WO2021117537A1 - Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation - Google Patents

Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation Download PDF

Info

Publication number
WO2021117537A1
WO2021117537A1 PCT/JP2020/044599 JP2020044599W WO2021117537A1 WO 2021117537 A1 WO2021117537 A1 WO 2021117537A1 JP 2020044599 W JP2020044599 W JP 2020044599W WO 2021117537 A1 WO2021117537 A1 WO 2021117537A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer chain
chain
group
base material
Prior art date
Application number
PCT/JP2020/044599
Other languages
French (fr)
Japanese (ja)
Inventor
敬亘 辻井
圭太 榊原
佐藤 貴哉
Original Assignee
国立大学法人京都大学
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 独立行政法人国立高等専門学校機構 filed Critical 国立大学法人京都大学
Priority to JP2021563865A priority Critical patent/JPWO2021117537A1/ja
Publication of WO2021117537A1 publication Critical patent/WO2021117537A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an anti-fog member or a member for suppressing the adhesion of water droplets such as dew.
  • the present invention also relates to an icing suppressing member that suppresses icing such as snow, ice, and frost.
  • the present invention also relates to a member for suppressing ice nucleation that suppresses the formation and growth of ice nuclei.
  • the fins of a heat exchanger such as an air conditioner
  • moisture in the atmosphere condenses during operation, the surface of the fins of the heat exchanger condenses and water droplets adhere, or frost is formed on the fin surface, resulting in heat.
  • the fins of the exchanger may become clogged. Such clogging may increase ventilation resistance and reduce the exchange efficiency of the heat exchanger.
  • Patent Documents 2 and 3 lubricants for sliding members.
  • Patent Document 4 use as a narrowing gap material such as a laminated portion
  • Patent Documents 2 to 4 describe inventions relating to brush-like polymer chain aggregates composed of a plurality of polymer chains, such as polymer brushes and bottle brushes, which are anti-fog and suppress water droplet adhesion. , There is no description about icing suppression and ice nucleation suppression.
  • an object of the present invention is to provide a new member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
  • a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material is provided, and the layer containing the polymer chain aggregate holds a liquid substance.
  • the liquid substance is held in the layer containing the polymer chain aggregate and maintains the liquid state in the layer containing the polymer chain aggregate even at a temperature lower than the freezing point.
  • ⁇ 3> The member according to ⁇ 1> or ⁇ 2>, wherein the liquid substance is water or an ionic liquid.
  • ⁇ 4> The member according to any one of ⁇ 1> to ⁇ 3>, wherein the base material is a carrier made of a substance different from the polymer chain aggregate.
  • the base material is a carrier made of a substance different from the polymer chain aggregate.
  • ⁇ 5> The member according to ⁇ 4>, wherein only one end of the polymer chains constituting the polymer chain aggregate is fixed to the base material.
  • ⁇ 6> The member according to ⁇ 4>, wherein both ends of the polymer chains constituting the polymer chain aggregate are fixed to the base material.
  • ⁇ 7> The member according to any one of ⁇ 4> to ⁇ 6>, wherein the density of the polymer chains on the surface of the base material is 0.01 chains / nm 2 or more.
  • the base material is a polymer chain
  • ⁇ 10> The member according to any one of ⁇ 1> to ⁇ 9>, wherein the film thickness of the layer containing the polymer chain aggregate is 350 nm or more.
  • the contact angle of the surface of the member with water at 25 ° C. is 10 ° or more.
  • the present invention can provide a novel member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
  • the numerical range represented by the symbol "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
  • (meth) acrylate means both “acrylate” and “methacrylate”, or either
  • (meth) acrylic means both “acrylic” and “methacryl”, or , Means either.
  • the member of the present invention It has a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material.
  • the layer containing the polymer chain aggregate retains the liquid substance, It is characterized by being a member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
  • the member of the present invention has an excellent anti-fog effect, an effect of suppressing water droplet adhesion, an effect of suppressing icing, and an effect of suppressing ice nucleation.
  • the detailed reason for obtaining such an effect is unknown, but it is presumed to be due to the following.
  • the liquid substance is held by the polymer chain aggregate to form a stable liquid layer in which irreversible liquid leakage is unlikely to occur in the layer containing the polymer chain aggregate. Will be done. Further, it is presumed that the liquid substance held in the polymer chain aggregate is likely to produce a supercooled state or an antifreeze state by appropriately controlling the motility by the polymer chain aggregate.
  • the member of the present invention has an interface with high mobility against water droplets such as dew, ice, snow, frost, etc. due to the presence of such a stable liquid layer. Further, due to the existence of such a stable liquid layer, water can be thermally moved without solidification even below the freezing point, so that the freezing temperature of water on the surface of the member can be further lowered. It is presumed. Since the member of the present invention has an interface with high mobility against water droplets such as dew, it is excellent in slipperiness such as water droplets on the surface of the member, and has an excellent antifogging effect and an effect of suppressing water droplet adhesion. Is presumed to have.
  • the member of the present invention is less likely to freeze water on the surface of the member, is less likely to form ice, snow, frost, etc. on the surface of the member, and further has a highly mobile interface to ice, snow, frost, etc. Therefore, even if ice, snow, frost, etc. are formed on the surface of the member, they are excellent in slipperiness, and therefore, it is presumed that they have an excellent anti-icing effect. Further, since the member of the present invention can further lower the freezing temperature of water inside or on the surface of the member, the temperature at which ice nuclei are generated can be lowered, and the member has an excellent ice nucleation suppressing effect. It is presumed that it is.
  • the polymer chain aggregate used in the present invention is an aggregate of a plurality of polymer chains and has a brush-like shape as a whole, and is formed by simply applying a polymer solution. It is completely different from the organic film. Further, it can be confirmed by differential scanning calorimetry that the layer containing the polymer chain aggregate retains the liquid substance. If it cannot be confirmed by differential scanning calorimetry, it can be confirmed by the method of indentation hardness test (indentation test).
  • the liquid substance is held in the layer containing the polymer chain aggregate and has a temperature lower than the freezing point (preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, still more preferably ⁇ 30 ° C. or lower). ) But it is preferable to keep the liquid state. Further, the liquid substance is preferably water. Whether or not the liquid substance is in a liquid state can be confirmed by differential scanning calorimetry. If it cannot be confirmed by differential scanning calorimetry, it can be confirmed by the method of indentation hardness test (indentation test).
  • the thickness of the layer containing the polymer chain aggregate is 50 nm because more excellent antifogging effect, water droplet adhesion suppressing effect, icing suppressing effect and ice nucleation suppressing effect can be easily obtained. It is preferably 100 nm or more, more preferably 350 nm or more, further preferably 500 nm or more, and particularly preferably 1000 nm or more.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the member of the present invention is an anti-fog member or a member for suppressing water droplet adhesion
  • it is preferably 50 nm or more, preferably 100 nm or more, because a more excellent anti-fog effect and water droplet adhesion suppressing effect can be easily obtained.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the member of the present invention is a member for suppressing icing
  • it is preferably 50 nm or more, more preferably 100 nm or more, and 350 nm or more because it is easy to obtain a better icing suppressing effect. It is even more preferably 500 nm or more, and particularly preferably 1000 nm or more.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the member of the present invention is a member for suppressing ice nucleation
  • it is preferably 50 nm or more, more preferably 100 nm or more, and 350 nm, because a more excellent ice nucleation suppressing effect can be easily obtained.
  • the above is more preferable, 500 nm or more is even more preferable, and 1000 nm or more is particularly preferable.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the film thickness of the layer containing the polymer chain aggregate can be measured by spectroscopic ellipsometry or the like.
  • the polymer chain aggregate in the present invention is composed of a plurality of polymer chains and has a brush-like shape as a whole.
  • the "polymer chain” in the present invention refers to a molecule or a portion of a molecule having a structure in which a plurality of structural units are linked in a chain.
  • the plurality of polymer chains constituting the polymer chain aggregate may be the same as or different from each other.
  • the polymer chain may have a structure in which a plurality of structural units are connected in a chain shape, and may have a side chain or a branched structure, and is between the polymer chains.
  • a crosslinked structure may be formed between the polymer chain and the base material.
  • the polymer chain preferably has an affinity for a liquid substance to be retained in the layer containing the polymer chain aggregate.
  • the polymer chain constituting the polymer chain aggregate is preferably a hydrophilic polymer chain.
  • the hydrophilic polymer chain may be synthesized using a hydrophilic monomer, or may be synthesized by synthesizing a polymer using a hydrophobic monomer and then introducing a hydrophilic group into the polymer.
  • the polymer chain may be a homopolymer obtained by polymerizing one type of monomer, or may be a copolymer obtained by polymerizing two or more types of monomers.
  • Examples of the copolymer include a random copolymer, a block copolymer, a gradient copolymer and the like.
  • the monomer used to generate the polymer chain is preferably one that can bond the polymer chain obtained by the polymerization to the base material as a graft chain.
  • a monomer having at least one addition-polymerizable double bond and a monofunctional monomer having one addition-polymerizable double bond is preferable.
  • the monofunctional monomer having one addition-polymerizable double bond include (meth) acrylic acid-based monomers and styrene-based monomers.
  • Examples of the (meth) acrylic acid-based monomer include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth).
  • styrene-based monomers examples include styrene, vinyltoluene, ⁇ -methylstyrene, p-chlorostyrene, p-chloromethylstyrene, m-chloromethylstyrene, o-aminostyrene, p-styrenechlorosulfonic acid, styrenesulfonic acid and the like.
  • a fluorine-containing vinyl monomer perfluoroethylene, perfluoropropylene, vinylidene fluoride, etc.
  • a silicon-containing vinyl-based monomer vinyl triethoxysilane, etc.
  • maleic anhydride maleic acid, maleic acid monoalkyl and dialkyl esters, fumaric acid, fumaric acid monoalkyl and dialkyl esters
  • maleimide-based monomers maleimide, methylmaleimide, ethylmaleimide
  • Ppropylmaleimide Butylmaleimide, Hexylmaleimide, Octylmaleimide, Dodecylmaleimide, Stearylmaleimide, Phenylmaleimide, Cyclohexylmaleimide, etc.
  • Nitrile group-containing monomers acrylonitrile, methacrylonitrile,
  • the ionic liquid monomer is not particularly limited, and examples thereof include a compound represented by the following formula (1).
  • m represents an integer of 1 to 10
  • n represents an integer of 1 to 5.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group in R 2 , R 3 and R 4 may have its carbon atom or hydrogen atom substituted with one or more hetero atoms selected from oxygen atom, sulfur atom and fluorine atom, and R 2 , R 3 and R 4 may be connected by two or more to form an annular structure.
  • Y represents a monovalent anion.
  • the monovalent anion Y represents is not particularly limited, for example, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, AlCl 4 -, NbF 6 -, HSO 4 -, ClO 4 -, CH 3 SO 3 -, CF 3 SO 3 -, CF 3 CO 2 -, (CF 3 SO 2) 2 N -, Cl -, Br -, I - , and the like can be given.
  • BF 4 -, PF 6 - , (CF 3 SO 2) 2 N -, CF 3 SO 3 -, or CF 3 CO 2 - is preferably.
  • the ionic liquid monomer is particularly preferably a compound represented by any of the following formulas (2) to (9).
  • hydrophilic monomer for the formation of a hydrophilic polymer chain. That is, the hydrophilic polymer chain preferably contains a repeating unit derived from a hydrophilic monomer.
  • Hydrophilic monomers include hydroxy-substituted alkyl (meth) acrylates (eg, 2-hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2,3-dihydroxypropyl (eg).
  • Meta acrylate, polyethoxyethyl (meth) acrylate, polyethoxypropyl (meth) acrylate, etc.), poly (alkylene glycol) mono (meth) acrylate (eg, poly (ethylene glycol) monomethacrylate, etc.), alkoxypoly (alkylene glycol, etc.) ) (Meta) acrylate (eg, methoxypoly (ethylene glycol) methacrylate, etc.), phenoxypoly (alkylene glycol) (meth) acrylate (eg, phenoxypoly (ethylene glycol) methacrylate, etc.) are preferable, and polyalkoxypoly (alkylene glycol) ( Meta) acrylate is more preferred.
  • hydrophilic monomer examples include (meth) acrylamide, N-alkyl (meth) acrylamide (eg, N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, etc.) and 2-glucosyloxyethyl (meth).
  • acrylate acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, methacrylamide, N-vinylpyrrolidone, N, N-dimethylaminoethyl (meth) acrylate, and quaternary ammonium salts thereof. You can also.
  • hydrophilic polymer chain it is also preferable to use a monomer having a carboxyl group or a group that can be easily converted into a salt of the carboxyl group in the side chain.
  • Hydrophilicity can be imparted by converting the side chain group of the produced polymer chain into a carboxyl group or a salt of the carboxyl group.
  • the monomer having a carboxyl group or a group having a group that can be easily converted into a salt of the carboxyl group in the side chain include tert-butyl (meth) acrylate and the like.
  • one type may be used alone, or two or more types may be used in combination.
  • the polymer chain aggregate may have a crosslinked structure formed between the polymer chains or between the polymer chains and the base material. Thereby, the elastic modulus of the polymer chain aggregate can be controlled.
  • the crosslinked structure formed between the polymer chains may be either a physical crosslinked structure or a chemically crosslinked structure.
  • the crosslinked structure may be formed at the same time as the polymerization reaction for forming the polymer chain, or may be formed after the polymer chain is formed.
  • the formation of the crosslinked structure performed at the same time as the polymerization reaction for forming the polymer chain is performed in the polymerization reaction solution like a divinyl monomer such as ethylene glycol dimethacrylate in addition to the monofunctional monomer for forming the polymer chain.
  • a crosslinked group is introduced into the polymer chain using a monomer having a crosslinked group, and the crosslinked group is introduced. And the reaction with the reactive group of another polymer chain, and the reaction between the cross-linking group and the reactive group of the base material.
  • the cross-linking group include an azide group, a halogen group (preferably a bromo group), an alkoxysilyl group, an isocyanate group, a vinyl group, a thiol group and the like.
  • the reactive group remaining at the end of the graft chain can also be used as a cross-linking group.
  • the polymer chains constituting the polymer chain aggregate are fixed to the base material.
  • the base material may be a carrier made of a substance different from the polymer chain aggregate, or may be a polymer chain as a main chain in which the polymer chains are bonded as side chains.
  • the substrate is a carrier
  • the polymer chain aggregate constitutes a "polymer brush”.
  • the base material is a polymer chain, the entire main chain composed of the polymer chain and the polymer chain (side chain) bonded to the main chain are combined to form a "polymer having a bottle brush structure". Configure.
  • the polymer chain aggregate constitutes the "polymer brush".
  • the polymer chain aggregate constitutes the "polymer brush”.
  • only one end of the polymer chain may be fixed to the base material (carrier), or both ends of the polymer chain may be fixed to the base material (carrier).
  • both ends of the polymer chain are fixed to the base material (carrier)
  • the polymer chain has a loop structure, and such a polymer chain aggregate forms a polymer brush having a loop structure. ..
  • the film thickness of the polymer brush is preferably 50 nm or more, preferably 100 nm or more. It is more preferably 300 nm or more, further preferably 500 nm or more, and particularly preferably 1000 nm or more.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the polymer chain aggregate is bonded as a side chain of the polymer chain, and the main chain formed by the polymer chain and the polymer chain (side chain) bonded to the main chain are combined.
  • the thickness of the layer containing the polymer having a bottle brush structure is preferably 50 nm or more, more preferably 100 nm or more, and more preferably 300 nm. The above is more preferable, 500 nm or more is even more preferable, and 1000 nm or more is particularly preferable.
  • the upper limit is not particularly limited, but can be, for example, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the polymer chain aggregate of the polymer brush can be obtained by a graft polymerization method in which a plurality of polymer chains are bonded to a carrier as a base material as graft chains.
  • This graft polymerization can be carried out by the Grafting-from method or the Grafting-to method, and it is preferable to use the Grafting-from method.
  • the Grafting-from method is a method in which a polymerization initiating group is introduced into a base material and a graft chain is grown from the polymerization initiating group, and the Grafting-to method uses a graft chain synthesized in advance as a base material. It is a method of binding to the introduced reaction site.
  • the hydrophobic portion of a polymer (diblock copolymer) having a hydrophobic block and a hydrophilic block is made hydrophobic on the surface of a hydrophobic base material or a hydrophobic base material. It can also be obtained by the method of combining.
  • the diblock copolymer include a copolymer having a polymethylmethacrylate (PMMA) structure as a hydrophobic block and a poly (sodium sulfonated glycidyl methacrylate) (PSGMA) structure as a hydrophilic block.
  • PMMA polymethylmethacrylate
  • PSGMA poly (sodium sulfonated glycidyl methacrylate)
  • Other polymer structures may intervene between the PMMA structure and the PSGMA structure. For more information on this method, see Nature, 425, 163-165 (2003) and the like.
  • the polymer chain formation method used in the graft polymerization method is not particularly limited, but it is preferable to use a radical polymerization method, more preferably a living radical polymerization method (LRP) method, and atom transfer radicals. It is more preferred to use the polymerization (ATRP) method.
  • LRP living radical polymerization method
  • ATRP polymerization
  • the living radical polymerization method grafts various types of copolymers (eg, random copolymers, block copolymers, composition-inclined copolymers, etc.) that can easily control the molecular weight and molecular weight distribution of the polymer chains. It has the advantage that it can be generated as.
  • the living radical polymerization method by using high pressure conditions or an ionic liquid solvent, it is possible to produce a concentrated polymer brush described later by precisely controlling the density and thickness thereof.
  • the graft polymerization method when the living radical polymerization method is used may be either the Grafting-from method or the Grafting-to method, but the Grafting-from method is preferable.
  • Japanese Patent Application Laid-Open No. 11-263819 and the like can be referred to.
  • the atom transfer radical polymerization method refer to J.M. Am. Chem. Soc.
  • the polymer chain is also produced by a nitroxide-mediated polymerization method (NMP), a reversible addition cleavage chain transfer (RAFT) polymerization method, a reversible transfer catalyst polymerization method (RTCP), a reversible complex formation-mediated polymerization method (RCMP), or the like. can do.
  • NMP nitroxide-mediated polymerization method
  • RAFT reversible addition cleavage chain transfer
  • RTCP reversible transfer catalyst polymerization method
  • RCMP complex formation-mediated polymerization method
  • the catalyst used in the radical polymerization method may be any catalyst capable of controlling radical polymerization, and is preferably a transition metal complex.
  • Preferred examples of the transition metal complex include metal complexes having Group 7, 8, 9, 10 or 11 elements of the periodic table as the central metal, among which copper complex, ruthenium complex and iron. It is preferable to use a complex or a nickel complex, and it is more preferable to use a copper complex.
  • the copper complex is preferably a complex of a monovalent copper compound and an organic ligand. Examples of the monovalent copper compound include cuprous chloride, cuprous bromide and the like.
  • organic ligands 2,2'-bipyridyl or its derivatives, 1,10-phenanthroline or its derivatives, polyamines (tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltris (2-aminoethyl) amines, etc.), L- (-)-Polycyclic alkaloids such as spartane can be mentioned.
  • a triphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst. When a ruthenium compound is used as a catalyst, it is preferable to add aluminum alkoxides as an activator.
  • Divalent iron bistriphenylphosphine complex FeCl 2 (PPh 3 ) 2
  • divalent nickel bistriphenylphosphine complex NiCl 2 (PPh 3 ) 2
  • divalent nickel bistributylphosphine complex NiBr 2 (PBu 3 ) 2
  • the polymerization reaction is preferably carried out in a solvent.
  • solvents hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene, etc.), ketones Solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), alcohol solvents (methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.), nitrile solvents (acetriform, propionitrile, benzonitrile, etc.), esters System solvents (ethyl acetate, butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, etc.), amide solvents (N, N-
  • a polymerization initiator group which is a starting point of a polymerization reaction is introduced into a substrate, and the above-mentioned polymerization is carried out from this polymerization initiator group.
  • Polymer chains are graft grown using the method.
  • the polymerization initiating group include an alkyl halide group and a sulfonyl halide group.
  • the polymerization initiator can accurately control the density of the graft chain (graft density) and the primary structure (molecular weight, molecular weight distribution, monomer arrangement mode) of the polymer chain obtained by graft polymerization, it can be physically or chemically applied to the surface of the substrate. It is preferable that they are bonded to each other.
  • the method for introducing (bonding) the polymerization initiating group to the surface of the substrate include a chemisorption method, a Langmuir Brodget (LB) method and the like.
  • a chlorosulfonyl group (polymerization initiator group) onto the surface of a silicon wafer (base material) by a chemical bond is performed with 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane or 2- (4-chlorosulfonylphenyl) ethyl.
  • This can be done by reacting trichlorosilane or the like with an oxide layer on the surface of a silicon wafer.
  • the film-forming material containing the polymerization initiating group is dissolved in an appropriate solvent (eg, chloroform, benzene, etc.).
  • an appropriate solvent eg, chloroform, benzene, etc.
  • a small amount of this solution is developed on a clean liquid surface, preferably pure water, and then the solvent is evaporated or diffused into an adjacent aqueous phase to have a low density of film-forming molecules on the water surface.
  • the partition plate is mechanically swept over the water surface to compress the membrane by reducing the surface area of the water surface on which the film-forming molecules are developed to increase the density, and obtain a dense monomolecular film on the water surface. ..
  • the base material on which the monolayer is deposited is immersed or pulled up in a direction crossing the monolayer on the water surface while keeping the surface density of the molecules constituting the monolayer on the water surface constant.
  • the monomolecular film on the water surface is transferred onto the base material, and the monomolecular layer is deposited on the base material.
  • a polymerization initiator group When introducing a polymerization initiator group into the surface of a substrate, at least one of a group bonded to the substrate and a group having an affinity with the substrate, and a group having an affinity with the group bonded to the polymerization initiator group and the polymerization initiator group are used. It is preferable to treat the surface of the base material with a surface treatment agent having at least one of the above.
  • This surface treatment agent may be a low molecular weight compound or a high molecular weight compound. Examples of the surface treatment agent include compounds represented by the following formula (10).
  • n is an integer of 1 to 10, preferably an integer of 3 to 8.
  • R 11 , R 12 and R 13 each independently represent a substituent. At least one of R 11 , R 12 and R 13 is preferably an alkoxyl group or a halogen atom, and it is particularly preferable that all of R 11 , R 12 and R 13 are methoxy groups or ethoxy groups. .. R 14 and R 15 each independently represent a substituent. R 14 and R 15 are preferably alkyl groups having 1 to 3 carbon atoms or aromatic functional groups, respectively, and most preferably both R 14 and R 15 are methyl groups.
  • X 11 represents a halogen atom and is preferably a bromine atom.
  • the surface treatment agent it is preferable to use a silane coupling agent containing a polymerization initiating group (a silane coupling agent containing a polymerization initiating group).
  • a silane coupling agent containing a polymerization initiating group a silane coupling agent containing a polymerization initiating group
  • the surface treatment and the introduction of the polymerization initiating group can be performed at the same time.
  • the polymerization initiating group-containing silane coupling agent include compounds represented by the above formula (1).
  • the description of International Publication No. 2006/087839 can be referred to.
  • polymerization initiator-containing silane coupling agent examples include (2-bromo-2-methyl) propionyloxyhexyltrimethoxysilane (BHM) and (2-bromo-2-methyl) propionyloxypropyltrimethoxysilane (BPM). Can be mentioned.
  • a silane coupling agent that does not contain a polymerization initiating group for example, a known alkylsilane coupling agent should be used in combination. Is preferable. Thereby, the graft density can be freely changed by adjusting the ratio of the silane coupling agent containing a polymerization initiating group and the silane coupling agent not containing a polymerization initiating group.
  • the polymer chains are formed with a surface occupancy rate of more than 3% by performing graft polymerization by the Grafting-from method after the surface treatment thereof.
  • a polymerization initiating group-containing silane coupling agent is used as the surface treatment agent, the polymerization initiating group-containing silane coupling agent is hydrolyzed in the presence of water to form silanol, which is partially condensed to form an oligomer state. After that, it may be subjected to surface treatment.
  • this oligomer may be adsorbed on a base material such as silica in a hydrogen-bonding manner and then subjected to a drying treatment to cause a dehydration condensation reaction, and a polymerization initiating group may be introduced into the base material.
  • a base material such as silica in a hydrogen-bonding manner and then subjected to a drying treatment to cause a dehydration condensation reaction, and a polymerization initiating group may be introduced into the base material.
  • the material constituting the base material (carrier) for fixing the polymer chain is not particularly limited. It can be appropriately selected from organic materials, inorganic materials, metal materials and the like.
  • the organic material is not particularly limited, and various resins and rubbers can be used without limitation.
  • the resin may be either a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin include epoxy resin, phenol resin, amino resin, unsaturated polyester resin, polyurethane resin, urea resin, melamine resin, thermosetting polyimide resin, diallyl phthalate resin and the like.
  • the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polystyrene and polycycloolefin; vinyl resins such as polystyrene, acrylic resin, polyvinyl chloride resin and polyvinyl alcohol; and fluororesins such as polytetrafluoroethylene.
  • Polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate; silicone resins such as polydimethylsiloxane; and the like.
  • diene rubber such as butadiene rubber, styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, nitrile rubber, butyl rubber; ethylene propylene rubber, acrylic rubber, polyether rubber, polyurethane rubber, fluororubber, silicone rubber, etc. Examples include rubbers other than the diene rubber.
  • the inorganic material is not particularly limited, and is limited to ceramics (eg, alumina ceramics, bioceramics, composite ceramics such as zirconia-alumina composite ceramics, etc.), metals (eg, iron, cast iron, steel, stainless steel, carbon steel, high carbon). Iron alloys such as chrome bearing steel (SUJ2), non-iron and non-iron alloys such as aluminum, zinc, copper and titanium), silicon such as polycrystalline silicon, silicon oxide, silicon nitride, various glasses, quartz, and composites thereof. Materials and the like can be mentioned.
  • ceramics eg, alumina ceramics, bioceramics, composite ceramics such as zirconia-alumina composite ceramics, etc.
  • metals eg, iron, cast iron, steel, stainless steel, carbon steel, high carbon.
  • Iron alloys such as chrome bearing steel (SUJ2), non-iron and non-iron alloys such as aluminum, zinc, copper and titanium
  • silicon such as polycrystalline silicon, silicon oxide, silicon nitride,
  • the type of base material is not particularly limited.
  • tubes, sheets, fibers, strips, films, plates, foils, membranes, pellets, powders, particles, molded products (eg, extruded products, cast molded products, etc.) and the like can be mentioned.
  • the article itself to which the member of the present invention is applied may be used as the base material.
  • the polymer chain aggregate of the polymer brush can also be produced by the following production method. That is, the organic material constituting the base material (hereinafter, also referred to as the base material polymer) and the polymer block A and the polymer block B having a lower affinity for the base material polymer than the polymer block A are provided.
  • the organic material constituting the base material which is a base material polymer, is not particularly limited, and the above-mentioned ones can be mentioned.
  • the block copolymer includes a polymer block A and a polymer block B having a lower affinity for the base polymer than the polymer block A, and has the polymer blocks A at at least two locations. It is good, but not particularly limited, from the viewpoint that a loop structure can be preferably formed, it is preferable to use a polymer block B that is incompatible with the base polymer, and the polymer block B has a base weight. A combination that is incompatible with the coalescence and the polymer block A is compatible with the base polymer is more preferable.
  • the fact that the polymer block A is compatible with the base polymer means the following state. That is, it is obtained by mixing a polymer composed of only the polymer block A and a base polymer by hot melt mixing or co-solution mixing, and then solidifying the obtained mixture by cooling or solvent evaporation removal.
  • Tg glass transition temperature
  • the fact that the polymer block B is incompatible with the base polymer means the following state. That is, it is obtained by mixing a polymer composed of only the polymer block B and a base polymer by hot melt mixing or co-solution mixing, and then solidifying the obtained mixture by cooling or solvent evaporation removal.
  • Tg glass transition temperature
  • the polymer block A and the polymer block B those having the above-mentioned compatibility with the base polymer may be used, but from the viewpoint that a loop structure can be preferably formed, these SP values (solubility parameters) are related.
  • the difference between the SP value of the polymer block A and the SP value of the polymer block B is preferably 1.5 (MPa) 0.5 or more, and more preferably 3 (MPa) 0.5 or more. It is more preferably 5 (MPa) 0.5 or more.
  • the difference between the SP value of the polymer block A and the SP value of the base polymer is preferably 0.5 (MPa) 0.5 or less, and is 0.3 ( MPa) 0.5 or less is more preferable, and 0.2 (MPa) 0.5 or less is further preferable.
  • the difference between the SP value of the polymer block B and the SP value of the base polymer is preferably 1.5 (MPa) 0.5 or more, and 3 (MPa) 0.5. The above is more preferable, and 5 (MPa) 0.5 or more is further preferable.
  • the SP values of the polymer block A and the polymer block B for example, the values disclosed in the Polymer Handbook (4th edition, Wiley-Interscience) can be used.
  • the polymer block A may be selected as long as it satisfies the above-mentioned characteristics, and is not particularly limited, and may be selected in relation to the base material polymer to be used.
  • the above-mentioned base material polymer may be used.
  • the constituent resin or rubber include those composed of polymer segments constituting the resin or rubber exemplified.
  • the molecular weight (weight average molecular weight (Mw)) of the polymer block A portion of the block copolymer is not particularly limited, but exhibits sufficient interaction with the base polymer, thereby forming a loop structure formed by the polymer block B. From the viewpoint that durability can be further enhanced by more appropriately supporting the above, preferably 1,000 to 100,000, more preferably 1,000 to 50,000, still more preferably 1,000 to 20, It is 000, more preferably 2,000 to 20,000, and particularly preferably 2,000 to 6,000.
  • polymer block B among those described as the above-mentioned polymer chains, those that satisfy the above-mentioned characteristics with the base polymer are preferably used.
  • the solvent used when mixing the base polymer and a plurality of block copolymer chains in a solvent is not particularly limited, and the base polymer and the block copolymer chains can be dissolved or dispersed. Any solvent can be used.
  • aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane.
  • Hexahydroindene alicyclic hydrocarbons such as cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, mesityrene; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene, acetonitrile, propionitrile, benzonitrile; diethyl Ethers such as ether, tetrahydrofuran, dioxane; ketones such as acetone, ethyl methyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; esters such as methyl acetate, ethyl acetate, ethyl propionate, methyl benzoate; chloroform, Halogenized hydrocarbons such as dichloromethane, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene; alcohols such as
  • a mixed solution can be obtained by mixing, dissolving or dispersing the base polymer and a plurality of block copolymer chains in such a solvent.
  • the obtained mixed solution is used to form a film by a casting method, a spin coating method, or the like, and then the solvent is removed from the formed mixed solution.
  • a part of the plurality of block copolymer chains dispersed with respect to the base polymer via the solvent was removed from the base polymer, so that the polymer block A was compatible with the base polymer.
  • the polymer block B constituting the block copolymer chain is phase-separated from the base material polymer, the polymer block A is in the base material polymer, and the polymer block B is the base material weight. It can be changed from coalescence to an exposed state, whereby a loop structure in which both ends of the polymer chains constituting the polymer chain aggregate are fixed to the carrier can be formed.
  • the method for removing the solvent is not particularly limited and may be selected according to the type of solvent used, but a method of heating at 50 ° C. to 100 ° C. is preferable, and a method of heating at 70 to 80 ° C. is more preferable. preferable.
  • the polymer chain aggregate of the polymer brush can also be manufactured by the following manufacturing method. That is, a plurality of blocks including the base polymer and the polymer block A and the polymer block B having a lower affinity for the base polymer than the polymer block A, and having the polymer blocks A at at least two locations. It can also be produced by a production method including a step of preparing a molten mixture by mixing the copolymer under heating and a step of causing phase separation by cooling the molten mixture. Also by this production method, it is possible to produce a polymer chain aggregate of a loop structure polymer brush in which both ends of the polymer chains constituting the polymer chain aggregate are fixed to a base material which is a carrier. ..
  • the heating temperature when the base polymer and a plurality of block copolymers are mixed under heating to prepare a melt mixture is not particularly limited, and is the temperature at which the base polymer or the block copolymer melts.
  • the temperature at which both the base polymer and the block copolymer chain are melted may be preferably set to 40 to 300 ° C, more preferably 80 to 200 ° C.
  • a film is formed by a casting method, a spin coating method, a dip coating method, etc., and then cooled, and phase separation occurs in the process of solidification by cooling.
  • the substrate weight of the polymer block A is increased.
  • the polymer block B constituting the block copolymer is phase-separated from the base polymer while remaining in a state of being compatible with the coalescence, so that the polymer block A is present in the base polymer and the polymer block. B can be changed to an exposed state from the base polymer, whereby a loop structure can be formed.
  • the method for cooling the melt mixture is not particularly limited, but a method of allowing the formed melt mixture to stand at room temperature or a method of allowing the formed melt mixture to stand still at a temperature lower than the melt temperature of each component constituting the melt mixture.
  • the method of placing it can be mentioned.
  • the number average molecular weight (Mn ) of the polymer chains constituting the polymer chain aggregate is preferably 500 to 10,000,000, more preferably 100,000 to 10,000,000.
  • the molecular weight distribution index (PDI M w / M n ) in the polymer chain aggregate is preferably 1.0 to 2.0, more preferably 1.0 to 1.5. When the molecular weight distribution index is within the above range, the effect of maintaining a high-density state up to the outermost surface of the polymer chains constituting the polymer chain aggregate can be expected.
  • the number average molecular weight (M n ) and molecular weight distribution index (M w / M n ) of the polymer chain aggregate are obtained by cutting out the polymer chain from the substrate by hydrofluoric acid treatment and gel permeation chromatography on the cut out polymer chain. It can be measured by performing molecular weight analysis by a size exclusion chromatography method such as a imaging method.
  • a method for measuring the molecular weight using a free polymer will be specifically described.
  • a polymer chain is synthesized by surface-initiated living radical polymerization
  • a release initiator is added to the polymerization solution
  • a free polymer having a molecular weight and a molecular weight distribution equivalent to that of the polymer chain constituting the polymer chain aggregate can be obtained. it can.
  • the number average molecular weight (M n ) and the molecular weight distribution index (M w / M n ) are determined by analyzing this free polymer by size exclusion chromatography.
  • the analysis by the size exclusion chromatography method is a calibration method using a standard sample of the same kind and monodisperse with a known molecular weight, and an absolute molecular weight evaluation using a multi-angle light scattering detector.
  • the values of the number average molecular weight (Mn) and the weight average molecular weight (Mw) are appropriately calculated using a multi-angle light scattering detector and molecular weight calibration curves of various standard samples. It is shown by the absolute value.
  • the standard sample include a polystyrene standard sample, a polymethylmethacrylate standard sample, and a polyethylene glycol standard sample.
  • the density of the polymer chains on the surface of the base material is preferably 0.01 chains / nm 2 or more, more preferably 0.05 chains / nm 2 or more, and 0.1 chains / nm 2 or more. It is more preferable, and 0.2 chain / nm 2 or more is particularly preferable.
  • the upper limit is not particularly limited, but may be 1.0 chain / nm 2 or less, and may be 0.9 chain / nm 2 or less.
  • the density of the polymer chains can be obtained by measuring the graft amount (W) per unit area and the number average molecular weight (M n ) of the polymer chain aggregates and using the following formula.
  • Polymer chain density (chain / nm 2 ) W (g / nm 2 ) / M n ⁇ (Avogadro's number)
  • W represents the graft amount per unit area
  • Mn represents the number average molecular weight of the polymer chain aggregate.
  • the substrate is a flat substrate such as a silicon wafer
  • the graft amount (W) per unit area is the thickness in the dry state by the ellipsometry method, that is, the thickness of the polymer chain aggregate layer in the dry state. It can be obtained by measuring and calculating the graft amount (W) per unit area using the density of the bulk film.
  • the method for measuring the number average molecular weight (M n ) of the polymer chain aggregate can be measured by the method described above.
  • the surface occupancy of the polymer chains on the surface of the base material is preferably 1% or more, more preferably 5% or more, and 10% or more. It is more preferable to have.
  • the surface occupancy rate means the ratio of the graft points (first structural unit) to the surface of the base material, and is 100% in the dense packing.
  • the method for calculating the density of the polymer chains can be measured by the method described above.
  • the cross-sectional area of the polymer can be determined using the repeating unit length and the bulk density of the polymer in the stretched form of the polymer.
  • the bottle brush structure is a branched polymer structure in which a plurality of side chains are branched from the main chain to form a bottle brush-like shape as a whole.
  • the main chain constitutes a base material and the side chains form a polymer chain aggregate, and further, the polymer having a bottle brush structure is fixed to the base material as a carrier. May be good.
  • the carrier include those described above.
  • both the polymer having the bottle brush structure and the polymer brush may be fixed to the carrier which is the base material.
  • the polymer brush is preferably a concentrated polymer brush.
  • a polymer having a bottle brush structure can also be obtained by the graft polymerization method.
  • This graft polymerization is carried out from a Grafting-to method in which a pre-synthesized reactive side chain (graft chain) is bonded to a stem polymer which is a main chain, and a polymerization initiating group of a macroinitiator (a stem polymer in which a polymerization initiating group is introduced). It can be carried out by using the Grafting-from method for growing a side chain (graft chain) and the Grafting-throwh method for polymerizing a macromonomer (a polymer having a polymerizable functional group at the end of a side chain constituent polymer).
  • living anionic polymerization ring-opening metathesis polymerization (ROMP), or a highly versatile living radical polymerization method (LRP) can be used for the synthesis of these side chains and stem polymers.
  • RRP living radical polymerization method
  • a preferable example of the polymer having a bottle brush structure is a compound represented by the formula (11).
  • R 1 and R 2 each independently represent a hydrogen atom or a methyl group
  • R 3 represents a substituent, preferably an alkyl group having 1 to 10 carbon atoms
  • R 4 and R 5 represent a terminal group composed of an atom or an atomic group, and examples thereof include a hydrogen atom, a halogen, and a functional group derived from a polymerization initiator.
  • X represents O or NH
  • Y represents a divalent organic group
  • n represents an integer of 10 or more
  • Polymer A represents a polymer chain.
  • the repeating structure of the structural unit enclosed by n corresponds to the main chain of the bottle brush structure
  • Polymer A corresponds to the side chain of the bottle brush structure.
  • Divalent organic consisting of at least two combinations of these organic groups (alkylene groups having 1 to 10 carbon atoms, oxyalkylene groups having 1 to 5 carbon atoms and linked structures of oxyalkylene groups).
  • the groups can be mentioned.
  • the alkylene group and the alkylene group of the oxyalkylene group may be linear or branched, and may have a cyclic structure.
  • alkylene group examples include an ethylene group, a propylene group, a butylene group, and a cyclohexylene group.
  • the alkylene group and the alkylene group of the oxyalkylene group may be substituted with a substituent.
  • substituents include an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms, and these substituents are further substituted with a substituent. May be good.
  • Polymer A a preferable range, and specific examples, the description in the above-mentioned (Polymer chain) column of the polymer chain can be referred to. Polymer A may be the same as or different from each other among the constituent units of the main chain.
  • the polymer of the polymer can be regarded as a cylinder whose side surface is the surface including its tip.
  • the longer the length of the side chain (graft chain), the lower the density of the side chain (graft chain) on the side chain, and the higher the degree of freedom in the structure of the side chain (graft chain). Become.
  • the side chain (graft chain) can be freely folded.
  • the surface occupancy ( ⁇ * ) of the side chain is represented by the following formula (1).
  • represents the density of the side chain of the virtual outer peripheral portion, which is obtained by the following formula (2), and the volume (V 0 [nm 3 ]) per repeating unit of the side chain portion is It is calculated by the following formula (3).
  • represents the length of the repeating unit of the main chain and the side chain portion.
  • the side chain surface occupancy ( ⁇ * ) obtained by the formula (1) is , A value representing the proportion of the side chain tip on the side chain of the polymer in a state where the side chain is extended in a straight line in the vertical direction from the main chain.
  • the surface occupancy ( ⁇ * ) of the side chain shows a value of 0 to 100%, and the larger the value, the larger the ratio occupied by the tip of the side chain on the side chain of the polymer, and the degree of freedom of the side chain is limited. become.
  • the surface occupancy of the side chain is a numerical value that reflects the degree of freedom of the side chain, and the higher the surface occupancy ( ⁇ * ) of the side chain, the more the structural freedom of the side chain is limited.
  • ⁇ * surface occupancy
  • the surface occupancy of the side chain of the polymer having a bottle brush structure is preferably 1% or more, more preferably 5% or more, and further preferably 10% or more.
  • the density of the side chains of the polymer having a bottle brush structure is preferably 0.01 chain / nm 2 or more, more preferably 0.05 chain / nm 2 or more, and 0.1 chain / nm 2 or more. Is more preferable, and 0.2 chain / nm 2 or more is particularly preferable.
  • the upper limit is not particularly limited, but may be 1.0 chain / nm 2 or less, and may be 0.9 chain / nm 2 or less.
  • the number average molecular weight of the polymer having a bottle brush structure is preferably 1,000 to 10,000,000, more preferably 1,000 to 1,000,000, and 5,000 to 500,000. Is more preferable.
  • the effect of maintaining a high-density state up to the outermost surface of the polymer chains constituting the polymer chain aggregate can be expected.
  • the layer containing the polymer chain aggregate of the member of the present invention holds a liquid substance.
  • liquid substance examples include water, ionic liquid, fluorine-based solvent, oil (hydrocarbon-based oil, silicone oil, etc.), and preferably at least one selected from water and ionic liquid.
  • the liquid substance may be a hydrophilic liquid substance or a hydrophobic liquid substance.
  • hydrophilic liquid substance examples include water and a hydrophilic ionic liquid.
  • hydrophobic liquid substance examples include hydrophobic ionic liquids, fluorine-based solvents, and oils.
  • the liquid substance may be composed of only one kind of liquid substance, or may be a mixture of two or more kinds of liquid substances.
  • the liquid substance may contain additives.
  • An ionic liquid is a low melting point salt having ionic conductivity, which is also called an ionic liquid or a room temperature molten salt. Most ionic liquids have relatively low melting point properties obtained by combining organic onium ions as cations with organic or inorganic anions as anions.
  • the melting point of the ionic liquid is usually 100 ° C. or lower, preferably room temperature (25 ° C.) or lower.
  • the melting point of the ionic liquid can be measured by a differential scanning calorimeter (DSC) or the like.
  • the ionic liquid a compound represented by the following formula (20) can be used.
  • the melting point of this ionic liquid is preferably 50 ° C. or lower, more preferably 25 ° C. or lower.
  • R 21 , R 22 , R 23 and R 24 are each independently an alkyl group having 1 to 5 carbon atoms or an alkoxyalkyl group represented by R'-O- (CH 2 ) n-.
  • R' represents a methyl group or an ethyl group
  • n is an integer of 1 to 4.
  • R 21 , R 22 , R 23 and R 24 may be the same or different from each other. Further, any two of R 21 , R 22 , R 23 and R 24 may be bonded to each other to form an annular structure. However, at least one of R 21 , R 22 , R 23 and R 24 is an alkoxyalkyl group.
  • X 21 represents a nitrogen atom or a phosphorus atom
  • Y represents a monovalent anion.
  • Examples of the alkyl group having 1 to 5 carbon atoms in R 21 , R 22 , R 23 and R 24 include a methyl group, an ethyl group, an n-propyl group, a 2-propyl group, an n-butyl group and an n-pentyl group. Be done.
  • the alkoxyalkyl group represented by R'-O- (CH 2 ) n- includes a methoxymethyl group or an ethoxymethyl group, a 2-methoxyethyl group or 2- An ethoxyethyl group, a 3-methoxypropyl group or a 3-ethoxypropyl group, a 4-methoxybutyl group or a 4-ethoxybutyl group and the like are preferable.
  • any two of R 21 , R 22 , R 23 and R 24 are bonded to each other to form a cyclic structure
  • an aziridine ring, an azetidine ring and a pyrrolidine are used.
  • a quaternary ammonium salt having a ring, a piperidine ring or the like is preferable, and when a phosphorus atom is adopted for X 21 , a quaternary phosphonium salt having a pentamethylenephosphine (phosphorinan) ring or the like is preferable.
  • the quaternary ammonium salt preferably has at least one 2-methoxyethyl group in which R'is a methyl group and n is 2 as a substituent.
  • R 21 of the formula (20) is a methyl group
  • R 23 and R 24 are ethyl groups
  • R 24 is an alkoxyalkyl group represented by R'-O- (CH 2 ) n-.
  • a compound having a structure is preferably used.
  • the following compounds can be mentioned as specific examples of the quaternary ammonium salt and the quaternary phosphonium salt that are preferably used.
  • an ionic liquid containing imidazolium ions or an ionic liquid containing aromatic cations can also be used.
  • the method for retaining the liquid substance in the layer containing the polymer chain aggregate is not particularly limited. For example, a method in which a liquid substance is applied to the surface of a layer containing a polymer chain aggregate and then allowed to stand and held, or a method in which a base material on which a layer containing a polymer chain aggregate is formed is immersed in the liquid substance. And so on.
  • the polymer chain aggregate may take in moisture in the atmosphere and retain water, which is a liquid substance, in the layer containing the polymer chain aggregate.
  • the contact angle of the surface of the member of the present invention with water at 25 ° C. is preferably 10 ° or more, more preferably 20 ° or more, further preferably 45 ° or more, and 48 ° or more. Is even more preferable, and 48 to 80 ° is particularly preferable.
  • the contact angle is within the above range, a more excellent effect of suppressing water droplet adhesion, an effect of suppressing icing, and an effect of suppressing ice nucleation can be obtained.
  • the value of the contact angle of the surface of the member with respect to water is a value obtained by measuring the contact angle of water on the surface of the member 1 second after applying 1 ⁇ L of water to the surface of the member.
  • shape of member The shape of the member of the present invention is not particularly limited. Examples include tube, sheet, fibrous, strip, film, plate, foil, film, pellet, powder, and particle.
  • the members of the present invention can be applied to various articles.
  • window glass, vehicle glass, mirrors, heat exchangers, pipes, containers and the like can be mentioned.
  • Example 1 The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. Next, this sample pan was immersed in an ethanol solution of NH 3 0.24 mol / L and tetraethoxysilane 0.03 mol / L for 24 hours, and the surface of the sample pan was coated with silica.
  • PEGMA methoxypoly (ethylene glycol) methacrylate
  • EBIB ethyl2-bromo-2-methylpropionate
  • bromide ethyl2-bromo-2-methylpropionate
  • the thickness of the polymer brush layer formed on the inner surface of the sample pan is 630 nm, the number average molecular weight is 2.88 million, the molecular weight distribution index (PDI) is 1.60, the polymer polymerization rate is 6%, and the density of polymer chains is 0.
  • the surface occupancy of the polymer chain was 14% at 15 chains / nm 2.
  • the film thickness of the polymer brush layer was measured by a spectroscopic ellipsometry method.
  • the number average molecular weight and the molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector.
  • the polymer polymerization rate was measured by 1 1 H-NMR.
  • Comparative Example 1 The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. This sample pan was used as the test body of Comparative Example 1.
  • Example 2 The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. Next, this sample pan was immersed in an ethanol solution of NH 3 0.24 mol / L and tetraethoxysilane 0.03 mol / L for 24 hours, and the surface of the sample pan was coated with silica. This silica-coated sample pan was used as the test piece of Comparative Example 2.
  • Test Example 1-1 and Test Example 1-2 using the test body of Example 1 had bound water and antifreeze water that did not freeze even at a temperature lower than 0 ° C. .. From this result, it can be understood that the test body of Example 1 is less likely to freeze water and is excellent in icing suppression property and ice nucleation suppression property.
  • Test Example 1-2 a hole was made in the lid and dried at 150 ° C. for 30 minutes and at 200 ° C. for 30 minutes. Since there was no change in weight after drying at 200 ° C. for 30 minutes, it was judged that the product was completely dried. From the change in weight of the test piece before and after drying, the water content contained in the test piece of Test Example 1-2 was 0.0167 mg. In Test Example 1-2, since the amount of water added was 0.0150 mg, it is presumed that in Test Example 1-2, the polymer brush layer of the test body absorbed about 0.0017 mg of water in the atmosphere. To.
  • Example 11 A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 11 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 ⁇ L of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 11 with water at 25 ° C. was 45.3 °.
  • Example 12 A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 380 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 12 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 ⁇ L of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 12 with water at 25 ° C. was 49.4 °.
  • Example 13 A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 750 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 13 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 ⁇ L of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test body of Example 13 with water at 25 ° C. was 61.3 °.
  • Example 14 A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 1070 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 14 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 ⁇ L of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 14 with water at 25 ° C. was 64.7 °.
  • Example 15 A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 1250 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 15 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 ⁇ L of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 15 with water at 25 ° C. was 72.4 °.
  • Comparative Example 11 The silicon wafer was ultrasonically cleaned in acetone for 30 minutes, in chloroform for 30 minutes and in 2-propanol for 30 minutes, and then both sides of the silicon wafer were irradiated with UV ozone for 10 minutes. This silicon wafer was used as a test body of Comparative Example 11.
  • test piece After each test piece was allowed to stand in a freezer at a temperature of ⁇ 25 ° C. for 2 hours, the test piece was moved to an environment having a temperature of 20 ° C. and a relative humidity of 56%, and the state of the surface of each test piece was confirmed 1 minute later.
  • test bodies of Examples 11 to 15 were less likely to cause dew condensation than the test bodies of Comparative Example 11. Further, in Examples 14 and 15, there was no fogging, and dew condensation could be suppressed more effectively. Moreover, when the examples 11 to 13 were compared, the cloudiness of Examples 12 and 13 was less than that of Example 11.

