JP2016210955A - Polymer, optical material and lens - Google Patents

Polymer, optical material and lens Download PDF

Info

Publication number
JP2016210955A
JP2016210955A JP2015181360A JP2015181360A JP2016210955A JP 2016210955 A JP2016210955 A JP 2016210955A JP 2015181360 A JP2015181360 A JP 2015181360A JP 2015181360 A JP2015181360 A JP 2015181360A JP 2016210955 A JP2016210955 A JP 2016210955A
Authority
JP
Japan
Prior art keywords
polymer
temperature
formula
general formula
showed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015181360A
Other languages
Japanese (ja)
Other versions
JP6740527B2 (en
Inventor
航治 岩崎
Koji Iwasaki
航治 岩崎
工藤 宏人
Hiroto Kudo
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Kansai University
Original Assignee
Ricoh Co Ltd
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, Kansai University filed Critical Ricoh Co Ltd
Publication of JP2016210955A publication Critical patent/JP2016210955A/en
Application granted granted Critical
Publication of JP6740527B2 publication Critical patent/JP6740527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high refractive index polymer having an external stimulation-responsive portion to temperature, pH changes or the like in a molecular structure.SOLUTION: A star polymer including a specific acrylamide structure that corresponds to an external stimulation-responsive portion, which is difficult to be synthesized by a suspension polymerization method in the prior arts, is synthesized by a melt polymerization method. In the prior arts, production of the star polymer by a solution polymerization method using an amide-based solvent such as NMP (N-methylpyrrolidone), DMF (N,N'-dimethylformamide) and DMSO (dimethylsulfoxide) is difficult, however, the star polymer can be synthesized by a solution polymerization method in a mixture solvent comprising an amide-based solvent and water.SELECTED DRAWING: None

Description

本発明は、高い屈折率を有するポリマー、光学材料及びレンズに関する。   The present invention relates to polymers, optical materials and lenses having a high refractive index.

近年、屈折率の高い有機材料の開発が進んでおり、例えば、特許文献1に記載のような材料が知られている。特許文献1にはノボラック型フェノール樹脂を出発原料に用いて、チイラン類を連続的に挿入し反応させることにより、高屈折率のノボラック型フェノール樹脂誘導体を得ている。非特許文献1には、ポリマーの構造を星型とすることで屈折率が高くなることが知られている。   In recent years, organic materials having a high refractive index have been developed. For example, materials as described in Patent Document 1 are known. In Patent Document 1, a novolak type phenol resin derivative having a high refractive index is obtained by continuously inserting and reacting thiiranes using a novolak type phenol resin as a starting material. It is known from Non-Patent Document 1 that the refractive index is increased by making the polymer structure into a star shape.

このような光学材料の開発においては、より一層高機能な材料の開発が求められており、その中でも特に、温度やpH変化などの外部刺激に応答する高屈折率材料の開発は、有機レンズ等の光学材料への応用の可能性の観点から非常に大きな課題である。
本発明は、外部刺激応答性部位を分子構造中に有する高屈折率ポリマーを提供することを目的とする。
In the development of such optical materials, the development of even more sophisticated materials is required. Among them, the development of high refractive index materials that respond to external stimuli such as temperature and pH changes is particularly important for organic lenses, etc. This is a very big problem from the viewpoint of the possibility of application to optical materials.
An object of the present invention is to provide a high refractive index polymer having an external stimulus responsive site in a molecular structure.

本発明者らは以下の手段によってこの課題を解決した。
下記一般式(1)で表されるポリマーであって、一般式(1)中のAが下記一般式(2)、一般式(3)又は一般式(4)で表されるいずれかの構造を有することを特徴とするポリマー。
但し、上記一般式(2)、一般式(3)及び一般式(4)中のDは、ハロゲン元素または水素から選ばれるいずれかの基であり、Eは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基であり、FおよびGは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基である。また、nは1〜500の整数を表す。なお、一般式(2)、一般式(3)及び一般式(4)中の☆は隣接するAの★と同一の炭素を表す。
The present inventors solved this problem by the following means.
A polymer represented by the following general formula (1), wherein A in the general formula (1) is any structure represented by the following general formula (2), general formula (3) or general formula (4) A polymer characterized by having
However, D in the said General formula (2), General formula (3), and General formula (4) is either group chosen from a halogen element or hydrogen, and E is hydrogen or a C1-C2 alkyl. Any group selected from the group, and F and G are any group selected from hydrogen or an alkyl group having 1 or 2 carbon atoms. N represents an integer of 1 to 500. In the general formula (2), the general formula (3), and the general formula (4), * represents the same carbon as that of the adjacent A.

本発明によると、外部刺激応答性部位を分子構造中に有する高屈折率ポリマーを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high refractive index polymer which has an external stimulus responsive part in a molecular structure can be provided.

式(7)−1で表される開始剤の赤外分光分析結果を示す図である。It is a figure which shows the infrared spectroscopy analysis result of the initiator represented by Formula (7) -1. 式(7)−1で表される開始剤の核磁気共鳴分光分析結果(1H)を示す図である。It is a figure which shows the nuclear magnetic resonance spectroscopy analysis result (1H) of the initiator represented by Formula (7) -1. 式(8)で表される開始剤の赤外分光分析結果を示す図である。It is a figure which shows the infrared spectroscopy analysis result of the initiator represented by Formula (8). 一般式(8)の(a)で表される開始剤の立体異性体(rccc)の核磁気共鳴分光分析結果(1H)を示す図である。It is a figure which shows the nuclear magnetic resonance spectroscopy analysis result (1H) of the stereoisomer (rccc) of the initiator represented by (a) of General formula (8). 一般式(8)の(b)で表される開始剤の立体異性体(rctt)の核磁気共鳴分光分析結果(1H)を示す図である。It is a figure which shows the nuclear magnetic resonance spectroscopy analysis result (1H) of the stereoisomer (rctt) of the initiator represented by (b) of General formula (8). 式(5)−1で表されるポリマーの赤外分光分析結果を示す図である。It is a figure which shows the infrared spectroscopy analysis result of the polymer represented by Formula (5) -1. A)は式(7)−2で表される開始剤の赤外分光分析結果を示す図であり、B)は式(5)−2で表されるポリマーの赤外分光分析結果を示す図である。A is a figure which shows the infrared spectroscopy analysis result of the initiator represented by Formula (7) -2, B is a figure which shows the infrared spectroscopy analysis result of the polymer represented by Formula (5) -2. It is. 式(5)−1で表されるポリマーの核磁気共鳴分光分析結果(1H)を示す図である。It is a figure which shows the nuclear magnetic resonance spectroscopy analysis result (1H) of the polymer represented by Formula (5) -1. 式(5)−2で表されるポリマーの核磁気共鳴分光分析結果(1H)を示す図である。It is a figure which shows the nuclear magnetic resonance spectroscopy analysis result (1H) of the polymer represented by Formula (5) -2. 本発明のポリマーの水溶液の温度応答性を示す図である。It is a figure which shows the temperature responsiveness of the aqueous solution of the polymer of this invention. 本発明のポリマーのフィルムの温度応答性を示す図である。It is a figure which shows the temperature response of the film of the polymer of this invention. 本発明のポリマーについて熱重量測定を行った結果を示す図である。It is a figure which shows the result of having performed the thermogravimetry about the polymer of this invention.

