WO2021117292A1 - Shaft grounding device for rotary machine - Google Patents

Shaft grounding device for rotary machine Download PDF

Info

Publication number
WO2021117292A1
WO2021117292A1 PCT/JP2020/030531 JP2020030531W WO2021117292A1 WO 2021117292 A1 WO2021117292 A1 WO 2021117292A1 JP 2020030531 W JP2020030531 W JP 2020030531W WO 2021117292 A1 WO2021117292 A1 WO 2021117292A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
brush
shaft grounding
rotating
grounding
Prior art date
Application number
PCT/JP2020/030531
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 七五三掛
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2021117292A1 publication Critical patent/WO2021117292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present invention relates to a rotary machine provided with a shaft grounding device for eliminating a shaft voltage generated in the shaft system of a rotary electric machine.
  • an axial voltage is generated in the shaft system due to an electromagnetic induction voltage generated by magnetic imbalance and an electrostatic voltage caused by rotational friction.
  • a shaft grounding device is used in which the shaft grounding brush is brought into contact with the shaft system to eliminate the shaft voltage generated in the shaft system.
  • Patent Document 1 Conventionally, as a rotary machine provided with a shaft grounding device, for example, the one described in Patent Document 1 has been proposed.
  • FIG. 9 is a vertical cross-sectional view showing the structure of a rotary machine provided with a shaft grounding device described in Patent Document 1.
  • the rotating machine 1 is provided with a substantially cylindrical stator 10 and a rotor 20 rotatably provided on the inner peripheral side of the stator 10, and the rotor 20 is provided by a rotating magnetic field generated by the stator 10. Is designed to rotate.
  • the stator 10 is fixed to a casing 30 that covers the stator 10, and the rotor 20 is fixed to a shaft 40 (rotating shaft) rotatably provided in the casing 30.
  • the casing 30 includes a substantially cylindrical frame 31 that covers the outer peripheral side of the stator 10, and a substantially disk-shaped bracket 32 that covers the opening side of the frame 31, that is, both end sides in the axial direction (right side and left side in FIG. 9). made and a 33, the space S 1 formed by the frame 31 and the bracket 32, 33 in the casing 30, the stator 10 and rotor 20 are housed.
  • the brackets 32 and 33 are radially outer peripheral sides (upper side in FIG. 9) along the shapes of both ends in the axial direction of the stator 10 and the rotor 20 housed inside the brackets 32 and 33 in the axial direction (between the bracket 32 and the bracket 33).
  • the recesses 32a and 33a are formed so that the portion on the inner peripheral side in the radial direction (the central side in the vertical direction in FIG. 9) is recessed inward in the axial direction with respect to the portion (and the lower side).
  • the recesses 32a and 33a are formed with insertion holes 32b and 33b that penetrate the radial center portion in the axial direction (left-right direction in FIG. 9), and the end portions of the shaft 40 are formed in the insertion holes 32b and 33b. It has been inserted. Further, bearings 50 are attached to the insertion holes 32b and 33b, and the shaft 40 is smoothly rotated by the bearings 50.
  • the bracket 32 installed on the opposite direct connection side (left side in FIG. 9) opposite to the direct connection side (right side in FIG. 9) connected to the drive unit (not shown) surrounds the outer peripheral side of the recess 32a.
  • An annular portion 34 projecting in the axial direction is integrally formed, and a first lid (end plate, lid member) 35 that closes the tip end side (left side in FIG. 9) of the annular portion 34 is provided. Has been done.
  • a detector (electrical component) 60 and a harness member (electrical component) 61 electrically connected to the position detector 60 are housed in the detector (electrical component) 60.
  • the position detector 60 is attached to a rotating portion 60a provided at one end side (anti-direct connection side) of the shaft 40 and a bracket 32 on one end side (anti-direct connection side) of the casing 30 facing the rotating portion 60a. It is composed of a fixed portion 60b provided, and can detect the rotation phase of the shaft 40 (rotating machine 1).
  • a cylindrical extension shaft 41 is assembled to one end side of the shaft 40 (the end in the left direction in FIG. 9) by bolts (not shown), and the rotating portion 60a of the position detector 60 includes the shaft 40 and the extension shaft. It is integrally fixed with the shaft 40 so as to be sandwiched between the 41 and the shaft 40.
  • the fixing portion 60b of the position detector 60 is fixed to the recess 32a of the casing 30 by a mechanical fastening means (not shown).
  • the first lid 35 is on the radial inner peripheral side (the vertical center side in FIG. 9) with respect to the radial outer peripheral side (upper side and lower side in FIG. 9).
  • the recess 35a is formed so that the portion is recessed inward in the axial direction (right side in FIG. 9).
  • An insertion hole 35b is formed in the recess 35a of the first lid 35 so as to penetrate the radial center portion in the axial direction (left-right direction in FIG. 9), and one end portion (one end portion) of the shaft 40 (the insertion hole 35b) is formed in the insertion hole 35b.
  • the extension shaft 41) is inserted.
  • the casing 30 is provided with a second lid 36 that closes the recess 35a of the first lid 35. These and the recess 35a of the first lid 35 in the space S 3 formed by the second lid 36, with the ends of the shaft 40 (extension shaft 41) is positioned, the tip is brought into contact with the outer peripheral surface of the extension shaft 41 It has a shaft grounding brush, and houses a shaft grounding device 70 for eliminating the shaft voltage generated on the shaft 40 (extension shaft 41).
  • This shaft grounding device 70 is fixedly attached to the first lid 35 via a shaft grounding bracket (not shown).
  • the insertion hole 35b of the first lid 35, and seal 80 is attached, by the seal 80, the space S 3 the shaft grounding device 70 is accommodated in the space S of the stator 10 and rotor 20 are housed It is separated from the space S 2 in which 1 and the position detector 60 are housed. Therefore, the wear of the shaft grounding brush (shaft grounding brush 71 (not shown)) in the shaft grounding device 70 does not affect the stator 10, rotor 20, position detector 60, and the like.
  • the shaft 40 When the rotating machine 1 configured as described above is driven, that is, when the rotor 20 is rotated by the rotating magnetic field created by the stator 10, the shaft 40 is rotated together with the rotor 20 and is directly connected to the shaft 40. A drive unit (not shown) connected to is driven.
  • the shaft voltage of the shaft 40 is generated by the electromagnetic induction voltage generated by the magnetic imbalance in the rotating machine 1 and the electrostatic voltage caused by the rotational friction.
  • FIG. 5A showing the arrangement relationship between the extension shaft 41 and the shaft grounding brush 71 when FIG. 9 is viewed in the direction of the arrow in FIG. II
  • the tip of the shaft grounding brush 71 contacts the extension shaft 41 shown by the solid line.
  • the extension shaft 41 changes to the position shown by the broken line (downward position, rightward position, etc.)
  • the contact amount of the shaft grounding brush 71 changes (the contact amount decreases or is in a non-contact state). Will be).
  • L0 in FIG. 5 shows a reference line connecting a certain point set on the outer peripheral surface of the extension shaft 41 and the axis center P and penetrating the set point, and is a shaft grounding brush of FIG. 5 (a). 71 is arranged along the reference line L0 (on the reference line L0).
  • the present invention solves the above problems, and an object of the present invention is to secure a contact amount of the shaft grounding brush with respect to the rotating shaft even when stress is applied to the rotating machine, or when a machining error or an assembly error occurs.
  • the shaft grounding device for a rotating machine according to claim 1 for solving the above problems is The rotating shaft of the rotating machine, which is rotatably provided in the casing, A first shaft grounding brush and a first shaft grounding brush fixed to a casing, which are arranged so as to face each other in the radial direction of the rotating shaft with the rotating shaft in between, and their respective tips come into contact with the outer peripheral surface of the rotating shaft. Equipped with 2 shaft grounding brushes
  • the first shaft grounding brush connects a point set on the outer peripheral surface of the rotating shaft and the center of the rotating shaft when the rotating shaft is not rotating, and uses a line penetrating the set point as a reference line as the reference line.
  • the second shaft grounding brush is characterized in that it is arranged along a second brush installation virtual line set by translating it from the reference line to the other side in the radial direction of the rotation shaft.
  • the shaft grounding device for a rotating machine according to claim 2 is claimed in claim 1.
  • the first shaft grounding brush is arranged on the first brush installation virtual line
  • the second shaft grounding brush is arranged on the second brush installation virtual line. ..
  • the shaft grounding device for a rotating machine according to claim 3 is claimed in claim 1 or 2.
  • the first brush installation virtual line and the second brush installation virtual line are set by being translated from the reference line to the rotation downstream side of the rotation axis.
  • the shaft grounding device for a rotating machine is the one according to any one of claims 1 to 3.
  • the first shaft grounding brush and the second shaft grounding brush are formed by the outer peripheral surface on the rotation upstream side of the rotating shaft and each shaft grounding brush when viewed from the contact point between each shaft grounding brush and the outer peripheral surface of the rotating shaft. It is characterized in that the corners are arranged so as to be acute angles.