Abstract

A member for the suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation, has a layer that contains a brush-form polymer chain aggregation comprising a plurality of polymer chains immobilized to a substrate, wherein the layer containing the polymer chain aggregation holds a liquid substance.

Description

防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材Member for anti-fog, suppression of water droplet adhesion, suppression of icing or suppression of ice nucleation
 本発明は、露などの水滴の付着を抑制する防曇用または水滴付着抑制用の部材に関する。また、本発明は、雪、氷、霜などの着氷を抑制する着氷抑制用の部材に関する。また、本発明は、氷核の形成や成長を抑制する氷核形成抑制用の部材に関する。 The present invention relates to an anti-fog member or a member for suppressing the adhesion of water droplets such as dew. The present invention also relates to an icing suppressing member that suppresses icing such as snow, ice, and frost. The present invention also relates to a member for suppressing ice nucleation that suppresses the formation and growth of ice nuclei.
 より冷たい表面が、より温かい湿った空気と接触するときには、より冷たい表面上で大気中の水分が凝結して結露が生じたり、霜が形成されることがある。 When a colder surface comes into contact with warmer, moist air, the moisture in the atmosphere may condense on the colder surface, causing condensation or frost.
 例えば、空調機等の熱交換器のフィンにおいては、運転時に大気中の水分が凝結して熱交換器のフィン表面が結露して水滴が付着したり、フィン表面に霜が形成されて、熱交換器のフィンが目詰まりすることがある。このような目詰まりは、通風抵抗を増大させ、熱交換器の交換効率を低下させることがある。 For example, in the fins of a heat exchanger such as an air conditioner, moisture in the atmosphere condenses during operation, the surface of the fins of the heat exchanger condenses and water droplets adhere, or frost is formed on the fin surface, resulting in heat. The fins of the exchanger may become clogged. Such clogging may increase ventilation resistance and reduce the exchange efficiency of the heat exchanger.
 このような問題の発生を防止するために、例えば、特許文献1などに記載されているように、フィン表面に樹脂膜を形成することが行われている。 In order to prevent the occurrence of such a problem, for example, as described in Patent Document 1, a resin film is formed on the fin surface.
 一方、近年では、ポリマーブラシやボトルブラシなどの、複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む構造体に関する研究が進められており、例えば、摺動部材の潤滑材としての利用(特許文献2、3)や、篏合部などの隙間狭小材としての利用(特許文献4)などが提案されている。 On the other hand, in recent years, research has been conducted on structures including brush-like polymer chain aggregates composed of a plurality of polymer chains, such as polymer brushes and bottle brushes. For example, lubricants for sliding members. (Patent Documents 2 and 3) and use as a narrowing gap material such as a laminated portion (Patent Document 4) have been proposed.
特開2015-131389号公報Japanese Unexamined Patent Publication No. 2015-131389 特開2019-065284号公報JP-A-2019-065284 国際公開第2017/171071号International Publication No. 2017/171071 国際公開第2018/199181号International Publication No. 2018/199181
 しかしながら、従来公知の方法では、部材表面における水滴の付着や着氷を十分に抑制することはできず、更なる改善の余地があった。また、部材表面での氷核の形成や成長についても十分に抑制することはできず、さらなる改善の余地があった。 However, conventionally known methods cannot sufficiently suppress the adhesion of water droplets and icing on the surface of the member, and there is room for further improvement. In addition, the formation and growth of ice nuclei on the surface of the member could not be sufficiently suppressed, and there was room for further improvement.
 なお、特許文献2~4には、ポリマーブラシやボトルブラシなどの、複数の高分子鎖で構成されたブラシ状の高分子鎖集合体に関する発明が記載されているが、防曇、水滴付着抑制、着氷抑制および氷核形成抑制に関する記載はない。 Patent Documents 2 to 4 describe inventions relating to brush-like polymer chain aggregates composed of a plurality of polymer chains, such as polymer brushes and bottle brushes, which are anti-fog and suppress water droplet adhesion. , There is no description about icing suppression and ice nucleation suppression.
 よって、本発明の目的は、新規な防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材を提供することにある。 Therefore, an object of the present invention is to provide a new member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
 本発明者が基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体について鋭意検討を行ったところ、前述の高分子鎖集合体を含む層に液状物質を保持させた部材は、露などの水滴が付着しにくいことを見出した。また、上記の部材は、雪、氷、霜などの着氷が生じにくいことを見出した。また、上記の部材の表面では、水が氷結しにくく、氷核の形成や成長を抑制できることを見出した。このような知見に基づき、本発明を完成するに至った。よって、本発明は以下を提案する。
<1> 基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、上記高分子鎖集合体を含む層は液状物質を保持している、
 防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材。
<2> 上記液状物質が上記高分子鎖集合体を含む層に保持されて上記高分子鎖集合体を含む層内に融点が氷点より低い温度でも液体状態を保持している、<1>に記載の部材。
<3> 上記液状物質が水またはイオン液体である、<1>または<2>に記載の部材。
<4> 上記基材は上記高分子鎖集合体とは別の物質からなる担体である、<1>~<3>のいずれか1つに記載の部材。
<5> 上記高分子鎖集合体を構成する高分子鎖の片側末端のみが上記基材に固定されている、<4>に記載の部材。
<6> 上記高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが上記基材に固定されている、<4>に記載の部材。
<7> 基材表面における上記高分子鎖の密度が0.01鎖/nm以上である、<4>~<6>のいずれか1つに記載の部材。
<8> 上記基材が高分子鎖であり、
 上記基材である高分子鎖に上記複数の高分子鎖が側鎖として結合してボトルブラシ構造を有するポリマーを形成している、<1>~<3>のいずれか1つに記載の部材。
<9> 上記ボトルブラシ構造を有するポリマーは、側鎖の密度が0.01鎖/nm以上である、<8>に記載の部材。
<10> 上記高分子鎖集合体を含む層の膜厚が350nm以上である、<1>~<9>のいずれか1つに記載の部材。
<11> 上記部材表面の、25℃の水に対する接触角が、10°以上である、<1>~<10>のいずれか1つに記載の部材。
When the present inventor diligently studied a brush-shaped polymer chain aggregate composed of a plurality of polymer chains fixed to a base material, a liquid substance was retained in the layer containing the above-mentioned polymer chain aggregate. It was found that water droplets such as dew did not easily adhere to the members. It was also found that the above members are less likely to cause icing such as snow, ice and frost. It was also found that water does not easily freeze on the surface of the above-mentioned member, and the formation and growth of ice nuclei can be suppressed. Based on such findings, the present invention has been completed. Therefore, the present invention proposes the following.
<1> A layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material is provided, and the layer containing the polymer chain aggregate holds a liquid substance. ,
A member for anti-fog, suppression of water droplet adhesion, suppression of icing or suppression of ice nucleation.
<2> In <1>, the liquid substance is held in the layer containing the polymer chain aggregate and maintains the liquid state in the layer containing the polymer chain aggregate even at a temperature lower than the freezing point. The member described.
<3> The member according to <1> or <2>, wherein the liquid substance is water or an ionic liquid.
<4> The member according to any one of <1> to <3>, wherein the base material is a carrier made of a substance different from the polymer chain aggregate.
<5> The member according to <4>, wherein only one end of the polymer chains constituting the polymer chain aggregate is fixed to the base material.
<6> The member according to <4>, wherein both ends of the polymer chains constituting the polymer chain aggregate are fixed to the base material.
<7> The member according to any one of <4> to <6>, wherein the density of the polymer chains on the surface of the base material is 0.01 chains / nm 2 or more.
<8> The base material is a polymer chain,
The member according to any one of <1> to <3>, wherein the plurality of polymer chains are bonded as side chains to the polymer chain which is the base material to form a polymer having a bottle brush structure. ..
<9> The member according to <8>, wherein the polymer having the bottle brush structure has a side chain density of 0.01 chain / nm 2 or more.
<10> The member according to any one of <1> to <9>, wherein the film thickness of the layer containing the polymer chain aggregate is 350 nm or more.
<11> The member according to any one of <1> to <10>, wherein the contact angle of the surface of the member with water at 25 ° C. is 10 ° or more.
 本発明は、新規な防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材を提供することができる。 The present invention can provide a novel member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値および上限値として含む範囲を意味する。 The numerical range represented by the symbol "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value, respectively.
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の両方、または、いずれかを意味し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の両方、または、いずれかを意味する。 As used herein, "(meth) acrylate" means both "acrylate" and "methacrylate", or either, and "(meth) acrylic" means both "acrylic" and "methacryl", or , Means either.
<部材>
 本発明の部材は、
 基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、
 高分子鎖集合体を含む層は液状物質を保持している、
 防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材であることを特徴とする。
<Members>
The member of the present invention
It has a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material.
The layer containing the polymer chain aggregate retains the liquid substance,
It is characterized by being a member for antifogging, suppressing water droplet adhesion, suppressing icing, or suppressing ice nucleation.
 本発明の部材は、優れた防曇効果、水滴付着抑制効果、着氷抑制効果および氷核形成抑制効果を有している。このような効果が得られる詳細な理由は不明であるが、次によるものであると推測される。本発明の部材では、液状物質が上記高分子鎖集合体によって保持されて高分子鎖集合体を含む層中にて不可逆的な液漏れなどが起こりにくい安定な液体層を形成していると推測される。また、高分子鎖集合体に保持された液状物質は、高分子鎖集合体によって運動性が適度に制御されて過冷却状態または不凍状態を生み出しやすいと推測される。本発明の部材は、このような安定な液体層が存在していることにより、露などの水滴や、氷、雪、霜などに対する運動性の高い界面を有していると推測される。また、このような安定な液体層が存在していることにより、氷点以下でも水が凝固することなく熱運動させることができるので、部材表面上での水の氷結温度をより低下させることもできると推測される。
 そして、本発明の部材は、露などの水滴などに対する運動性の高い界面を有しているため、部材表面での水滴などの滑落性に優れており、優れた防曇効果および水滴付着抑制効果を有していると推測される。
 また、本発明の部材は、部材表面上で水が氷結しにくく、部材表面上にて氷、雪、霜などが形成されにくく、更には、氷、雪、霜などに対する運動性の高い界面を有しているため、部材表面上に氷、雪、霜などが形成されてもこれらの滑落性に優れているため、優れた着氷抑制効果を有していると推測される。
 また、本発明の部材は、部材内部または表面上での水の氷結温度をより低下させることもできるため、氷核の発生温度を低下させることができ、優れた氷核形成抑制効果を有していると推測される。
The member of the present invention has an excellent anti-fog effect, an effect of suppressing water droplet adhesion, an effect of suppressing icing, and an effect of suppressing ice nucleation. The detailed reason for obtaining such an effect is unknown, but it is presumed to be due to the following. In the member of the present invention, it is presumed that the liquid substance is held by the polymer chain aggregate to form a stable liquid layer in which irreversible liquid leakage is unlikely to occur in the layer containing the polymer chain aggregate. Will be done. Further, it is presumed that the liquid substance held in the polymer chain aggregate is likely to produce a supercooled state or an antifreeze state by appropriately controlling the motility by the polymer chain aggregate. It is presumed that the member of the present invention has an interface with high mobility against water droplets such as dew, ice, snow, frost, etc. due to the presence of such a stable liquid layer. Further, due to the existence of such a stable liquid layer, water can be thermally moved without solidification even below the freezing point, so that the freezing temperature of water on the surface of the member can be further lowered. It is presumed.
Since the member of the present invention has an interface with high mobility against water droplets such as dew, it is excellent in slipperiness such as water droplets on the surface of the member, and has an excellent antifogging effect and an effect of suppressing water droplet adhesion. Is presumed to have.
Further, the member of the present invention is less likely to freeze water on the surface of the member, is less likely to form ice, snow, frost, etc. on the surface of the member, and further has a highly mobile interface to ice, snow, frost, etc. Therefore, even if ice, snow, frost, etc. are formed on the surface of the member, they are excellent in slipperiness, and therefore, it is presumed that they have an excellent anti-icing effect.
Further, since the member of the present invention can further lower the freezing temperature of water inside or on the surface of the member, the temperature at which ice nuclei are generated can be lowered, and the member has an excellent ice nucleation suppressing effect. It is presumed that it is.
 なお、本発明で用いる高分子鎖集合体とは、複数の高分子鎖の集合体であって、全体としてブラシ様の形状をなしているものであり、高分子の溶液を単に塗布して形成した有機膜とは全く異なるものである。また、高分子鎖集合体を含む層が液状物質を保持していることは、示差走査熱量測定により確認することができる。また、示差走査熱量測定で確認できない場合は、押し込み硬さ試験(インデンテーション試験)の方法で確認することができる。 The polymer chain aggregate used in the present invention is an aggregate of a plurality of polymer chains and has a brush-like shape as a whole, and is formed by simply applying a polymer solution. It is completely different from the organic film. Further, it can be confirmed by differential scanning calorimetry that the layer containing the polymer chain aggregate retains the liquid substance. If it cannot be confirmed by differential scanning calorimetry, it can be confirmed by the method of indentation hardness test (indentation test).
 本発明の部材において、上記液状物質が上記高分子鎖集合体を含む層に保持されて氷点より低い温度(好ましくは-10℃以下、より好ましくは-20℃以下、更に好ましくは-30℃以下)でも液体状態を保持していることが好ましい。また、上記液状物質は水であることが好ましい。なお、液状物質が液体状態であるかどうかは、示差走査熱量測定により確認することができる。また、示差走査熱量測定で確認できない場合は、押し込み硬さ試験(インデンテーション試験)の方法で確認することができる。 In the member of the present invention, the liquid substance is held in the layer containing the polymer chain aggregate and has a temperature lower than the freezing point (preferably −10 ° C. or lower, more preferably −20 ° C. or lower, still more preferably −30 ° C. or lower). ) But it is preferable to keep the liquid state. Further, the liquid substance is preferably water. Whether or not the liquid substance is in a liquid state can be confirmed by differential scanning calorimetry. If it cannot be confirmed by differential scanning calorimetry, it can be confirmed by the method of indentation hardness test (indentation test).
 本発明の部材において、高分子鎖集合体を含む層の膜厚は、より優れた防曇効果、水滴付着抑制効果、着氷抑制効果および氷核形成抑制効果が得られやすいという理由から、50nm以上であることが好ましく、100nm以上であることがより好ましく、350nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 In the member of the present invention, the thickness of the layer containing the polymer chain aggregate is 50 nm because more excellent antifogging effect, water droplet adhesion suppressing effect, icing suppressing effect and ice nucleation suppressing effect can be easily obtained. It is preferably 100 nm or more, more preferably 350 nm or more, further preferably 500 nm or more, and particularly preferably 1000 nm or more. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 本発明の部材が防曇または水滴付着抑制用の部材である場合はより優れた防曇効果や水滴付着抑制効果が得られやすいという理由から、50nm以上であることが好ましく、100nm以上であることがより好ましく、350nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 When the member of the present invention is an anti-fog member or a member for suppressing water droplet adhesion, it is preferably 50 nm or more, preferably 100 nm or more, because a more excellent anti-fog effect and water droplet adhesion suppressing effect can be easily obtained. Is more preferably 350 nm or more, further preferably 500 nm or more, and particularly preferably 1000 nm or more. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 本発明の部材が着氷抑制用の部材である場合はより優れた着氷抑制効果が得られやすいいという理由から、50nm以上であることが好ましく、100nm以上であることがより好ましく、350nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 When the member of the present invention is a member for suppressing icing, it is preferably 50 nm or more, more preferably 100 nm or more, and 350 nm or more because it is easy to obtain a better icing suppressing effect. It is even more preferably 500 nm or more, and particularly preferably 1000 nm or more. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 本発明の部材が氷核形成抑制用の部材である場合はより優れた氷核形成抑制効果が得られやすいという理由から、50nm以上であることが好ましく、100nm以上であることがより好ましく、350nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 When the member of the present invention is a member for suppressing ice nucleation, it is preferably 50 nm or more, more preferably 100 nm or more, and 350 nm, because a more excellent ice nucleation suppressing effect can be easily obtained. The above is more preferable, 500 nm or more is even more preferable, and 1000 nm or more is particularly preferable. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 高分子鎖集合体を含む層の膜厚は、分光エリプソメトリー法などにより測定することができる。 The film thickness of the layer containing the polymer chain aggregate can be measured by spectroscopic ellipsometry or the like.
 以下、本発明の部材について詳細に説明する。 Hereinafter, the members of the present invention will be described in detail.
[高分子鎖集合体]
 本発明における高分子鎖集合体は、複数の高分子鎖からなり、全体としてブラシ状の形状をなすものである。本発明における「高分子鎖」とは、複数の構成単位が鎖状に連なった構造を有する分子または分子の部分のことをいう。高分子鎖集合体を構成する複数の高分子鎖は、互いに同一であっても異なっていてもよい。また、高分子鎖は、複数の構成単位が鎖状に連なった構造を有していればよく、側鎖を有していても分岐構造を有していてもよく、高分子鎖同士の間や高分子鎖と基材との間に架橋構造が形成されていてもよい。
[Polymer chain aggregate]
The polymer chain aggregate in the present invention is composed of a plurality of polymer chains and has a brush-like shape as a whole. The "polymer chain" in the present invention refers to a molecule or a portion of a molecule having a structure in which a plurality of structural units are linked in a chain. The plurality of polymer chains constituting the polymer chain aggregate may be the same as or different from each other. Further, the polymer chain may have a structure in which a plurality of structural units are connected in a chain shape, and may have a side chain or a branched structure, and is between the polymer chains. A crosslinked structure may be formed between the polymer chain and the base material.
(高分子鎖)
 高分子鎖は、高分子鎖集合体を含む層に保持させる液状物質に対して親和性を有するものであることが好ましい。例えば、高分子鎖集合体を含む層に水や、親水性の液状物質を保持させる場合は、高分子鎖集合体を構成する高分子鎖は、親水性高分子鎖であることが好ましい。親水性高分子鎖は、親水性モノマーを用いて合成してもよく、疎水性モノマーを用いて高分子を合成した後に、その高分子に親水性基を導入することによって合成してもよい。
(Polymer chain)
The polymer chain preferably has an affinity for a liquid substance to be retained in the layer containing the polymer chain aggregate. For example, when water or a hydrophilic liquid substance is retained in a layer containing a polymer chain aggregate, the polymer chain constituting the polymer chain aggregate is preferably a hydrophilic polymer chain. The hydrophilic polymer chain may be synthesized using a hydrophilic monomer, or may be synthesized by synthesizing a polymer using a hydrophobic monomer and then introducing a hydrophilic group into the polymer.
 高分子鎖は、1種類のモノマーを重合させたホモ重合体であってもよく、2種類以上のモノマーを重合させた共重合体であってもよい。共重合体として、ランダム共重合体、ブロック共重合体、グラジエント共重合体等が挙げられる。 The polymer chain may be a homopolymer obtained by polymerizing one type of monomer, or may be a copolymer obtained by polymerizing two or more types of monomers. Examples of the copolymer include a random copolymer, a block copolymer, a gradient copolymer and the like.
 高分子鎖の生成に用いるモノマーは、その重合により得られる高分子鎖を、グラフト鎖として基材に結合できるものであることが好ましい。そのようなモノマーとして、付加重合性の二重結合を少なくとも1つ有するモノマーを挙げることができ、付加重合性の二重結合を1つ有する単官能性のモノマーであることが好ましい。付加重合性の二重結合を1つ有する単官能性のモノマーとして、(メタ)アクリル酸系モノマー、スチレン系モノマー等が挙げられる。 The monomer used to generate the polymer chain is preferably one that can bond the polymer chain obtained by the polymerization to the base material as a graft chain. Examples of such a monomer include a monomer having at least one addition-polymerizable double bond, and a monofunctional monomer having one addition-polymerizable double bond is preferable. Examples of the monofunctional monomer having one addition-polymerizable double bond include (meth) acrylic acid-based monomers and styrene-based monomers.
 (メタ)アクリル酸系モノマーとしては、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、トルイル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、3-エチル-3-(メタ)アクリロイルオキシメチルオキセタン、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリレート-2-アミノエチル、2-(2-ブロモプロピオニルオキシ)エチル(メタ)アクリレート、2-(2-ブロモイソブチリルオキシ)エチル(メタ)アクリレート、1-(メタ)アクリロキシ-2-フェニル-2-(2,2,6,6-テトラメチル-1-ピペリジニルオキシ)エタン、1-(4-((4-(メタ)アクリロキシ)エトキシエチル)フェニルエトキシ)ピペリジン、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソブチル-ペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、(メタ)アクリル酸のエチレンオキサイド付加物、トリフルオロメチルメチル(メタ)アクリレート、2-トリフルオロメチルエチル(メタ)アクリレート、2-ペルフルオロエチルエチル(メタ)アクリレート、2-ペルフルオロエチル-2-ペルフルオロブチルエチル(メタ)アクリレート、2-ペルフルオロエチル(メタ)アクリレート、トリフルオロメチル(メタ)アクリレート、ジペルフルオロメチルメチル(メタ)アクリレート、2-ペルフルオロメチル-2-ペルフルオロエチルエチル(メタ)アクリレート、2-ペルフルオロヘキシルエチル(メタ)アクリレート、2-ペルフルオロデシルエチル(メタ)アクリレート、2-ペルフルオロヘキサデシルエチル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid-based monomer include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth). Acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl ( Meta) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxypropyl (meth) Acrylate, 3-methoxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, 3-ethyl-3- (meth) Acryloyloxymethyloxetane, 2- (meth) acryloyloxyethyl isocyanate, (meth) acrylate-2-aminoethyl, 2- (2-bromopropionyloxy) ethyl (meth) acrylate, 2- (2-bromoisobutyryloxy) ) Ethyl (meth) acrylate, 1- (meth) acryloxy-2-phenyl-2- (2,2,6,6-tetramethyl-1-piperidinyloxy) ethane, 1-(4-((4-(4-) (Meta) acryloxy) ethoxyethyl) phenylethoxy) piperidine, γ- (methacryloyloxypropyl) trimethoxysilane, 3- (3,5,7,9,11,13,15-heptaethylpentacyclo [9.5. 1.13, 9.15, 15.17, 13] Octasiloxane-1-yl) propyl (meth) acrylate, 3- (3,5,7,9,11,13,15-heptaisobutyl-pentacyclo [9] .5.1.13, 9.15, 15.17, 13] Octasiloxane-1-yl) propyl (meth) acrylate, 3- (3,5,7,9,11,13,15-heptaisooctyl) Pentacyclo [9.5.1.13, 9.15, 15.17, 13] octasiloxane-1-yl) propyl (meth) acrylate, 3- (3,5,7,9,11) , 13,15-Heptacyclopentylpentacyclo [9.5.1.13, 9.15, 15.17,13] Octasiloxane-1-yl) propyl (meth) acrylate, 3- (3,5,7, 9,11,13,15-Heptaphenylpentacyclo [9.5.1.13, 9.15, 15.17,13] octasiloxane-1-yl) propyl (meth) acrylate, 3-[(3,3) 5,7,9,11,13,15-Heptaethylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane-1-yloxy) dimethylsilyl] propyl (meth) acrylate , 3-[(3,5,7,9,11,13,15-heptaisobutylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane-1-yloxy) dimethyl Cyril] propyl (meth) acrylate, 3-[(3,5,7,9,11,13,15-heptaisooctylpentacyclo [9.5.1.13, 9.15, 15.17, 13]] Octasiloxane-1-yloxy) dimethylsilyl] propyl (meth) acrylate, 3-[(3,5,7,9,11,13,15-heptacyclopentylpentacyclo [9.5.1.13, 9.15] , 15.17,13] Octasiloxane-1-yloxy) Dimethylsilyl] propyl (meth) acrylate, 3-[(3,5,7,9,11,13,15-heptaphenylpentacyclo [9.5. 1.13, 9.15, 15.17, 13] Octasiloxane-1-yloxy) Dimethylsilyl] Propyl (meth) acrylate, ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-Trifluoromethylethyl (meth) acrylate, 2-perfluoroethyl ethyl (meth) acrylate, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, 2-perfluoroethyl (meth) acrylate, trifluoromethyl (meth) ) Acrylic, diperfluoromethylmethyl (meth) acrylate, 2-perfluoromethyl-2-perfluoroethyl ethyl (meth) acrylate, 2-perfluorohexyl ethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, 2-perfluoro Hexadecylethyl (meth) acrylate and the like can be mentioned.