以下、本発明のポリマーについて詳細に説明する。
本発明のポリマーは下記一般式(1)で示される。
一般式(1)中のAは下記一般式(2)、一般式(3)または一般式(4)で表されるいずれかの構造を示す。
Hereinafter, the polymer of the present invention will be described in detail.
The polymer of the present invention is represented by the following general formula (1).
A in the general formula (1) represents any structure represented by the following general formula (2), general formula (3), or general formula (4).

但し、上記一般式(2)、一般式(3)及び一般式(4)中のDは、塩素、臭素、ヨウ素等のハロゲン元素または水素から選ばれるいずれかの基であり、Eは水素または炭素数1〜2のアルキル基から選ばれるいずれかの基であり、FおよびGは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基である。nは1〜500の整数を表す。また、一般式(2)、一般式(3)及び一般式(4)中の☆は隣接するAの★と同一の炭素を表す。   However, D in the said General formula (2), General formula (3), and General formula (4) is any group chosen from halogen elements, such as chlorine, bromine, and iodine, or hydrogen, and E is hydrogen or Any group selected from alkyl groups having 1 to 2 carbon atoms, and F and G are any groups selected from hydrogen or alkyl groups having 1 or 2 carbon atoms. n represents an integer of 1 to 500. Moreover, * in General formula (2), General formula (3), and General formula (4) represents the same carbon as * of adjacent A.

Dがハロゲン元素である場合は、それぞれのハロゲン元素を末端にもつ開始剤を用いて製造することで自由に選択できる。また重合後に精製処理を行うことにより、前記ハロゲン元素をそれぞれ水素に置き換えることが可能である。   When D is a halogen element, it can be freely selected by producing using an initiator having each halogen element at its terminal. Further, by performing a purification treatment after polymerization, it is possible to replace the halogen elements with hydrogen.

また一般式(2)、一般式(3)及び一般式(4)において、Eは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基である。Eを前記いずれかの基とすることで、重合反応性が良好となり、所望の分子量のポリマーを得ることができる。
炭素数3以上のアルキル基の場合は、立体障害により重合反応性が著しく落ち、所望の分子量のポリマーが得られない。
Moreover, in General formula (2), General formula (3), and General formula (4), E is either group chosen from hydrogen or a C1-C2 alkyl group. By using E as any of the above groups, the polymerization reactivity is improved, and a polymer having a desired molecular weight can be obtained.
In the case of an alkyl group having 3 or more carbon atoms, the polymerization reactivity is remarkably lowered due to steric hindrance, and a polymer having a desired molecular weight cannot be obtained.

また一般式(2)、一般式(3)及び一般式(4)において、FおよびGは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基である。F及びGを前記いずれかの基とすることで、重合度の制御が良好となり、所望の分子量のポリマーを得ることができる。炭素数3以上のアルキル基の場合は、立体障害により重合度が著しく落ち、所望の分子量のポリマーが得られない。   Moreover, in General formula (2), General formula (3), and General formula (4), F and G are either groups chosen from hydrogen or a C1-C2 alkyl group. By using F and G as any of the above groups, the degree of polymerization can be controlled well, and a polymer having a desired molecular weight can be obtained. In the case of an alkyl group having 3 or more carbon atoms, the degree of polymerization is significantly reduced due to steric hindrance, and a polymer having a desired molecular weight cannot be obtained.

なお、本発明のポリマーにおける下記一般式(11)で表される構造は、外部刺激応答性部位に相当する。
In addition, the structure represented by the following general formula (11) in the polymer of the present invention corresponds to an external stimulus responsive site.

星型ポリマーの合成は懸濁重合法や溶液重合法で行われるのが一般的である。
しかしながら、前記懸濁重合法で、式(6)のモノマーおよび式(7)−1の開始剤を用いて下記式(5)−1及び式(5)−2で表される本発明の実施形態に係るポリマーを合成することを試みたが、懸濁重合法では星型ポリマーの製造は困難であった。
Star polymers are generally synthesized by suspension polymerization or solution polymerization.
However, in the suspension polymerization method, the present invention represented by the following formula (5) -1 and formula (5) -2 is carried out using the monomer of formula (6) and the initiator of formula (7) -1. Although an attempt was made to synthesize a polymer according to the form, it was difficult to produce a star polymer by suspension polymerization.

そこで、溶融重合法を用いてみたところ、合成に成功するに至った。
さらに、合成により得たポリマーの特性を評価したところ、従来のポリマーよりも優れた特性であることが分かった。
さらにNMP(N−メチルピロリドン)またはDMF(N、N’−ジメチルホルムアミド)またはDMSO(ジメチルスルホキシド)などのアミド系用溶媒を用いた溶液重合法では星型ポリマーの製造が困難であったが、アミド系溶媒と水とからなる混合溶媒中における溶液重合法を用いてみたところ、合成に成功することを見出した。
Then, when it tried using the melt polymerization method, it came to succeed in a synthesis | combination.
Furthermore, when the characteristics of the polymer obtained by synthesis were evaluated, it was found that the characteristics were superior to those of conventional polymers.
Furthermore, it was difficult to produce a star polymer by a solution polymerization method using an amide solvent such as NMP (N-methylpyrrolidone) or DMF (N, N′-dimethylformamide) or DMSO (dimethylsulfoxide). When the solution polymerization method in a mixed solvent composed of an amide solvent and water was used, it was found that the synthesis was successful.