  • the shaft grounding device for a rotating machine is the one according to any one of claims 1 to 4. It is characterized in that a plurality of sets of a set of shaft grounding brushes including the first shaft grounding brush and the second shaft grounding brush are provided.
  • the first and second shaft grounding brushes arranged so as to be offset from the reference line passing through the center of the shaft to both sides in the radial direction of the rotating shaft can secure the amount of contact of the shaft grounding brush with respect to the rotating shaft, thereby eliminating static electricity. Does not affect the effect.
  • either one of the first and second axis grounding brushes is used.
  • the shaft grounding brush makes it possible to supplement the amount of contact with the rotating shaft.
  • first and second shaft grounding brushes are arranged so as to be offset from the reference line passing through the center of the rotating shaft to both sides in the radial direction of the rotating shaft, the allowable deviation amount of the shaft grounding brush can be increased. .. (2) According to the inventions of claims 3 and 4, the amount of wear of the first and second shaft grounding brushes can be reduced. (3) According to the invention of claim 5, a larger amount of contact of the shaft grounding brush with respect to the rotating shaft can be secured.
  • FIG. 1 A cross-sectional view showing the structure of a rotary machine according to an embodiment of the present invention (a cross-sectional view taken along the line II-II in FIG. 1).
  • An enlarged cross-sectional view showing the structure of the rotary machine according to an embodiment of the present invention IV-IV arrow cross-sectional view in FIG. 2).
  • the arrangement relationship between the extension shaft and the shaft grounding brush in the rotating machine is shown, (a) is an explanatory diagram of the arrangement by the conventional device, (b) is an explanatory view of the arrangement by deformation of the conventional device, and (c) is an embodiment of the present invention.
  • Explanatory drawing of arrangement by example The arrangement relationship between the extension shaft and the shaft grounding brush in the rotating machine is shown, (a) is an explanatory view of the arrangement according to the second embodiment of the present invention, and (b) is the case where the second embodiment of the present invention is not applied.
  • Explanatory drawing of arrangement The explanatory view which shows the arrangement relation of the extension shaft and the shaft grounding brush in a rotating machine when the 3rd Embodiment of this invention is applied.
  • the vertical sectional view which shows an example of the structure of the conventional rotary machine.
  • FIG. 1 is a vertical sectional view of the rotating machine
  • FIG. 2 is II-in FIG. II cross-sectional view taken along the line
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2
  • FIG. 1 the same parts as those in FIG. 9 are indicated by the same reference numerals.
  • Figure 1 differs from the Figure 9, instead of the single shaft grounding device 70, two shaft grounding device 70X in the radial direction of the extension shaft 41 across the extension shaft 41 into the space S 3, the 70Y Since they are arranged so as to face each other, other parts are configured in the same manner as in FIG.
  • cylindrical extension shaft 41 is assembled to one end side (upper side in FIG. 3) of the shaft 40 by a bolt 42 as shown in FIG.
  • the shaft grounding device 70Y includes a shaft grounding brush 71Y that contacts the outer peripheral surface of the extension shaft 41 and a shaft grounding bracket 72Y that holds the shaft grounding brush 71Y.
  • the shaft grounding bracket 72Y has a mounting portion 72a for fixing to the first lid 35 by a mechanical fastening means (bolt or the like) (not shown), and a extending material portion 72b extending from the mounting portion 72a to the vicinity of the shaft 40 (extension shaft 41).
  • a brush mounting portion 72c that is bent from the rolled material portion 72b to the rotor 20 side (lower side in FIG. 4) and extends substantially parallel to the shaft 40 (extension shaft 41), and the lower end of the brush mounting portion 72c (FIG. 4). It has a folded-back portion 72d that is folded back from the lower end portion in 4.).
  • the shaft grounding brush 71Y is composed of, for example, a bundle of carbon filaments (filament material) containing carbon as a main raw material, and a large number of carbon filaments are sandwiched between the brush mounting portion 72c and the folded portion 72d of the shaft grounding bracket 72Y.
  • a pedestal portion (pedestal) 35c for mounting the mounting portion 72a of the shaft grounding device 70Y is provided in the recess 35a of the first lid 35, and the pedestal portion 35c is provided with the pedestal portion 35c as shown in FIGS.
  • a machined mounting seat surface 35d and a contact surface (contact surface) 35e are formed.
  • the pedestal portion 35c is formed with a pin hole 35f for inserting a positioning pin (pin member) (not shown), and the mounting portion 72a of the shaft grounding bracket 72Y corresponds to the pin hole 35f.
  • a pin hole 72f for inserting a positioning pin (not shown) is formed.
  • the shaft grounding device 70Y abuts one end surface 72e of the mounting portion 72a against the abutting surface 35e of the pedestal portion 35c, and is not shown.
  • the positioning pin By inserting the positioning pin into the pin hole 72f of the mounting portion 72a and the pin hole 35f of the pedestal portion 35c, the positioning of the shaft grounding device 70Y in the rotary machine 1, that is, the shaft grounding brush 71Y with respect to the shaft 40 (extension shaft 41) Positioning is done.
  • the pedestal portion 35c is formed with a screw hole 35g for screwing a bolt (not shown), and the attachment portion 72a of the shaft grounding bracket 72Y is shown so as to correspond to the screw hole 35g of the pedestal portion 35c.
  • An insertion hole 72 g for inserting the omitted bolt is formed.
  • the shaft grounding device 70Y inserts a bolt (not shown) into the insertion hole 72g of the mounting portion 72a in addition to the above positioning to insert the pedestal portion 35c. By screwing it into the screw hole 35g of the above, it is fixed to the first lid 35.
  • the shaft grounding device 70X which is arranged so as to face the shaft grounding device 70Y in the radial direction of the extension shaft 41 with the extension shaft 41 interposed therebetween, is also configured in the same manner as the shaft grounding device 70Y.
  • the shaft grounding brushes 71X (first shaft grounding brush) and 71Y (second shaft grounding brush) that abut on the outer peripheral surface of the extension shaft 41 are shown in FIG.
  • the extension shaft 41 and the shaft grounding brushes 71X and 71Y are arranged as shown in FIG. 5 (c) when viewed in the direction of the arrow.
  • the shaft grounding brush 71X connects a point set on the outer peripheral surface of the extension shaft 41 when the extension shaft 41 (rotating shaft) is not rotating and the shaft center P of the extension shaft 41, and is set as described above.
  • the line penetrating the point is set as the reference line L0, and the extension shaft 41 is moved in parallel to one side in the radial direction (left side in the drawing) by a predetermined distance from the reference line L0. It is arranged on the side.
  • the shaft grounding brush 71Y is arranged on the upper side of the drawing on the second brush installation virtual line L2 set by translating the extension shaft 41 from the reference line L0 to the other side (right side in the drawing) in the radial direction by a predetermined distance. ..
  • the shaft voltage generated in the extension shaft 41 (shaft 40) can be reliably grounded (grounded) to eliminate static electricity.
  • the shaft grounding brushes 71X and 71Y are shifted from the reference line L0. Since they are arranged (on the virtual lines L1 and L2 for installing the first and second brushes), the amount of contact of the shaft grounding brush with the extension shaft 41 is secured, and the static elimination effect is not affected.
  • each axis grounding brush 71X, 71Y can be increased.
  • the shaft grounding brushes 71X and 71Y are arranged on the brush installation virtual lines (L1, L2) set by moving the shaft grounding brushes 71X and 71Y in parallel from the reference line L0 to the rotation downstream side of the extension shaft 41, respectively. Therefore, the amount of wear of the shaft grounding brushes 71X and 71Y is reduced.
  • the shaft grounding brush 71X on the lower side of the drawing is arranged on the virtual line L2 for brush installation set on the right side (rotation downstream side) from the reference line L0.
  • FIG. 6B is on the brush installation virtual lines (L1, L2) set on the rotation upstream side of the extension shaft 41 that rotates counterclockwise as in FIG. 6A, contrary to FIG. 6A. It is the figure which arranged the shaft grounding brush 71X, 71Y.
  • the upper shaft grounding brush 71Y is viewed from the contact point of the outer peripheral surface of the extension shaft 41 with the outer peripheral surface on the rotation upstream side of the extension shaft 41 and the shaft grounding brush 71Y.
  • the brush installation virtual line L1 so that the angle formed by the brush is an acute angle (for example, 45 ° or less than 90 °)
  • the lower shaft grounding brush 71X is brought into contact with the outer peripheral surface of the extension shaft 41.
  • the embodiment of FIG. 7 also has a shaft grounding with the outer peripheral surface on the rotation upstream side of the extension shaft 41 when viewed from the contact point between the shaft grounding brush 71Y and the outer peripheral surface of the extension shaft 41. Since the angle formed with the brush 71Y is an acute angle, the wear of the shaft grounding brush 71Y is small. This also applies to the shaft grounding brush 71X.
  • a plurality of sets of shaft grounding brushes including shaft grounding brushes 71X and 71Y, for example, two sets (shaft grounding brushes 71X1, 71Y1, 71X2, 71Y2), FIG. 5 ( c), arranged in the same manner as in FIG. 6 (a).
  • each shaft grounding brush 71X1, 71Y1, 71X2, 71Y2 can be increased.
  • the present invention is not limited to the rotating machine described in Patent Document 1, but can be applied to other rotating machines, and in that case, the same actions and effects as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

