm -1 (x 1-2), the peak in the wave number region of 1630 ~ 1650 cm -1 was calculated as the peak absorbance and the absorbance of wave numbers showing the maximum absorbance (P1).
Similarly, as shown in FIG. 2, the position of the peak in the wave number region of 880 ~ 900 cm -1 indicates the minimum absorbance and (x 2-1), a peak in the wave number region of 850 ~ 880 cm -1 is the minimum absorbance A baseline was drawn between the indicated position (x 2-2 ), and the absorbance of the wave number at which the peak showed the maximum absorbance in the region of wave number 870 to 890 cm -1 was calculated as the peak absorbance (P2).
Similarly, as shown in FIG. 3, the position of the wave number 1770 cm -1 and (x 3-1), drawing a baseline between a position of the wave number 1550cm -1 (x 3-2), the wave number 1710 ~ 1730 cm - The absorbance of the wave number at which the peak shows the maximum absorbance in the region 1 was calculated as the peak absorbance (P3).
The absorbance ratio (P2 / P3) was calculated by dividing the P2 by the P3.
The absorbance ratio (P1 / P3) was calculated by dividing P1 by P3.
Incidentally, a wave number region of 1650 ~ 1660 cm -1, wave number region of 880 ~ 900 cm -1, and in the wave number region of 1710 ~ 1730 cm -1, where a peak is not detected - was "".
<動摩擦係数(F)の測定>
 樹脂成形体の耐傷付性の指標として、動摩擦係数(F)を以下の方法で測定した。
 スクラッチテスターKK01(カトーテック株式会社製)を用い、ISO 8295:1995に準拠して、直径1mmの球状の圧子を、樹脂成形体X1の表面に押し付けて、前記圧子の水平荷重を一定(5.0N)に保ちながら、圧子の移動速度を100mm/秒、圧子の移動距離を70mmとして、樹脂成形体X1の表面上を移動させたときの垂直荷重(単位:N)を測定した。
 水平荷重(5.0N)を、移動距離(70mm)の開始点を起点として10~60mmの区間で測定された垂直荷重の平均値で除した値を動摩擦係数とした。
 3つの樹脂成形体X1を用いて、各樹脂成形体X1につき1回測定を行って動摩擦係数を算出し、その平均値を樹脂成形体X1の動摩擦係数(F)とした。
<Measurement of dynamic friction coefficient (F)>
The coefficient of dynamic friction (F) was measured by the following method as an index of scratch resistance of the resin molded product.
Using a scratch tester KK01 (manufactured by Kato Tech Co., Ltd.), a spherical indenter with a diameter of 1 mm is pressed against the surface of the resin molded product X1 in accordance with ISO 8295: 1995 to keep the horizontal load of the indenter constant (5. While maintaining 0N), the moving speed of the indenter was 100 mm / sec, the moving distance of the indenter was 70 mm, and the vertical load (unit: N) when the resin molded body X1 was moved on the surface was measured.
The coefficient of dynamic friction was defined as the value obtained by dividing the horizontal load (5.0 N) by the average value of the vertical load measured in the section of 10 to 60 mm starting from the starting point of the moving distance (70 mm).
Using the three resin molded bodies X1, measurements were performed once for each resin molded body X1 to calculate the dynamic friction coefficient, and the average value was taken as the dynamic friction coefficient (F) of the resin molded body X1.
<耐傷付性の評価>
 樹脂成形体の耐傷付性の指標として、耐傷付性試験前後のヘイズ値の差(Δヘイズ)を以下の方法で測定した。
 耐傷付性試験には、摩擦試験機(染色堅牢度用摩擦試験機S型、JIS L 0849:2103に記載の摩擦試験機II型を平面タイプに改造したもの、株式会社東洋精機製作所)を用い、摩擦子として平面形摩擦子(長さ20mm、幅20mm)にガーゼ(商品名、医療用ガーゼ 地球トンボ 綿100%、株式会社大和工場製)を5枚重ねたものを用いた。
 樹脂成形体X1を平台に設置し、図4に示すように、試験片1である樹脂成形体X1の表面に、射出成形時のゲート位置からMD方向(成形時の流れ方向)とTD方向(成形時の流れ方向に直行する方向)それぞれから見て45°の角度で、樹脂成形体X1の中央部3を摩擦子が通過するように、摩擦子を荷重1000gの条件で距離100mmを50往復した後にガーゼを取り替える操作を1セットとして、5セット繰り返す(すなわち、50回×5セット)摩耗処理を行い、樹脂成形体X1の表面に摩擦摩耗処理部2を形成した(耐傷付性試験)。
 次いで、耐傷付性試験前後の樹脂成形体X1について、ヘイズメーター(機種名:NDH4000、日本電色工業株式会社製)を用い、樹脂成形体X1の中央部3(耐傷付性試験後の場合は、摩擦摩耗処理部2が形成された面の中央部)に、摩擦子を往復させた方向に対して平行な方向に光線を入射させ、ISO 14782:1999に準拠して樹脂成形体X1のヘイズ値を測定した。3つの樹脂成形体X1を用いて、各樹脂成形体X1につき1回測定を行い、その平均値を樹脂成形体X1のヘイズ値とした。下記式(2)より、耐傷付性試験後のヘイズ値(H2)から耐傷付性試験前のヘイズ値(H1)を差し引いてヘイズ値の差(Δヘイズ)を算出し、Δヘイズが0.5以下の場合を「A」、Δヘイズが0.5を超えて0.8以下の場合を「B」、Δヘイズが0.8を超える場合を「C」と判定した。Δヘイズが小さいほど、耐傷付性に優れることを意味する。
 Δヘイズ=耐傷付性試験後の樹脂成形体X1のヘイズ値(H2)-耐傷付性試験前の樹脂成形体X1のヘイズ値(H1)  ・・・(2)
<Evaluation of scratch resistance>
As an index of the scratch resistance of the resin molded product, the difference in haze value (Δ haze) before and after the scratch resistance test was measured by the following method.