またアミド系溶媒と水とからなる混合溶媒を用いた溶液重合法においては、重合温度は0℃以上100℃未満の温度範囲が好ましく、より好ましくは0℃から60℃、更に好ましくは0℃から15℃である。重合温度が低いほど、高い収率でポリマーが得ることが容易となる。しかし0℃未満では反応速度が遅くなるため好ましくない。
またアミド系溶媒と水とからなる混合溶媒を用いた溶液重合法においては、重合反応時間は、1時間以上96時間未満が好ましく、より好ましくは24時間以下である。96時間以上としても、収率や得られるポリマーの分子量は変わらず効果がない。1時間未満では反応が十分に進まず好ましくない。
In the solution polymerization method using a mixed solvent composed of an amide solvent and water, the polymerization temperature is preferably in the temperature range of 0 ° C. or higher and lower than 100 ° C., more preferably 0 ° C. to 60 ° C., further preferably 0 ° C. 15 ° C. The lower the polymerization temperature, the easier it is to obtain a polymer in high yield. However, if it is less than 0 ° C., the reaction rate is slow, which is not preferable.
In the solution polymerization method using a mixed solvent composed of an amide solvent and water, the polymerization reaction time is preferably 1 hour or more and less than 96 hours, and more preferably 24 hours or less. Even if it is 96 hours or more, the yield and the molecular weight of the obtained polymer are not changed and no effect is obtained. Less than 1 hour is not preferable because the reaction does not proceed sufficiently.

式(5)−1および式(5)−2で表されるポリマーの製造方法の詳細を以下に述べる。
本発明の前記式(5)−1で表されるポリマーは、前記式(6)で表されるモノマーと前記式(7)−1で表される開始剤により製造することができる。
前記式(6)で表されるモノマーは市販されているので、この市販品を用いることができる。
前記式(7)−1で表される開始剤は、例えば下記反応式(A)で示す反応によって製造できる。
The detail of the manufacturing method of the polymer represented by Formula (5) -1 and Formula (5) -2 is described below.
The polymer represented by the formula (5) -1 of the present invention can be produced by using a monomer represented by the formula (6) and an initiator represented by the formula (7) -1.
Since the monomer represented by the formula (6) is commercially available, this commercially available product can be used.
The initiator represented by the formula (7) -1 can be produced, for example, by a reaction represented by the following reaction formula (A).

式(7)−1で表される開始剤の赤外分光分析結果を図1に、核磁気共鳴分光分析結果を図2にそれぞれ示す。   The infrared spectroscopic analysis result of the initiator represented by the formula (7) -1 is shown in FIG. 1, and the nuclear magnetic resonance spectroscopic analysis result is shown in FIG.

上記反応は、カリックス[4]レゾルシンアレーンを出発物質とし、テトラヒドロフラン等の反応溶媒中、トリエチルアミン等の塩基化合物存在下、系内を10℃未満に冷却し温度を維持したまま、2−ブロモイソブチリルブロマイドを滴下して30分程度攪拌した後、25℃以上で24時間以上攪拌することで達成できる。   In the above reaction, calix [4] resorcinarene was used as a starting material, and in the presence of a base compound such as triethylamine in a reaction solvent such as tetrahydrofuran, the system was cooled to less than 10 ° C., and the temperature was maintained while maintaining the temperature. This can be achieved by dripping ril bromide and stirring for about 30 minutes, followed by stirring at 25 ° C. or more for 24 hours or more.

攪拌後、析出物をろ過して取り除いたのち、ろ液をクロロホルム等の水に不溶な抽出溶媒にて希釈して有機層とし、これを炭酸水素ナトリウム水溶液で2回程度、塩化水素水溶液にて1回、純水にて3回洗浄したのち、有機層を無水硫酸マグネシウムで乾燥させる。固形物をろ別後、減圧濃縮し、メタノールに滴下して白色固体が得られ、これをろ別して、式(7)−1で表される開始剤を得ることができる。   After stirring, the precipitate is removed by filtration, and the filtrate is diluted with an extraction solvent insoluble in water such as chloroform to form an organic layer, which is about twice with an aqueous sodium bicarbonate solution and with an aqueous hydrogen chloride solution. After washing once with pure water three times, the organic layer is dried over anhydrous magnesium sulfate. The solid is filtered off, concentrated under reduced pressure, and added dropwise to methanol to obtain a white solid, which can be filtered to obtain the initiator represented by the formula (7) -1.

また2−ブロモイソブチリルブロマイドの代わりに2−ブロモプロピオニルブロミドを用いると、式(7)−2で表される開始剤を得ることができる。
Moreover, when 2-bromopropionyl bromide is used instead of 2-bromoisobutyryl bromide, an initiator represented by the formula (7) -2 can be obtained.

式(5)−1で表されるポリマーは、式(6)で表されるモノマーと式(7)−1で表される開始剤と、遷移金属触媒と、触媒配位子を混合し、原子移動ラジカル重合反応にて製造することができる。反応溶媒や分散溶媒は必要としない。
式(5)−2で表されるポリマーは、式(6)で表されるモノマーと式(7)−2で表される開始剤と、遷移金属触媒と、触媒配位子を混合し、原子移動ラジカル重合反応にて製造することができる。
The polymer represented by Formula (5) -1 is a mixture of a monomer represented by Formula (6), an initiator represented by Formula (7) -1, a transition metal catalyst, and a catalyst ligand. It can be produced by an atom transfer radical polymerization reaction. No reaction solvent or dispersion solvent is required.
The polymer represented by Formula (5) -2 is a mixture of a monomer represented by Formula (6), an initiator represented by Formula (7) -2, a transition metal catalyst, and a catalyst ligand. It can be produced by an atom transfer radical polymerization reaction.

遷移金属触媒は特に限定するものではなく、原子移動ラジカル重合反応にて一般に市販されているもの、例えば、チタン、鉄、コバルト、ニッケル、モリブデン、ルテニウム、ロジウム、パラジウム、レニウム、オスミウム、銅系触媒などが挙げられるが、本発明においては、反応性の観点から銅系触媒が好ましく、より好ましくは臭化銅を用いることができる。   The transition metal catalyst is not particularly limited and is generally commercially available in an atom transfer radical polymerization reaction, for example, titanium, iron, cobalt, nickel, molybdenum, ruthenium, rhodium, palladium, rhenium, osmium, copper-based catalyst. In the present invention, a copper-based catalyst is preferable from the viewpoint of reactivity, and copper bromide can be used more preferably.

触媒配位子は特に限定するものではなく、原子移動ラジカル重合反応にて一般に市販されているもの、例えば、ビピリジン、ジメチルビピリジン、トリス[2−(ジメチルアミノ)エチル]アミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、N,N,N’,N’−テトラエチレンジアミンなどがあげられるが、本発明においては、反応性の観点からN,N,N’,N”,N”−ペンタメチルジエチレントリアミンが好ましい。   The catalyst ligand is not particularly limited, and is generally commercially available in an atom transfer radical polymerization reaction, such as bipyridine, dimethylbipyridine, tris [2- (dimethylamino) ethyl] amine, N, N, N ', N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N′-tetraethylenediamine, and the like. In the present invention, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine is preferred.