Even when stress has been applied to a rotary machine or a machining error and an assembly error have occurred, the present invention ensures a contact amount of a shaft grounding brush with respect to a rotary shaft, and thereby obtains an antistatic effect. The present invention is provided with: an extension shaft 41 that is a rotary shaft of a rotary machine; a first shaft grounding brush 71X and a second shaft grounding brush 71Y that are disposed opposite to each other in a radial direction of the extension shaft 41 with the extension shaft 41 therebetween and that have the respective tips in contact with the outer circumferential surface of the extension shaft 41. The first shaft grounding brush 71X and the second shaft grounding brush 71Y are disposed along first and second brush installation virtual lines obtained by, when a reference line drawn by connecting the center of the extension shaft 41 and a point having been set on the outer circumferential surface of the extension shaft 41 during non-rotation of the extension shaft 41 and penetrating the set point is defined, performing setting through parallel movements, by a predetermined distance, from the reference line to one side in the radial direction of the extension shaft 41 and the other side in the radial direction, respectively.

Description

回転機の軸接地装置Rotating machine shaft grounding device
 本発明は、回転電機の軸系に発生する軸電圧を除電するための軸接地装置を備えた回転機に関する。 The present invention relates to a rotary machine provided with a shaft grounding device for eliminating a shaft voltage generated in the shaft system of a rotary electric machine.
 回転機においては、磁気不平衡によって生ずる電磁誘導電圧や回転摩擦に起因する静電気電圧によって、軸系に軸電圧が発生する。この軸電圧を有効にアース(接地)して、十分に低い値に保つために、軸接地ブラシを軸系に当接させて軸系に発生する軸電圧を除電する軸接地装置が用いられる。 In a rotating machine, an axial voltage is generated in the shaft system due to an electromagnetic induction voltage generated by magnetic imbalance and an electrostatic voltage caused by rotational friction. In order to effectively ground this shaft voltage and keep it at a sufficiently low value, a shaft grounding device is used in which the shaft grounding brush is brought into contact with the shaft system to eliminate the shaft voltage generated in the shaft system.
 従来、軸接地装置を備えた回転機は例えば特許文献1に記載のものが提案されていた。 Conventionally, as a rotary machine provided with a shaft grounding device, for example, the one described in Patent Document 1 has been proposed.
 図9は、特許文献1に記載された、軸接地装置を備えた回転機の構造を示す縦断面図である。図9において、回転機1には、略円筒形状のステータ10と、このステータ10の内周側において回転自在に設けられるロータ20とが備えられており、ステータ10で作られる回転磁界によってロータ20が回転動作するようになっている。ステータ10は、当該ステータ10を覆うケーシング30に固定されており、ロータ20は、ケーシング30に回転自在に設けられたシャフト40(回転軸)に固定されている。 FIG. 9 is a vertical cross-sectional view showing the structure of a rotary machine provided with a shaft grounding device described in Patent Document 1. In FIG. 9, the rotating machine 1 is provided with a substantially cylindrical stator 10 and a rotor 20 rotatably provided on the inner peripheral side of the stator 10, and the rotor 20 is provided by a rotating magnetic field generated by the stator 10. Is designed to rotate. The stator 10 is fixed to a casing 30 that covers the stator 10, and the rotor 20 is fixed to a shaft 40 (rotating shaft) rotatably provided in the casing 30.
 ケーシング30は、ステータ10の外周側を覆う略円筒形状のフレーム31と、フレーム31の開口側、すなわち軸方向両端側(図9における右方側および左方側)を覆う略円盤形状のブラケット32,33とを有して成り、このケーシング30におけるフレーム31とブラケット32,33とによって形成される空間S1に、ステータ10およびロータ20が収納されている。 The casing 30 includes a substantially cylindrical frame 31 that covers the outer peripheral side of the stator 10, and a substantially disk-shaped bracket 32 that covers the opening side of the frame 31, that is, both end sides in the axial direction (right side and left side in FIG. 9). made and a 33, the space S 1 formed by the frame 31 and the bracket 32, 33 in the casing 30, the stator 10 and rotor 20 are housed.
 ブラケット32,33は、その軸方向内側(ブラケット32とブラケット33との間)に収納されるステータ10およびロータ20の軸方向両端部の形状に沿って、径方向外周側(図9における上方側および下方側)の部分に対して径方向内周側(図9における上下方向の中央側)の部分が軸方向内側へ窪むように、凹部32a,33aが形成されて成る。 The brackets 32 and 33 are radially outer peripheral sides (upper side in FIG. 9) along the shapes of both ends in the axial direction of the stator 10 and the rotor 20 housed inside the brackets 32 and 33 in the axial direction (between the bracket 32 and the bracket 33). The recesses 32a and 33a are formed so that the portion on the inner peripheral side in the radial direction (the central side in the vertical direction in FIG. 9) is recessed inward in the axial direction with respect to the portion (and the lower side).
 凹部32a,33aには、その径方向中心部を軸方向(図9における左右方向)に貫通する挿通穴32b、33bが形成されており、この挿通穴32b、33bにはシャフト40の端部が挿通されている。また、挿通穴32b、33bには、ベアリング50が取り付けられており、このベアリング50によって、シャフト40が円滑に回転動作されるようになっている。 The recesses 32a and 33a are formed with insertion holes 32b and 33b that penetrate the radial center portion in the axial direction (left-right direction in FIG. 9), and the end portions of the shaft 40 are formed in the insertion holes 32b and 33b. It has been inserted. Further, bearings 50 are attached to the insertion holes 32b and 33b, and the shaft 40 is smoothly rotated by the bearings 50.
 図示省略の駆動部と連結される直結側(図9における右方側)とは反対の反直結側(図9における左方側)に設置されるブラケット32には、凹部32aの外周側を囲んで軸方向へ突出する円環部34が一体的に形成されると共に、この円環部34の先端側(図9における左方側)を塞ぐ第一リッド(端板、蓋部材)35が設けられている。 The bracket 32 installed on the opposite direct connection side (left side in FIG. 9) opposite to the direct connection side (right side in FIG. 9) connected to the drive unit (not shown) surrounds the outer peripheral side of the recess 32a. An annular portion 34 projecting in the axial direction is integrally formed, and a first lid (end plate, lid member) 35 that closes the tip end side (left side in FIG. 9) of the annular portion 34 is provided. Has been done.
 これらケーシング30における凹部32aと円環部34と第一リッド35とによって形成される空間(電気室)S2には、回転機1(シャフト40)の回転位相を検出するレゾルバやエンコーダ等の位置検出器(電気部品)60および当該位置検出器60と電気的に接続されるハーネス部材(電気部品)61が収納されている。 In the space (electrical chamber) S 2 formed by the recess 32a, the annular portion 34, and the first lid 35 in the casing 30, the positions of a resolver, an encoder, and the like for detecting the rotational phase of the rotary machine 1 (shaft 40) are located. A detector (electrical component) 60 and a harness member (electrical component) 61 electrically connected to the position detector 60 are housed in the detector (electrical component) 60.
 位置検出器60は、シャフト40にける一端側(反直結側)の端部に設けられる回転部60aと、この回転部60aと対向してケーシング30における一端側(反直結側)のブラケット32に設けられる固定部60bとから成り、シャフト40(回転機1)の回転位相を検出することができるものである。 The position detector 60 is attached to a rotating portion 60a provided at one end side (anti-direct connection side) of the shaft 40 and a bracket 32 on one end side (anti-direct connection side) of the casing 30 facing the rotating portion 60a. It is composed of a fixed portion 60b provided, and can detect the rotation phase of the shaft 40 (rotating machine 1).
 シャフト40の一端側(図9における左方向端部)には、円筒形状の延長シャフト41が図示省略のボルトによって組付けられており、位置検出器60の回転部60aは、シャフト40と延長シャフト41とで挟持されるようにしてシャフト40と一体に固定されている。一方、位置検出器60の固定部60bは、ケーシング30の凹部32aに、図示省略の機械的締結手段によって固定されている。 A cylindrical extension shaft 41 is assembled to one end side of the shaft 40 (the end in the left direction in FIG. 9) by bolts (not shown), and the rotating portion 60a of the position detector 60 includes the shaft 40 and the extension shaft. It is integrally fixed with the shaft 40 so as to be sandwiched between the 41 and the shaft 40. On the other hand, the fixing portion 60b of the position detector 60 is fixed to the recess 32a of the casing 30 by a mechanical fastening means (not shown).
 第一リッド35は、ケーシング30のブラケット32と同様に、径方向外周側(図9における上方側および下方側)の部分に対して径方向内周側(図9における上下方向の中央側)の部分が軸方向内側(図9における右方側)へ窪むように、凹部35aが形成されて成る。 Similar to the bracket 32 of the casing 30, the first lid 35 is on the radial inner peripheral side (the vertical center side in FIG. 9) with respect to the radial outer peripheral side (upper side and lower side in FIG. 9). The recess 35a is formed so that the portion is recessed inward in the axial direction (right side in FIG. 9).
 第一リッド35の凹部35aには、その径方向中心部を軸方向(図9における左右方向)に貫通する挿通穴35bが形成されており、この挿通穴35bには、シャフト40の一端部(延長シャフト41)が挿通されている。 An insertion hole 35b is formed in the recess 35a of the first lid 35 so as to penetrate the radial center portion in the axial direction (left-right direction in FIG. 9), and one end portion (one end portion) of the shaft 40 (the insertion hole 35b) is formed in the insertion hole 35b. The extension shaft 41) is inserted.
 ケーシング30には、第一リッド35の凹部35aを塞ぐ第二リッド36が設けられている。これら第一リッド35の凹部35aと第二リッド36とによって形成される空間S3には、シャフト40の端部(延長シャフト41)が位置すると共に、先端が延長シャフト41の外周面に接触される軸接地ブラシを有し、シャフト40(延長シャフト41)に発生する軸電圧を除電するための軸接地装置70が収納されている。 The casing 30 is provided with a second lid 36 that closes the recess 35a of the first lid 35. These and the recess 35a of the first lid 35 in the space S 3 formed by the second lid 36, with the ends of the shaft 40 (extension shaft 41) is positioned, the tip is brought into contact with the outer peripheral surface of the extension shaft 41 It has a shaft grounding brush, and houses a shaft grounding device 70 for eliminating the shaft voltage generated on the shaft 40 (extension shaft 41).
 この軸接地装置70は、図示省略の軸接地ブラケットを介して第一リッド35に固定して取付けられている。 This shaft grounding device 70 is fixedly attached to the first lid 35 via a shaft grounding bracket (not shown).
 また、第一リッド35の挿通穴35bには、シール80が取り付けられており、このシール80によって、軸接地装置70が収納される空間S3は、ステータ10およびロータ20が収納される空間S1ならびに位置検出器60が収納される空間S2と隔たれている。よって、軸接地装置70における軸接地ブラシ(図示省略の軸接地ブラシ71)の磨耗が、ステータ10、ロータ20および位置検出器60等に影響することはない。 Further, the insertion hole 35b of the first lid 35, and seal 80 is attached, by the seal 80, the space S 3 the shaft grounding device 70 is accommodated in the space S of the stator 10 and rotor 20 are housed It is separated from the space S 2 in which 1 and the position detector 60 are housed. Therefore, the wear of the shaft grounding brush (shaft grounding brush 71 (not shown)) in the shaft grounding device 70 does not affect the stator 10, rotor 20, position detector 60, and the like.
 上記のように構成された回転機1が駆動されると、すなわち、ステータ10で作られる回転磁界によってロータ20が回転動作されると、シャフト40がロータ20と共に回転動作され、シャフト40の直結側に連結される図示省略の駆動部が駆動される。ここで、回転機1における磁気不平衡によって生ずる電磁誘導電圧や回転摩擦に起因する静電気電圧によって、シャフト40の軸電圧が発生する。 When the rotating machine 1 configured as described above is driven, that is, when the rotor 20 is rotated by the rotating magnetic field created by the stator 10, the shaft 40 is rotated together with the rotor 20 and is directly connected to the shaft 40. A drive unit (not shown) connected to is driven. Here, the shaft voltage of the shaft 40 is generated by the electromagnetic induction voltage generated by the magnetic imbalance in the rotating machine 1 and the electrostatic voltage caused by the rotational friction.
 このとき、軸接地装置70における軸接地ブラシ(71)は、シャフト40に連結された延長シャフト41の外周面と接しているので、シャフト40に生じた軸電圧は、延長シャフト41および軸接地装置70を介して除電される。よって、回転機1においては、軸電圧に起因する軸受部(ベアリング50)での放電は起こらず、電食を生じることはない。 At this time, since the shaft grounding brush (71) in the shaft grounding device 70 is in contact with the outer peripheral surface of the extension shaft 41 connected to the shaft 40, the shaft voltage generated in the shaft 40 is the extension shaft 41 and the shaft grounding device. The charge is removed via 70. Therefore, in the rotary machine 1, discharge does not occur in the bearing portion (bearing 50) due to the shaft voltage, and electrolytic corrosion does not occur.
特許第6127308号公報Japanese Patent No. 6127308
 図9の回転機においては、除電のための軸接地装置70が一箇所にのみ設置されているため、回転機1に応力がかかった場合や、加工誤差、組付け誤差によりシャフト40および延長シャフト41の配設位置が変わると、軸接地装置70の軸接地ブラシ(71)の延長シャフト41に対する接触量が変化してしまう。これによって除電効果がばらついてしまう。 In the rotating machine of FIG. 9, since the shaft grounding device 70 for static elimination is installed at only one place, the shaft 40 and the extension shaft are installed when stress is applied to the rotating machine 1 or due to machining error or assembly error. When the arrangement position of the 41 is changed, the contact amount of the shaft grounding device 70 with the extension shaft 41 of the shaft grounding brush (71) changes. As a result, the static elimination effect varies.
 例えば図9を図示IIの矢印方向に見た場合の延長シャフト41と軸接地ブラシ71の配置関係を示す図5(a)において、軸接地ブラシ71の先端が、実線で示す延長シャフト41に接触していても、延長シャフト41が図示破線の位置(下方向位置、右方向位置等)に変化すると、軸接地ブラシ71の接触量が変化してしまう(接触量が減少したり、非接触状態となる)。 For example, in FIG. 5A showing the arrangement relationship between the extension shaft 41 and the shaft grounding brush 71 when FIG. 9 is viewed in the direction of the arrow in FIG. II, the tip of the shaft grounding brush 71 contacts the extension shaft 41 shown by the solid line. Even so, if the extension shaft 41 changes to the position shown by the broken line (downward position, rightward position, etc.), the contact amount of the shaft grounding brush 71 changes (the contact amount decreases or is in a non-contact state). Will be).
 尚、図5のL0は、延長シャフト41の外周面に設定したある点と軸中心Pを結び、且つ前記設定した点を貫通する基準線を示しており、図5(a)の軸接地ブラシ71は基準線L0に沿って(基準線L0上に)配設されている。 Note that L0 in FIG. 5 shows a reference line connecting a certain point set on the outer peripheral surface of the extension shaft 41 and the axis center P and penetrating the set point, and is a shaft grounding brush of FIG. 5 (a). 71 is arranged along the reference line L0 (on the reference line L0).
 また、図5(b)のように延長シャフト41を挟んで、基準線L0上に2つの軸接地ブラシ71を対向配設することが考えられるが、この場合、延長シャフト41の位置が破線に示す右方向(左方向も同様)にずれると、軸接地ブラシ71の接触量が変化してしまう。 Further, as shown in FIG. 5B, it is conceivable to dispose the two shaft grounding brushes 71 facing each other on the reference line L0 with the extension shaft 41 sandwiched between them. In this case, the position of the extension shaft 41 is changed to a broken line. If it deviates in the right direction (the same applies to the left direction), the contact amount of the shaft grounding brush 71 changes.
 本発明は上記課題を解決するものであり、その目的は、回転機に応力がかかった場合や、加工誤差、組付け誤差が発生しても、軸接地ブラシの、回転軸に対する接触量を確保し、除電効果に影響を与えることの無い回転機の軸接地装置を提供することにある。 The present invention solves the above problems, and an object of the present invention is to secure a contact amount of the shaft grounding brush with respect to the rotating shaft even when stress is applied to the rotating machine, or when a machining error or an assembly error occurs. However, it is an object of the present invention to provide a shaft grounding device for a rotating machine that does not affect the static elimination effect.
 上記課題を解決するための請求項1に記載の回転機の軸接地装置は、
 ケーシングに回転自在に設けられた回転機の回転軸と、
 ケーシングに固設されたブラシであって、前記回転軸を挟んで、回転軸の径方向に対向配設されて、各々の先端が回転軸の外周面に接触する第1の軸接地ブラシおよび第2の軸接地ブラシとを備え、
 前記第1の軸接地ブラシは、前記回転軸の非回転時に回転軸の外周面に設定した点と回転軸の中心とを結び、且つ前記設定した点を貫通する線を基準線とし、該基準線から回転軸の径方向一方側に平行移動させて設定した第1のブラシ設置用仮想線に沿って配設され、
 前記第2の軸接地ブラシは、前記基準線から回転軸の径方向他方側に平行移動させて設定した第2のブラシ設置用仮想線に沿って配設されていることを特徴とする。
The shaft grounding device for a rotating machine according to claim 1 for solving the above problems is
The rotating shaft of the rotating machine, which is rotatably provided in the casing,
A first shaft grounding brush and a first shaft grounding brush fixed to a casing, which are arranged so as to face each other in the radial direction of the rotating shaft with the rotating shaft in between, and their respective tips come into contact with the outer peripheral surface of the rotating shaft. Equipped with 2 shaft grounding brushes
The first shaft grounding brush connects a point set on the outer peripheral surface of the rotating shaft and the center of the rotating shaft when the rotating shaft is not rotating, and uses a line penetrating the set point as a reference line as the reference line. It is arranged along the first virtual line for brush installation set by translating from the line to one side in the radial direction of the rotation axis.
The second shaft grounding brush is characterized in that it is arranged along a second brush installation virtual line set by translating it from the reference line to the other side in the radial direction of the rotation shaft.
 請求項2に記載の回転機の軸接地装置は、請求項1において、
 前記第1の軸接地ブラシは前記第1のブラシ設置用仮想線上に配設され、前記第2の軸接地ブラシは前記第2のブラシ設置用仮想線上に配設されていることを特徴とする。
The shaft grounding device for a rotating machine according to claim 2 is claimed in claim 1.
The first shaft grounding brush is arranged on the first brush installation virtual line, and the second shaft grounding brush is arranged on the second brush installation virtual line. ..
 請求項3に記載の回転機の軸接地装置は、請求項1又は2において、
 前記第1のブラシ設置用仮想線および第2のブラシ設置用仮想線は、前記基準線から、前記回転軸の回転下流側に各々平行移動させて設定されていることを特徴とする。
The shaft grounding device for a rotating machine according to claim 3 is claimed in claim 1 or 2.
The first brush installation virtual line and the second brush installation virtual line are set by being translated from the reference line to the rotation downstream side of the rotation axis.
 請求項4に記載の回転機の軸接地装置は、請求項1ないし3のいずれか1項において、
 前記第1の軸接地ブラシおよび第2の軸接地ブラシは、各軸接地ブラシと回転軸の外周面の接触点から見て回転軸の回転上流側の外周面と、各軸接地ブラシとのなす角が各々鋭角となるように配設されていることを特徴とする。
The shaft grounding device for a rotating machine according to claim 4 is the one according to any one of claims 1 to 3.
The first shaft grounding brush and the second shaft grounding brush are formed by the outer peripheral surface on the rotation upstream side of the rotating shaft and each shaft grounding brush when viewed from the contact point between each shaft grounding brush and the outer peripheral surface of the rotating shaft. It is characterized in that the corners are arranged so as to be acute angles.
 請求項5に記載の回転機の軸接地装置は、請求項1ないし4のいずれか1項において、
 前記第1の軸接地ブラシおよび第2の軸接地ブラシから成る一組の軸接地ブラシを、複数組設けたことを特徴とする。
(1)請求項1~5に記載の発明によれば、回転機に応力がかかった場合や、加工誤差、組付け誤差により、回転機の回転軸の配設位置が変化しても、回転軸の中心を通る基準線から回転軸の径方向両側にずらして配設した第1および第2の軸接地ブラシによって、軸接地ブラシの回転軸に対する接触量を確保することができ、これによって除電効果に影響を与えることがない。
The shaft grounding device for a rotating machine according to claim 5 is the one according to any one of claims 1 to 4.
It is characterized in that a plurality of sets of a set of shaft grounding brushes including the first shaft grounding brush and the second shaft grounding brush are provided.
(1) According to the inventions of claims 1 to 5, even if a stress is applied to the rotating machine, or the arrangement position of the rotating shaft of the rotating machine changes due to a processing error or an assembly error, the rotating machine rotates. The first and second shaft grounding brushes arranged so as to be offset from the reference line passing through the center of the shaft to both sides in the radial direction of the rotating shaft can secure the amount of contact of the shaft grounding brush with respect to the rotating shaft, thereby eliminating static electricity. Does not affect the effect.
 例えば、回転機の回転軸の配設位置が、基準線に沿う方向にずれた場合でも基準線に直交する方向にずれた場合でも、第1および第2の軸接地ブラシのうちいずれか一方の軸接地ブラシにより回転軸に対する接触量を補うことが可能となる。 For example, regardless of whether the position of the rotating shaft of the rotating machine is displaced along the reference line or in the direction orthogonal to the reference line, either one of the first and second axis grounding brushes is used. The shaft grounding brush makes it possible to supplement the amount of contact with the rotating shaft.
 また、第1および第2の軸接地ブラシを、回転軸の中心を通る基準線から回転軸の径方向両側にずらして配設しているので、軸接地ブラシの許容ずれ量を増やすことができる。
(2)請求項3、4に記載の発明によれば、第1および第2の軸接地ブラシの磨耗量を低減させることができる。
(3)請求項5に記載の発明によれば、軸接地ブラシの回転軸に対する接触量をより多く確保することができる。
Further, since the first and second shaft grounding brushes are arranged so as to be offset from the reference line passing through the center of the rotating shaft to both sides in the radial direction of the rotating shaft, the allowable deviation amount of the shaft grounding brush can be increased. ..
(2) According to the inventions of claims 3 and 4, the amount of wear of the first and second shaft grounding brushes can be reduced.
(3) According to the invention of claim 5, a larger amount of contact of the shaft grounding brush with respect to the rotating shaft can be secured.
本発明の一実施例に係る回転機の構造を示す縦断面図。The vertical sectional view which shows the structure of the rotary machine which concerns on one Example of this invention. 本発明の一実施例に係る回転機の構造を示す横断面図(図1におけるII-II矢視断面図)。A cross-sectional view showing the structure of a rotary machine according to an embodiment of the present invention (a cross-sectional view taken along the line II-II in FIG. 1). 本発明の一実施例に係る回転機の構造を示す拡大断面図(図2におけるIII-III矢視断面図)。An enlarged cross-sectional view showing the structure of the rotary machine according to an embodiment of the present invention (cross-sectional view taken along the line III-III in FIG. 2). 本発明の一実施例に係る回転機の構造を示す拡大断面図(図2におけるIV-IV矢視断面図)。An enlarged cross-sectional view showing the structure of the rotary machine according to an embodiment of the present invention (IV-IV arrow cross-sectional view in FIG. 2). 回転機における延長シャフトと軸接地ブラシの配置関係を表し、(a)は従来装置による配置の説明図、(b)は従来装置の変形による配置の説明図、(c)は本発明の一実施例による配置の説明図。The arrangement relationship between the extension shaft and the shaft grounding brush in the rotating machine is shown, (a) is an explanatory diagram of the arrangement by the conventional device, (b) is an explanatory view of the arrangement by deformation of the conventional device, and (c) is an embodiment of the present invention. Explanatory drawing of arrangement by example. 回転機における延長シャフトと軸接地ブラシの配置関係を表し、(a)は本発明の第2の実施例による配置の説明図、(b)は本発明の第2の実施例を適用しない場合の配置の説明図。The arrangement relationship between the extension shaft and the shaft grounding brush in the rotating machine is shown, (a) is an explanatory view of the arrangement according to the second embodiment of the present invention, and (b) is the case where the second embodiment of the present invention is not applied. Explanatory drawing of arrangement. 本発明の第3の実施例を適用した場合の、回転機における延長シャフトと軸接地ブラシの配置関係を表す説明図。The explanatory view which shows the arrangement relation of the extension shaft and the shaft grounding brush in a rotating machine when the 3rd Embodiment of this invention is applied. 本発明の第4の実施例を適用した場合の、回転機における延長シャフトと軸接地ブラシの配置関係を表す説明図。The explanatory view which shows the arrangement relation of the extension shaft and the shaft grounding brush in a rotating machine when the 4th Embodiment of this invention is applied. 従来の回転機の構造の一例を示す縦断面図。The vertical sectional view which shows an example of the structure of the conventional rotary machine.
 以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。図1~図4および図5(c)は本発明を特許文献1に記載の回転機に適用した実施形態例を示し、図1は回転機の縦断面図、図2は図1におけるII-II矢視断面図、図3は図2におけるIII-III矢視断面図、図4は図2におけるIV-IV矢視断面図、図5(c)は延長シャフトと軸接地ブラシの配置関係を表す説明図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples of embodiments. 1 to 4 and 5 (c) show an example of an embodiment in which the present invention is applied to the rotating machine described in Patent Document 1, FIG. 1 is a vertical sectional view of the rotating machine, and FIG. 2 is II-in FIG. II cross-sectional view taken along the line, FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2, and FIG. It is explanatory drawing which shows.
 図1において図9と同一部分は同一符号をもって示している。図1において、図9と異なる点は、1個の軸接地装置70に代えて、空間S3内に延長シャフト41を挟んで延長シャフト41の径方向に2個の軸接地装置70X,70Yを対向配設したことにあり、その他の部分は図9と同様に構成されている。 In FIG. 1, the same parts as those in FIG. 9 are indicated by the same reference numerals. In Figure 1, differs from the Figure 9, instead of the single shaft grounding device 70, two shaft grounding device 70X in the radial direction of the extension shaft 41 across the extension shaft 41 into the space S 3, the 70Y Since they are arranged so as to face each other, other parts are configured in the same manner as in FIG.
 尚、図1では図示省略しているが、円筒形状の延長シャフト41は図3に示すように、ボルト42によってシャフト40の一端側(図3における上方側)に組付けられている。 Although not shown in FIG. 1, the cylindrical extension shaft 41 is assembled to one end side (upper side in FIG. 3) of the shaft 40 by a bolt 42 as shown in FIG.
 図2~図4において、軸接地装置70Yは、延長シャフト41の外周面に接触する軸接地ブラシ71Yと、この軸接地ブラシ71Yを保持する軸接地ブラケット72Yとを備えている。軸接地ブラケット72Yは、第一リッド35に図示省略の機械的締結手段(ボルト等)によって固定するための取り付け部72aと、取り付け部72aからシャフト40(延長シャフト41)近傍まで延びる延材部72bと、延材部72bから略直角にロータ20側(図4における下方側)へ折り曲げられてシャフト40(延長シャフト41)と略平行に延びるブラシ取り付け部72cと、ブラシ取り付け部72cの下端(図4における下方側端部)から折り返される折り返し部72dとを有する。 In FIGS. 2 to 4, the shaft grounding device 70Y includes a shaft grounding brush 71Y that contacts the outer peripheral surface of the extension shaft 41 and a shaft grounding bracket 72Y that holds the shaft grounding brush 71Y. The shaft grounding bracket 72Y has a mounting portion 72a for fixing to the first lid 35 by a mechanical fastening means (bolt or the like) (not shown), and a extending material portion 72b extending from the mounting portion 72a to the vicinity of the shaft 40 (extension shaft 41). A brush mounting portion 72c that is bent from the rolled material portion 72b to the rotor 20 side (lower side in FIG. 4) and extends substantially parallel to the shaft 40 (extension shaft 41), and the lower end of the brush mounting portion 72c (FIG. 4). It has a folded-back portion 72d that is folded back from the lower end portion in 4.).
 軸接地ブラシ71Yは、例えば炭素を主原料とする炭素フィラメント(フィラメント材)の束から成り、多数の炭素フィラメントが軸接地ブラケット72Yのブラシ取り付け部72cと折り返し部72dとによって挟持されている。 The shaft grounding brush 71Y is composed of, for example, a bundle of carbon filaments (filament material) containing carbon as a main raw material, and a large number of carbon filaments are sandwiched between the brush mounting portion 72c and the folded portion 72d of the shaft grounding bracket 72Y.
 第一リッド35の凹部35aには、軸接地装置70Yの取り付け部72aを取り付けるための台座部(台座)35cが設けられており、この台座部35cには、図2、図4に示すように機械加工された取り付け座面35dおよび当て付け面(当接面)35eが形成されている。 A pedestal portion (pedestal) 35c for mounting the mounting portion 72a of the shaft grounding device 70Y is provided in the recess 35a of the first lid 35, and the pedestal portion 35c is provided with the pedestal portion 35c as shown in FIGS. A machined mounting seat surface 35d and a contact surface (contact surface) 35e are formed.
 また、台座部35cには、図示省略の位置決めピン(ピン部材)を挿入するためのピン穴35fが形成されており、軸接地ブラケット72Yの取り付け部72aには、ピン穴35fに対応するように、図示省略の位置決めピンを挿入するためのピン穴72fが形成されている。 Further, the pedestal portion 35c is formed with a pin hole 35f for inserting a positioning pin (pin member) (not shown), and the mounting portion 72a of the shaft grounding bracket 72Y corresponds to the pin hole 35f. , A pin hole 72f for inserting a positioning pin (not shown) is formed.
 よって、軸接地装置70Yは、取り付け部72aを台座部35cの取り付け座面35dに設置する際に、取り付け部72aの一端面72eを台座部35cの当て付け面35eに当て付けると共に、図示省略の位置決めピンを取り付け部72aのピン穴72fおよび台座部35cのピン穴35fに挿入することにより、回転機1における軸接地装置70Yの位置決め、すなわち、シャフト40(延長シャフト41)に対する軸接地ブラシ71Yの位置決めがなされるようになっている。 Therefore, when the mounting portion 72a is installed on the mounting seat surface 35d of the pedestal portion 35c, the shaft grounding device 70Y abuts one end surface 72e of the mounting portion 72a against the abutting surface 35e of the pedestal portion 35c, and is not shown. By inserting the positioning pin into the pin hole 72f of the mounting portion 72a and the pin hole 35f of the pedestal portion 35c, the positioning of the shaft grounding device 70Y in the rotary machine 1, that is, the shaft grounding brush 71Y with respect to the shaft 40 (extension shaft 41) Positioning is done.
 また、台座部35cには、図示省略のボルトをねじ込むためのねじ穴35gが形成されており、軸接地ブラケット72Yの取り付け部72aには、台座部35cのねじ穴35gに対応するように、図示省略のボルトを挿通するための挿通穴72gが形成されている。 Further, the pedestal portion 35c is formed with a screw hole 35g for screwing a bolt (not shown), and the attachment portion 72a of the shaft grounding bracket 72Y is shown so as to correspond to the screw hole 35g of the pedestal portion 35c. An insertion hole 72 g for inserting the omitted bolt is formed.
 よって、軸接地装置70Yは、取り付け部72aを台座部35cの取り付け座面35dに設置する際に、上述の位置決めと共に、図示省略のボルトを取り付け部72aの挿通穴72gに挿通して台座部35cのねじ穴35gにねじ込むことにより、第一リッド35に固定されるようになっている。 Therefore, when the mounting portion 72a is installed on the mounting seat surface 35d of the pedestal portion 35c, the shaft grounding device 70Y inserts a bolt (not shown) into the insertion hole 72g of the mounting portion 72a in addition to the above positioning to insert the pedestal portion 35c. By screwing it into the screw hole 35g of the above, it is fixed to the first lid 35.
 軸接地装置70Yに対して、延長シャフト41を挟んで延長シャフト41の径方向に対向配設される軸接地装置70Xも、前記軸接地装置70Yと同様に構成されている。 The shaft grounding device 70X, which is arranged so as to face the shaft grounding device 70Y in the radial direction of the extension shaft 41 with the extension shaft 41 interposed therebetween, is also configured in the same manner as the shaft grounding device 70Y.
 2つの軸接地装置70X,70Yにおける、延長シャフト41の外周面に各々当接する軸接地ブラシ71X(第1の軸接地ブラシ),71Y(第2の軸接地ブラシ)は、例えば図1を図示IIの矢印方向に見た場合の延長シャフト41と軸接地ブラシ71X,71Yの配置関係を示す図5(c)のような配置に設けられている。 In the two shaft grounding devices 70X and 70Y, the shaft grounding brushes 71X (first shaft grounding brush) and 71Y (second shaft grounding brush) that abut on the outer peripheral surface of the extension shaft 41 are shown in FIG. The extension shaft 41 and the shaft grounding brushes 71X and 71Y are arranged as shown in FIG. 5 (c) when viewed in the direction of the arrow.
 図5(c)において、軸接地ブラシ71Xは、延長シャフト41(回転軸)の非回転時に延長シャフト41の外周面に設定した点と延長シャフト41の軸中心Pとを結び、且つ前記設定した点を貫通する線を基準線L0とし、該基準線L0から延長シャフト41の径方向一方側(図示左側)に所定距離平行移動させて設定した第1のブラシ設置用仮想線L1上の図示下側に配設されている。 In FIG. 5C, the shaft grounding brush 71X connects a point set on the outer peripheral surface of the extension shaft 41 when the extension shaft 41 (rotating shaft) is not rotating and the shaft center P of the extension shaft 41, and is set as described above. The line penetrating the point is set as the reference line L0, and the extension shaft 41 is moved in parallel to one side in the radial direction (left side in the drawing) by a predetermined distance from the reference line L0. It is arranged on the side.
 軸接地ブラシ71Yは、基準線L0から延長シャフト41の径方向他方側(図示右側)に所定距離平行移動させて設定した第2のブラシ設置用仮想線L2上の図示上側に配設されている。 The shaft grounding brush 71Y is arranged on the upper side of the drawing on the second brush installation virtual line L2 set by translating the extension shaft 41 from the reference line L0 to the other side (right side in the drawing) in the radial direction by a predetermined distance. ..
 これら軸接地装置70X,70Yの構成によって、延長シャフト41(シャフト40)に発生する軸電圧を確実にアース(接地)して除電することができる。 With the configuration of these shaft grounding devices 70X and 70Y, the shaft voltage generated in the extension shaft 41 (shaft 40) can be reliably grounded (grounded) to eliminate static electricity.
 この際、回転機1に応力がかかった場合や、加工誤差、組付け誤差が発生して延長シャフト41の配設位置が変化しても、軸接地ブラシ71X,71Yを基準線L0からずらして(第1、第2のブラシ設置用仮想線L1、L2上に)各々配設しているので、軸接地ブラシの延長シャフト41に対する接触量が確保され、除電効果に影響を与えることはない。 At this time, even if the rotating machine 1 is stressed, or if a machining error or an assembly error occurs and the arrangement position of the extension shaft 41 changes, the shaft grounding brushes 71X and 71Y are shifted from the reference line L0. Since they are arranged (on the virtual lines L1 and L2 for installing the first and second brushes), the amount of contact of the shaft grounding brush with the extension shaft 41 is secured, and the static elimination effect is not affected.
 例えば、延長シャフト41の配設位置が図5(c)の破線位置に変化した(実線位置よりも右側に移動した)場合、軸接地ブラシ71Xの先端は延長シャフト41の外周面から外れるが、軸接地ブラシ71Yは延長シャフト41の外周面に当接しており除電効果に影響は与えない。 For example, when the arrangement position of the extension shaft 41 is changed to the broken line position in FIG. 5 (c) (moved to the right side of the solid line position), the tip of the shaft grounding brush 71X deviates from the outer peripheral surface of the extension shaft 41, but The shaft grounding brush 71Y is in contact with the outer peripheral surface of the extension shaft 41 and does not affect the static elimination effect.
 また延長シャフト41の配設位置が図5(c)の実線位置から左側に移動した場合も前記同様に、除電効果に影響はない。 Further, when the arrangement position of the extension shaft 41 is moved to the left side from the solid line position in FIG. 5 (c), the static elimination effect is not affected in the same manner as described above.
 また、各軸接地ブラシ71X,71Yの許容ずれ量を増やすことができる。 Also, the permissible deviation amount of each axis grounding brush 71X, 71Y can be increased.
 また他の実施例として、軸接地ブラシ71X,71Yを、前記基準線L0から延長シャフト41の回転下流側に各々平行移動させて設定したブラシ設置用仮想線(L1,L2)上に配設して、軸接地ブラシ71X,71Yの磨耗量を減少させる。 As another embodiment, the shaft grounding brushes 71X and 71Y are arranged on the brush installation virtual lines (L1, L2) set by moving the shaft grounding brushes 71X and 71Y in parallel from the reference line L0 to the rotation downstream side of the extension shaft 41, respectively. Therefore, the amount of wear of the shaft grounding brushes 71X and 71Y is reduced.
 すなわち、図6(a)に示すように、延長シャフト41が左回転する場合に、図示上側の軸接地ブラシ71Yを、基準線L0から左側(回転下流側)に設定したブラシ設置用仮想線L1上に配設し、図示下側の軸接地ブラシ71Xを、基準線L0から右側(回転下流側)に設定したブラシ設置用仮想線L2上に配設するものである。 That is, as shown in FIG. 6A, when the extension shaft 41 rotates counterclockwise, the brush installation virtual line L1 in which the shaft grounding brush 71Y on the upper side of the drawing is set to the left side (rotation downstream side) from the reference line L0. The shaft grounding brush 71X on the lower side of the drawing is arranged on the virtual line L2 for brush installation set on the right side (rotation downstream side) from the reference line L0.
 図6(b)は、図6(a)と同じく左回転する延長シャフト41に対して図6(a)とは逆に回転上流側に設定したブラシ設置用仮想線(L1,L2)上に軸接地ブラシ71X,71Yを配設した図である。 FIG. 6B is on the brush installation virtual lines (L1, L2) set on the rotation upstream side of the extension shaft 41 that rotates counterclockwise as in FIG. 6A, contrary to FIG. 6A. It is the figure which arranged the shaft grounding brush 71X, 71Y.
 図6(b)の場合、軸接地ブラシ71Yと延長シャフト41の外周面の接触点から見て、延長シャフト41の回転上流側の外周面と軸接地ブラシ71Yとのなす角が広いため、軸接地ブラシ71Yの磨耗が大きい。これは軸接地ブラシ71Xも同様である。 In the case of FIG. 6B, since the angle formed by the outer peripheral surface on the rotation upstream side of the extension shaft 41 and the shaft grounding brush 71Y is wide when viewed from the contact point between the shaft grounding brush 71Y and the outer peripheral surface of the extension shaft 41, the shaft The grounding brush 71Y is heavily worn. This also applies to the shaft grounding brush 71X.
 これに対し図6(a)の場合、軸接地ブラシ71Yと延長シャフト41の外周面の接触点から見て、延長シャフト41の回転上流側の外周面と軸接地ブラシ71Yとのなす角が狭いため、軸接地ブラシ71Yの磨耗が小さい。これは軸接地ブラシ71Xも同様である。 On the other hand, in the case of FIG. 6A, the angle formed by the outer peripheral surface on the rotation upstream side of the extension shaft 41 and the shaft grounding brush 71Y is narrow when viewed from the contact point between the shaft grounding brush 71Y and the outer peripheral surface of the extension shaft 41. Therefore, the wear of the shaft grounding brush 71Y is small. This also applies to the shaft grounding brush 71X.
 また他の実施例として、図7に示すように上側の軸接地ブラシ71Yを、延長シャフト41の外周面の接触点から見て、延長シャフト41の回転上流側の外周面と軸接地ブラシ71Yとのなす角が鋭角(例えば45°や、90°未満)となるように、ブラシ設置用仮想線L1に沿って配設し、下側の軸接地ブラシ71Xを、延長シャフト41の外周面の接触点から見て、延長シャフト41の回転上流側の外周面と軸接地ブラシ71Xとのなす角が鋭角(例えば45°や、90°未満)となるように、ブラシ設置用仮想線L2に沿って配設する。 As another embodiment, as shown in FIG. 7, the upper shaft grounding brush 71Y is viewed from the contact point of the outer peripheral surface of the extension shaft 41 with the outer peripheral surface on the rotation upstream side of the extension shaft 41 and the shaft grounding brush 71Y. Arranged along the brush installation virtual line L1 so that the angle formed by the brush is an acute angle (for example, 45 ° or less than 90 °), and the lower shaft grounding brush 71X is brought into contact with the outer peripheral surface of the extension shaft 41. Seen from the point, along the brush installation virtual line L2 so that the angle formed by the outer peripheral surface on the rotation upstream side of the extension shaft 41 and the shaft grounding brush 71X is an acute angle (for example, 45 ° or less than 90 °). Arrange.
 図7の実施例も、図6(a)の実施例と同様に、軸接地ブラシ71Yと延長シャフト41の外周面の接触点から見て、延長シャフト41の回転上流側の外周面と軸接地ブラシ71Yとのなす角が鋭角であるため、軸接地ブラシ71Yの磨耗が小さい。これは軸接地ブラシ71Xも同様である。 Similar to the embodiment of FIG. 6A, the embodiment of FIG. 7 also has a shaft grounding with the outer peripheral surface on the rotation upstream side of the extension shaft 41 when viewed from the contact point between the shaft grounding brush 71Y and the outer peripheral surface of the extension shaft 41. Since the angle formed with the brush 71Y is an acute angle, the wear of the shaft grounding brush 71Y is small. This also applies to the shaft grounding brush 71X.
 また他の実施例として、図8に示すように軸接地ブラシ71X,71Yから成る一組の軸接地ブラシを複数組、例えば2組(軸接地ブラシ71X1,71Y1,71X2,71Y2)、図5(c)、図6(a)と同様にして配設する。 As another embodiment, as shown in FIG. 8, a plurality of sets of shaft grounding brushes including shaft grounding brushes 71X and 71Y, for example, two sets (shaft grounding brushes 71X1, 71Y1, 71X2, 71Y2), FIG. 5 ( c), arranged in the same manner as in FIG. 6 (a).
 図8の実施例によれば、軸接地ブラシの回転軸に対する接触量をより多く確保することができる。また、各軸接地ブラシ71X1,71Y1,71X2,71Y2の許容ずれ量を増やすことができる。 According to the embodiment of FIG. 8, it is possible to secure a larger amount of contact of the shaft grounding brush with respect to the rotating shaft. Further, the allowable deviation amount of each shaft grounding brush 71X1, 71Y1, 71X2, 71Y2 can be increased.
 尚、本発明は特許文献1に記載の回転機に適用するに限らず、他の回転機に適用することができ、その場合も前記と同様の作用、効果が得られる。 The present invention is not limited to the rotating machine described in Patent Document 1, but can be applied to other rotating machines, and in that case, the same actions and effects as described above can be obtained.

Claims (5)

  1.  ケーシングに回転自在に設けられた回転機の回転軸と、
     ケーシングに固設されたブラシであって、前記回転軸を挟んで、回転軸の径方向に対向配設されて、各々の先端が回転軸の外周面に接触する第1の軸接地ブラシおよび第2の軸接地ブラシとを備え、
     前記第1の軸接地ブラシは、前記回転軸の非回転時に回転軸の外周面に設定した点と回転軸の中心とを結び、且つ前記設定した点を貫通する線を基準線とし、該基準線から回転軸の径方向一方側に平行移動させて設定した第1のブラシ設置用仮想線に沿って配設され、
     前記第2の軸接地ブラシは、前記基準線から回転軸の径方向他方側に平行移動させて設定した第2のブラシ設置用仮想線に沿って配設されている回転機の軸接地装置。
    The rotating shaft of the rotating machine, which is rotatably provided in the casing,
    A first shaft grounding brush and a first shaft grounding brush fixed to a casing, which are arranged so as to face each other in the radial direction of the rotating shaft with the rotating shaft in between, and their respective tips come into contact with the outer peripheral surface of the rotating shaft. Equipped with 2 shaft grounding brushes
    The first shaft grounding brush connects a point set on the outer peripheral surface of the rotating shaft and the center of the rotating shaft when the rotating shaft is not rotating, and uses a line penetrating the set point as a reference line as the reference line. It is arranged along the first virtual line for brush installation set by translating from the line to one side in the radial direction of the rotation axis.
    The second shaft grounding brush is a shaft grounding device for a rotating machine, which is arranged along a second brush installation virtual line set by translating from the reference line to the other side in the radial direction of the rotating shaft.
  2.  前記第1の軸接地ブラシは前記第1のブラシ設置用仮想線上に配設され、前記第2の軸接地ブラシは前記第2のブラシ設置用仮想線上に配設されている請求項1に記載の回転機の軸接地装置。 The first aspect of claim 1, wherein the first shaft grounding brush is arranged on the first brush installation virtual line, and the second shaft grounding brush is arranged on the second brush installation virtual line. Shaft grounding device for rotating machines.
  3.  前記第1のブラシ設置用仮想線および第2のブラシ設置用仮想線は、前記基準線から、前記回転軸の回転下流側に各々平行移動させて設定されている請求項1又は2に記載の回転機の軸接地装置。 The first or second brush installation virtual line is set by translating the first brush installation virtual line and the second brush installation virtual line from the reference line to the downstream side of rotation of the rotation axis, respectively. Rotating machine shaft grounding device.
  4.  前記第1の軸接地ブラシおよび第2の軸接地ブラシは、各軸接地ブラシと回転軸の外周面の接触点から見て回転軸の回転上流側の外周面と、各軸接地ブラシとのなす角が各々鋭角となるように配設されている請求項1ないし3のいずれか1項に記載の回転機の軸接地装置。 The first shaft grounding brush and the second shaft grounding brush are formed by the outer peripheral surface on the rotation upstream side of the rotating shaft and each shaft grounding brush when viewed from the contact point between each shaft grounding brush and the outer peripheral surface of the rotating shaft. The shaft grounding device for a rotating machine according to any one of claims 1 to 3, wherein the corners are arranged so as to be sharp.
  5.  前記第1の軸接地ブラシおよび第2の軸接地ブラシから成る一組の軸接地ブラシを、複数組設けた請求項1ないし4のいずれか1項に記載の回転機の軸接地装置。 The shaft grounding device for a rotating machine according to any one of claims 1 to 4, wherein a plurality of sets of the shaft grounding brush including the first shaft grounding brush and the second shaft grounding brush are provided.
PCT/JP2020/030531 2019-12-11 2020-08-11 Shaft grounding device for rotary machine WO2021117292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-223391 2019-12-11
JP2019223391A JP2021093848A (en) 2019-12-11 2019-12-11 Rotating machine shaft grounding device

Publications (1)

Publication Number Publication Date
WO2021117292A1 true WO2021117292A1 (en) 2021-06-17

Family

ID=76312772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030531 WO2021117292A1 (en) 2019-12-11 2020-08-11 Shaft grounding device for rotary machine

Country Status (2)

Country Link
JP (1) JP2021093848A (en)
WO (1) WO2021117292A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250457A (en) * 1994-03-10 1995-09-26 Jidosha Denki Kogyo Co Ltd Miniature motor
JP2003525002A (en) * 1999-05-06 2003-08-19 ニッペス,ポール,アイ. Shaft voltage and current monitoring system
JP2008263775A (en) * 2008-05-19 2008-10-30 Aisin Seiki Co Ltd Dc brush motor
JP2012175759A (en) * 2011-02-18 2012-09-10 Asmo Co Ltd Commutator and dc motor
JP2016213935A (en) * 2015-05-01 2016-12-15 株式会社明電舎 Rotary machine
JP2019161821A (en) * 2018-03-12 2019-09-19 株式会社ケーヒン Motor with brush

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250457A (en) * 1994-03-10 1995-09-26 Jidosha Denki Kogyo Co Ltd Miniature motor
JP2003525002A (en) * 1999-05-06 2003-08-19 ニッペス,ポール,アイ. Shaft voltage and current monitoring system
JP2008263775A (en) * 2008-05-19 2008-10-30 Aisin Seiki Co Ltd Dc brush motor
JP2012175759A (en) * 2011-02-18 2012-09-10 Asmo Co Ltd Commutator and dc motor
JP2016213935A (en) * 2015-05-01 2016-12-15 株式会社明電舎 Rotary machine
JP2019161821A (en) * 2018-03-12 2019-09-19 株式会社ケーヒン Motor with brush

Also Published As

Publication number Publication date
JP2021093848A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN107534353B (en) Whirler
JP7429545B2 (en) probe device
US8360754B2 (en) Support for rolling bearing
JP6330893B2 (en) Rotating machine
EP2549238A2 (en) Resolver
WO2021117292A1 (en) Shaft grounding device for rotary machine
CN213959915U (en) Non-abrasion rotor shaft voltage guiding device
EP2206224B1 (en) Motor and washing machine using the same
JP6413747B2 (en) Rotating electric machine
JP5341444B2 (en) Outer rotor type rotating electrical machine rotor
CN111490641A (en) Rotating electric machine unit and resolver stator
JP6447724B2 (en) Rotating machine
JP2009281426A (en) Lock nut
US20200287439A1 (en) Brushless motor and electronic products having the brushless motor
SE517284C2 (en) Procedure for mounting speed sensors as well as speed sensor mounting.
US10971980B2 (en) Rotor and resolver
WO2013098584A1 (en) Bearing assembly and rotary electric machine comprising such a bearing
CN110871276A (en) Electric spindle of machine tool
JP4447368B2 (en) Resolver / stator cover and method of assembling the resolver / stator
US20130229075A1 (en) Motor having a seal assembly
CN212785078U (en) Motor and electric product
CN110323879A (en) Rotating electric machine
JP4030131B2 (en) Bearing plate especially for rotating electrical machines
US11251666B2 (en) Motor and electrical product
CN107042419A (en) Drive device for a processing machine and method for the distribution and assembly thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898121

Country of ref document: EP

Kind code of ref document: A1