For the scratch resistance test, a friction tester (friction tester S type for dyeing fastness, friction tester type II described in JIS L 0849: 2103 modified to a flat type, Toyo Seiki Seisakusho Co., Ltd.) was used. As the friction element, a flat friction element (length 20 mm, width 20 mm) and five pieces of gauze (trade name, medical gauze, 100% earth dragonfly cotton, manufactured by Yamato Factory Co., Ltd.) were used.
The resin molded body X1 is placed on a flat table, and as shown in FIG. 4, on the surface of the resin molded body X1 which is the test piece 1, the MD direction (flow direction during molding) and the TD direction (flow direction during molding) from the gate position during injection molding. 50 reciprocations over a distance of 100 mm under the condition of a load of 1000 g so that the friction element passes through the central portion 3 of the resin molded body X1 at an angle of 45 ° when viewed from each direction. After that, the operation of replacing the gauze was set as one set, and the abrasion treatment was repeated 5 sets (that is, 50 times × 5 sets) to form the friction abrasion treatment portion 2 on the surface of the resin molded body X1 (scratch resistance test).
Next, with respect to the resin molded body X1 before and after the scratch resistance test, a haze meter (model name: NDH4000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) was used, and the central portion 3 of the resin molded body X1 (in the case of after the scratch resistance test). , The central portion of the surface on which the friction and wear processing portion 2 is formed), a light beam is incident in a direction parallel to the direction in which the friction element is reciprocated, and the haze of the resin molded body X1 is in accordance with ISO 14782: 1999. The value was measured. The measurement was performed once for each resin molded body X1 using the three resin molded bodies X1, and the average value thereof was taken as the haze value of the resin molded body X1. From the following formula (2), the difference in haze value (Δ haze) is calculated by subtracting the haze value (H1) before the scratch resistance test from the haze value (H2) after the scratch resistance test, and the Δ haze is 0. A case of 5 or less was judged as "A", a case of Δ haze exceeding 0.5 and 0.8 or less was judged as “B”, and a case of Δ haze exceeding 0.8 was judged as “C”. The smaller the Δhaze, the better the scratch resistance.
Δ Haze = Haze value of the resin molded product X1 after the scratch resistance test (H2) -Haze value of the resin molded product X1 before the scratch resistance test (H1) ... (2)
<透明性の評価>
 耐傷付性の評価における耐傷付性試験前のヘイズ値(H1)を樹脂成形体の透明性の指標とした。耐傷付性試験前のヘイズ値(H1)が小さいほど、透明性に優れることを意味する。
<Evaluation of transparency>
The haze value (H1) before the scratch resistance test in the evaluation of scratch resistance was used as an index of the transparency of the resin molded product. The smaller the haze value (H1) before the scratch resistance test, the better the transparency.