式(5)−1で表されるポリマーのより具体的な製造方法は以下の通りである。まず、式(6)で表されるモノマー1.1gと式(7)−1で表される開始剤0.0216gと臭化銅I0.017gを重合管に量り取った後、脱気処理を行って酸素を除去し、窒素雰囲気下でN,N,N’,N”,N”−ペンタメチルジエチレントリアミン0.025gを加えたのちに封管し、60℃以上に加熱して重合する。重合反応物にクロロホルムを1mL加えて希釈したものをジエチルエーテルに再沈殿処理し、固形物をろ別乾燥することにより、本発明のポリマーが得られる。   A more specific method for producing the polymer represented by the formula (5) -1 is as follows. First, 1.1 g of the monomer represented by the formula (6), 0.0216 g of the initiator represented by the formula (7) -1 and 0.017 g of copper bromide I were weighed in a polymerization tube, and then degassed. Then, oxygen is removed, 0.025 g of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine is added in a nitrogen atmosphere, and the tube is sealed and polymerized by heating to 60 ° C. or higher. The polymer of the present invention can be obtained by reprecipitation treatment of 1 mL of chloroform added to the polymerization reaction product and re-precipitation in diethyl ether, followed by filtration and drying of the solid matter.

式(5)−2で表されるポリマーのより具体的な製造方法は以下の通りである。
まず、式(6)で表されるモノマー1.1gと式(7)−2で表される開始剤0.0196gと臭化銅I0.017gを重合管に量り取った後、脱気処理を行って酸素を除去し、窒素雰囲気下でN,N,N’,N”,N”−ペンタメチルジエチレントリアミン0.025gを加えたのちに封管し、60℃以上に加熱して重合する。重合反応物にクロロホルムを1mL加えて希釈したものをジエチルエーテルに再沈殿処理し、固形物をろ別乾燥することにより、本発明のポリマーが得られる。
A more specific method for producing the polymer represented by the formula (5) -2 is as follows.
First, 1.1 g of the monomer represented by the formula (6), 0.0196 g of the initiator represented by the formula (7) -2 and 0.017 g of copper bromide I were weighed in a polymerization tube, and then degassing treatment was performed. Then, oxygen is removed, 0.025 g of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine is added in a nitrogen atmosphere, and the tube is sealed and polymerized by heating to 60 ° C. or higher. The polymer of the present invention can be obtained by reprecipitation treatment of 1 mL of chloroform added to the polymerization reaction product and re-precipitation in diethyl ether, followed by filtration and drying of the solid matter.

また、一般式(1)におけるAが一般式(3)で示される構造を有するものを合成するには開始剤として下記式(8)の(a)又は下記式(8)の(b)で表されるものを用いる。
なお、下記式(8)の(a)は立体異性体rcccを示し、下記式(8)の(b)は立体異性体rcttを示す。
Moreover, in order to synthesize | combine what A in General formula (1) has a structure shown by General formula (3), it is (b) of following formula (8) or (b) of following formula (8) as an initiator. Use what is represented.
In the following formula (8), (a) represents the stereoisomer rccc, and (b) in the following formula (8) represents the stereoisomer rctt.

式(7)−1および式(7)−2で表される開始剤と、本発明のポリマーの構造確認は、赤外分光分析と核磁気共鳴分光分析で行うことができる。ポリマーの数平均分子量、重量平均分子量、多分散度及び重合度(n)はサイズ排除クロマトグラフィーと核磁気共鳴分光分析により算出することができる。また、ポリマーの屈折率は分光エリプソメトリーにより測定することができる。
式(5)−1および式(5)−2で表されるポリマーの赤外分光分析結果をそれぞれ図5−1および図5−2に示した。
図5−2において、A)は式(7)−2で表される開始剤の赤外分光分析結果を示す図であり、B)は式(5)−2で表されるポリマーの赤外分光分析結果を示す図である。
また、式(5)−1および式(5)−2で表されるポリマーの核磁気共鳴分光分析結果をそれぞれ図6−1および図6−2に示した。
Structure confirmation of the initiators represented by the formulas (7) -1 and (7) -2 and the polymer of the present invention can be performed by infrared spectroscopic analysis and nuclear magnetic resonance spectroscopic analysis. The number average molecular weight, weight average molecular weight, polydispersity, and degree of polymerization (n) of the polymer can be calculated by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The refractive index of the polymer can be measured by spectroscopic ellipsometry.
The infrared spectroscopic analysis results of the polymers represented by formula (5) -1 and formula (5) -2 are shown in FIGS. 5-1 and 5-2, respectively.
In FIG. 5-2, A) is a figure which shows the infrared spectroscopy analysis result of the initiator represented by Formula (7) -2, B) is the infrared of the polymer represented by Formula (5) -2. It is a figure which shows a spectroscopic analysis result.
Moreover, the nuclear magnetic resonance spectroscopic analysis result of the polymer represented by Formula (5) -1 and Formula (5) -2 is shown in FIGS. 6-1 and 6-2, respectively.

また、得られた式(5)−2で表されるポリマーの温度応答性評価結果を図7−1及び図7−2に示す。
図7−1は水溶液中のポリマーの温度応答性を示す図であり、図7−2はポリマーのフィルムの温度応答性を示す図である。
図中、(1)は後述する実施例6のポリマーについてのグラフを、(2)は実施例7のポリマーについてのグラフを、(3)は実施例8のポリマーについてのグラフをそれぞれ示す。
また、(4)は比較例1の市販の直鎖型PNIPAM(ポリN−イソプロピルアクリルアミド)についてのグラフを示す。
本発明のポリマーの水溶液中での温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また10℃から60℃の温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
また本発明のポリマーのフィルムの温度応答性は、10℃から80℃の温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
Moreover, the temperature-responsive evaluation result of the polymer represented by Formula (5) -2 obtained is shown in FIGS. 7-1 and 7-2.
FIG. 7-1 is a diagram showing the temperature responsiveness of the polymer in the aqueous solution, and FIG. 7-2 is a diagram showing the temperature responsiveness of the polymer film.
In the figure, (1) is a graph for the polymer of Example 6 described later, (2) is a graph for the polymer of Example 7, and (3) is a graph for the polymer of Example 8.
Moreover, (4) shows a graph for the commercially available linear PNIPAM (poly N-isopropylacrylamide) of Comparative Example 1.
The temperature responsiveness of the polymer of the present invention in an aqueous solution starts to increase in absorbance at a temperature lower than that of commercially available linear PNIPAM, and the maximum absorbance in the temperature range of 10 ° C. to 60 ° C. is that of linear PNIPAM. It was 2 times or more and showed a good temperature response.
Further, the temperature responsiveness of the polymer film of the present invention draws a convex parabola in the temperature range of 10 ° C. to 80 ° C., and the temperature showing the maximum refractive index is 20 ° C. or more lower than that of linear PNIPAM, Good temperature responsiveness was exhibited.