 スチレン系モノマーとしては、スチレン、ビニルトルエン、α-メチルスチレン、p-クロロスチレン、p-クロロメチルスチレン、m-クロロメチルスチレン、o-アミノスチレン、p-スチレンクロロスルホン酸、スチレンスルホン酸及びその塩、ビニルフェニルメチルジチオカルバメート、2-(2-ブロモプロピオニルオキシ)スチレン、2-(2-ブロモイソブチリルオキシ)スチレン、1-(2-((4-ビニルフェニル)メトキシ)-1-フェニルエトキシ)-2,2,6,6-テトラメチルピペリジン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン等が挙げられる。 Examples of styrene-based monomers include styrene, vinyltoluene, α-methylstyrene, p-chlorostyrene, p-chloromethylstyrene, m-chloromethylstyrene, o-aminostyrene, p-styrenechlorosulfonic acid, styrenesulfonic acid and the like. Salt, vinylphenylmethyldithiocarbamate, 2- (2-bromopropionyloxy) styrene, 2- (2-bromoisobutyryloxy) styrene, 1-(2-((4-vinylphenyl) methoxy) -1-phenyl Ethoxy) -2,2,6,6-tetramethylpiperidine, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptaethylpentacyclo [9.5.1.13 , 9.15, 15.17, 13] Octasiloxane, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptaisobutylpentacyclo [9.5.1.13 9.15, 15.17, 13] Octasiloxane, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptaisooctylpentacyclo [9.5.1.13 9.15, 15.17, 13] Octasiloxane, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptacyclopentylpentacyclo [9.5.1.13, 9] .15, 15.17, 13] Octasiloxane, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-Heptaphenylpentacyclo [9.5.1.13, 9. 15, 15.17, 13] Octasiloxane, 3- (3,5,7,9,11,13,15-heptaethylpentacyclo [9.5.1.13, 9.15, 15.17, 13] ] Octasiloxane-1-yl) ethylstyrene, 3- (3,5,7,9,11,13,15-heptaisobutylpentacyclo [9.5.1.13, 9.15, 15.17, 13] ] Octasiloxane-1-yl) ethylstyrene, 3- (3,5,7,9,11,13,15-heptaisooctylpentacyclo [9.5.1.13, 9.15, 15.17, 13] Octasiloxane-1-yl) ethylstyrene, 3- (3,5,7,9,11,13,15-heptacyclopentylpentacyclo [9.5.1.13, 9.15, 15.17, 13] Octasiloxane-1-yl) ethylstyrene, 3- (3,5,7,9,11,13,15-heptaphenylpentacyclo [9.5.1.13, 9.15, 15.17, 13] Octasiloxane-1-yl) ethylstyrene, 3-((3,5,7,9,11,13,15-heptaethylpentacyclo] [9.5.1.13, 9.15, 15.17] , 13] Octasiloxane-1-yloxy) dimethylsilyl) ethylstyrene, 3-((3,5,7,9,11,13,15-heptaisobutylpentacyclo [9.5.1.13, 9.15] , 15.17,13] Octasiloxane-1-yloxy) dimethylsilyl) ethylstyrene, 3-((3,5,7,9,11,13,15-heptaisooctylpentacyclo [9.5.1. 13,9.15,15.17,13] Octasiloxane-1-yloxy) Dimethylsilyl) Ethylstyrene, 3-((3,5,7,9,11,13,15-Heptacyclopentylpentacyclo [9. 5.1.13, 9.15, 15.17, 13] Octasiloxane-1-yloxy) Dimethylsilyl) Ethylstyrene, 3-((3,5,7,9,11,13,15-Heptaphenylpenta) Cyclo [9.5.1.13, 9.15, 15.17, 13] octasiloxane-1-yloxy) dimethylsilyl) ethylstyrene and the like can be mentioned.
 また、付加重合性の二重結合を1分子中に1つ有する単官能性のモノマーとして、フッ素含有ビニルモノマー(ペルフルオロエチレン、ペルフルオロプロピレン、フッ化ビニリデン等)、ケイ素含有ビニル系モノマー(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル、フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル、マレイミド系モノマー(マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等)、ニトリル基含有モノマー(アクリロニトリル、メタクリロニトリル等)、アミド基含有モノマー(アクリルアミド、メタクリルアミド等)、ビニルエステル系モノマー(酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等)、オレフィン類(エチレン、プロピレン等)、共役ジエン系モノマー(ブタジエン、イソプレン等)、ハロゲン化ビニル(塩化ビニル等)、ハロゲン化ビニリデン(塩化ビニリデン等)、ハロゲン化アリル(塩化アリル等)、アリルアルコール、ビニルピロリドン、ビニルピリジン、N-ビニルカルバゾール、メチルビニルケトン、ビニルイソシアナート、主鎖がスチレン、(メタ)アクリル酸エステル、シロキサン等から誘導されたマクロモノマー等も用いることもできる。 Further, as a monofunctional monomer having one addition-polymerizable double bond in one molecule, a fluorine-containing vinyl monomer (perfluoroethylene, perfluoropropylene, vinylidene fluoride, etc.) and a silicon-containing vinyl-based monomer (vinyltrimethoxy) Silane, vinyl triethoxysilane, etc.), maleic anhydride, maleic acid, maleic acid monoalkyl and dialkyl esters, fumaric acid, fumaric acid monoalkyl and dialkyl esters, maleimide-based monomers (maleimide, methylmaleimide, ethylmaleimide) , Ppropylmaleimide, Butylmaleimide, Hexylmaleimide, Octylmaleimide, Dodecylmaleimide, Stearylmaleimide, Phenylmaleimide, Cyclohexylmaleimide, etc.), Nitrile group-containing monomers (acrylonitrile, methacrylonitrile, etc.), Amido group-containing monomers (acrylamide, methacrylicamide, etc.) ), Vinyl ester-based monomers (vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, vinyl cinnate, etc.), olefins (ethylene, propylene, etc.), conjugated diene-based monomers (butadiene, isoprene, etc.), halogenation Vinyl (vinyl chloride, etc.), vinylidene halide (vinylidene chloride, etc.), allyl halide (allyl chloride, etc.), allyl alcohol, vinylpyrrolidone, vinylpyridine, N-vinylcarbazole, methylvinylketone, vinylisocyanate, main chain Macromonomers derived from styrene, (meth) acrylic acid ester, siloxane and the like can also be used.
 また、高分子鎖の生成には、イオン液体型モノマーを用いることも好ましい。イオン液体型モノマーとして、特に限定されないが、例えば下記式(1)で表される化合物が挙げられる。 It is also preferable to use an ionic liquid monomer for the formation of polymer chains. The ionic liquid monomer is not particularly limited, and examples thereof include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)において、mは1~10の整数を表し、nは1~5の整数を表す。Rは、水素原子または炭素数1~3のアルキル基を表し、R、RおよびRは、各々独立に炭素数1~5のアルキル基を表す。ただし、R、RおよびRにおけるアルキル基は、その炭素原子や水素原子が、酸素原子、硫黄原子、フッ素原子から選ばれる1種以上のヘテロ原子で置換されていてもよく、R、RおよびRは、その2つ以上が連結して環状構造を形成していてもよい。 In the formula (1), m represents an integer of 1 to 10, and n represents an integer of 1 to 5. R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 5 carbon atoms. However, the alkyl group in R 2 , R 3 and R 4 may have its carbon atom or hydrogen atom substituted with one or more hetero atoms selected from oxygen atom, sulfur atom and fluorine atom, and R 2 , R 3 and R 4 may be connected by two or more to form an annular structure.
 Yは一価のアニオンを表す。Yが表す一価のアニオンとしては、特に限定されないが、例えばBF 、PF 、AsF 、SbF 、AlCl 、NbF 、HSO 、ClO 、CHSO 、CFSO 、CFCO 、(CFSO、Cl、Br、I等を挙げることができる。アニオンの安定性を考慮すると、BF 、PF 、(CFSO、CFSO 、またはCFCO であることが好ましい。 Y represents a monovalent anion. Examples of the monovalent anion Y represents is not particularly limited, for example, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, AlCl 4 -, NbF 6 -, HSO 4 -, ClO 4 -, CH 3 SO 3 -, CF 3 SO 3 -, CF 3 CO 2 -, (CF 3 SO 2) 2 N -, Cl -, Br -, I - , and the like can be given. Considering the stability of the anion, BF 4 -, PF 6 - , (CF 3 SO 2) 2 N -, CF 3 SO 3 -, or CF 3 CO 2 - is preferably.
 イオン液体型モノマーは、式(1)で表される化合物のなかでも、特に下記式(2)~(9)のいずれかで表される化合物であることが好ましい。 Among the compounds represented by the formula (1), the ionic liquid monomer is particularly preferably a compound represented by any of the following formulas (2) to (9).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)~(9)において、m、R、R、Yは、式(1)のm、R、R、Yと同義である。Meはメチル基を表し、Etはエチル基を表す。 In the formula (2) ~ (9), m, R 1, R 2, Y has the same meaning as m, R 1, R 2, Y of formula (1). Me represents a methyl group and Et represents an ethyl group.
 親水性高分子鎖の生成には、親水性モノマーを用いることが好ましい。すなわち、親水性高分子鎖は親水性モノマー由来の繰り返し単位を含むことが好ましい。 It is preferable to use a hydrophilic monomer for the formation of a hydrophilic polymer chain. That is, the hydrophilic polymer chain preferably contains a repeating unit derived from a hydrophilic monomer.
 親水性モノマーとしては、ヒドロキシ置換アルキル(メタ)アクリレート(例、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート、ポリエトキシエチル(メタ)アクリレート、ポリエトキシプロピル(メタ)アクリレート等)、ポリ(アルキレングリコール)モノ(メタ)アクリレート(例、ポリ(エチレングリコール)モノメタクリレート等)、アルコキシポリ(アルキレングリコール)(メタ)アクリレート(例、メトキシポリ(エチレングリコール)メタクリレート等)、フェノキシポリ(アルキレングリコール)(メタ)アクリレート(例、フェノキシポリ(エチレングリコール)メタクリレート等)が好ましく、ポリアルコキシポリ(アルキレングリコール)(メタ)アクリレートがより好ましい。 Hydrophilic monomers include hydroxy-substituted alkyl (meth) acrylates (eg, 2-hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2,3-dihydroxypropyl (eg). Meta) acrylate, polyethoxyethyl (meth) acrylate, polyethoxypropyl (meth) acrylate, etc.), poly (alkylene glycol) mono (meth) acrylate (eg, poly (ethylene glycol) monomethacrylate, etc.), alkoxypoly (alkylene glycol, etc.) ) (Meta) acrylate (eg, methoxypoly (ethylene glycol) methacrylate, etc.), phenoxypoly (alkylene glycol) (meth) acrylate (eg, phenoxypoly (ethylene glycol) methacrylate, etc.) are preferable, and polyalkoxypoly (alkylene glycol) ( Meta) acrylate is more preferred.
 また、親水性モノマーとしては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド(例、N-メチルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチルメタクリルアミド等)、2-グルコシロキシエチル(メタ)アクリレート、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、クロトン酸、メタクリルアミド、N-ビニルピロリドン、N,N-ジメチルアミノエチル(メタ)アクリレート、及びその四級アンモニウム塩を用いることもできる。 Examples of the hydrophilic monomer include (meth) acrylamide, N-alkyl (meth) acrylamide (eg, N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, etc.) and 2-glucosyloxyethyl (meth). ) Use acrylate, acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, crotonic acid, methacrylamide, N-vinylpyrrolidone, N, N-dimethylaminoethyl (meth) acrylate, and quaternary ammonium salts thereof. You can also.
 親水性高分子鎖の生成には、カルボキシル基もしくはカルボキシル基の塩に容易に転換できる基を側鎖に有するモノマーを用いることも好ましい。生成した高分子鎖の側鎖の基を、カルボキシル基もしくはカルボキシル基の塩に転換することにより親水性付与することができる。カルボキシル基もしくはカルボキシル基の塩に容易に転換できる基を側鎖に有するモノマーとしては、tert-ブチル(メタ)アクリレート等が挙げられる。 For the formation of the hydrophilic polymer chain, it is also preferable to use a monomer having a carboxyl group or a group that can be easily converted into a salt of the carboxyl group in the side chain. Hydrophilicity can be imparted by converting the side chain group of the produced polymer chain into a carboxyl group or a salt of the carboxyl group. Examples of the monomer having a carboxyl group or a group having a group that can be easily converted into a salt of the carboxyl group in the side chain include tert-butyl (meth) acrylate and the like.
 これらの高分子鎖の生成に用いられるモノマーは、1種類を単独で使用してもよく、2種類以上を併用してもよい。 As the monomer used for producing these polymer chains, one type may be used alone, or two or more types may be used in combination.
 高分子鎖集合体には、高分子鎖同士の間や高分子鎖と基材との間に架橋構造が形成されていてもよい。これにより、高分子鎖集合体の弾性率を制御することができる。高分子鎖同士の間に形成する架橋構造は、物理的架橋構造および化学的架橋構造のいずれであってもよい。架橋構造は、高分子鎖を生成するための重合反応と同時に形成してもよいし、高分子鎖を生成した後に形成してもよい。高分子鎖を生成するための重合反応と同時に行う架橋構造の形成は、重合反応液に、高分子鎖を生成するための単官能性モノマーに加えて、エチレングリコールジメタクリレート等のジビニルモノマーのような二官能性モノマーを適量添加することにより行うことができる。また、生成した高分子鎖同士の間や高分子鎖と基材との間の架橋構造の形成は、架橋基を有するモノマーを用いて高分子鎖に架橋基を導入しておき、その架橋基と、他の高分子鎖の反応基との反応、その架橋基と基材の反応基との反応により行うことができる。架橋基としては、アジド基、ハロゲン基(好ましくはブロモ基)、アルコキシシリル基、イソシアネート基、ビニル基、チオール基等を挙げることができる。また、高分子鎖をリビングラジカル重合で生成した際に、グラフト鎖の末端に残る反応基を架橋基として用いることもできる。 The polymer chain aggregate may have a crosslinked structure formed between the polymer chains or between the polymer chains and the base material. Thereby, the elastic modulus of the polymer chain aggregate can be controlled. The crosslinked structure formed between the polymer chains may be either a physical crosslinked structure or a chemically crosslinked structure. The crosslinked structure may be formed at the same time as the polymerization reaction for forming the polymer chain, or may be formed after the polymer chain is formed. The formation of the crosslinked structure performed at the same time as the polymerization reaction for forming the polymer chain is performed in the polymerization reaction solution like a divinyl monomer such as ethylene glycol dimethacrylate in addition to the monofunctional monomer for forming the polymer chain. It can be carried out by adding an appropriate amount of a bifunctional monomer. Further, in order to form a crosslinked structure between the generated polymer chains or between the polymer chain and the base material, a crosslinked group is introduced into the polymer chain using a monomer having a crosslinked group, and the crosslinked group is introduced. And the reaction with the reactive group of another polymer chain, and the reaction between the cross-linking group and the reactive group of the base material. Examples of the cross-linking group include an azide group, a halogen group (preferably a bromo group), an alkoxysilyl group, an isocyanate group, a vinyl group, a thiol group and the like. Further, when the polymer chain is produced by living radical polymerization, the reactive group remaining at the end of the graft chain can also be used as a cross-linking group.
 本発明の部材において、高分子鎖集合体を構成する高分子鎖は基材に固定されている。基材は、高分子鎖集合体とは別の物質からなる担体であってもよいし、高分子鎖が側鎖として結合した主鎖としての高分子鎖であってもよい。基材が担体である場合、高分子鎖集合体は「ポリマーブラシ」を構成する。また、基材が高分子鎖である場合、その高分子鎖が構成する主鎖と、その主鎖に結合した高分子鎖(側鎖)を合わせた全体が「ボトルブラシ構造を有するポリマー」を構成する。また、高分子鎖集合体を構成する高分子鎖が、高分子鎖集合体とは別の物質からなる担体に固定されていている場合、すなわち、高分子鎖集合体が「ポリマーブラシ」を構成する場合においては、高分子鎖の片側末端のみが基材(担体)に固定されていてもよく、高分子鎖の両末端のそれぞれが基材(担体)に固定されていてもよい。高分子鎖の両末端が基材(担体)に固定されている場合は、高分子鎖はループ構造をなしており、このような高分子鎖集合体は、ループ構造のポリマーブラシをなしている。 In the member of the present invention, the polymer chains constituting the polymer chain aggregate are fixed to the base material. The base material may be a carrier made of a substance different from the polymer chain aggregate, or may be a polymer chain as a main chain in which the polymer chains are bonded as side chains. When the substrate is a carrier, the polymer chain aggregate constitutes a "polymer brush". When the base material is a polymer chain, the entire main chain composed of the polymer chain and the polymer chain (side chain) bonded to the main chain are combined to form a "polymer having a bottle brush structure". Configure. Further, when the polymer chains constituting the polymer chain aggregate are fixed to a carrier made of a substance different from the polymer chain aggregate, that is, the polymer chain aggregate constitutes the "polymer brush". In this case, only one end of the polymer chain may be fixed to the base material (carrier), or both ends of the polymer chain may be fixed to the base material (carrier). When both ends of the polymer chain are fixed to the base material (carrier), the polymer chain has a loop structure, and such a polymer chain aggregate forms a polymer brush having a loop structure. ..
 本発明の部材において、高分子鎖集合体が上記ポリマーブラシを構成している場合、ポリマーブラシの膜厚、すなわち、高分子鎖集合体の膜厚は、50nm以上であることが好ましく、100nm以上であることがより好ましく、300nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 In the member of the present invention, when the polymer chain aggregate constitutes the polymer brush, the film thickness of the polymer brush, that is, the film thickness of the polymer chain aggregate is preferably 50 nm or more, preferably 100 nm or more. It is more preferably 300 nm or more, further preferably 500 nm or more, and particularly preferably 1000 nm or more. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 また、本発明の部材において、高分子鎖集合体が高分子鎖の側鎖として結合して、高分子鎖が構成する主鎖と、その主鎖に結合した高分子鎖(側鎖)を合わせた全体が「ボトルブラシ構造を有するポリマー」を構成している場合、ボトルブラシ構造を有するポリマーを含む層の膜厚は、50nm以上であることが好ましく、100nm以上であることがより好ましく、300nm以上であることが更に好ましく、500nm以上であることがより一層好ましく、1000nm以上であることが特に好ましい。上限は特に限定はないが、例えば100μm以下とすることができ、50μm以下とすることもできる。 Further, in the member of the present invention, the polymer chain aggregate is bonded as a side chain of the polymer chain, and the main chain formed by the polymer chain and the polymer chain (side chain) bonded to the main chain are combined. When the whole constitutes a "polymer having a bottle brush structure", the thickness of the layer containing the polymer having a bottle brush structure is preferably 50 nm or more, more preferably 100 nm or more, and more preferably 300 nm. The above is more preferable, 500 nm or more is even more preferable, and 1000 nm or more is particularly preferable. The upper limit is not particularly limited, but can be, for example, 100 μm or less, or 50 μm or less.
 以下においては、ポリマーブラシとボトルブラシ構造を有するポリマーのそれぞれについて、その高分子鎖集合体の形成方法を説明する。 In the following, a method for forming a polymer chain aggregate will be described for each of the polymer brush and the polymer having a bottle brush structure.
[A]ポリマーブラシ
 ポリマーブラシの高分子鎖集合体は、複数の高分子鎖をグラフト鎖として基材である担体に結合させるグラフト重合法により得ることができる。このグラフト重合は、Grafting-from法やGrafting-to法で行うことができ、このうち、Grafting-from法を用いることが好ましい。ここで、Grafting-from法は、基材に重合開始基を導入して、その重合開始基からグラフト鎖を成長させる方法であり、Grafting-to法は、予め合成したグラフト鎖を、基材に導入した反応点に結合させる方法である。
 また、高分子鎖集合体は、疎水性ブロックと親水性ブロックを有する高分子(ジブロック共重合体)の疎水性部分を、疎水性の基材または疎水性化された基材の表面に疎水結合させる方法によっても得ることができる。ジブロック共重合体としては、例えばポリメチルメタクリレート(PMMA)構造を疎水性ブロックとし、ポリ(ナトリウムスルホン化グリシジルメタクリレート)(PSGMA)構造を親水性ブロックとする共重合体を挙げることができる。PMMA構造とPSGMA構造との間には、他の高分子構造が介在していてもよい。この方法の詳細については、Nature, 425, 163-165 (2003)等を参照することができる。
[A] Polymer Brush The polymer chain aggregate of the polymer brush can be obtained by a graft polymerization method in which a plurality of polymer chains are bonded to a carrier as a base material as graft chains. This graft polymerization can be carried out by the Grafting-from method or the Grafting-to method, and it is preferable to use the Grafting-from method. Here, the Grafting-from method is a method in which a polymerization initiating group is introduced into a base material and a graft chain is grown from the polymerization initiating group, and the Grafting-to method uses a graft chain synthesized in advance as a base material. It is a method of binding to the introduced reaction site.
Further, in the polymer chain aggregate, the hydrophobic portion of a polymer (diblock copolymer) having a hydrophobic block and a hydrophilic block is made hydrophobic on the surface of a hydrophobic base material or a hydrophobic base material. It can also be obtained by the method of combining. Examples of the diblock copolymer include a copolymer having a polymethylmethacrylate (PMMA) structure as a hydrophobic block and a poly (sodium sulfonated glycidyl methacrylate) (PSGMA) structure as a hydrophilic block. Other polymer structures may intervene between the PMMA structure and the PSGMA structure. For more information on this method, see Nature, 425, 163-165 (2003) and the like.
(グラフト重合法)
 以下に、高分子鎖集合体を、グラフト重合法を用いて形成する方法を具体的に説明する。
(Graft polymerization method)
Hereinafter, a method for forming the polymer chain aggregate by using the graft polymerization method will be specifically described.
高分子鎖の生成
 グラフト重合法で用いる高分子鎖の生成方法は、特に限定されないが、ラジカル重合法を用いることが好ましく、リビングラジカル重合法(LRP)法を用いることがより好ましく、原子移動ラジカル重合(ATRP)法を用いることがさらに好ましい。リビングラジカル重合法は、高分子鎖の分子量や分子量分布をコントロールし易い、様々な種類の共重合体(例、ランダム共重合体、ブロック共重合体、組成傾斜型共重合体等)をグラフト鎖として生成できるという利点がある。また、リビングラジカル重合法によれば、高圧条件やイオン液体溶媒を用いることで、後述の濃厚ポリマーブラシを、その密度および厚さを精密に制御して生成することができる。ここで、リビングラジカル重合法を用いる場合のグラフト重合の方法は、Grafting-from法、Grafting-to法のいずれであってもよいが、Grafting-from法であることが好ましい。リビングラジカル重合法とGrafting-from法を組わせたグラフト重合法の詳細については、特開平11-263819号公報等を参照することができる。また、原子移動ラジカル重合法の詳細については、J. Am. Chem. Soc., 117, 5614 (1995)、Macromolecules, 28, 7901 (1995)、Science, 272, 866 (1996)、Macromolecules, 31, 5934-5936 (1998)を参照することができる。
 また、高分子鎖は、ニトロキシド媒介重合法(NMP)、可逆的付加開裂連鎖移動(RAFT)重合法、可逆移動触媒重合法(RTCP)、可逆的錯体形成媒介重合法(RCMP)等によっても生成することができる。
Polymer chain formation The polymer chain formation method used in the graft polymerization method is not particularly limited, but it is preferable to use a radical polymerization method, more preferably a living radical polymerization method (LRP) method, and atom transfer radicals. It is more preferred to use the polymerization (ATRP) method. The living radical polymerization method grafts various types of copolymers (eg, random copolymers, block copolymers, composition-inclined copolymers, etc.) that can easily control the molecular weight and molecular weight distribution of the polymer chains. It has the advantage that it can be generated as. Further, according to the living radical polymerization method, by using high pressure conditions or an ionic liquid solvent, it is possible to produce a concentrated polymer brush described later by precisely controlling the density and thickness thereof. Here, the graft polymerization method when the living radical polymerization method is used may be either the Grafting-from method or the Grafting-to method, but the Grafting-from method is preferable. For details of the graft polymerization method in which the living radical polymerization method and the Grafting-from method are combined, Japanese Patent Application Laid-Open No. 11-263819 and the like can be referred to. For details of the atom transfer radical polymerization method, refer to J.M. Am. Chem. Soc. , 117, 5614 (1995), Macromolecules, 28, 7901 (1995), Science, 272, 866 (1996), Macromolecules, 31, 5934-5936 (1998).
The polymer chain is also produced by a nitroxide-mediated polymerization method (NMP), a reversible addition cleavage chain transfer (RAFT) polymerization method, a reversible transfer catalyst polymerization method (RTCP), a reversible complex formation-mediated polymerization method (RCMP), or the like. can do.
 ラジカル重合法で用いる触媒は、ラジカル重合を制御できるものであればよく、好ましくは遷移金属錯体である。遷移金属錯体の好ましい例として、周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体を挙げることができ、中でも、銅錯体、ルテニウム錯体、鉄錯体またはニッケル錯体を用いることが好ましく、銅錯体を用いることがより好ましい。銅錯体は、1価の銅化合物と有機配位子の錯体であることが好ましい。1価の銅化合物として、塩化第一銅、臭化第一銅等を挙げることができる。有機配位子として、2,2’-ビピリジル若しくはその誘導体、1,10-フェナントロリンもしくはその誘導体、ポリアミン(テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2-アミノエチル)アミン等)、L-(-)-スパルテイン等の多環式アルカロイド等を挙げることができる。2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。ルテニウム化合物を触媒として用いる場合には、活性化剤としてアルミニウムアルコキシド類を添加するのが好ましい。2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)等も触媒として好適である。 The catalyst used in the radical polymerization method may be any catalyst capable of controlling radical polymerization, and is preferably a transition metal complex. Preferred examples of the transition metal complex include metal complexes having Group 7, 8, 9, 10 or 11 elements of the periodic table as the central metal, among which copper complex, ruthenium complex and iron. It is preferable to use a complex or a nickel complex, and it is more preferable to use a copper complex. The copper complex is preferably a complex of a monovalent copper compound and an organic ligand. Examples of the monovalent copper compound include cuprous chloride, cuprous bromide and the like. As organic ligands, 2,2'-bipyridyl or its derivatives, 1,10-phenanthroline or its derivatives, polyamines (tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltris (2-aminoethyl) amines, etc.), L- (-)-Polycyclic alkaloids such as spartane can be mentioned. A triphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst. When a ruthenium compound is used as a catalyst, it is preferable to add aluminum alkoxides as an activator. Divalent iron bistriphenylphosphine complex (FeCl 2 (PPh 3 ) 2 ), divalent nickel bistriphenylphosphine complex (NiCl 2 (PPh 3 ) 2 ), divalent nickel bistributylphosphine complex (NiBr 2) (PBu 3 ) 2 ) and the like are also suitable as catalysts.