<成形条件依存性の評価>
 樹脂組成物の成形条件依存性の指標として、射出速度を変更して得られた樹脂成形体X1及び樹脂成形体X2について、耐傷付性試験後のヘイズ値の差(Δヘイズ)を以下の方法で測定した。
 先に説明した耐傷付性の評価方法と同様にして、摩擦子を用いて樹脂成形体X1及び樹脂成形体X2の表面を摩耗処理して、樹脂成形体X1及び樹脂成形体X2の表面に摩擦摩耗処理部を形成した。
 次いで、耐傷付性試験後の樹脂成形体X1及び樹脂成形体X2について、先に説明した耐傷付性の評価方法と同様にしてヘイズ値を測定した。下記式(3)より、耐傷付性試験後の樹脂成形体X2のヘイズ値(H4)から耐傷付性試験後の樹脂成形体X1のヘイズ値(H3)を差し引いてヘイズ値の差(Δヘイズ)を算出し、Δヘイズが1.5以下の場合を「A」、Δヘイズが1.5を超えて2.3以下の場合を「B」、Δヘイズが2.3を超える場合を「C」と判定した。Δヘイズが小さいほど、成形条件依存性に優れることを意味する。
 Δヘイズ=耐傷付性試験後の樹脂成形体X2のヘイズ値(H4)-耐傷付性試験後の樹脂成形体X1のヘイズ値(H3)  ・・・(3)
<Evaluation of molding condition dependence>
As an index of the dependence of the resin composition on the molding conditions, the difference in haze value (Δ haze) after the scratch resistance test for the resin molded product X1 and the resin molded product X2 obtained by changing the injection speed is determined by the following method. Measured in.
In the same manner as the scratch resistance evaluation method described above, the surfaces of the resin molded body X1 and the resin molded body X2 are abraded using a friction element, and the surfaces of the resin molded body X1 and the resin molded body X2 are rubbed. A wear-treated part was formed.
Next, the haze values of the resin molded body X1 and the resin molded body X2 after the scratch resistance test were measured in the same manner as in the scratch resistance evaluation method described above. From the following formula (3), the haze value difference (Δ haze) is obtained by subtracting the haze value (H3) of the resin molded body X1 after the scratch resistance test from the haze value (H4) of the resin molded body X2 after the scratch resistance test. ) Is calculated, "A" when Δ haze is 1.5 or less, "B" when Δ haze is more than 1.5 and 2.3 or less, and "B" when Δ haze is more than 2.3. It was judged as "C". The smaller the Δhaze, the better the dependence on the molding conditions.
Δ Haze = Haze value of the resin molded product X2 after the scratch resistance test (H4) -Haze value of the resin molded product X1 after the scratch resistance test (H3) ... (3)
[原材料]
<(メタ)アクリル系重合体(A)>
 (メタ)アクリル系重合体(A)として、以下に示す化合物を用いた。
・A-1:メタクリル樹脂(商品名:アクリペット(登録商標)VH、三菱ケミカル株式会社製、メチルメタクリレート由来の繰り返し単位を95質量%以上含むメタクリル樹脂、質量平均分子量:8万)。
[raw materials]
<(Meta) acrylic polymer (A)>
The following compounds were used as the (meth) acrylic polymer (A).
-A-1: Methacrylate resin (trade name: Acrypet (registered trademark) VH, manufactured by Mitsubishi Chemical Corporation, methacrylic resin containing 95% by mass or more of repeating units derived from methyl methacrylate, mass average molecular weight: 80,000).
<含フッ素オレフィン系重合体(B)>
 含フッ素オレフィン系重合体(B)として、以下に示す化合物を用いた。
・B-1:フッ化ビニリデンの単独重合体(商品名:KFポリマー(登録商標)KFT#850、株式会社クレハ製、フッ素原子の含有割合:59.4質量%)。
<Fluorine-containing olefin polymer (B)>
The following compounds were used as the fluorine-containing olefin polymer (B).
B-1: A homopolymer of vinylidene fluoride (trade name: KF polymer (registered trademark) KFT # 850, manufactured by Kureha Co., Ltd., fluorine atom content ratio: 59.4% by mass).
<脂肪酸化合物(C)>
 脂肪酸化合物(C)として、以下に示す化合物を用いた。
・C-1:ステアリン酸アミドを主成分とする脂肪酸アミド(商品名:IncroMax(登録商標)PS、CRODA社製)。
・C-2:ステアリン酸アミドを主成分とする脂肪酸アミド(商品名:脂肪酸アマイドS、花王株式会社製)。
・C-3:ベヘン酸アミドを主成分とする脂肪酸アミド(商品名:BNT-22H、日本精化株式会社製)。
・C-4:エルカ酸アミドを主成分とする脂肪酸アミド(商品名:ダイヤミッド(登録商標)L、三菱ケミカル株式会社製)。
・C-5:メチレンビスステアリン酸アミドを主成分とする脂肪酸アミド(商品名:ビスアマイドLA、三菱ケミカル株式会社製)。
<Fatty acid compound (C)>
The following compounds were used as the fatty acid compound (C).
-C-1: Fatty acid amide containing stearic acid amide as a main component (trade name: IncroMax (registered trademark) PS, manufactured by CRODA).
-C-2: Fatty acid amide containing stearic acid amide as a main component (trade name: fatty acid amide S, manufactured by Kao Corporation).
-C-3: Fatty acid amide containing behenic acid amide as a main component (trade name: BNT-22H, manufactured by Nippon Fine Chemical Co., Ltd.).
-C-4: Fatty acid amide containing erucic acid amide as a main component (trade name: Diamid (registered trademark) L, manufactured by Mitsubishi Chemical Corporation).
-C-5: Fatty acid amide containing methylene bisstearic acid amide as a main component (trade name: Bisamide LA, manufactured by Mitsubishi Chemical Corporation).
<他の添加剤>
 他の添加剤として、以下に示す化合物を用いた。
・S-1:シリコーン化合物(商品名:TEGOMER(登録商標) H-Si 6441 P、エボニック社製、ポリジメチルシロキサンの側鎖にポリエステル基を付加したポリエステル変性シリコーン)。
<Other additives>
The following compounds were used as other additives.
-S-1: Silicone compound (trade name: TEGOMER® H-Si 6441 P, manufactured by Ebonic, polyester-modified silicone in which a polyester group is added to the side chain of polydimethylsiloxane).
[参考例A]
 メタクリル樹脂(A-1)のペレットを用いて樹脂成形体を作製し、各種測定及び評価を行った。結果を表1、2に示す。
[Reference example A]
A resin molded product was prepared using pellets of methacrylic resin (A-1), and various measurements and evaluations were performed. The results are shown in Tables 1 and 2.
[実施例1]
 メタクリル樹脂(A-1)100質量部、含フッ素オレフィン系重合体(B-1)2.0質量部、及び脂肪酸アミド(C-1)2.0質量部を二軸押出機(機種名:PCM30、株式会社池貝製)に供給し、250℃で混練し、ペレット状の樹脂組成物を得た。
 得られた樹脂組成物のフッ素原子の含有割合を求めた。
 また、得られた樹脂組成物を用いて樹脂成形体を作製し、各種測定及び評価を行った。結果を表1、2に示す。
[Example 1]
A twin-screw extruder (model name:) containing 100 parts by mass of methacrylic resin (A-1), 2.0 parts by mass of fluoroolefin polymer (B-1), and 2.0 parts by mass of fatty acid amide (C-1). It was supplied to PCM30, manufactured by Ikegai Co., Ltd.) and kneaded at 250 ° C. to obtain a pellet-shaped resin composition.
The content ratio of fluorine atoms in the obtained resin composition was determined.
In addition, a resin molded product was prepared using the obtained resin composition, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2.
[実施例2~10、比較例1~10]
 表1に示す配合組成となるように変更した以外は、実施例1と同様にしてペレット状の樹脂組成物を製造して樹脂成形体を作製し、各種測定及び評価を行った。結果を表1、2に示す。
[Examples 2 to 10, Comparative Examples 1 to 10]
A pellet-shaped resin composition was produced in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1, a resin molded product was prepared, and various measurements and evaluations were performed. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2から明らかなように、参考例Aでは脂肪酸化合物(C)を配合せず、また、メタクリル樹脂(A-1)のペレットはフッ素原子を含有していないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
 実施例1~10で得られた樹脂組成物を成形してなる樹脂成形体は、耐傷付性、成形条件依存性、及び透明性に優れていた。
 比較例1で得られた樹脂組成物は脂肪酸化合物(C)を含有していないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
 比較例2~3で得られた樹脂組成物はフッ素原子を含有しないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
 比較例4で得られた樹脂組成物は、脂肪酸化合物(C)とフッ素原子を含有せず、代わりにシリコーン化合物を含有するため、得られた樹脂成形体は耐傷付性、及び透明性に劣っていた。
 比較例5~6で得られた樹脂組成物はフッ素原子を含有しないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
 比較例7~8で得られた樹脂組成物は脂肪酸化合物(C)を含有していないため、得られた樹脂成形体は耐傷付性に劣っていた。
 比較例9で得られた樹脂組成物はフッ素原子の含有割合が少ないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
 比較例10で得られた樹脂組成物は脂肪酸化合物(C)を含有していないため、得られた樹脂成形体は耐傷付性、及び成形条件依存性に劣っていた。
As is clear from Tables 1 and 2, the fatty acid compound (C) was not blended in Reference Example A, and the pellets of the methacrylic resin (A-1) did not contain fluorine atoms, so that the obtained resin molding was obtained. The body was inferior in scratch resistance and molding condition dependence.
The resin molded product obtained by molding the resin compositions obtained in Examples 1 to 10 was excellent in scratch resistance, molding condition dependence, and transparency.
Since the resin composition obtained in Comparative Example 1 did not contain the fatty acid compound (C), the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
Since the resin compositions obtained in Comparative Examples 2 and 3 did not contain fluorine atoms, the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
Since the resin composition obtained in Comparative Example 4 does not contain the fatty acid compound (C) and the fluorine atom, but instead contains the silicone compound, the obtained resin molded product is inferior in scratch resistance and transparency. Was there.
Since the resin compositions obtained in Comparative Examples 5 to 6 did not contain fluorine atoms, the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
Since the resin compositions obtained in Comparative Examples 7 to 8 did not contain the fatty acid compound (C), the obtained resin molded product was inferior in scratch resistance.
Since the resin composition obtained in Comparative Example 9 contained a small proportion of fluorine atoms, the obtained resin molded product was inferior in scratch resistance and dependence on molding conditions.
Since the resin composition obtained in Comparative Example 10 did not contain the fatty acid compound (C), the obtained resin molded product was inferior in scratch resistance and molding condition dependence.
 本発明の成形材料用(メタ)アクリル系樹脂組成物、(メタ)アクリル系樹脂組成物、及び成形材料用樹脂組成物によれば、耐傷付性、成形条件依存性、及び透明性に優れる樹脂成形体が得られる。
 本発明の樹脂成形体は、耐傷付性、成形条件依存性、及び透明性に優れることから、例えば、洗面化粧台、浴槽、水洗便器等の住宅設備向け材料;建築材料;車両の内外装材料等の車両用部材に用いられ、特に、車両用部材として好適である。
 車両外装材料としては、例えば、メーターカバー、ドアミラーハウジング、ピラーカバー(サッシュカバー)、ライセンスガーニッシュ、フロントグリル、フォグガーニッシュ、エンブレム等が挙げられる。
According to the (meth) acrylic resin composition for molding materials, the (meth) acrylic resin composition, and the resin composition for molding materials of the present invention, a resin having excellent scratch resistance, molding condition dependence, and transparency. A molded product is obtained.
Since the resin molded body of the present invention is excellent in scratch resistance, molding condition dependence, and transparency, for example, materials for housing equipment such as vanities, bathtubs, flush toilets; building materials; vehicle interior / exterior materials. It is used for vehicle members such as, and is particularly suitable as a vehicle member.
Examples of vehicle exterior materials include meter covers, door mirror housings, pillar covers (sash covers), licensed garnishes, front grilles, fog garnishes, emblems and the like.
 1 試験片
 2 摩擦摩耗処理部
 3 中央部
1 Test piece 2 Friction wear processing part 3 Central part

Claims (29)

  1.  ISO 8295:1995に準拠して測定した動摩擦係数(F)が0.150以下であり、
     赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数870~890cm-1の領域のピーク吸光度(P2)と、波数1710~1730cm-1の領域のピーク吸光度(P3)との吸光度比率(P2/P3)が0.0005以上である、樹脂成形体。
    The coefficient of dynamic friction (F) measured in accordance with ISO 8295: 1995 is 0.150 or less.
    In the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer, the peak absorbance (P2) in the region of wave number 870 to 890 cm -1 and the peak absorbance in the region of wave number 1710 to 1730 cm -1 ( A resin molded body having an absorbance ratio (P2 / P3) with P3) of 0.0005 or more.
  2.  赤外分光光度計による1回反射ATR表面反射法で測定した赤外吸収スペクトルにおける、波数1630~1650cm-1の領域のピーク吸光度(P1)と、前記ピーク吸光度(P3)との吸光度比率(P1/P3)が0.0005以上0.0120以下であり、
     前記吸光度比率(P1/P3)及び前記動摩擦係数(F)が、下記一般式(1)を満たす、請求項1に記載の樹脂成形体。
     F≦-15.5×(P1/P3)+0.21  ・・・(1)
    In the infrared absorption spectrum measured by the single reflection ATR surface reflection method using an infrared spectrophotometer, the absorbance ratio (P1) between the peak absorbance (P1) in the region of wave number 1630 to 1650 cm-1 and the peak absorbance (P3). / P3) is 0.0005 or more and 0.0120 or less,
    The resin molded product according to claim 1, wherein the absorbance ratio (P1 / P3) and the dynamic friction coefficient (F) satisfy the following general formula (1).
    F ≦ -15.5 × (P1 / P3) +0.21 ・ ・ ・ (1)
  3.  (メタ)アクリル系重合体(A)、含フッ素オレフィン系重合体(B)、及び脂肪酸化合物(C)を含む(メタ)アクリル系樹脂組成物からなる、請求項1又は2に記載の樹脂成形体。 The resin molding according to claim 1 or 2, which comprises a (meth) acrylic resin composition containing a (meth) acrylic polymer (A), a fluorine-containing olefin polymer (B), and a fatty acid compound (C). body.
  4.  フッ素原子含有化合物、及び脂肪酸化合物(C)を含む、成形材料用(メタ)アクリル系樹脂組成物からなる、請求項1又は2に記載の樹脂成形体。 The resin molded product according to claim 1 or 2, which comprises a (meth) acrylic resin composition for a molding material, which comprises a fluorine atom-containing compound and a fatty acid compound (C).
  5.  脂肪酸化合物(C)を含み、フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、(メタ)アクリル系樹脂組成物からなる、請求項1又は2に記載の樹脂成形体。 A claim comprising a (meth) acrylic resin composition containing the fatty acid compound (C) and having a fluorine atom content of 0.5% by mass or more based on the total mass of the (meth) acrylic resin composition. Item 2. The resin molded product according to Item 1 or 2.
  6.  フッ素原子含有化合物、及び脂肪酸化合物(C)を含む、成形材料用(メタ)アクリル系樹脂組成物。 A (meth) acrylic resin composition for a molding material containing a fluorine atom-containing compound and a fatty acid compound (C).
  7.  前記フッ素原子含有化合物に由来するフッ素原子の含有割合が、前記成形材料用(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、請求項6に記載の成形材料用(メタ)アクリル系樹脂組成物。 The molding material according to claim 6, wherein the content ratio of the fluorine atom derived from the fluorine atom-containing compound is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition for the molding material. For (meth) acrylic resin composition.
  8.  前記フッ素原子含有化合物が、含フッ素オレフィン系重合体(B)である、請求項6又は7に記載の成形材料用(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition for a molding material according to claim 6 or 7, wherein the fluorine atom-containing compound is a fluorine-containing olefin polymer (B).
  9.  前記含フッ素オレフィン系重合体(B)が、フッ化ビニリデンの単独重合体であるか、又は、フッ化ビニリデン単量体由来の繰り返し単位及びフッ化ビニリデンと共重合可能な単量体由来の繰り返し単位を含む共重合体である、請求項8に記載の成形材料用(メタ)アクリル系樹脂組成物。 The fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, or a repeating unit derived from a vinylidene fluoride monomer and a repeating unit derived from a monomer copolymerizable with vinylidene fluoride. The (meth) acrylic resin composition for a molding material according to claim 8, which is a copolymer containing a unit.
  10.  前記脂肪酸化合物(C)の溶解性パラメーター値が、16.4(J/cm1/2以上24.6(J/cm1/2以下である、請求項6~9のいずれか一項に記載の成形材料用(メタ)アクリル系樹脂組成物。 Any of claims 6 to 9, wherein the solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less. The (meth) acrylic resin composition for a molding material according to item 1.
  11.  前記脂肪酸化合物(C)が、脂肪酸アミド化合物(C1)である、請求項6~10のいずれか一項に記載の成形材料用(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition for a molding material according to any one of claims 6 to 10, wherein the fatty acid compound (C) is a fatty acid amide compound (C1).
  12.  前記脂肪酸アミド化合物(C1)が、下記一般式(i)で表される化合物である、請求項11に記載の成形材料用(メタ)アクリル系樹脂組成物。
     R-CONH  ・・・(i)
    (一般式(i)中、Rは、置換基を有していてもよい炭素数10~25の炭化水素基である。)
    The (meth) acrylic resin composition for a molding material according to claim 11, wherein the fatty acid amide compound (C1) is a compound represented by the following general formula (i).
    R-CONH 2 ... (i)
    (In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
  13.  前記脂肪酸アミド化合物(C1)が、飽和脂肪酸アミド化合物である、請求項11又は12に記載の成形材料用(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition for a molding material according to claim 11 or 12, wherein the fatty acid amide compound (C1) is a saturated fatty acid amide compound.
  14.  (メタ)アクリル系重合体(A)をさらに含む、請求項6~13のいずれか一項に記載の成形材料用(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition for a molding material according to any one of claims 6 to 13, further comprising a (meth) acrylic polymer (A).
  15.  前記フッ素原子含有化合物の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して1質量部以上30質量部以下である、請求項14に記載の成形材料用(メタ)アクリル系樹脂組成物。 The molding material (meth) according to claim 14, wherein the content of the fluorine atom-containing compound is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). Acrylic resin composition.
  16.  前記脂肪酸化合物(C)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して0.5質量部以上10質量部以下である、請求項14又は15に記載の成形材料用(メタ)アクリル系樹脂組成物。 The molding according to claim 14 or 15, wherein the content of the fatty acid compound (C) is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). (Meta) acrylic resin composition for materials.
  17.  前記(メタ)アクリル系重合体(A)の含有割合が、前記成形材料用(メタ)アクリル系樹脂組成物の総質量に対して60質量%以上である、請求項14~16のいずれか一項に記載の成形材料用(メタ)アクリル系樹脂組成物。 Any one of claims 14 to 16, wherein the content ratio of the (meth) acrylic polymer (A) is 60% by mass or more with respect to the total mass of the (meth) acrylic resin composition for the molding material. The (meth) acrylic resin composition for a molding material according to the section.
  18.  脂肪酸化合物(C)を含み、
     フッ素原子の含有割合が、(メタ)アクリル系樹脂組成物の総質量に対して0.5質量%以上である、(メタ)アクリル系樹脂組成物。
    Contains fatty acid compound (C)
    A (meth) acrylic resin composition in which the content ratio of fluorine atoms is 0.5% by mass or more with respect to the total mass of the (meth) acrylic resin composition.
  19.  前記脂肪酸化合物(C)の溶解性パラメーター値が、16.4(J/cm1/2以上24.6(J/cm1/2以下である、請求項18に記載の(メタ)アクリル系樹脂組成物。 The (meth) according to claim 18, wherein the solubility parameter value of the fatty acid compound (C) is 16.4 (J / cm 3 ) 1/2 or more and 24.6 (J / cm 3 ) 1/2 or less. ) Acrylic resin composition.
  20.  前記脂肪酸化合物(C)が、脂肪酸アミド化合物(C1)である、請求項18又は19に記載の(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition according to claim 18 or 19, wherein the fatty acid compound (C) is a fatty acid amide compound (C1).
  21.  前記脂肪酸アミド化合物(C1)が、下記一般式(i)で表される化合物である、請求項20に記載の(メタ)アクリル系樹脂組成物。
     R-CONH  ・・・(i)
    (一般式(i)中、Rは、置換基を有していてもよい炭素数10~25の炭化水素基である。)
    The (meth) acrylic resin composition according to claim 20, wherein the fatty acid amide compound (C1) is a compound represented by the following general formula (i).
    R-CONH 2 ... (i)
    (In the general formula (i), R is a hydrocarbon group having 10 to 25 carbon atoms which may have a substituent.)
  22.  前記脂肪酸アミド化合物(C1)が、飽和脂肪酸アミド化合物である、請求項20又は21に記載の(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition according to claim 20 or 21, wherein the fatty acid amide compound (C1) is a saturated fatty acid amide compound.
  23.  (メタ)アクリル系重合体(A)、及び含フッ素オレフィン系重合体(B)をさらに含む、請求項18~22のいずれか一項に記載の(メタ)アクリル系樹脂組成物。 The (meth) acrylic resin composition according to any one of claims 18 to 22, further comprising a (meth) acrylic polymer (A) and a fluorine-containing olefin polymer (B).
  24.  前記含フッ素オレフィン系重合体(B)が、フッ化ビニリデンの単独重合体であるか、又は、フッ化ビニリデン単量体由来の繰り返し単位及びフッ化ビニリデンと共重合可能な単量体由来の繰り返し単位を含む共重合体である、請求項23に記載の(メタ)アクリル系樹脂組成物。 The fluoroolefin polymer (B) is a homopolymer of vinylidene fluoride, or a repeating unit derived from a vinylidene fluoride monomer and a repeating unit derived from a monomer copolymerizable with vinylidene fluoride. The (meth) acrylic resin composition according to claim 23, which is a copolymer containing a unit.
  25.  前記含フッ素オレフィン系重合体(B)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して1質量部以上30質量部以下である、請求項23又は24に記載の(メタ)アクリル系樹脂組成物。 23 or 24, wherein the content of the fluorine-containing olefin polymer (B) is 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). (Meta) acrylic resin composition.
  26.  前記脂肪酸化合物(C)の含有量が、前記(メタ)アクリル系重合体(A)100質量部に対して0.5質量部以上10.0質量部以下である、請求項23~25のいずれか一項に記載の(メタ)アクリル系樹脂組成物。 Any of claims 23 to 25, wherein the content of the fatty acid compound (C) is 0.5 parts by mass or more and 10.0 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic polymer (A). The (meth) acrylic resin composition according to item 1.
  27.  前記(メタ)アクリル系重合体(A)の含有割合が、前記(メタ)アクリル系樹脂組成物の総質量に対して60質量%以上である、請求項23~26のいずれか一項に記載の(メタ)アクリル系樹脂組成物。 The invention according to any one of claims 23 to 26, wherein the content ratio of the (meth) acrylic polymer (A) is 60% by mass or more with respect to the total mass of the (meth) acrylic resin composition. (Meta) acrylic resin composition.
  28.  請求項18~27のいずれか一項に記載の(メタ)アクリル系樹脂組成物を含む、成形材料用樹脂組成物。 A resin composition for a molding material, which comprises the (meth) acrylic resin composition according to any one of claims 18 to 27.
  29.  請求項6~17のいずれか一項に記載の成形材料用(メタ)アクリル系樹脂組成物、又は、請求項18~27のいずれか一項に記載の(メタ)アクリル系樹脂組成物を成形してなる、樹脂成形体。 Mold the (meth) acrylic resin composition for molding material according to any one of claims 6 to 17, or the (meth) acrylic resin composition according to any one of claims 18 to 27. A resin molded product.
PCT/JP2020/046327 2019-12-12 2020-12-11 Resin molded article, (meth)acrylic resin composition for molding material, (meth)acrylic resin composition, and resin composition for molding material WO2021117879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020570983A JPWO2021117879A1 (en) 2019-12-12 2020-12-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-224164 2019-12-12
JP2019224164 2019-12-12
JP2020185151 2020-11-05
JP2020-185151 2020-11-05

Publications (1)

Publication Number Publication Date
WO2021117879A1 true WO2021117879A1 (en) 2021-06-17

Family

ID=76330026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046327 WO2021117879A1 (en) 2019-12-12 2020-12-11 Resin molded article, (meth)acrylic resin composition for molding material, (meth)acrylic resin composition, and resin composition for molding material

Country Status (2)

Country Link
JP (1) JPWO2021117879A1 (en)
WO (1) WO2021117879A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107866A (en) * 1996-06-25 1998-01-13 Daikin Ind Ltd Vinylidene fluoride-based copolymer composition
JP2003327772A (en) * 2002-05-13 2003-11-19 Asahi Glass Co Ltd Rubber composition
JP2005042066A (en) * 2003-07-25 2005-02-17 Daikin Ind Ltd Vinylidene fluoride-based copolymer resin film
JP2013189655A (en) * 2013-07-04 2013-09-26 Asahi Glass Co Ltd Crosslinked rubber article
JP2015131948A (en) * 2013-12-11 2015-07-23 日油株式会社 Surface-property-improver composition, acrylic resin composition, and acrylic resin formed body
WO2018230336A1 (en) * 2017-06-12 2018-12-20 Nok株式会社 Fluororubber composition and fluororubber sealing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107866A (en) * 1996-06-25 1998-01-13 Daikin Ind Ltd Vinylidene fluoride-based copolymer composition
JP2003327772A (en) * 2002-05-13 2003-11-19 Asahi Glass Co Ltd Rubber composition
JP2005042066A (en) * 2003-07-25 2005-02-17 Daikin Ind Ltd Vinylidene fluoride-based copolymer resin film
JP2013189655A (en) * 2013-07-04 2013-09-26 Asahi Glass Co Ltd Crosslinked rubber article
JP2015131948A (en) * 2013-12-11 2015-07-23 日油株式会社 Surface-property-improver composition, acrylic resin composition, and acrylic resin formed body
WO2018230336A1 (en) * 2017-06-12 2018-12-20 Nok株式会社 Fluororubber composition and fluororubber sealing material

Also Published As

Publication number Publication date
JPWO2021117879A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP4718474B2 (en) Polymer blends for matte injection molded parts
KR101481194B1 (en) Composition with increased stress cracking resistance
JP5312454B2 (en) Colored compositions having increased stress crack resistance
JP5997607B2 (en) Fluorine-containing (meth) acrylic resin film, laminated resin film thereof, and laminated molded product
US20100098907A1 (en) Molding compound for matt molded polyacrylate bodies
WO2016027702A1 (en) Processing aid
AU642579B2 (en) Polyacetal resin composition and its molded article
WO2019042053A1 (en) Polypropylene composition and preparation method therefor
CN110049869B (en) Extruded matte foil with improved mechanical properties and high weatherability
JP2012025790A (en) Aromatic polycarbonate resin composition and molded article comprising the same
KR100788736B1 (en) Composition of acrylic polymer for facing materials
KR100894671B1 (en) Composition of pmma with impact resistant, toughened surface hardness, abrasion resistant and uv screening characteristics
WO2021117879A1 (en) Resin molded article, (meth)acrylic resin composition for molding material, (meth)acrylic resin composition, and resin composition for molding material
JPH08239537A (en) Thermoplastic fluorine-based resin composition and molding produced therefrom
JP6504434B2 (en) Film made of vinylidene fluoride resin composition
JP7561768B2 (en) Methacrylic resin composition
CN115141446B (en) Masterbatch for fluororesin, process for producing the same, fluororesin composition, and molded article
WO2021117860A1 (en) Resin molded body and resin molded body production method
JP4990638B2 (en) Acrylic resin composition having excellent transparency and method for producing the same
KR20230080014A (en) Thermoplastic resin composition with improved blackness and scratch resistance, and molded articles comprising the same
JP2020105382A (en) Polyvinylidene fluoride resin composition and molding
CN118401605A (en) Methacrylic resin composition for injection molding or extrusion molding, resin molded body, and method for producing same
WO2014104223A1 (en) Polymer composition, molded body thereof, and back sheet for solar cell
JPS6245639A (en) Thermoplastic resin composition
JP2007091810A (en) Extrusion molded article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020570983

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899329

Country of ref document: EP

Kind code of ref document: A1