また、得られた式(5)−2で表されるポリマーの熱重量測定を実施した結果を図8に示す。本発明の熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
図中、(1)は実施例6のポリマーについてのグラフを、(2)は実施例7のポリマーについてのグラフを、(3)は実施例8のポリマーについてのグラフを、それぞれ示す。また、(4)は比較例1の市販の直鎖型PNIPAM(ポリN−イソプロピルアクリルアミド)についてのグラフを示す。
Moreover, the result of having conducted the thermogravimetric measurement of the polymer represented by Formula (5) -2 obtained is shown in FIG. The thermogravimetric change of the present invention was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.
In the figure, (1) is a graph for the polymer of Example 6, (2) is a graph for the polymer of Example 7, and (3) is a graph for the polymer of Example 8. Moreover, (4) shows a graph for the commercially available linear PNIPAM (poly N-isopropylacrylamide) of Comparative Example 1.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は、実施例に制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited to an Example.

まず、実施例及び比較例で得られたポリマーの分析方法の詳細について述べる。
<数平均分子量、重量平均分子量および分子量分布の算出>
数平均分子量、重量平均分子量及び分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)法により、以下の条件で測定することができる。
・装置:HLC−8220(東ソー株式会社製)
・カラム:Shodex asahipak GF−510 HQ + GF−310×2(昭和電工株式会社製)
TSK G2000HXL及びG4000HXL(東ソー株式会社製)
・温度:40℃
・溶離液:20mM リチウムブロミド、20mMリン酸含有ジメチルホルムアミド溶液
・流速:0.5mL/分
・検出器:HLC−8200 内蔵RI−UV−8220
濃度0.5質量%の試料1mLを装置にセットし、上記の条件で測定したポリマー生成物の分子量分布から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用してポリマー生成物の数平均分子量(Mn)、重量平均分子量(Mw)を算出した。分子量分布はMwをMnで除した値である。
First, details of the analytical methods of the polymers obtained in the examples and comparative examples will be described.
<Calculation of number average molecular weight, weight average molecular weight and molecular weight distribution>
The number average molecular weight, weight average molecular weight, and molecular weight distribution (Mw / Mn) can be measured under the following conditions by gel permeation chromatography (GPC).
・ Device: HLC-8220 (manufactured by Tosoh Corporation)
Column: Shodex asahipak GF-510 HQ + GF-310 × 2 (manufactured by Showa Denko KK)
TSK G2000HXL and G4000HXL (manufactured by Tosoh Corporation)
・ Temperature: 40 ℃
Eluent: 20 mM lithium bromide, 20 mM phosphoric acid-containing dimethylformamide solution Flow rate: 0.5 mL / min Detector: HLC-8200 Built-in RI-UV-8220
1 mL of a sample having a concentration of 0.5% by mass is set in the apparatus, and the number average molecular weight (Mn) of the polymer product is calculated using a molecular weight calibration curve prepared by a monodisperse polystyrene standard sample from the molecular weight distribution of the polymer product measured under the above conditions ), And the weight average molecular weight (Mw) was calculated. The molecular weight distribution is a value obtained by dividing Mw by Mn.

<核磁気共鳴分光分析>
環状芳香族化合物、星型ポリマーは、核磁気共鳴分光分析により、以下の条件で同定することができる。
・装置:JOEL−ECS−400K(日本電子株式会社製)
<Nuclear magnetic resonance spectroscopy>
A cyclic aromatic compound and a star polymer can be identified under the following conditions by nuclear magnetic resonance spectroscopy.
・ Device: JOEL-ECS-400K (manufactured by JEOL Ltd.)

(重合度:n)
磁気共鳴分光分析(=H−NMR)により各部位の水素数を測定して算出する。
詳細には、開始剤由来のHの積分値総和(水素の数)と、繰り返し単位由来のHの積分値総和の比率から算出する。
例えば、式(1)中のAが式(2)で表される構造のポリマーにおいて、理論計算から、開始剤由来の水素数が72、繰り返し単位由来の水素数が88の場合、n=1となり、開始剤由来の水素数が72、繰り返し単位由来の水素数が176の場合、n=2となる。
すなわち、(72/88)×(繰り返し単位由来の水素数/開始剤由来の水素数)=nである。
(Degree of polymerization: n)
The number of hydrogen at each site is measured and calculated by magnetic resonance spectroscopy (= 1 H-NMR).
In particular, the integral value sum of the 1 H from initiator (the number of hydrogen), is calculated from the ratio of the integral value sum of the 1 H-derived repeat units.
For example, in a polymer having a structure in which A in formula (1) is represented by formula (2), n = 1 when the number of hydrogen derived from the initiator is 72 and the number of hydrogen derived from the repeating unit is 88 from theoretical calculation. Thus, when the number of hydrogen derived from the initiator is 72 and the number of hydrogen derived from the repeating unit is 176, n = 2.
That is, (72/88) × (number of hydrogen derived from repeating unit / number of hydrogen derived from initiator) = n.

<赤外分光分析>
環状芳香族化合物、星型ポリマーは、赤外分光分析により同定することができる。
・装置:FT/IR 4200(日本分光株式会社製)
<Infrared spectroscopic analysis>
Cyclic aromatic compounds and star polymers can be identified by infrared spectroscopy.
Apparatus: FT / IR 4200 (manufactured by JASCO Corporation)

<可視分光エリプソメトリー>
ポリマーの屈折率は分光エリプソメータを用いる分光エリプソメトリーにより測定することができる。
・装置:1H3LNWWP(堀場製作所株式会社製)
ポリマーをPGMEに溶解させ、シリコンウエハ上にスピンコートして薄膜を形成させ、波長632.8nmの光源を用いて測定した。
<Visible spectroscopic ellipsometry>
The refractive index of the polymer can be measured by spectroscopic ellipsometry using a spectroscopic ellipsometer.
・ Device: 1H3LNWWP (manufactured by Horiba Ltd.)
The polymer was dissolved in PGME, spin-coated on a silicon wafer to form a thin film, and measurement was performed using a light source having a wavelength of 632.8 nm.