 重合反応は溶剤中で行うことが好ましい。溶剤として、炭化水素系溶剤(ベンゼン、トルエン等)、エーテル系溶剤(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼン等)、ハロゲン化炭化水素系溶剤(塩化メチレン、クロロホルム、クロロベンゼン等)、ケトン系溶剤(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、アルコール系溶剤(メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、t-ブチルアルコール等)、ニトリル系溶剤(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、エステル系溶剤(酢酸エチル、酢酸ブチル等)、カーボネート系溶剤(エチレンカーボネート、プロピレンカーボネート等)、アミド系溶剤(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶剤(1,1-ジクロロ-1-フルオロエタン、ジクロロペンタフルオロプロパン)、ハイドロフルオロカーボン系溶剤(炭素数2~5のハイドロフルオロカーボン、炭素数6以上の及び6以上のハイドロフルオロカーボン)、ペルフルオロカーボン系溶剤(ペルフルオロペンタン、ペルフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶剤(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶剤(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、水等を挙げることができる。これらの溶剤は、1種類を単独で使用してもよく、2種類以上を併用してもよい。 The polymerization reaction is preferably carried out in a solvent. As solvents, hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene, etc.), ketones Solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), alcohol solvents (methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.), nitrile solvents (acetriform, propionitrile, benzonitrile, etc.), esters System solvents (ethyl acetate, butyl acetate, etc.), carbonate solvents (ethylene carbonate, propylene carbonate, etc.), amide solvents (N, N-dimethylformamide, N, N-dimethylacetamide), hydrochlorofluorocarbon solvents (1, 1-dichloro-1-fluoroethane, dichloropentafluoropropane), hydrofluorocarbon solvent (hydrofluorocarbon with 2 to 5 carbon atoms, hydrofluorocarbon with 6 or more carbon atoms and 6 or more carbon atoms), perfluorocarbon solvent (perfluoropentane, Perfluorohexane), alicyclic hydrofluorocarbon solvent (fluorocyclopentane, fluorocyclobutane), oxygen-containing fluorosolvent (fluoroether, fluoropolyether, fluoroketone, fluoroalcohol), water and the like. One type of these solvents may be used alone, or two or more types may be used in combination.
重合開始基の導入
 高分子鎖集合体を例えばGrafting-from法を用いて形成するには、基材に重合反応の開始点となる重合開始基を導入し、この重合開始基から、上記の重合方法を用いて高分子鎖をグラフト成長させる。重合開始基としては、ハロゲン化アルキル基、ハロゲン化スルホニル基等を挙げることができる。重合開始基は、グラフト鎖の密度(グラフト密度)およびグラフト重合により得られる高分子鎖の一次構造(分子量、分子量分布、モノマー配列様式)を精度よく制御できることから、基材表面に物理的若しくは化学的に結合されているのが好ましい。重合開始基を基材表面に導入(結合)する方法としては、化学吸着法、ラングミュアー・ブロジェット(LB)法等を挙げることができる。
 例えば、シリコンウエハ(基材)表面へのクロロスルホニル基(重合開始基)の化学結合による導入は、2-(4-クロロスルホニルフェニル)エチルトリメトキシシランや2-(4-クロロスルホニルフェニル)エチルトリクロロシラン等を、シリコンウエハ表面の酸化層と反応させることにより行うことができる。
Introduction of Polymerization Initiator In order to form an aggregate of polymer chains by using, for example, the Grafting-from method, a polymerization initiator group which is a starting point of a polymerization reaction is introduced into a substrate, and the above-mentioned polymerization is carried out from this polymerization initiator group. Polymer chains are graft grown using the method. Examples of the polymerization initiating group include an alkyl halide group and a sulfonyl halide group. Since the polymerization initiator can accurately control the density of the graft chain (graft density) and the primary structure (molecular weight, molecular weight distribution, monomer arrangement mode) of the polymer chain obtained by graft polymerization, it can be physically or chemically applied to the surface of the substrate. It is preferable that they are bonded to each other. Examples of the method for introducing (bonding) the polymerization initiating group to the surface of the substrate include a chemisorption method, a Langmuir Brodget (LB) method and the like.
For example, introduction of a chlorosulfonyl group (polymerization initiator group) onto the surface of a silicon wafer (base material) by a chemical bond is performed with 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane or 2- (4-chlorosulfonylphenyl) ethyl. This can be done by reacting trichlorosilane or the like with an oxide layer on the surface of a silicon wafer.
 また、LB法により重合開始基を導入するには、重合開始基を含む膜形成材料を適切な溶媒(例、クロロホルム、ベンゼン等)に溶解する。次に、この溶液少量を清浄な液面、好ましくは純水の液面上に展開した後、溶媒を蒸発させるか、または隣接する水相に拡散させて、水面上に膜形成分子による低密度の膜を形成させる。続いて、仕切り板を水面上で機械的に掃引し、膜形成分子が展開している水面の表面積を減少させることにより膜を圧縮して密度を増加させ、緻密な水面上単分子膜を得る。次いで、適切な条件下で、水面上単分子膜を構成する分子の表面密度を一定に保ちながら、単分子層を堆積する基材を、水面上単分子膜を横切る方向に浸漬または引き上げることによって、水面上単分子膜を該基材上に移し取り、単分子層を該基材上に堆積する。LB法の詳細については、「福田清成他著、新実験化学講座18巻(界面とコロイド)6章、(1977年)丸善」、「福田清成・杉道夫・雀部博之編集、LB膜とエレクトロニクス、(1986年)シーエムシー」、或いは、「石井淑夫著、よいLB膜をつくる実践的技術、(1989年)共立出版」を参照することができる。 Further, in order to introduce the polymerization initiating group by the LB method, the film-forming material containing the polymerization initiating group is dissolved in an appropriate solvent (eg, chloroform, benzene, etc.). Next, a small amount of this solution is developed on a clean liquid surface, preferably pure water, and then the solvent is evaporated or diffused into an adjacent aqueous phase to have a low density of film-forming molecules on the water surface. To form a film. Subsequently, the partition plate is mechanically swept over the water surface to compress the membrane by reducing the surface area of the water surface on which the film-forming molecules are developed to increase the density, and obtain a dense monomolecular film on the water surface. .. Then, under appropriate conditions, the base material on which the monolayer is deposited is immersed or pulled up in a direction crossing the monolayer on the water surface while keeping the surface density of the molecules constituting the monolayer on the water surface constant. , The monomolecular film on the water surface is transferred onto the base material, and the monomolecular layer is deposited on the base material. For details on the LB method, see "Kiyonari Fukuda et al., New Experimental Chemistry Course Volume 18 (Interface and Colloid) Chapter 6, (1977) Maruzen", "Kiyonari Fukuda, Michio Sugi, Hiroyuki Sasabe, LB Membrane" You can refer to "Electronics, (1986) CMC" or "Practical Techniques for Making Good LB Films, (1989) Kyoritsu Shuppan" by Yoshio Ishii.
 重合開始基を基材表面に導入するに当たっては、基材に結合する基および基材と親和性を有する基の少なくとも一方と、重合開始基に結合する基および重合開始基と親和性を有する基の少なくとも一方を有する表面処理剤を用いて基材表面を処理することが好ましい。この表面処理剤は低分子化合物であっても、高分子化合物であってもよい。表面処理剤として、例えば下記式(10)で表される化合物が挙げられる。 When introducing a polymerization initiator group into the surface of a substrate, at least one of a group bonded to the substrate and a group having an affinity with the substrate, and a group having an affinity with the group bonded to the polymerization initiator group and the polymerization initiator group are used. It is preferable to treat the surface of the base material with a surface treatment agent having at least one of the above. This surface treatment agent may be a low molecular weight compound or a high molecular weight compound. Examples of the surface treatment agent include compounds represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(10)において、nは1~10の整数であり、3~8の整数であることが好ましい。R11、R12およびR13は、各々独立に置換基を表す。R11、R12およびR13の少なくとも1つは、アルコキシル基またはハロゲン原子であることが好ましく、R11、R12およびR13の全てがメトキシ基であるか、エトキシ基であることが特に好ましい。R14およびR15は、各々独立に置換基を表す。R14およびR15は、各々独立に炭素数1~3のアルキル基、または芳香族性官能基であることが好ましく、R14およびR15の両方がメチル基であることが最も好ましい。X11は、ハロゲン原子を表し、臭素原子であることが好ましい。 In the formula (10), n is an integer of 1 to 10, preferably an integer of 3 to 8. R 11 , R 12 and R 13 each independently represent a substituent. At least one of R 11 , R 12 and R 13 is preferably an alkoxyl group or a halogen atom, and it is particularly preferable that all of R 11 , R 12 and R 13 are methoxy groups or ethoxy groups. .. R 14 and R 15 each independently represent a substituent. R 14 and R 15 are preferably alkyl groups having 1 to 3 carbon atoms or aromatic functional groups, respectively, and most preferably both R 14 and R 15 are methyl groups. X 11 represents a halogen atom and is preferably a bromine atom.
 表面処理剤として、重合開始基を含有するシランカップリング剤(重合開始基含有シランカップリング剤)を用いることが好ましい。これにより、表面処理と重合開始基の導入を同時に行うことができる。重合開始基含有シランカップリング剤としては、上記式(1)で表される化合物などが挙げられる。重合開始基含有シランカップリング剤およびその製造方法の説明については、国際公開第2006/087839号トの記載を参照することができる。重合開始基含有シランカップリング剤の具体例として、(2-ブロモ-2-メチル)プロピオニルオキシヘキシルトリメトキシシラン(BHM)、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリメトキシシラン(BPM)を挙げることができる。 As the surface treatment agent, it is preferable to use a silane coupling agent containing a polymerization initiating group (a silane coupling agent containing a polymerization initiating group). Thereby, the surface treatment and the introduction of the polymerization initiating group can be performed at the same time. Examples of the polymerization initiating group-containing silane coupling agent include compounds represented by the above formula (1). For a description of the polymerization initiating group-containing silane coupling agent and a method for producing the same, the description of International Publication No. 2006/087839 can be referred to. Specific examples of the polymerization initiator-containing silane coupling agent include (2-bromo-2-methyl) propionyloxyhexyltrimethoxysilane (BHM) and (2-bromo-2-methyl) propionyloxypropyltrimethoxysilane (BPM). Can be mentioned.
 グラフト密度を調整する観点から、重合開始基含有シランカップリング剤を表面処理剤に用いる場合には、重合開始基を含有しないシランカップリング剤、例えば、公知のアルキルシランカップリング剤を併用することが好ましい。これにより、重合開始基含有シランカップリング剤と重合開始基を含有しないシランカップリング剤との割合を調整することで、グラフト密度を自在に変更することができる。例えば、シランカップリング剤のすべてが重合開始基含有シランカップリング剤である場合、その表面処理後にGrafting-from法にてグラフト重合を行うことにより、3%を超える表面占有率で高分子鎖を成長させることができる。なお、表面処理剤として重合開始基含有シランカップリング剤を使用する場合、その重合開始基含有シランカップリング剤を水の存在下で加水分解させてシラノールとし、部分的に縮合させてオリゴマー状態とした後に表面処理に供してもよい。具体的には、このオリゴマーを、例えばシリカ等の基材に水素結合的に吸着させた後、乾燥処理することで脱水縮合反応を起こさせ、重合開始基を基材に導入してもよい。 When a polymerization initiating group-containing silane coupling agent is used as a surface treatment agent from the viewpoint of adjusting the graft density, a silane coupling agent that does not contain a polymerization initiating group, for example, a known alkylsilane coupling agent should be used in combination. Is preferable. Thereby, the graft density can be freely changed by adjusting the ratio of the silane coupling agent containing a polymerization initiating group and the silane coupling agent not containing a polymerization initiating group. For example, when all of the silane coupling agents are polymerization initiation group-containing silane coupling agents, the polymer chains are formed with a surface occupancy rate of more than 3% by performing graft polymerization by the Grafting-from method after the surface treatment thereof. Can grow. When a polymerization initiating group-containing silane coupling agent is used as the surface treatment agent, the polymerization initiating group-containing silane coupling agent is hydrolyzed in the presence of water to form silanol, which is partially condensed to form an oligomer state. After that, it may be subjected to surface treatment. Specifically, this oligomer may be adsorbed on a base material such as silica in a hydrogen-bonding manner and then subjected to a drying treatment to cause a dehydration condensation reaction, and a polymerization initiating group may be introduced into the base material.
(基材)
 ポリマーブラシ型の高分子鎖集合体において、高分子鎖を固定する基材(担体)を構成する材料としては、特に限定はない。有機材料、無機材料、金属材料等から適宜選択することができる。
(Base material)
In the polymer brush type polymer chain aggregate, the material constituting the base material (carrier) for fixing the polymer chain is not particularly limited. It can be appropriately selected from organic materials, inorganic materials, metal materials and the like.
 有機材料としては、特に限定されず、各種樹脂およびゴムを制限なく用いることができる。樹脂としては、熱硬化性樹脂または熱可塑性樹脂のいずれでもよい。熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ユリア樹脂、メラミン樹脂、熱硬化性ポリイミド樹脂、ジアリルフタレート樹脂などが挙げられる。熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリシクロオレフィンなどのポリオレフィン系樹脂;ポリスチレン、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコールなどのビニル系樹脂;ポリテトラフルオロエチレンなどのフッ素系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリジメチルシロキサンなどのシリコーン樹脂;などが挙げられる。ゴムとしては、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴム、イソプレンゴム、天然ゴム、ニトリルゴム、ブチルゴムなどのジエン系ゴム;エチレンプロピレンゴム、アクリルゴム、ポリエーテルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴムなどのジエン系ゴム以外のゴムなどが挙げられる。 The organic material is not particularly limited, and various resins and rubbers can be used without limitation. The resin may be either a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include epoxy resin, phenol resin, amino resin, unsaturated polyester resin, polyurethane resin, urea resin, melamine resin, thermosetting polyimide resin, diallyl phthalate resin and the like. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polystyrene and polycycloolefin; vinyl resins such as polystyrene, acrylic resin, polyvinyl chloride resin and polyvinyl alcohol; and fluororesins such as polytetrafluoroethylene. Polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene naphthalate; silicone resins such as polydimethylsiloxane; and the like. As rubber, diene rubber such as butadiene rubber, styrene butadiene rubber, chloroprene rubber, isoprene rubber, natural rubber, nitrile rubber, butyl rubber; ethylene propylene rubber, acrylic rubber, polyether rubber, polyurethane rubber, fluororubber, silicone rubber, etc. Examples include rubbers other than the diene rubber.
 無機材料としては、特に限定されず、セラミックス(例、アルミナセラミックス、バイオセラミックス、ジルコニア-アルミナ複合セラミックス等の複合セラミックス等)、金属(例、鉄、鋳鉄、鋼、ステンレス鋼、炭素鋼、高炭素クロム軸受鋼鋼材(SUJ2)等の鉄合金、アルミニウム、亜鉛、銅、チタン等の非鉄および非鉄合金等)、多結晶シリコン等のシリコン、酸化ケイ素、窒化ケイ素、各種ガラス、石英、及びこれらの複合材料等が挙げられる。 The inorganic material is not particularly limited, and is limited to ceramics (eg, alumina ceramics, bioceramics, composite ceramics such as zirconia-alumina composite ceramics, etc.), metals (eg, iron, cast iron, steel, stainless steel, carbon steel, high carbon). Iron alloys such as chrome bearing steel (SUJ2), non-iron and non-iron alloys such as aluminum, zinc, copper and titanium), silicon such as polycrystalline silicon, silicon oxide, silicon nitride, various glasses, quartz, and composites thereof. Materials and the like can be mentioned.
 基材の種類は、特に限定されない。例えばチューブ、シート、繊維、ストリップ、フィルム、板、箔、膜、ペレット、粉末、粒子、成型品(例、押出し成型品、鋳込み成型品等)等が挙げられる。また、本発明の部材を適用する物品そのものを基材に用いてもよい。 The type of base material is not particularly limited. For example, tubes, sheets, fibers, strips, films, plates, foils, membranes, pellets, powders, particles, molded products (eg, extruded products, cast molded products, etc.) and the like can be mentioned. Further, the article itself to which the member of the present invention is applied may be used as the base material.
(他の製造方法)
 また、ポリマーブラシの高分子鎖集合体は、次の製造方法によって製造することもできる。すなわち、基材を構成する有機材料(以下、基材重合体ともいう)と、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低く、のポリマーブロックBとを備え、かつ、ポリマーブロックAを少なくとも2箇所に有している複数のブロック共重合体とを溶剤中で混合して混合液を調製する工程と、混合液中から溶剤を除去して、相分離を生じさせる工程とを備える製造方法により製造することができる。この製造方法によれば、高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが担体である基材に固定されているループ構造のポリマーブラシの高分子鎖集合体を製造することができる。
(Other manufacturing methods)
Further, the polymer chain aggregate of the polymer brush can also be produced by the following production method. That is, the organic material constituting the base material (hereinafter, also referred to as the base material polymer) and the polymer block A and the polymer block B having a lower affinity for the base material polymer than the polymer block A are provided. A step of preparing a mixed solution by mixing a plurality of block copolymers having polymer blocks A at at least two positions in a solvent, and a step of removing the solvent from the mixed solution to cause phase separation. It can be manufactured by a manufacturing method including. According to this production method, it is possible to produce a polymer chain aggregate of a loop structure polymer brush in which both ends of the polymer chains constituting the polymer chain aggregate are fixed to a substrate which is a carrier. it can.
 基材重合体である基材を構成する有機材料については、特に限定されず、上述したものが挙げられる。 The organic material constituting the base material, which is a base material polymer, is not particularly limited, and the above-mentioned ones can be mentioned.
 ブロック共重合体としては、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備え、かつ、ポリマーブロックAを少なくとも2箇所に有しているものであればよく、特に限定されないが、ループ構造を好適に形成できるという観点より、ポリマーブロックBは、基材重合体に対して非相溶であるものを用いることが好ましく、ポリマーブロックBが、基材重合体に対して非相溶であり、かつ、ポリマーブロックAが、基材重合体に対して相溶である組み合わせがより好ましい。 The block copolymer includes a polymer block A and a polymer block B having a lower affinity for the base polymer than the polymer block A, and has the polymer blocks A at at least two locations. It is good, but not particularly limited, from the viewpoint that a loop structure can be preferably formed, it is preferable to use a polymer block B that is incompatible with the base polymer, and the polymer block B has a base weight. A combination that is incompatible with the coalescence and the polymer block A is compatible with the base polymer is more preferable.
 ここで、ポリマーブロックAが、基材重合体に対して相溶であるとは、次の状態をいう。すなわち、ポリマーブロックAのみからなる重合体と、基材重合体とを、熱溶融混合や共溶液混合などにより混合した後、得られた混合物について、冷却あるいは溶剤蒸発除去などにより固化することにより得られた試料について、ガラス転移温度(Tg)を測定した場合に、ポリマーブロックAのみからなる重合体のTgと、基材重合体のTgとの間の温度域に、これらとは異なるTgが観測できる場合に、相溶であると判断することができる。 Here, the fact that the polymer block A is compatible with the base polymer means the following state. That is, it is obtained by mixing a polymer composed of only the polymer block A and a base polymer by hot melt mixing or co-solution mixing, and then solidifying the obtained mixture by cooling or solvent evaporation removal. When the glass transition temperature (Tg) of the sample was measured, Tg different from these was observed in the temperature range between the Tg of the polymer consisting only of the polymer block A and the Tg of the base polymer. If possible, it can be determined to be compatible.
 また、ポリマーブロックBが、基材重合体に対して非相溶であるとは、次の状態をいう。すなわち、ポリマーブロックBのみからなる重合体と、基材重合体とを、熱溶融混合や共溶液混合などにより混合した後、得られた混合物について、冷却あるいは溶剤蒸発除去などにより固化することにより得られた試料について、ガラス転移温度(Tg)を測定した場合に、ポリマーブロックBのみからなる重合体のTgおよび基材重合体20のTg以外に、これらとは異なるTgが観測できない場合に、非相溶であると判断することができる。 Further, the fact that the polymer block B is incompatible with the base polymer means the following state. That is, it is obtained by mixing a polymer composed of only the polymer block B and a base polymer by hot melt mixing or co-solution mixing, and then solidifying the obtained mixture by cooling or solvent evaporation removal. When the glass transition temperature (Tg) of the obtained sample is measured, if Tg different from the Tg of the polymer consisting only of the polymer block B and the Tg of the base polymer 20 cannot be observed, it is not observed. It can be judged that they are compatible.
 ポリマーブロックAおよびポリマーブロックBとしては、基材重合体に対する相溶性が上記の関係にあるものを用いればよいが、ループ構造を好適に形成できるという観点より、これらのSP値(溶解度パラメータ)に関し、ポリマーブロックAのSP値と、ポリマーブロックBのSP値との差は1.5(MPa)0.5以上であることが好ましく、3(MPa)0.5以上であることがより好ましく、5(MPa)0.5以上であることがさらに好ましい。また、ポリマーブロックAのSP値に関し、ポリマーブロックAのSP値と、基材重合体とのSP値との差が0.5(MPa)0.5以下であることが好ましく、0.3(MPa)0.5以下であることがより好ましく、0.2(MPa)0.5以下であることがさらに好ましい。ポリマーブロックBのSP値に関し、ポリマーブロックBのSP値と、基材重合体のSP値との差が1.5(MPa)0.5以上であることが好ましく、3(MPa)0.5以上であることがより好ましく、5(MPa)0.5以上であることがさらに好ましい。なお、ポリマーブロックAおよびポリマーブロックBのSP値は、たとえば、ポリマーハンドブック(第4版、Wiley-Interscience)に開示された値を用いることができる。 As the polymer block A and the polymer block B, those having the above-mentioned compatibility with the base polymer may be used, but from the viewpoint that a loop structure can be preferably formed, these SP values (solubility parameters) are related. The difference between the SP value of the polymer block A and the SP value of the polymer block B is preferably 1.5 (MPa) 0.5 or more, and more preferably 3 (MPa) 0.5 or more. It is more preferably 5 (MPa) 0.5 or more. Further, regarding the SP value of the polymer block A, the difference between the SP value of the polymer block A and the SP value of the base polymer is preferably 0.5 (MPa) 0.5 or less, and is 0.3 ( MPa) 0.5 or less is more preferable, and 0.2 (MPa) 0.5 or less is further preferable. Regarding the SP value of the polymer block B, the difference between the SP value of the polymer block B and the SP value of the base polymer is preferably 1.5 (MPa) 0.5 or more, and 3 (MPa) 0.5. The above is more preferable, and 5 (MPa) 0.5 or more is further preferable. As the SP values of the polymer block A and the polymer block B, for example, the values disclosed in the Polymer Handbook (4th edition, Wiley-Interscience) can be used.
 ポリマーブロックAとしては、上述した特性を満たすものであればよく、特に限定されず、用いる基材重合体との関係で選択すればよいが、その具体例としては、上述した基材重合体を構成する樹脂またはゴムとして例示した樹脂またはゴムを構成する重合体セグメントからなるものなどが挙げられる。 The polymer block A may be selected as long as it satisfies the above-mentioned characteristics, and is not particularly limited, and may be selected in relation to the base material polymer to be used. As a specific example thereof, the above-mentioned base material polymer may be used. Examples of the constituent resin or rubber include those composed of polymer segments constituting the resin or rubber exemplified.
 ブロック共重合体のポリマーブロックA部分の分子量(重量平均分子量(Mw))は、特に限定されないが、基材重合体と十分な相互作用を示し、これにより、ポリマーブロックBにより形成されるループ構造をより適切に支えることにより、耐久性をより高めることができるという観点より、好ましくは1,000~100,000、より好ましくは1,000~50,000、さらに好ましくは1,000~20,000であり、さらにより好ましくは2,000~20,000、特に好ましくは2,000~6,000である。 The molecular weight (weight average molecular weight (Mw)) of the polymer block A portion of the block copolymer is not particularly limited, but exhibits sufficient interaction with the base polymer, thereby forming a loop structure formed by the polymer block B. From the viewpoint that durability can be further enhanced by more appropriately supporting the above, preferably 1,000 to 100,000, more preferably 1,000 to 50,000, still more preferably 1,000 to 20, It is 000, more preferably 2,000 to 20,000, and particularly preferably 2,000 to 6,000.
 ポリマーブロックBとしては、上述した高分子鎖として説明したもののうち、基材重合体との間で上述した特性を満たすものが好ましく用いられる。 As the polymer block B, among those described as the above-mentioned polymer chains, those that satisfy the above-mentioned characteristics with the base polymer are preferably used.