<水溶液の温度応答性評価>
水溶液中でのポリマーの温度応答性は、分光光度計を用いて評価することができる。本発明のポリマー2.0mgを蒸留水20mlに溶解させた、10℃から60℃までの温度範囲において、5℃間隔で、それぞれの温度における400nmの吸光度を測定した。
<Evaluation of temperature response of aqueous solution>
The temperature responsiveness of the polymer in an aqueous solution can be evaluated using a spectrophotometer. Absorbance at 400 nm at each temperature was measured at 5 ° C. intervals in a temperature range from 10 ° C. to 60 ° C. in which 2.0 mg of the polymer of the present invention was dissolved in 20 ml of distilled water.

<フィルムの温度応答性評価>
フィルムの温度応答性は、アッベ屈折率計を用いて評価することができる。本発明のポリマー1.0mgをメタノール1.0mlに溶解させた溶液を、アッベ屈折率計のプリズム上にキャストして製膜した。10℃から80℃までの温度範囲にプリズムの温度を調節し、5℃間隔にて、それぞれの温度における538nmの屈折率を測定した。
<Evaluation of film temperature response>
The temperature responsiveness of the film can be evaluated using an Abbe refractometer. A solution prepared by dissolving 1.0 mg of the polymer of the present invention in 1.0 ml of methanol was cast on an Abbe refractometer prism to form a film. The temperature of the prism was adjusted to a temperature range from 10 ° C. to 80 ° C., and the refractive index of 538 nm at each temperature was measured at intervals of 5 ° C.

(実施例1)
カリックス[4]レゾルシンアレーンをテトラヒドロフランに溶解し、トリエチルアミンを加えた。次いで、系内を10℃未満に冷却し温度を維持したまま、2−ブロモイソブチリルブロマイドを滴下して30分程度攪拌した後、40℃で24時間攪拌した。反応液から析出物をろ過して取り除いた。ろ液をクロロホルムで希釈して有機層とし、これを炭酸水素ナトリウム水溶液で2回程度、塩化水素水溶液にて1回、純水にて3回洗浄したのち、有機層を無水硫酸マグネシウムで乾燥させた。固形物をろ別後、減圧濃縮し、メタノールに滴下して白色固体を得、これをろ別して、式(7)−1で表される開始剤を得た。
Example 1
Calix [4] resorcinarene was dissolved in tetrahydrofuran and triethylamine was added. Subsequently, while the system was cooled to less than 10 ° C. and the temperature was maintained, 2-bromoisobutyryl bromide was added dropwise and stirred for about 30 minutes, and then stirred at 40 ° C. for 24 hours. The precipitate was removed from the reaction solution by filtration. The filtrate is diluted with chloroform to form an organic layer, which is washed about twice with an aqueous sodium hydrogen carbonate solution, once with an aqueous hydrogen chloride solution and three times with pure water, and then dried over anhydrous magnesium sulfate. It was. The solid was filtered off, concentrated under reduced pressure, and dropped into methanol to obtain a white solid, which was filtered to obtain an initiator represented by the formula (7) -1.

開始点濃度を10×10−3mol/Lとなるように、市販のN−イソプロピルアクリルアミドと式(7)−1で表される開始剤と、臭化銅(I)を重合管に量り取った後、脱気処理を行って酸素を除去し、窒素雰囲気下でN,N,N’,N”,N”−ペンタメチルジエチレントリアミンを加えたのちに封管し、70℃に加熱して0.5時間重合した。重合反応物にクロロホルムを1mL加えて希釈したものをジエチルエーテルに再沈殿処理し、固形物をろ別乾燥して、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。 Commercially available N-isopropylacrylamide, an initiator represented by formula (7) -1 and copper (I) bromide are weighed into a polymerization tube so that the starting point concentration is 10 × 10 −3 mol / L. After that, deaeration treatment is performed to remove oxygen, and N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine is added in a nitrogen atmosphere, and then sealed, heated to 70 ° C. and heated to 0 ° C. Polymerized for 5 hours. The polymerization reaction product diluted with 1 mL of chloroform was reprecipitated in diethyl ether, and the solid was filtered and dried to obtain a polymer. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.

また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.

(実施例2)
重合時間を1時間とした以外は実施例1と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 2)
A polymer was obtained in the same manner as in Example 1 except that the polymerization time was 1 hour. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例3)
重合時間を12時間とした以外は実施例1と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
Example 3
A polymer was obtained in the same manner as in Example 1 except that the polymerization time was 12 hours. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例4)
開始点濃度を25×10−3mol/Lとした以外は実施例3と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
Example 4
A polymer was obtained in the same manner as in Example 3 except that the starting point concentration was 25 × 10 −3 mol / L. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例5)
開始点濃度を50×10−3mol/Lとした以外は実施例3と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 5)
A polymer was obtained in the same manner as in Example 3 except that the starting point concentration was 50 × 10 −3 mol / L. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例6)
開始剤を、2−ブロモイソブチリルブロマイドの代わりに2−ブロモプロピオニルブロミドを用いて合成した式(7)−2とし、開始点濃度を5.0×10−4mol/Lとし、Nイソプロピルアクリルアミドの量を0.0127mmolとし、臭化銅(I)の量を0.014gとし、N,N,N’,N’’,N’’−ペンタメチルジエチレントリアミン (PMDETA) の量を0.021gとし、重合溶媒としてNMPとHOをそれぞれ1.5mLずつ用い、重合温度を0℃とし、重合時間を24時間とした以外は実施例1と同様にし、ポリマーを得た。収率は53%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 6)
The initiator is formula (7) -2 synthesized using 2-bromopropionyl bromide instead of 2-bromoisobutyryl bromide, the starting point concentration is 5.0 × 10 −4 mol / L, and N isopropyl The amount of acrylamide is 0.0127 mmol, the amount of copper (I) bromide is 0.014 g, and the amount of N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine (PMDETA) is 0.021 g. A polymer was obtained in the same manner as in Example 1, except that 1.5 mL each of NMP and H 2 O were used as polymerization solvents, the polymerization temperature was 0 ° C., and the polymerization time was 24 hours. The yield was 53%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例7)
開始点濃度を10×10−4mol/Lとした以外は実施例6と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 7)
A polymer was obtained in the same manner as in Example 6 except that the starting point concentration was 10 × 10 −4 mol / L. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例8)
開始点濃度を20×10−4mol/Lとした以外は実施例6と同様にし、ポリマーを得た。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 8)
A polymer was obtained in the same manner as in Example 6 except that the starting point concentration was 20 × 10 −4 mol / L. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例9)
重合温度を60℃とした以外は実施例8と同様にし、ポリマーを得た。収率は25%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
Example 9
A polymer was obtained in the same manner as in Example 8 except that the polymerization temperature was 60 ° C. The yield was 25%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例10)
重合温度を25℃とした以外は実施例8と同様にし、ポリマーを得た。収率は44%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 10)
A polymer was obtained in the same manner as in Example 8 except that the polymerization temperature was 25 ° C. The yield was 44%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例11)
重合時間を48時間とした以外は実施例8と同様にし、ポリマーを得た。収率は49%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 11)
A polymer was obtained in the same manner as in Example 8 except that the polymerization time was 48 hours. The yield was 49%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例12)
重合時間を72時間とした以外は実施例8と同様にし、ポリマーを得た。収率は55%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 12)
A polymer was obtained in the same manner as in Example 8 except that the polymerization time was 72 hours. The yield was 55%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(実施例13)
重合時間を96時間とした以外は実施例8と同様にし、ポリマーを得た。収率は53%であった。得られたポリマーは水、メタノール、THF,クロロホルム、ジクロロメタン、DMF,NMP、DMSOに対して良好な溶解性を示した。得られたポリマーの評価結果を表1に示した。
また得られたポリマーの温度応答性を評価したところ、水溶液の温度応答性は市販の直鎖型PNIPAMよりも低い温度で吸光度が上昇しはじめ、また測定温度範囲における最大の吸光度は、直鎖型PNIPAMの2倍以上であり、良好な温度応答性を示した。
またフィルムの温度応答性は、測定温度範囲において上に凸の放物線を描き、最大の屈折率を示す温度は、直鎖型PNIPAMよりも20℃以上低く、良好な温度応答性を示した。
また得られたポリマーの熱重量測定を実施した結果、熱重量変化は市販の直鎖型PNIPAMと顕著な差異はなく、同等の熱分解特性を示した。
(Example 13)
A polymer was obtained in the same manner as in Example 8 except that the polymerization time was 96 hours. The yield was 53%. The obtained polymer showed good solubility in water, methanol, THF, chloroform, dichloromethane, DMF, NMP and DMSO. The evaluation results of the obtained polymer are shown in Table 1.
Further, when the temperature responsiveness of the obtained polymer was evaluated, the temperature responsiveness of the aqueous solution started to increase at a temperature lower than that of the commercially available linear PNIPAM, and the maximum absorbance in the measurement temperature range was linear. It was more than twice that of PNIPAM and showed a good temperature response.
Moreover, the temperature responsiveness of the film showed an upwardly convex parabola in the measurement temperature range, and the temperature showing the maximum refractive index was 20 ° C. or more lower than that of the linear PNIPAM, indicating a good temperature responsiveness.
As a result of thermogravimetric measurement of the obtained polymer, the thermogravimetric change was not significantly different from that of commercially available linear PNIPAM, and showed the same thermal decomposition characteristics.

(比較例1)
アルドリッチ社製のポリN−イソプロピルアクリルアミドを購入し、評価した評価結果を表1に示した。またポリマーの外部刺激応答性をアッベ屈折率計で評価したところ、5℃から50℃範囲においては温度応答性を示さなかった。
(Comparative Example 1)
Table 1 shows the evaluation results of purchasing and evaluating poly-N-isopropylacrylamide manufactured by Aldrich. When the external stimulus responsiveness of the polymer was evaluated with an Abbe refractometer, the temperature responsiveness was not exhibited in the range of 5 ° C to 50 ° C.

(比較例2)
開始剤として下記式(9)で表されるアルドリッチ社製の開始剤「Hexafunctional initiator 製品番号723207」を用いた以外は実施例3と同様にし、下記式(10)で示されるポリマーを得た。
得られたポリマーの評価結果を表1に示した。またポリマーの外部刺激応答性をアッベ屈折率計で評価したところ、5℃から50℃範囲においては温度応答性を示さなかった。
(Comparative Example 2)
A polymer represented by the following formula (10) was obtained in the same manner as in Example 3, except that an initiator “Hexafunctional initiator product number 723207” represented by the following formula (9) represented by the following formula (9) was used as the initiator.
The evaluation results of the obtained polymer are shown in Table 1. When the external stimulus responsiveness of the polymer was evaluated with an Abbe refractometer, the temperature responsiveness was not exhibited in the range of 5 ° C to 50 ° C.

(参考例1)
反応溶媒としてDMAcを用いた以外は実施例3と同様にしたところ、有意な量のポリマー生成物は得られなかった。
(Reference Example 1)
Except that DMAc was used as the reaction solvent, the same procedure as in Example 3 was carried out, but no significant amount of polymer product was obtained.

以上述べた様に、本発明のポリマーは硫黄元素を含まずに高い屈折率を実現する材料であり、光学レンズ、光学フィルム、光学フィルムを用いた液晶表示装置などの用途に適用することができる。   As described above, the polymer of the present invention is a material that does not contain sulfur element and realizes a high refractive index, and can be applied to applications such as an optical lens, an optical film, and a liquid crystal display device using the optical film. .

特開2008−31394号公報JP 2008-31394 A

H.KUDO,et.Al.Macromolecules, 42, 1051(2009)H.KUDO, et.Al.Macromolecules, 42, 1051 (2009)

Claims (3)

下記一般式(1)で表されるポリマーであって、一般式(1)中のAが下記一般式(2)、一般式(3)又は一般式(4)で表されるいずれかの構造を有することを特徴とするポリマー。
但し、上記一般式(2)、一般式(3)及び一般式(4)中のDは、ハロゲン元素または水素から選ばれるいずれかの基であり、Eは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基であり、FおよびGは水素または炭素数1又は2のアルキル基から選ばれるいずれかの基である。また、nは1〜500の整数を表す。また、一般式(2)、一般式(3)及び一般式(4)中の☆は隣接するAの★と同一の炭素を表す。
A polymer represented by the following general formula (1), wherein A in the general formula (1) is any structure represented by the following general formula (2), general formula (3) or general formula (4) A polymer characterized by having
However, D in the said General formula (2), General formula (3), and General formula (4) is either group chosen from a halogen element or hydrogen, and E is hydrogen or a C1-C2 alkyl. Any group selected from the group, and F and G are any group selected from hydrogen or an alkyl group having 1 or 2 carbon atoms. N represents an integer of 1 to 500. Moreover, * in General formula (2), General formula (3), and General formula (4) represents the same carbon as * of adjacent A.
請求項1に記載のポリマーからなる光学材料。   An optical material comprising the polymer according to claim 1. 請求項1に記載のポリマーからなるレンズ。   A lens comprising the polymer according to claim 1.
JP2015181360A 2015-05-01 2015-09-15 Polymers, optical materials and lenses Expired - Fee Related JP6740527B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094314 2015-05-01
JP2015094314 2015-05-01