 基材重合体と、複数のブロック共重合体鎖とを溶剤中で混合する際に、用いる溶剤としては、特に限定されず、基材重合体と、ブロック共重合体鎖とを溶解あるいは分散可能な溶剤であれば何でもよい。たとえば、n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル、プロピオニトリル、ベンゾニトリル等の含窒素系炭化水素;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;アセトン、エチルメチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、プロピオン酸エチル、安息香酸メチル等のエステル類;クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素;メタノール、エタノール等のアルコール類などが挙げられる。 The solvent used when mixing the base polymer and a plurality of block copolymer chains in a solvent is not particularly limited, and the base polymer and the block copolymer chains can be dissolved or dispersed. Any solvent can be used. For example, aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane. , Hexahydroindene, alicyclic hydrocarbons such as cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene, mesityrene; nitrogen-containing hydrocarbons such as nitromethane, nitrobenzene, acetonitrile, propionitrile, benzonitrile; diethyl Ethers such as ether, tetrahydrofuran, dioxane; ketones such as acetone, ethyl methyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone; esters such as methyl acetate, ethyl acetate, ethyl propionate, methyl benzoate; chloroform, Halogenized hydrocarbons such as dichloromethane, 1,2-dichloroethane, chlorobenzene, dichlorobenzene and trichlorobenzene; alcohols such as methanol and ethanol can be mentioned.
 このような溶剤中で、基材重合体と、複数のブロック共重合体鎖とを混合し、溶解あるいは分散させることで、混合液を得ることができる。次いで、得られた混合液を用いて、キャスト法やスピンコート法などにより製膜した後に、製膜した混合液中から溶剤を除去する。溶剤を介して基材重合体に対して分散状態にある複数のブロック共重合体鎖のうち一部が、溶剤が除去されることで、ポリマーブロックAについては、基材重合体と相溶した状態となったままで、ブロック共重合体鎖を構成するポリマーブロックBが、基材重合体と相分離して、ポリマーブロックAが基材重合体中にあり、かつ、ポリマーブロックBが基材重合体から露出した状態に変化させることができ、これにより、高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが担体に固定されたループ構造を形成させることができる。 A mixed solution can be obtained by mixing, dissolving or dispersing the base polymer and a plurality of block copolymer chains in such a solvent. Next, the obtained mixed solution is used to form a film by a casting method, a spin coating method, or the like, and then the solvent is removed from the formed mixed solution. A part of the plurality of block copolymer chains dispersed with respect to the base polymer via the solvent was removed from the base polymer, so that the polymer block A was compatible with the base polymer. In the state, the polymer block B constituting the block copolymer chain is phase-separated from the base material polymer, the polymer block A is in the base material polymer, and the polymer block B is the base material weight. It can be changed from coalescence to an exposed state, whereby a loop structure in which both ends of the polymer chains constituting the polymer chain aggregate are fixed to the carrier can be formed.
 溶剤を除去する方法としては、特に限定されず、用いる溶剤の種類に応じて選択すればよいが、50℃~100℃にて加熱する方法が好ましく、70~80℃にて加熱する方法がより好ましい。 The method for removing the solvent is not particularly limited and may be selected according to the type of solvent used, but a method of heating at 50 ° C. to 100 ° C. is preferable, and a method of heating at 70 to 80 ° C. is more preferable. preferable.
 また、ポリマーブラシの高分子鎖集合体は、次の製造方法によって製造することもできる。すなわち、基材重合体と、ポリマーブロックAおよびポリマーブロックAよりも基材重合体に対する親和性が低いポリマーブロックBとを備え、かつ、ポリマーブロックAを少なくとも2箇所に有している複数のブロック共重合体とを加熱下で混合して溶融混合物を調製する工程と、溶融混合物を冷却させることで相分離を生じさせる工程とを備える製造方法により製造することもできる。この製造方法によっても、高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが担体である基材に固定されているループ構造のポリマーブラシの高分子鎖集合体を製造することができる。 Further, the polymer chain aggregate of the polymer brush can also be manufactured by the following manufacturing method. That is, a plurality of blocks including the base polymer and the polymer block A and the polymer block B having a lower affinity for the base polymer than the polymer block A, and having the polymer blocks A at at least two locations. It can also be produced by a production method including a step of preparing a molten mixture by mixing the copolymer under heating and a step of causing phase separation by cooling the molten mixture. Also by this production method, it is possible to produce a polymer chain aggregate of a loop structure polymer brush in which both ends of the polymer chains constituting the polymer chain aggregate are fixed to a base material which is a carrier. ..
 基材重合体と、複数のブロック共重合体とを加熱下で混合して溶融混合物を調製する際における加熱温度としては、特に限定されず、基材重合体またはブロック共重合体が溶融する温度、好ましくは基材重合体およびブロック共重合体鎖の両方が溶融する温度とすればよいが、好ましくは40~300℃、より好ましくは80~200℃である。 The heating temperature when the base polymer and a plurality of block copolymers are mixed under heating to prepare a melt mixture is not particularly limited, and is the temperature at which the base polymer or the block copolymer melts. The temperature at which both the base polymer and the block copolymer chain are melted may be preferably set to 40 to 300 ° C, more preferably 80 to 200 ° C.
 得られた溶融混合物を用いて、キャスト法、スピンコート法、ディップコート法などにより製膜した後に、冷却させ、冷却により固化する過程において相分離を生じさせる。溶融混合されていることにより、基材重合体に対して分散状態にある複数のブロック共重合体のうち一部が、溶融状態から固体状態になる過程において、ポリマーブロックAについては、基材重合体と相溶した状態となったままで、ブロック共重合体を構成するポリマーブロックBが、基材重合体と相分離することで、ポリマーブロックAが基材重合体中にあり、かつ、ポリマーブロックBが基材重合体から露出した状態に変化させることができ、これによりループ構造を形成させることができるものである。 Using the obtained melt mixture, a film is formed by a casting method, a spin coating method, a dip coating method, etc., and then cooled, and phase separation occurs in the process of solidification by cooling. In the process in which a part of the plurality of block copolymers dispersed with respect to the substrate polymer is changed from the molten state to the solid state by being melt-mixed, the substrate weight of the polymer block A is increased. The polymer block B constituting the block copolymer is phase-separated from the base polymer while remaining in a state of being compatible with the coalescence, so that the polymer block A is present in the base polymer and the polymer block. B can be changed to an exposed state from the base polymer, whereby a loop structure can be formed.
 溶融混合物を冷却する方法としては特に限定されないが、製膜した溶融混合物を室温下で静置する方法や、溶融混合物を構成する各成分の溶融温度よりも低い温度にて加温した状態で静置する方法などが挙げられる。 The method for cooling the melt mixture is not particularly limited, but a method of allowing the formed melt mixture to stand at room temperature or a method of allowing the formed melt mixture to stand still at a temperature lower than the melt temperature of each component constituting the melt mixture. The method of placing it can be mentioned.
(高分子鎖の数平均分子量および分子量分布指数)
 高分子鎖集合体を構成する高分子鎖の数平均分子量(M)は、好ましくは500~10,000,000であり、より好ましくは100,000~10,000,000である。
 高分子鎖集合体における分子量分布指数(PDI=M/M)は、1.0~2.0が好ましく、1.0~1.5がより好ましい。分子量分布指数が上記範囲であれば、高分子鎖集合体を構成する高分子鎖の最表面まで高密度な状態を維持しうるという効果が期待できる。
(Number average molecular weight and molecular weight distribution index of polymer chains)
The number average molecular weight (Mn ) of the polymer chains constituting the polymer chain aggregate is preferably 500 to 10,000,000, more preferably 100,000 to 10,000,000.
The molecular weight distribution index (PDI = M w / M n ) in the polymer chain aggregate is preferably 1.0 to 2.0, more preferably 1.0 to 1.5. When the molecular weight distribution index is within the above range, the effect of maintaining a high-density state up to the outermost surface of the polymer chains constituting the polymer chain aggregate can be expected.
 高分子鎖集合体の数平均分子量(M)および分子量分布指数(M/M)は、フッ化水素酸処理により基材から高分子鎖を切り出し、切り出した高分子鎖についてゲル浸透クロマトグラフィー法などのサイズ排除クロマトグラフィー法による分子量分析を行うことで測定することができる。 The number average molecular weight (M n ) and molecular weight distribution index (M w / M n ) of the polymer chain aggregate are obtained by cutting out the polymer chain from the substrate by hydrofluoric acid treatment and gel permeation chromatography on the cut out polymer chain. It can be measured by performing molecular weight analysis by a size exclusion chromatography method such as a imaging method.
 また、グラフト重合法を用いて高分子鎖集合体を形成した場合には、高分子鎖の重合反応に際して生成するフリーポリマーが、基材に固定される高分子鎖と等しい分子量を有すると仮定して、そのフリーポリマーについてサイズ排除クロマトグラフィー法により、数平均分子量(M)および分子量分布指数(M/M)を測定し、これをそのまま高分子鎖の数平均分子量(M)および分子量分布指数(M/M)として用いる方法も採用することもできる。なお、数平均分子量(M)および分子量分布指数(M/M)は、基材に固定される高分子鎖と重合反応時に生成するフリーポリマーでほぼ等しいことを確認している。 Further, when a polymer chain aggregate is formed by using the graft polymerization method, it is assumed that the free polymer produced during the polymerization reaction of the polymer chains has a molecular weight equal to that of the polymer chains fixed to the substrate. Then, the number average molecular weight (M n ) and the molecular weight distribution index (M w / M n ) of the free polymer were measured by the size exclusion chromatography method, and the number average molecular weight (M n) of the polymer chain and the number average molecular weight (M n ) of the polymer chain were measured as they were. A method used as a molecular weight distribution index (M w / M n ) can also be adopted. It has been confirmed that the number average molecular weight (M n ) and the molecular weight distribution index (M w / M n ) are almost equal between the polymer chain fixed to the substrate and the free polymer produced during the polymerization reaction.
 フリーポリマーを用いる分子量の測定方法について具体的に説明する。高分子鎖を表面開始リビングラジカル重合で合成する際、重合溶液に遊離開始剤を添加すると、高分子鎖集合体を構成する高分子鎖と同等の分子量および分子量分布を有するフリーポリマーを得ることができる。このフリーポリマーを、サイズ排除クロマトグラフィー法にて分析することにより、数平均分子量(M)および分子量分布指数(M/M)を決定する。 A method for measuring the molecular weight using a free polymer will be specifically described. When a polymer chain is synthesized by surface-initiated living radical polymerization, when a release initiator is added to the polymerization solution, a free polymer having a molecular weight and a molecular weight distribution equivalent to that of the polymer chain constituting the polymer chain aggregate can be obtained. it can. The number average molecular weight (M n ) and the molecular weight distribution index (M w / M n ) are determined by analyzing this free polymer by size exclusion chromatography.
 なお、サイズ排除クロマトグラフィー法での分析は、入手可能な分子量既知の同種単分散の標準試料を用いた較正法、多角度光散乱検出器を用いた絶対分子量評価を行うものである。本明細書では、本明細書の実施例では、数平均分子量(Mn)および重量平均分子量(Mw)の値は、多角度光散乱検出器ならびに各種標準試料の分子量検量線を用いて適切に算定した絶対値で示す。標準試料としては、ポリスチレン標準試料、ポリメチルメタクリレート標準試料、ポリエチレングリコール標準試料などが挙げられる。 The analysis by the size exclusion chromatography method is a calibration method using a standard sample of the same kind and monodisperse with a known molecular weight, and an absolute molecular weight evaluation using a multi-angle light scattering detector. In the present specification, in the examples of the present specification, the values of the number average molecular weight (Mn) and the weight average molecular weight (Mw) are appropriately calculated using a multi-angle light scattering detector and molecular weight calibration curves of various standard samples. It is shown by the absolute value. Examples of the standard sample include a polystyrene standard sample, a polymethylmethacrylate standard sample, and a polyethylene glycol standard sample.
 基材表面における高分子鎖の密度は、0.01鎖/nm以上であることが好ましく、0.05鎖/nm以上であることがより好ましく、0.1鎖/nm以上であることが更に好ましく、0.2鎖/nm以上であることが特に好ましい。上限は、特に限定されないが1.0鎖/nm以下とすることができ、0.9鎖/nm以下とすることもできる。 The density of the polymer chains on the surface of the base material is preferably 0.01 chains / nm 2 or more, more preferably 0.05 chains / nm 2 or more, and 0.1 chains / nm 2 or more. It is more preferable, and 0.2 chain / nm 2 or more is particularly preferable. The upper limit is not particularly limited, but may be 1.0 chain / nm 2 or less, and may be 0.9 chain / nm 2 or less.
 高分子鎖の密度は、単位面積当たりのグラフト量(W)と高分子鎖集合体の数平均分子量(M)を測定し、下記式を用いて求めることができる。
 高分子鎖の密度(鎖/nm)=W(g/nm)/M×(アボガドロ数)
 式において、Wは単位面積当たりのグラフト量を表し、Mは高分子鎖集合体の数平均分子量を表す。
 単位面積当たりのグラフト量(W)は、基材がシリコンウエハのような平面基板の場合には、エリプソメトリー法により乾燥状態の膜厚、すなわち、高分子鎖集合体層の乾燥状態における厚みを測定し、バルクフィルムの密度を用いて、単位面積当たりのグラフト量(W)を算出することにより求めることができる。
 高分子鎖集合体の数平均分子量(M)の測定方法については、上述した方法にて測定することができる。
The density of the polymer chains can be obtained by measuring the graft amount (W) per unit area and the number average molecular weight (M n ) of the polymer chain aggregates and using the following formula.
Polymer chain density (chain / nm 2 ) = W (g / nm 2 ) / M n × (Avogadro's number)
In the formula, W represents the graft amount per unit area, and Mn represents the number average molecular weight of the polymer chain aggregate.
When the substrate is a flat substrate such as a silicon wafer, the graft amount (W) per unit area is the thickness in the dry state by the ellipsometry method, that is, the thickness of the polymer chain aggregate layer in the dry state. It can be obtained by measuring and calculating the graft amount (W) per unit area using the density of the bulk film.
The method for measuring the number average molecular weight (M n ) of the polymer chain aggregate can be measured by the method described above.
 基材表面における高分子鎖の表面占有率(ポリマーの断面積×高分子鎖の密度×100)は、1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることがさらに好ましい。表面占有率は、基材表面をグラフト点(1つ目の構成単位)が占める割合を意味し、最密充填で100%である。高分子鎖の密度の算出方法については、上述した方法にて測定することができる。ポリマーの断面積は、ポリマーの伸びきり形態における繰り返し単位長さとポリマーのバルク密度を用いて求めることができる。 The surface occupancy of the polymer chains on the surface of the base material (polymer cross-sectional area x polymer chain density x 100) is preferably 1% or more, more preferably 5% or more, and 10% or more. It is more preferable to have. The surface occupancy rate means the ratio of the graft points (first structural unit) to the surface of the base material, and is 100% in the dense packing. The method for calculating the density of the polymer chains can be measured by the method described above. The cross-sectional area of the polymer can be determined using the repeating unit length and the bulk density of the polymer in the stretched form of the polymer.
[B]ボトルブラシ構造を有するポリマー
 次に、ボトルブラシ構造を有するポリマーについて説明する。
 ボトルブラシ構造は、主鎖から複数の側鎖が分岐していて、全体としてボトルブラシ様の形状をなす分岐高分子構造のことをいう。ボトルブラシ構造を有するポリマーは、主鎖が基材を構成し、側鎖が高分子鎖集合体を構成するが、さらに、ボトルブラシ構造を有するポリマーが、担体としての基材に固定されていてもよい。担体については上述したものが挙げられる。また、この場合、ボトルブラシ構造を有するポリマーとポリマーブラシの両方を基材である担体に固定してもよい。その場合、ポリマーブラシは濃厚ポリマーブラシであることが好ましい。
[B] Polymer having a bottle brush structure Next, a polymer having a bottle brush structure will be described.
The bottle brush structure is a branched polymer structure in which a plurality of side chains are branched from the main chain to form a bottle brush-like shape as a whole. In the polymer having a bottle brush structure, the main chain constitutes a base material and the side chains form a polymer chain aggregate, and further, the polymer having a bottle brush structure is fixed to the base material as a carrier. May be good. Examples of the carrier include those described above. Further, in this case, both the polymer having the bottle brush structure and the polymer brush may be fixed to the carrier which is the base material. In that case, the polymer brush is preferably a concentrated polymer brush.
 ボトルブラシ構造を有するポリマーも、グラフト重合法により得ることができる。このグラフト重合は、予め合成した反応性側鎖(グラフト鎖)を、主鎖となる幹ポリマーに結合させるGrafting-to法、マクロ開始剤(重合開始基を導入した幹ポリマー)の重合開始基から側鎖(グラフト鎖)を成長させるGrafting-from法、マクロモノマー(側鎖構成ポリマーの末端に重合性官能基を有するポリマー)を重合させるGrafting-through法を用いて行うことができる。また、これらの側鎖や幹ポリマーの合成には、リビングアニオン重合、開環メタセシス重合(ROMP)、あるいは汎用性の高いリビングラジカル重合法(LRP)を用いることができる。ボトルブラシ構造を有するポリマーの好ましい例として、式(11)で表される化合物を挙げることができる。 A polymer having a bottle brush structure can also be obtained by the graft polymerization method. This graft polymerization is carried out from a Grafting-to method in which a pre-synthesized reactive side chain (graft chain) is bonded to a stem polymer which is a main chain, and a polymerization initiating group of a macroinitiator (a stem polymer in which a polymerization initiating group is introduced). It can be carried out by using the Grafting-from method for growing a side chain (graft chain) and the Grafting-throwh method for polymerizing a macromonomer (a polymer having a polymerizable functional group at the end of a side chain constituent polymer). In addition, living anionic polymerization, ring-opening metathesis polymerization (ROMP), or a highly versatile living radical polymerization method (LRP) can be used for the synthesis of these side chains and stem polymers. A preferable example of the polymer having a bottle brush structure is a compound represented by the formula (11).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(11)中、R及びRは、それぞれ独立に水素原子またはメチル基を表し、Rは置換基を表し、炭素数が1~10のアルキル基であることが好ましい。R及びRは原子または原子団からなる末端基を表し、水素原子、ハロゲン、重合開始剤由来の官能基等が挙げられる。Xは、OまたはNHを表し、Yは、2価の有機基を表し、nは、10以上の整数を表し、Polymer Aは、高分子鎖を表す。式(11)で表される化合物では、nで括られた構成単位の繰り返し構造がボトルブラシ構造の主鎖に相当し、Polymer Aがボトルブラシ構造の側鎖に相当する。 In the formula (11), R 1 and R 2 each independently represent a hydrogen atom or a methyl group, and R 3 represents a substituent, preferably an alkyl group having 1 to 10 carbon atoms. R 4 and R 5 represent a terminal group composed of an atom or an atomic group, and examples thereof include a hydrogen atom, a halogen, and a functional group derived from a polymerization initiator. X represents O or NH, Y represents a divalent organic group, n represents an integer of 10 or more, and Polymer A represents a polymer chain. In the compound represented by the formula (11), the repeating structure of the structural unit enclosed by n corresponds to the main chain of the bottle brush structure, and Polymer A corresponds to the side chain of the bottle brush structure.
 Yが表す有機基として、炭素数1~10のアルキレン基、炭素数1~5のオキシアルキレン基(RO)(Rは炭素数1~5のアルキレン基を表す)、このオキシアルキレン基が複数連結した連結構造、または、これらの有機基(炭素数1~10のアルキレン基、炭素数1~5のオキシアルキレン基及びオキシアルキレン基の連結構造)のうちの少なくとも2つの組み合わせからなる2価の有機基等を挙げることができる。ここで、アルキレン基およびオキシアルキレン基のアルキレン基は、直鎖状であっても分枝状であってもよく、環状構造を有していてもよい。アルキレン基の具体例として、エチレン基、プロピレン基、ブチレン基、シクロヘキシレン基を挙げることができる。このアルキレン基およびオキシアルキレン基のアルキレン基は、置換基で置換されていてもよい。置換基として、炭素数1~10のアルキル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基を挙げることができ、これらの置換基はさらに置換基で置換されていてもよい。Polymer Aの説明と好ましい範囲、具体例については、上述した高分子鎖上記の(高分子鎖)の欄の記載を参照することができる。Polymer Aは、主鎖の構成単位同士で、互いに同一であっても異なっていてもよい。 As the organic group represented by Y, an alkylene group having 1 to 10 carbon atoms, an oxyalkylene group (RO) having 1 to 5 carbon atoms (R represents an alkylene group having 1 to 5 carbon atoms), and a plurality of these oxyalkylene groups are linked. Divalent organic consisting of at least two combinations of these organic groups (alkylene groups having 1 to 10 carbon atoms, oxyalkylene groups having 1 to 5 carbon atoms and linked structures of oxyalkylene groups). The groups can be mentioned. Here, the alkylene group and the alkylene group of the oxyalkylene group may be linear or branched, and may have a cyclic structure. Specific examples of the alkylene group include an ethylene group, a propylene group, a butylene group, and a cyclohexylene group. The alkylene group and the alkylene group of the oxyalkylene group may be substituted with a substituent. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms, and these substituents are further substituted with a substituent. May be good. For the description of Polymer A, a preferable range, and specific examples, the description in the above-mentioned (Polymer chain) column of the polymer chain can be referred to. Polymer A may be the same as or different from each other among the constituent units of the main chain.
 ボトルブラシ構造を有するポリマーについて、主鎖を中心軸とし、その中心軸から側鎖(グラフト鎖)を直線状に延ばして、その先端を含む面(仮想外周部)を想定したとき、そのポリマーの外形は、その先端を含む面を側面とする円柱と捉えることができる。こうした外形を有するポリマーでは、側鎖(グラフト鎖)の長さが長くなる程、その側面における側鎖(グラフト鎖)の密度が低下し、側鎖(グラフト鎖)の構造上の自由度が高くなる。その結果、側鎖(グラフト鎖)は自由に折り畳まれ得ることになる。 For a polymer having a bottle brush structure, when the main chain is the central axis, the side chain (graft chain) is extended linearly from the central axis, and the surface including the tip (virtual outer peripheral portion) is assumed, the polymer of the polymer The outer shape can be regarded as a cylinder whose side surface is the surface including its tip. In a polymer having such an outer shape, the longer the length of the side chain (graft chain), the lower the density of the side chain (graft chain) on the side chain, and the higher the degree of freedom in the structure of the side chain (graft chain). Become. As a result, the side chain (graft chain) can be freely folded.
 ボトルブラシ構造を有するポリマーにおいて、側鎖の表面占有率(σ)は、下記式(1)で表される。 In a polymer having a bottle brush structure, the surface occupancy (σ * ) of the side chain is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(1)において、σは、下記式(2)で求められる、仮想外周部の側鎖の密度を表し、側鎖部分の繰り返し単位1個当たりの体積(V[nm])は、下記式(3)で求められる。 In the formula (1), σ represents the density of the side chain of the virtual outer peripheral portion, which is obtained by the following formula (2), and the volume (V 0 [nm 3 ]) per repeating unit of the side chain portion is It is calculated by the following formula (3).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(2)において、αは、主鎖および側鎖部分の繰り返し単位の長さを表す。 In equation (2), α represents the length of the repeating unit of the main chain and the side chain portion.
 式(2)で求められる側鎖の密度(σ)は、ポリマー側面の、単位面積当たりの側鎖の数を示すため、式(1)で求められる側鎖の表面占有率(σ)は、側鎖を主鎖から垂直方向に直線上に伸ばした状態での、ポリマー側面における側鎖先端部が占める割合を表す値である。側鎖の表面占有率(σ)は0~100%の値を示し、数値が大きくなる程、ポリマー側面の側鎖先端部が占める割合が大きくなり、側鎖の自由度が制限されることになる。すなわち、側鎖の表面占有率は、側鎖の自由度を反映する数値であり、側鎖の表面占有率(σ)が高い程、側鎖の構造上の自由度が制限される。その結果、側鎖が主鎖に対して、略垂直方向に延びた状態を維持することができ、その構造に特有の性質を示すと推測される。 Since the side chain density (σ) obtained by the formula (2) indicates the number of side chains per unit area on the side chain of the polymer, the side chain surface occupancy (σ * ) obtained by the formula (1) is , A value representing the proportion of the side chain tip on the side chain of the polymer in a state where the side chain is extended in a straight line in the vertical direction from the main chain. The surface occupancy (σ * ) of the side chain shows a value of 0 to 100%, and the larger the value, the larger the ratio occupied by the tip of the side chain on the side chain of the polymer, and the degree of freedom of the side chain is limited. become. That is, the surface occupancy of the side chain is a numerical value that reflects the degree of freedom of the side chain, and the higher the surface occupancy (σ * ) of the side chain, the more the structural freedom of the side chain is limited. As a result, it is presumed that the side chain can be maintained in a state of extending substantially perpendicular to the main chain, and exhibits properties peculiar to the structure.
 ボトルブラシ構造を有するポリマーの側鎖の表面占有率は1%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更に好ましい。 The surface occupancy of the side chain of the polymer having a bottle brush structure is preferably 1% or more, more preferably 5% or more, and further preferably 10% or more.
 ボトルブラシ構造を有するポリマーの側鎖の密度は、0.01鎖/nm以上であることが好ましく、0.05鎖/nm以上であることがより好ましく、0.1鎖/nm以上であることが更に好ましく、0.2鎖/nm以上であることが特に好ましい。上限は、特に限定されないが1.0鎖/nm以下とすることができ、0.9鎖/nm以下とすることもできる。 The density of the side chains of the polymer having a bottle brush structure is preferably 0.01 chain / nm 2 or more, more preferably 0.05 chain / nm 2 or more, and 0.1 chain / nm 2 or more. Is more preferable, and 0.2 chain / nm 2 or more is particularly preferable. The upper limit is not particularly limited, but may be 1.0 chain / nm 2 or less, and may be 0.9 chain / nm 2 or less.
 ボトルブラシ構造を有するポリマーの数平均分子量は、1,000~10,000,000であることが好ましく、1,000~1,000,000であることがより好ましく、5,000~500,000であることがさらに好ましい。 The number average molecular weight of the polymer having a bottle brush structure is preferably 1,000 to 10,000,000, more preferably 1,000 to 1,000,000, and 5,000 to 500,000. Is more preferable.
 ボトルブラシ構造を有するポリマーの分子量分布指数(PDI=M/M)は、1.0~2.0が好ましく、1.0~1.5がより好ましい。分子量分布指数が上記範囲であれば、高分子鎖集合体を構成する高分子鎖の最表面まで高密度な状態を維持しうるという効果が期待できる。 The molecular weight distribution index (PDI = M w / M n ) of the polymer having a bottle brush structure is preferably 1.0 to 2.0, more preferably 1.0 to 1.5. When the molecular weight distribution index is within the above range, the effect of maintaining a high-density state up to the outermost surface of the polymer chains constituting the polymer chain aggregate can be expected.
[液状物質]
 本発明の部材の高分子鎖集合体を含む層は液状物質を保持している。
[Liquid substance]
The layer containing the polymer chain aggregate of the member of the present invention holds a liquid substance.
 液状物質としては、水、イオン液体、フッ素系溶剤、オイル(炭化水素系オイル、シリコーンオイルなど)等が挙げられ、水及びイオン液体から選ばれる少なくとも1種であることが好しい。液状物質は親水性の液状物質であってもよく、疎水性の液状物質であってもよい。親水性の液状物質としては、水、親水性イオン液体などが挙げられる。疎水性の液状物質としては、疎水性イオン液体、フッ素系溶剤、オイルが挙げられる。液状物質は、1種の液状物質のみで構成されていてもよく、2種以上の液状物質の混合物であってもよい。液状物質には、添加剤が含まれていてもよい。 Examples of the liquid substance include water, ionic liquid, fluorine-based solvent, oil (hydrocarbon-based oil, silicone oil, etc.), and preferably at least one selected from water and ionic liquid. The liquid substance may be a hydrophilic liquid substance or a hydrophobic liquid substance. Examples of the hydrophilic liquid substance include water and a hydrophilic ionic liquid. Examples of the hydrophobic liquid substance include hydrophobic ionic liquids, fluorine-based solvents, and oils. The liquid substance may be composed of only one kind of liquid substance, or may be a mixture of two or more kinds of liquid substances. The liquid substance may contain additives.
 イオン液体とは、イオン性液体または常温溶融塩とも呼称される、イオン伝導性を有する低融点の塩である。イオン液体の多くは、カチオンとしての有機オニウムイオンと、アニオンとしての有機または無機アニオンとを組み合わせることにより得られる比較的低融点の特性を有するものである。イオン液体の融点は、通常100℃以下、好ましくは室温(25℃)以下である。イオン液体の融点は、示差走査熱量計(DSC)などにより測定することができる。 An ionic liquid is a low melting point salt having ionic conductivity, which is also called an ionic liquid or a room temperature molten salt. Most ionic liquids have relatively low melting point properties obtained by combining organic onium ions as cations with organic or inorganic anions as anions. The melting point of the ionic liquid is usually 100 ° C. or lower, preferably room temperature (25 ° C.) or lower. The melting point of the ionic liquid can be measured by a differential scanning calorimeter (DSC) or the like.
 イオン液体としては、下記式(20)で表される化合物を用いることができる。このイオン液体の融点は、50℃以下であることが好ましく、25℃以下であることがより好ましい。 As the ionic liquid, a compound represented by the following formula (20) can be used. The melting point of this ionic liquid is preferably 50 ° C. or lower, more preferably 25 ° C. or lower.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(20)において、R21、R22、R23およびR24は、各々独立に炭素数1~5のアルキル基、またはR’-O-(CH-で表されるアルコキシアルキル基を表し、R’はメチル基またはエチル基を表し、nは1~4の整数である。R21、R22、R23およびR24は互いに同一であっても異なっていてもよい。また、R21、R22、R23およびR24のいずれか2つが互いに結合して環状構造を形成していてもよい。但し、R21、R22、R23およびR24の少なくとも1つはアルコキシアルキル基である。X21は窒素原子またはリン原子を表し、Yは一価のアニオンを表す。 In formula (20), R 21 , R 22 , R 23 and R 24 are each independently an alkyl group having 1 to 5 carbon atoms or an alkoxyalkyl group represented by R'-O- (CH 2 ) n-. , R'represents a methyl group or an ethyl group, and n is an integer of 1 to 4. R 21 , R 22 , R 23 and R 24 may be the same or different from each other. Further, any two of R 21 , R 22 , R 23 and R 24 may be bonded to each other to form an annular structure. However, at least one of R 21 , R 22 , R 23 and R 24 is an alkoxyalkyl group. X 21 represents a nitrogen atom or a phosphorus atom, and Y represents a monovalent anion.
 R21、R22、R23およびR24における炭素数1~5のアルキル基として、メチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。
 R21、R22、R23およびR24において、R’-O-(CH-で表されるアルコキシアルキル基としては、メトキシメチル基またはエトキシメチル基、2-メトキシエチル基または2-エトキシエチル基、3-メトキシプロピル基または3-エトキシプロピル基、4-メトキシブチル基または4-エトキシブチル基等が好ましい。
 R21、R22、R23およびR24のいずれか2つが互いに結合して環状構造を形成している化合物としては、X21に窒素原子を採用した場合には、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環等を有する4級アンモニウム塩等が好ましく、X21にリン原子を採用した場合には、ペンタメチレンホスフィン(ホスホリナン)環等を有する4級ホスホニウム塩等が好ましい。また、4級アンモニウム塩としては、置換基として、R’がメチル基であり、nが2の2-メトキシエチル基を少なくとも1つ有するものが好適である。
 Yにおける一価のアニオンとしては、BF 、PF 、AsF 、SbF 、AlCl 、NbF 、HSO 、ClO 、CHSO 、CFSO 、CFCO 、(CFSO、Cl、Br、I等が挙げられ、BF 、PF 、(CFSO、CFSO 、またはCFCO であることが好適である。
Examples of the alkyl group having 1 to 5 carbon atoms in R 21 , R 22 , R 23 and R 24 include a methyl group, an ethyl group, an n-propyl group, a 2-propyl group, an n-butyl group and an n-pentyl group. Be done.
In R 21 , R 22 , R 23 and R 24 , the alkoxyalkyl group represented by R'-O- (CH 2 ) n- includes a methoxymethyl group or an ethoxymethyl group, a 2-methoxyethyl group or 2- An ethoxyethyl group, a 3-methoxypropyl group or a 3-ethoxypropyl group, a 4-methoxybutyl group or a 4-ethoxybutyl group and the like are preferable.
As a compound in which any two of R 21 , R 22 , R 23 and R 24 are bonded to each other to form a cyclic structure, when a nitrogen atom is adopted for X 21 , an aziridine ring, an azetidine ring and a pyrrolidine are used. A quaternary ammonium salt having a ring, a piperidine ring or the like is preferable, and when a phosphorus atom is adopted for X 21 , a quaternary phosphonium salt having a pentamethylenephosphine (phosphorinan) ring or the like is preferable. The quaternary ammonium salt preferably has at least one 2-methoxyethyl group in which R'is a methyl group and n is 2 as a substituent.
The monovalent anion in Y, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, AlCl 4 -, NbF 6 -, HSO 4 -, ClO 4 -, CH 3 SO 3 -, CF 3 SO 3 -, CF 3 CO 2 - , (CF 3 SO 2) 2 N -, Cl -, Br -, I - , and the like, BF 4 -, PF 6 - , (CF 3 SO 2) 2 N -, CF 3 SO 3 -, or CF 3 CO 2 - is suitably a.
 イオン液体としては、式(20)のR21がメチル基で、R23およびR24がエチル基で、R24がR’-O-(CH-で表されるアルコキシアルキル基である構造の化合物が好ましく用いられる。 As the ionic liquid, R 21 of the formula (20) is a methyl group, R 23 and R 24 are ethyl groups, and R 24 is an alkoxyalkyl group represented by R'-O- (CH 2 ) n-. A compound having a structure is preferably used.
 式(20)で表される化合物のうち、好適に用いられる4級アンモニウム塩および4級ホスホニウム塩の具体例として、以下に示す化合物が挙げられる。 Among the compounds represented by the formula (20), the following compounds can be mentioned as specific examples of the quaternary ammonium salt and the quaternary phosphonium salt that are preferably used.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、イオン液体としては、イミダゾリウムイオンを含むイオン液体や芳香族系カチオンを含むイオン液体を用いることもできる。 Further, as the ionic liquid, an ionic liquid containing imidazolium ions or an ionic liquid containing aromatic cations can also be used.
 高分子鎖集合体を含む層に液状物質を保持させる方法は特に限定されない。例えば、高分子鎖集合体を含む層の表面に液状物質を塗布した後、静置して保持させる方法や、高分子鎖集合体を含む層を形成した基材を液状物質中に浸漬させる方法等が挙げられる。また、高分子鎖集合体が大気中の水分を取り込んで高分子鎖集合体を含む層中に液状物質である水を保持することもある。 The method for retaining the liquid substance in the layer containing the polymer chain aggregate is not particularly limited. For example, a method in which a liquid substance is applied to the surface of a layer containing a polymer chain aggregate and then allowed to stand and held, or a method in which a base material on which a layer containing a polymer chain aggregate is formed is immersed in the liquid substance. And so on. In addition, the polymer chain aggregate may take in moisture in the atmosphere and retain water, which is a liquid substance, in the layer containing the polymer chain aggregate.
[部材の特性]
 本発明の部材表面の25℃の水に対する接触角は、10°以上であることが好ましく、20°以上であることがより好ましく、45°以上であることが更に好ましく、48°以上であることがより一層好ましく、48~80°であることが特に好ましい。接触角が上記範囲であれば、より優れた水滴付着抑制効果、着氷抑制効果および氷核形成抑制効果が得られる。本明細書において、部材表面の水に対する接触角の値は、部材表面に水を1μL着摘したのち、着滴1秒後の部材表面の水の接触角を測定して求めた値である。
[Characteristics of members]
The contact angle of the surface of the member of the present invention with water at 25 ° C. is preferably 10 ° or more, more preferably 20 ° or more, further preferably 45 ° or more, and 48 ° or more. Is even more preferable, and 48 to 80 ° is particularly preferable. When the contact angle is within the above range, a more excellent effect of suppressing water droplet adhesion, an effect of suppressing icing, and an effect of suppressing ice nucleation can be obtained. In the present specification, the value of the contact angle of the surface of the member with respect to water is a value obtained by measuring the contact angle of water on the surface of the member 1 second after applying 1 μL of water to the surface of the member.
[部材の形状]
 本発明の部材の形状は、特に限定されない。チューブ状、シート状、繊維状、ストリップ状、フィルム状、板状、箔状、膜状、ペレット状、粉末状、粒子状などが挙げられる。
[Shape of member]
The shape of the member of the present invention is not particularly limited. Examples include tube, sheet, fibrous, strip, film, plate, foil, film, pellet, powder, and particle.
[部材の適用形態]
 本発明の部材は、様々な物品に適用することができる。例えば、窓ガラス、車両用ガラス、ミラー、熱交換機、配管、容器などが挙げられる。
[Applicable form of member]
The members of the present invention can be applied to various articles. For example, window glass, vehicle glass, mirrors, heat exchangers, pipes, containers and the like can be mentioned.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described in more detail with reference to examples below. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
[試験例1]
(実施例1)
 サンプルパン(Tzero Low-Mass Pan、材質:アルミニウム、TA Instruments社製)を、アセトン中で30分間、クロロホルム中で30分間および2-プロパノール中で30分間それぞれ超音波洗浄を行ったのち、サンプルパンの両面にUVオゾンを10分間照射した。次に、このサンプルパンを、NH0.24mol/L、テトラエトキシシラン0.03mol/Lのエタノール溶液に24時間浸漬してサンプルパンの表面にシリカコーティングを施した。次に、シリカコーティングを施したサンプルパンを、エタノール中で30分間超音波洗浄した後、(2-ブロモ-2-メチル)プロピオニルオキシプロピルトリメトキシシラン(BPM)/エタノール/アンモニア水=1/89/10(質量比)の混合液に浸漬し、24時間浸漬してサンプルパンに重合開始基を導入した。次に、重合開始基を導入後、サンプルパンの裏面のみにUVオゾンを10分間照射してサンプルパンの裏面のみ重合開始基を除去した。次に、メトキシポリ(エチレングリコール)メタクリレート(Aldrich製、code 447943、数平均分子量=500)(以下、PEGMA)と、エチル2-ブロモ-2-メチルプロピオネート(以下、EBIB)と、臭化第一銅(以下、CuBr(I)と、臭化第二銅(以下、CuBr(II)と、4,4’-ジノニル-2,2’-ビピリジン(以下、diNbip)との混合物(PEGMA/EBIB/CuBr(I)/CuBr(II)/diNbip=20万/1/648/72/1440(モル比))の50質量部と、アニソールの50質量部とを入れたフッ素樹脂容器に、上記重合開始基を導入したサンプルパンを入れた。容器を密閉してアルミ袋で覆い、高圧反応装置に入れて400MPa、60℃で4時間重合反応を行った。重合反応終了後、容器からサンプルパンを取り出し、振とう装置を用いてテトラヒドロフランで洗浄した。その後、乾燥することによって、サンプルパン内表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を形成して実施例1の試験体を得た。
[Test Example 1]
(Example 1)
The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. Next, this sample pan was immersed in an ethanol solution of NH 3 0.24 mol / L and tetraethoxysilane 0.03 mol / L for 24 hours, and the surface of the sample pan was coated with silica. Next, the silica-coated sample pan was ultrasonically washed in ethanol for 30 minutes, and then (2-bromo-2-methyl) propionyloxypropyltrimethoxysilane (BPM) / ethanol / aqueous ammonia = 1/89. It was immersed in a mixed solution of 1/10 (mass ratio) and immersed for 24 hours to introduce a polymerization initiating group into a sample pan. Next, after introducing the polymerization initiating group, UV ozone was irradiated only on the back surface of the sample pan for 10 minutes to remove the polymerization initiating group only on the back surface of the sample pan. Next, methoxypoly (ethylene glycol) methacrylate (manufactured by Aldrich, code 447943, number average molecular weight = 500) (hereinafter, PEGMA), ethyl2-bromo-2-methylpropionate (hereinafter, EBIB), and bromide. A mixture (PEGMA / EBIB) of monocopper (hereinafter, CuBr (I), cupric bromide (hereinafter, CuBr (II)), and 4,4'-dinonyl-2,2'-bipyridine (hereinafter, diNbip)). / CuBr (I) / CuBr (II) / diNbip = 200,000 / 1/648/72/1440 (molar ratio)) in 50 parts by mass and 50 parts by mass of anisole in a fluororesin container. A sample pan into which the initiator group was introduced was placed. The container was sealed and covered with an aluminum bag, and the polymerization reaction was carried out at 400 MPa and 60 ° C. for 4 hours in a high-pressure reactor. After the polymerization reaction was completed, the sample pan was removed from the container. It was taken out and washed with tetrahydrofuran using a shaking device. Then, by drying, a brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed on the inner surface of the sample pan. A test piece of Example 1 was obtained.
 サンプルパン内表面に形成されたポリマーブラシ層の膜厚は630nm、数平均分子量が288万、分子量分布指数(PDI)が1.60、ポリマー重合率が6%、高分子鎖の密度が0.15鎖/nm、高分子鎖の表面占有率は44%であった。なお、ポリマーブラシ層の膜厚は分光エリプソメトリー法で測定した。ポリマーブラシ層の数平均分子量および分子量分布指数は、展開溶媒として10mMのリチウムブロマイドを含むジメチルホルムアミドを用い、検出器として多角度光散乱検出器を用いたゲル浸透クロマトグラフィー法で算出した。また、ポリマー重合率は、H-NMRにて測定した。 The thickness of the polymer brush layer formed on the inner surface of the sample pan is 630 nm, the number average molecular weight is 2.88 million, the molecular weight distribution index (PDI) is 1.60, the polymer polymerization rate is 6%, and the density of polymer chains is 0. The surface occupancy of the polymer chain was 14% at 15 chains / nm 2. The film thickness of the polymer brush layer was measured by a spectroscopic ellipsometry method. The number average molecular weight and the molecular weight distribution index of the polymer brush layer were calculated by gel permeation chromatography using dimethylformamide containing 10 mM lithium bromide as a developing solvent and a multi-angle light scattering detector as a detector. The polymer polymerization rate was measured by 1 1 H-NMR.
(比較例1)
 サンプルパン(Tzero Low-Mass Pan、材質:アルミニウム、TA Instruments社製)を、アセトン中で30分間、クロロホルム中で30分間および2-プロパノール中で30分間それぞれ超音波洗浄を行ったのち、サンプルパンの両面にUVオゾンを10分間照射した。このサンプルパンを比較例1の試験体とした。
(Comparative Example 1)
The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. This sample pan was used as the test body of Comparative Example 1.
(比較例2)
 サンプルパン(Tzero Low-Mass Pan、材質:アルミニウム、TA Instruments社製)を、アセトン中で30分間、クロロホルム中で30分間および2-プロパノール中で30分間それぞれ超音波洗浄を行ったのち、サンプルパンの両面にUVオゾンを10分間照射した。次に、このサンプルパンを、NH0.24mol/L、テトラエトキシシラン0.03mol/Lのエタノール溶液に24時間浸漬してサンプルパン表面にシリカコーティングを施した。このシリカコーティングを施したサンプルパンを比較例2の試験体とした。
(Comparative Example 2)
The sample pan (Tzero Low-Mass Pan, material: aluminum, manufactured by TA Instruments) was ultrasonically cleaned in acetone for 30 minutes, chloroform for 30 minutes, and 2-propanol for 30 minutes, respectively, and then the sample pan. Both sides of the surface were irradiated with UV ozone for 10 minutes. Next, this sample pan was immersed in an ethanol solution of NH 3 0.24 mol / L and tetraethoxysilane 0.03 mol / L for 24 hours, and the surface of the sample pan was coated with silica. This silica-coated sample pan was used as the test piece of Comparative Example 2.
[評価]
 実施例1、比較例1、比較例2の各試験体に蒸留水を吹付けて少量の水を添加した後、蓋(Tzero Hermetic Lid、TA Instruments社製)を被せて密封し、Discovery DSC 2500型示差走査熱量計(TA Instruments社製)を用いて、25℃の状態から5℃/分の冷却速度で-90℃まで冷却した後、2℃/分の昇温速度で25℃まで昇温して示差走査熱量測定を行い、水の吸熱および発熱に伴う熱流の変化を検出した。実施例1の試験体を用いた場合は、昇温時に-40℃付近に吸熱ピークが見られたが、比較例1、2の試験体を用いた場合は、0℃付近にのみ吸熱ピークが見られた。昇温時における吸熱ピークおよび、吸熱ピーク面積から求める融解熱ΔHから、自由水(0℃で融解した水)、結合水(-40℃近傍で融解した水)、不凍水(-90℃でも凍結しなかった水)と分類した水の重量をそれぞれ求めた。結果を以下の表に示す。なお、各分類された水の重量は、以下の式から算出した。
 各分類された水の重量={各分類された水の融解熱ΔH(J/g)/333.5}×添加した水の重量
Figure JPOXMLDOC01-appb-T000010
[Evaluation]
Distilled water was sprayed onto each of the test specimens of Example 1, Comparative Example 1, and Comparative Example 2 to add a small amount of water, and then a lid (Tzero Hermetic Lid, manufactured by TA Instruments) was put on the test piece to seal the test piece, and the Discovery DSC 2500 Using a differential scanning calorimeter (manufactured by TA Instruments), cool from 25 ° C to -90 ° C at a cooling rate of 5 ° C / min, and then raise to 25 ° C at a heating rate of 2 ° C / min. Then, the differential scanning calorimetry was performed, and the change in heat flow due to the heat absorption and heat generation of water was detected. When the test piece of Example 1 was used, an endothermic peak was observed near −40 ° C. when the temperature was raised, but when the test pieces of Comparative Examples 1 and 2 were used, an endothermic peak was observed only around 0 ° C. It was seen. From the endothermic peak at the time of temperature rise and the heat of fusion ΔH obtained from the endothermic peak area, free water (water melted at 0 ° C), bound water (water melted near -40 ° C), antifreeze water (even at -90 ° C). The weights of the water classified as (non-frozen water) were calculated. The results are shown in the table below. The weight of each classified water was calculated from the following formula.
Weight of each classified water = {heat of fusion of each classified water ΔH (J / g) /333.5} × weight of added water
Figure JPOXMLDOC01-appb-T000010
 上記表に示すように、実施例1の試験体を使用した試験例1-1、試験例1-2は、0℃未満でも凍結しない結合水および不凍水が存在していることが分かった。この結果から、実施例1の試験体は、水が氷結しにくく、着氷抑制性や氷核形成抑制性に優れていることが把握できる。 As shown in the above table, it was found that Test Example 1-1 and Test Example 1-2 using the test body of Example 1 had bound water and antifreeze water that did not freeze even at a temperature lower than 0 ° C. .. From this result, it can be understood that the test body of Example 1 is less likely to freeze water and is excellent in icing suppression property and ice nucleation suppression property.
 試験例1-2において、蓋に穴をあけ、150℃で30分、200℃で30分乾燥した。200℃で30分乾燥後は重量変化がないことから完全に乾燥したと判断した。乾燥前後の試験体の重量変化から、試験例1-2の試験体に含まれていた含水量は0.0167mgであった。試験例1-2では、添加した水の量が0.0150mgであることから、試験例1-2においては試験体のポリマーブラシ層が大気中の水を約0.0017mg吸水していたと推測される。 In Test Example 1-2, a hole was made in the lid and dried at 150 ° C. for 30 minutes and at 200 ° C. for 30 minutes. Since there was no change in weight after drying at 200 ° C. for 30 minutes, it was judged that the product was completely dried. From the change in weight of the test piece before and after drying, the water content contained in the test piece of Test Example 1-2 was 0.0167 mg. In Test Example 1-2, since the amount of water added was 0.0150 mg, it is presumed that in Test Example 1-2, the polymer brush layer of the test body absorbed about 0.0017 mg of water in the atmosphere. To.
[試験例2]
(実施例11)
 サンプルパンのかわりにシリコンウエハを用いた以外は実施例1と同様にしてシリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を5nm形成して実施例11の試験体を得た。この試験体を大気中に24時間以上静置してポリマーブラシ層に水を吸湿させたのち、試験体のポリマーブラシ層表面に25℃の水を1μL着摘し、着滴1秒後の水の接触角を測定した。実施例11の試験体の25℃の水に対する接触角は45.3°であった。
[Test Example 2]
(Example 11)
A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 11 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 μL of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 11 with water at 25 ° C. was 45.3 °.
(実施例12)
 サンプルパンのかわりにシリコンウエハを用いた以外は実施例1と同様にしてシリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を380nm形成して実施例12の試験体を得た。この試験体を大気中に24時間以上静置してポリマーブラシ層に水を吸湿させたのち、試験体のポリマーブラシ層表面に25℃の水を1μL着摘し、着滴1秒後の水の接触角を測定した。実施例12の試験体の25℃の水に対する接触角は49.4°であった。
(Example 12)
A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 380 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 12 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 μL of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 12 with water at 25 ° C. was 49.4 °.
(実施例13)
 サンプルパンのかわりにシリコンウエハを用いた以外は実施例1と同様にしてシリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を750nm形成して実施例13の試験体を得た。この試験体を大気中に24時間以上静置してポリマーブラシ層に水を吸湿させたのち、試験体のポリマーブラシ層表面に25℃の水を1μL着摘し、着滴1秒後の水の接触角を測定した。実施例13の試験体の25℃の水に対する接触角は61.3°であった。
(Example 13)
A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 750 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 13 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 μL of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test body of Example 13 with water at 25 ° C. was 61.3 °.
(実施例14)
 サンプルパンのかわりにシリコンウエハを用いた以外は実施例1と同様にしてシリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を1070nm形成して実施例14の試験体を得た。この試験体を大気中に24時間以上静置してポリマーブラシ層に水を吸湿させたのち、試験体のポリマーブラシ層表面に25℃の水を1μL着摘し、着滴1秒後の水の接触角を測定した。実施例14の試験体の25℃の水に対する接触角は64.7°であった。
(Example 14)
A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 1070 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 14 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 μL of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 14 with water at 25 ° C. was 64.7 °.
(実施例15)
 サンプルパンのかわりにシリコンウエハを用いた以外は実施例1と同様にしてシリコンウエハ表面に、複数の高分子鎖からなるブラシ状の高分子鎖集合体(ポリマーブラシ層)を1250nm形成して実施例15の試験体を得た。この試験体を大気中に24時間以上静置してポリマーブラシ層に水を吸湿させたのち、試験体のポリマーブラシ層表面に25℃の水を1μL着摘し、着滴1秒後の水の接触角を測定した。実施例15の試験体の25℃の水に対する接触角は72.4°であった。
(Example 15)
A brush-like polymer chain aggregate (polymer brush layer) composed of a plurality of polymer chains was formed at 1250 nm on the surface of the silicon wafer in the same manner as in Example 1 except that a silicon wafer was used instead of the sample pan. Specimens of Example 15 were obtained. The test piece was allowed to stand in the air for 24 hours or more to allow the polymer brush layer to absorb water, and then 1 μL of water at 25 ° C. was plucked on the surface of the polymer brush layer of the test piece. The contact angle of was measured. The contact angle of the test piece of Example 15 with water at 25 ° C. was 72.4 °.
(比較例11)
 シリコンウエハをアセトン中で30分間、クロロホルム中で30分間および2-プロパノール中で30分間それぞれ超音波洗浄を行ったのち、シリコンウエハの両面にUVオゾンを10分間照射した。このシリコンウエハを比較例11の試験体とした。
(Comparative Example 11)
The silicon wafer was ultrasonically cleaned in acetone for 30 minutes, in chloroform for 30 minutes and in 2-propanol for 30 minutes, and then both sides of the silicon wafer were irradiated with UV ozone for 10 minutes. This silicon wafer was used as a test body of Comparative Example 11.
[評価]
 各試験体を温度-25℃のフリーザ内で2時間静置した後、温度20℃、相対湿度56%の環境に移動して1分後の各試験体表面の状態を確認した。
[Evaluation]
After each test piece was allowed to stand in a freezer at a temperature of −25 ° C. for 2 hours, the test piece was moved to an environment having a temperature of 20 ° C. and a relative humidity of 56%, and the state of the surface of each test piece was confirmed 1 minute later.
 実施例11~15の試験体は、比較例11の試験体よりも結露が生じにくかった。また、実施例14、15は曇がなく、結露をより効果的に抑制することができた。また、実施例11~13を比較したところ、実施例12、13の方が、実施例11より曇が少なかった。 The test bodies of Examples 11 to 15 were less likely to cause dew condensation than the test bodies of Comparative Example 11. Further, in Examples 14 and 15, there was no fogging, and dew condensation could be suppressed more effectively. Moreover, when the examples 11 to 13 were compared, the cloudiness of Examples 12 and 13 was less than that of Example 11.

Claims (11)

  1.  基材に固定された複数の高分子鎖で構成されたブラシ状の高分子鎖集合体を含む層を有し、前記高分子鎖集合体を含む層は液状物質を保持している、
     防曇、水滴付着抑制、着氷抑制または氷核形成抑制用の部材。
    It has a layer containing a brush-like polymer chain aggregate composed of a plurality of polymer chains fixed to a base material, and the layer containing the polymer chain aggregate holds a liquid substance.
    A member for anti-fog, suppression of water droplet adhesion, suppression of icing or suppression of ice nucleation.
  2.  前記液状物質が前記高分子鎖集合体を含む層に保持されて氷点より低い温度でも液体状態を保持している、請求項1に記載の部材。 The member according to claim 1, wherein the liquid substance is held in a layer containing the polymer chain aggregate and keeps a liquid state even at a temperature lower than the freezing point.
  3.  前記液状物質が水またはイオン液体である、請求項1または2に記載の部材。 The member according to claim 1 or 2, wherein the liquid substance is water or an ionic liquid.
  4.  前記基材は前記高分子鎖集合体とは別の物質からなる担体である、請求項1~3のいずれか1項に記載の部材。 The member according to any one of claims 1 to 3, wherein the base material is a carrier made of a substance different from the polymer chain aggregate.
  5.  前記高分子鎖集合体を構成する高分子鎖の片側末端のみが前記基材に固定されている、請求項4に記載の部材。 The member according to claim 4, wherein only one end of the polymer chains constituting the polymer chain aggregate is fixed to the base material.
  6.  前記高分子鎖集合体を構成する高分子鎖の両末端のそれぞれが前記基材に固定されている、請求項4に記載の部材。 The member according to claim 4, wherein both ends of the polymer chains constituting the polymer chain aggregate are fixed to the base material.
  7.  基材表面における前記高分子鎖の密度が0.01鎖/nm以上である、請求項4~6のいずれか1項に記載の部材。 The member according to any one of claims 4 to 6, wherein the density of the polymer chains on the surface of the base material is 0.01 chains / nm 2 or more.
  8.  前記基材が高分子鎖であり、
     前記基材である高分子鎖に前記複数の高分子鎖が側鎖として結合してボトルブラシ構造を有するポリマーを形成している、請求項1~3のいずれか1項に記載の部材。
    The base material is a polymer chain
    The member according to any one of claims 1 to 3, wherein the plurality of polymer chains are bonded to the polymer chain as the base material as side chains to form a polymer having a bottle brush structure.
  9.  前記ボトルブラシ構造を有するポリマーは、側鎖の密度が0.01鎖/nm以上である、請求項8に記載の部材。 The member according to claim 8, wherein the polymer having a bottle brush structure has a side chain density of 0.01 chain / nm 2 or more.
  10.  前記高分子鎖集合体を含む層の膜厚が350nm以上である、請求項1~9のいずれか1項に記載の部材。 The member according to any one of claims 1 to 9, wherein the film thickness of the layer containing the polymer chain aggregate is 350 nm or more.
  11.  前記部材表面の、25℃の水に対する接触角が、10°以上である、請求項1~10のいずれか1項に記載の部材。 The member according to any one of claims 1 to 10, wherein the contact angle of the surface of the member with water at 25 ° C. is 10 ° or more.
PCT/JP2020/044599 2019-12-09 2020-12-01 Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation WO2021117537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021563865A JPWO2021117537A1 (en) 2019-12-09 2020-12-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-222531 2019-12-09
JP2019222531 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117537A1 true WO2021117537A1 (en) 2021-06-17

Family

ID=76330242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044599 WO2021117537A1 (en) 2019-12-09 2020-12-01 Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation

Country Status (2)

Country Link
JP (1) JPWO2021117537A1 (en)
WO (1) WO2021117537A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053649A1 (en) * 2022-09-05 2024-03-14 日本ペイントコーポレートソリューションズ株式会社 Member for suppressing ice nucleus formation or suppressing snow/ice accretion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514583A (en) * 2011-05-09 2014-06-19 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Lubrication with oil-compatible polymer brush
JP2016210955A (en) * 2015-05-01 2016-12-15 株式会社リコー Polymer, optical material and lens
WO2019131872A1 (en) * 2017-12-28 2019-07-04 国立研究開発法人産業技術総合研究所 Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation
JP2019167445A (en) * 2018-03-23 2019-10-03 国立研究開発法人防災科学技術研究所 Slow snow accretion and snow sliding adhesive film or sheet
WO2020166128A1 (en) * 2019-02-13 2020-08-20 大日精化工業株式会社 Surface treatment film, method for producing same, and article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514583A (en) * 2011-05-09 2014-06-19 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Lubrication with oil-compatible polymer brush
JP2016210955A (en) * 2015-05-01 2016-12-15 株式会社リコー Polymer, optical material and lens
WO2019131872A1 (en) * 2017-12-28 2019-07-04 国立研究開発法人産業技術総合研究所 Substrate for polymer brush formation, production method for substrate for polymer brush formation, and precursor liquid for use in production method for substrate for polymer brush formation
JP2019167445A (en) * 2018-03-23 2019-10-03 国立研究開発法人防災科学技術研究所 Slow snow accretion and snow sliding adhesive film or sheet
WO2020166128A1 (en) * 2019-02-13 2020-08-20 大日精化工業株式会社 Surface treatment film, method for producing same, and article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITANO, HIROMI: "Construction of Magnetic Field-Modulation Near-Field AFM Surface Analyzing System and Its Application to Analysis of Polymer Thin Film-Water Interfaces", FINAL RESEARCH REPORT OF SCIENTIFIC RESEARCH GRANTS, 28 May 2009 (2009-05-28), pages 1 - 6, XP055834785, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/file/KAKENHI-PROJECT-19350055/19350055seika.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053649A1 (en) * 2022-09-05 2024-03-14 日本ペイントコーポレートソリューションズ株式会社 Member for suppressing ice nucleus formation or suppressing snow/ice accretion

Also Published As

Publication number Publication date
JPWO2021117537A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7002080B2 (en) Lubricants and SRT materials
JP2006316169A (en) Solid lubricating material
Kwon et al. Size-controlled polymer-coated nanoparticles as efficient compatibilizers for polymer blends
Wang et al. Self-assembly of catecholic macroinitiator on various substrates and surface-initiated polymerization
JP7061172B2 (en) Fixed phase for supercritical fluid chromatography
WO2018199181A1 (en) Clearance narrowing material, clearance narrowing material composite, and article using same
Wang et al. Janus gold nanoparticle with bicompartment polymer brushes templated by polymer single crystals
WO2021117537A1 (en) Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation
US8247498B2 (en) Star polymer and method for producing the same
Yamago et al. Synthesis of concentrated polymer brushes via surface-initiated organotellurium-mediated living radical polymerization
Sohn et al. Tuning surface properties of poly (methyl methacrylate) film using poly (perfluoromethyl methacrylate) s with short perfluorinated side chains
JP7435978B2 (en) Heat exchanger and refrigeration cycle equipment
Mykhaylyk et al. Ordered structures and phase transitions in mixtures of a polystyrene/polyisoprene block copolymer with the corresponding homopolymers in thin films and in bulk
Sakurai et al. Preparation and characterization of looped polydimethylsiloxane brushes
WO2021117538A1 (en) Material and sliding system
JP4222207B2 (en) Silicon compounds
WO2024053649A1 (en) Member for suppressing ice nucleus formation or suppressing snow/ice accretion
CN107923882B (en) Stationary phase for supercritical fluid chromatography
Choi et al. Self-assembly and post-fabrication functionalization of microphase separated thin films of a reactive azlactone-containing block copolymer
Peetla et al. Langmuir monolayer and Langmuir–Blodgett films of amphiphilic triblock copolymers with water-soluble middle block
Chen et al. Dual‐responsive copolymer poly (2, 2, 3, 4, 4, 4‐hexafluorobutyl methacrylate)‐block‐poly [2‐(dimethylamino) ethyl methacrylate] synthesized via photo ATRP for surface with tunable wettability
Seraji et al. Nanophase morphology and crystallization in poly (vinylidene fluoride)/polydimethylsiloxane‐block‐poly (methyl methacrylate)‐block‐polystyrene blends
Telford et al. Robust grafting of PEG-methacrylate brushes from polymeric coatings
Ye et al. Continuous flow fabrication of block copolymer–grafted silica micro‐particles in environmentally friendly water/ethanol media
JP7048946B2 (en) Surface-treated membranes, their manufacturing methods, and articles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898137

Country of ref document: EP

Kind code of ref document: A1