Publications (2)

Publication Number Publication Date
JP2016210955A true JP2016210955A (en) 2016-12-15
JP6740527B2 JP6740527B2 (en) 2020-08-19

Family

ID=57550658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181360A Expired - Fee Related JP6740527B2 (en) 2015-05-01 2015-09-15 Polymers, optical materials and lenses

Country Status (1)

Country Link
JP (1) JP6740527B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562993B2 (en) 2017-03-21 2020-02-18 Ricoh Company, Ltd. Polymer composition and optical material
US10649242B2 (en) 2016-07-27 2020-05-12 Ricoh Company, Ltd. Multilayer film, multilayer film composite, optical component, and window
WO2021117537A1 (en) * 2019-12-09 2021-06-17 国立大学法人京都大学 Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation
US11274174B2 (en) 2015-09-15 2022-03-15 Ricoh Company, Ltd. Polymer, resin composition, light control material, optical waveguide material, athermal optical element, color display element, and optical material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319328A (en) * 1999-04-06 2000-11-21 L'oreal Sa Composition containing polymer of star-structure, the polymer and use thereof
US20030236354A1 (en) * 2002-04-04 2003-12-25 Kennedy Joseph P. Star block copolymers comprising polyisobutylene-B-polyacrylonitrile arms radiating from an aromatic core
JP2008208322A (en) * 2007-01-30 2008-09-11 Hitachi Chem Co Ltd Phenol derivative which has anthracene residue in side chain, and its manufacturing method
JP2008274171A (en) * 2007-05-02 2008-11-13 Univ Kanagawa Molecular nanocapsule and its preparation method
JP2009263605A (en) * 2008-04-30 2009-11-12 Jsr Corp Molecular capsule and its producing method
JP2010155880A (en) * 2008-12-26 2010-07-15 Lintec Corp Stimuli-responsive crosslinked polymer and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319328A (en) * 1999-04-06 2000-11-21 L'oreal Sa Composition containing polymer of star-structure, the polymer and use thereof
US20030236354A1 (en) * 2002-04-04 2003-12-25 Kennedy Joseph P. Star block copolymers comprising polyisobutylene-B-polyacrylonitrile arms radiating from an aromatic core
JP2008208322A (en) * 2007-01-30 2008-09-11 Hitachi Chem Co Ltd Phenol derivative which has anthracene residue in side chain, and its manufacturing method
JP2008274171A (en) * 2007-05-02 2008-11-13 Univ Kanagawa Molecular nanocapsule and its preparation method
JP2009263605A (en) * 2008-04-30 2009-11-12 Jsr Corp Molecular capsule and its producing method
JP2010155880A (en) * 2008-12-26 2010-07-15 Lintec Corp Stimuli-responsive crosslinked polymer and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG,A. ET AL.: "Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcina", MATERIALS SCIENCE & ENGINEERING, C: MATERIALS FOR BIOLOGICAL APPLICATIONS, vol. 33, no. 1, JPN6019024166, 2013, pages 519 - 526, ISSN: 0004190254 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274174B2 (en) 2015-09-15 2022-03-15 Ricoh Company, Ltd. Polymer, resin composition, light control material, optical waveguide material, athermal optical element, color display element, and optical material
US10649242B2 (en) 2016-07-27 2020-05-12 Ricoh Company, Ltd. Multilayer film, multilayer film composite, optical component, and window
US10562993B2 (en) 2017-03-21 2020-02-18 Ricoh Company, Ltd. Polymer composition and optical material
WO2021117537A1 (en) * 2019-12-09 2021-06-17 国立大学法人京都大学 Member for fogging prevention, suppression of water droplet adhesion, suppression of icing, or suppression of ice nucleus formation

Also Published As

Publication number Publication date
JP6740527B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6740527B2 (en) Polymers, optical materials and lenses
JP6218059B2 (en) Process for producing aromatic polyketone and aromatic polyketone
TW201544503A (en) Dianhydride and polyimide
Wang et al. New fluorinated poly (ether sulfone imide) s with high thermal stability and low dielectric constant
Mahindrakar et al. Optically transparent, organosoluble poly (ether-amide) s bearing triptycene unit; synthesis and characterization
Wu et al. Novel soluble and optically active polyimides containing axially asymmetric 9, 9′-spirobifluorene units: synthesis, thermal, optical and chiral properties
Wu et al. Multifunctional polyimides by direct silyl ether reaction of pendant hydroxy groups: Toward low dielectric constant, high optical transparency and fluorescence
TW202204473A (en) Polyamide, polyamide imide, and derivatives thereof, optical film and display device, as well as manufacturing methods thereof
Chen et al. Synthesis and characterization of polyketones containing pendant carbazoles
Liu et al. Synthesis of new fluorinated aromatic poly (ether ketone amide) s containing cardo structures by a heterogeneous palladium‐catalyzed carbonylative polycondensation
Nakazono et al. Synthesis and properties of pendant fluorene moiety-tethered aliphatic polycarbonates
Shabbir et al. Pyrimidine based carboxylic acid terminated aromatic and semiaromatic hyperbranched polyamide-esters: synthesis and characterization
Nechifor Aromatic polyesters with photosensitive side chains: Synthesis, characterization and properties
JP6324787B2 (en) Novel diol compounds and polyesters
Behniafar et al. Synthesis and characterization of novel aromatic polyamides derived from 2, 2′‐bis (p‐phenoxyphenyl)‐4, 4′‐diaminodiphenyl ether
JP6999892B2 (en) Polymer compounds, their manufacturing methods, and optical materials
CN109320443B (en) Method for preparing compound and method for preparing polymer containing compound
CN108034049B (en) Polyimide resin and preparation method thereof
CN105542155B (en) A kind of soluble azopolyamide liquid crystal material of normal-butyl substitution and preparation method thereof
JP2020033340A (en) Quaternary ammonium group-containing polyamide
CN106543438A (en) A kind of preparation method of chlorinated and fluorinated polyamide-imide resin
Rhee et al. Soluble and Processable Poly (p‐phenylene) with Pendant Imide Groups
JP5804460B2 (en) Poly (arylene thioether) having a binaphthyl skeleton
JP6196731B2 (en) Novel acid dianhydride, production method thereof, and polyimide produced therefrom
Rusu et al. New polysulfones with pendant groups of cinnamate type

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200617

R150 Certificate of patent or registration of utility model

Ref document number: 6740527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees