WO2021117245A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2021117245A1
WO2021117245A1 PCT/JP2019/049051 JP2019049051W WO2021117245A1 WO 2021117245 A1 WO2021117245 A1 WO 2021117245A1 JP 2019049051 W JP2019049051 W JP 2019049051W WO 2021117245 A1 WO2021117245 A1 WO 2021117245A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate device
max
parameters
base station
parameter
Prior art date
Application number
PCT/JP2019/049051
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 平塚
邦彦 手島
アニール ウメシュ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/049051 priority Critical patent/WO2021117245A1/en
Priority to CN201980102472.9A priority patent/CN114788332A/en
Publication of WO2021117245A1 publication Critical patent/WO2021117245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a communication device corresponding to a front hall interface.
  • the O-RAN Alliance was established with the aim of promoting the openness and intelligentization of wireless access networks (RAN) in the 5G era, and today many businesses / vendors are joining and discussing.
  • RAN wireless access networks
  • O-RAN Distributed Unit O-DU
  • O-RAN Radio Unit O-RU
  • O-RAN Distributed Unit O-DU
  • O-RU O-RAN Radio Unit
  • O-DU is a logical node that mainly hosts the wireless link control layer (RLC), medium access control layer (MAC), and PHY-High layer based on the lower layer functional.
  • the O-RU is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • Non-Patent Document 1 the function sharing points of O-DU / O-RU are placed in the physical (PHY) layer, so strict timing accuracy is required. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method (Non-Patent Document 1).
  • the current O-RAN FH specifications are premised on a stationing method in which one cell is composed of one O-RU.
  • a stationing method in which one cell is composed of multiple O-RUs and expansion of specifications for that is being considered.
  • FHM Fronthaul Multiplexing
  • cascade configuration a configuration using a device for bundling O-RUs
  • shared Cell Collectively, these are called Shared Cell.
  • FHM and O-RU (cascade O-RU) intervening in the middle are collectively referred to as an intermediate device (tentative name).
  • ORAN-WG4.CUS.0-v02.00 O-RAN Fronthaul Working Group, Control, User and Synchronization Plane Specification, O-RAN Alliance, August 2019
  • the FH delay of O-DU to intermediate device, intermediate device to intermediate device, intermediate device to O-RU, etc. changes depending on the installation position of the intermediate device.
  • the present invention has been made in view of such a situation, and it is determined whether or not the installation position of the intermediate device is appropriate even when the Shared Cell configuration in the front hall (FH) interface is applied. It is an object of the present invention to provide a communication device capable of performing the above.
  • One aspect of the present disclosure is a communication device constituting a first base station provided on the front hall, and is a control for determining parameters used for determining a data reception timing in the intermediate device provided on the front hall.
  • a unit and a transmission unit that transmits the parameters to the intermediate device are provided.
  • One aspect of the present disclosure is a communication device that constitutes an intermediate device provided on the front hall, and is provided on the front hall and a control unit that executes control for determining data reception timing in the intermediate device. It includes a receiving unit that receives parameters used for determining the reception timing from the first base station.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • FIG. 2 is a diagram showing an example of an internal configuration of the gNB 100 that employs the front hole (FH) interface according to the embodiment.
  • FIG. 3A is a diagram showing a configuration example (without an intermediate device) of the front hole according to the embodiment.
  • FIG. 3B is a diagram showing a configuration example of a front hole according to an embodiment (with an intermediate device and an FHM configuration).
  • FIG. 3C is a diagram showing a configuration example of a front hole according to an embodiment (with an intermediate device and a cascade configuration).
  • FIG. 4 is a diagram showing various signals in the front hole (FH) between O-DU110 and O-RU120 according to the embodiment.
  • FIG. 5 is a functional block configuration diagram of the O-DU 110 according to the embodiment.
  • FIG. 6 is a functional block configuration diagram of the intermediate device 130 according to the embodiment.
  • FIG. 7 is a diagram showing an example of delay management of a front hole in UL according to the embodiment.
  • FIG. 8 is a diagram showing an example of delay management of the front hole in the DL according to the embodiment.
  • FIG. 9 is a diagram showing an example of a counter according to the embodiment.
  • FIG. 10 is a diagram showing a wireless communication method according to the embodiment.
  • FIG. 11 is a diagram showing an example of delay management of the front hole in UL according to the first modification.
  • FIG. 12 is a diagram showing an example of delay management of the front hole in the DL according to the change example 1.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the O-DU 110 and the intermediate device 130.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, User Equipment 200, hereinafter, UE200). )including.
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 User Equipment 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually contains multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is a core network according to 4G (Evolved Packet Core, not shown) or a core according to 5G. Connected to a network (5GC, not shown).
  • NG-RAN20 and 5GC may be simply expressed as a network.
  • GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G.
  • the gNB100 and UE200 include Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC), which communicates simultaneously between the UE and multiple NG-RAN Nodes.
  • Massive MIMO which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • DC dual connectivity
  • the gNB100 adopts the front hole (FH) interface specified by O-RAN.
  • FIG. 2 shows an example of the internal configuration of the gNB100 that employs a front hole (FH) interface.
  • the gNB100 includes an O-DU110 (O-RAN Distributed Unit) and an O-RU120 (O-RAN Radio Unit).
  • O-DU110 and O-RU120 are functionally separated within the physical (PHY) layer defined by 3GPP.
  • the O-DU110 may be called an O-RAN distribution unit.
  • the O-DU110 is a logical node that mainly hosts a wireless link control layer (RLC), a medium access control layer (MAC), and a PHY-High layer based on the lower layer functional.
  • the O-DU110 is provided on the side closer to the NG-RAN20 with respect to the O-RU120.
  • the side closer to NG-RAN20 may be referred to as the RAN side.
  • the O-RU120 may be called an O-RAN radio unit.
  • the O-RU120 is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • the O-RU120 is provided on the side away from the NG-RAN20 with respect to the O-DU110.
  • the side away from the NG-RAN 20 may be referred to as the radio (air) side.
  • the PHY-High layer is the part of PHY processing on the O-DU110 side of the front hole interface, such as Forward Error Correction (FEC) encoding / decoding, scrambling, and modulation / demodulation.
  • FEC Forward Error Correction
  • the PHY-Low layer is the part of PHY processing on the O-RU120 side of the front hole interface, such as Fast Fourier Transform (FFT) / iFFT, digital beamforming, Physical Random Access Channel (PRACH) extraction and filtering.
  • FFT Fast Fourier Transform
  • PRACH Physical Random Access Channel
  • O-CU is an abbreviation for O-RANControlUnit, which is a logical node that hosts PacketDataConvergenceProtocol (PDCP), RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and other control functions. ..
  • PDCP PacketDataConvergenceProtocol
  • RRC RadioResourceControl
  • SDAP ServiceDataAdaptationProtocol
  • the front hall (FH) may be interpreted as a line between the baseband processing unit of a wireless base station (base station device) and the wireless device, and an optical fiber or the like is used.
  • Shared Cell configuration As described above, in O-RAN, there is also a stationing method in which one cell is configured by multiple O-RUs, a configuration using a device (FHM: Fronthaul Multiplexing) that bundles O-RUs, and continuous operation. A configuration for connecting O-RUs (cascade configuration) is being studied. Collectively, these are called Shared Cell.
  • FHM Fronthaul Multiplexing
  • FIGS. 3A to 3C show a configuration example of the front hall.
  • FIG. 3A is an example in which one cell is configured by 1O-RU.
  • FIGS. 3B and 3C show an example of the Shared Cell configuration.
  • FIG. 3B shows a configuration example using FHM130.
  • FIG. 3C shows an example in which O-RU130A is interposed between O-DU110 and O-RU120 and cascade-connected.
  • the FHM130 combines two FH signals from each O-RU120 and then transmits the two FH signals to the O-DU110.
  • the O-DU110 is an example of a first base station provided on the RAN side of the FHM130
  • the O-RU120 is an example of a second base station provided on the air side of the FHM130.
  • the O-RU130A includes a signal received by the O-RU130A (O-RU (1)) itself in the radio section and an FH signal received from the O-RU120 (O-RU (2)). Is synthesized and then sent to O-DU110.
  • the O-DU110 is an example of the first base station provided on the RAN side of the FHM130
  • the O-RU120 (O-RU (2)) is provided on the air side of the FHM130. This is an example of two base stations.
  • FHM130 and O-RU130A are collectively referred to as intermediate device 130.
  • the name of the intermediate device may be called by another name.
  • the intermediate device 130 is provided on the air side of the O-DU 110 constituting the first base station, and is provided on the RAN side of the O-RU 120 constituting the second base station.
  • the intermediate device 130 transfers the DL signal received from the O-DU110 (first base station) to the O-RU120 (second base station) for the downlink (DL). To do.
  • the intermediate device 130 may further transmit the DL signal of the O-RU itself.
  • the intermediate device 130 For the uplink (UL), the intermediate device 130 synthesizes the UL signal received from the O-RU120 (second base station) and transfers it to the O-DU110 (first base station). In the case of O-RU cascade connection, the radio signal received by O-RU itself is also combined.
  • the O-DU110 can process signals as if one O-RU was connected.
  • FIG. 4 shows various signals in the front hole (FH) between O-DU110 and O-RU120. As shown in FIG. 4, signals in a plurality of planes are transmitted and received between O-DU110 and O-RU120.
  • U / C / M / S-plane signals are transmitted and received.
  • C-Plane is a protocol for transferring control signals
  • U-Plane is a protocol for transferring user data.
  • S-Plane is a protocol for realizing synchronization between devices.
  • M-Plane is a management plane that handles maintenance and monitoring signals.
  • the U-Plane signal includes a (DL) signal transmitted by the O-RU120 to the radio section and a (UL) signal received from the radio section, and is exchanged by a digital IQ signal.
  • U-Plane signals data such as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)
  • C-Plane RRC, Non-Access Stratum (NAS), etc.
  • U-Planes from the viewpoint of FH.
  • the C-Plane signal includes signals necessary for various controls related to transmission / reception of U-Plane signals (signals for notifying information related to radio resource mapping and beamforming of the corresponding U-Plane). It should be noted that the signal is completely different from the C-Plane (RRC, NAS, etc.) defined in 3GPP.
  • the M-Plane signal includes the signal necessary for managing the O-DU110 / O-RU120. For example, it is a signal for notifying various hardware (HW) capabilities of O-RU120 to O-RU120 and notifying various setting values from O-DU110 to O-RU120.
  • HW hardware
  • the S-Plane signal is a signal required for synchronous control between O-DU110 / O-RU120.
  • FIG. 5 is a functional block configuration diagram of the O-DU110.
  • the O-DU 110 includes a communication unit 111, an acquisition unit 113, a notification unit 115, and a control unit 117.
  • the communication unit 111 executes communication with the O-RU 120 and the intermediate device 130. Specifically, the communication unit 111 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
  • Acquisition unit 113 acquires various parameters.
  • the acquisition unit 113 may acquire the parameters shown below for the UL signal.
  • the parameters may include parameters (Ta4_min, Ta4_max) that define the reception window (Reception window (UL)) of the O-DU110.
  • the parameters (Ta4_min, Ta4_max) may be interpreted as the measurement results from reception at the O-RU antenna to reception at the O-DU port (R4).
  • the parameters (Ta4_min, Ta4_max) may be measured by a delay measurement message (Measured Transport Method).
  • the parameters may include the parameters (Ta3_min, Ta3_max) that define the transmission window (UL) of the O-RU120.
  • the parameters (Ta3_min, Ta3_max) may be interpreted as the measurement results from reception at the O-RU antenna to output at the O-RU port (R3).
  • the parameters (Ta3_min, Ta3_max) are an example of the ability information of O-RU120.
  • the parameters (Ta3_min, Ta3_max) may be received from O-RU120.
  • the parameter may include a parameter (T34_min) indicating the difference between Ta4_min and Ta3_min.
  • the parameter may include a parameter (T34_max) indicating the difference between Ta4_max and Ta3_max.
  • a parameter (for example, T_Comb) indicating the processing time of the intermediate device 130 may be acquired.
  • the parameter (eg, T_Comb) may be received from the intermediate device 130.
  • the processing time in the intermediate device 130 may be interpreted as the time inside the intermediate device 130 required to combine the FH signals received from the plurality of O-RU 120s in the intermediate device 130.
  • the processing time may be a time required for the synthesis itself plus a time such as a certain margin.
  • the processing time may be referred to by another name, for example, operating time, internal delay, processing delay, synthesis time, and the like.
  • parameters indicating the delay time between the intermediate device 130 and the O-DU110 may be acquired.
  • Parameters eg, T_FH1_min, T_FH1_max
  • T_FH1_min, T_FH1_max may be measured or calculated by the O-DU110 based on the UL signal.
  • FH1 the FH between the intermediate device 130 and the O-DU110 will be referred to as FH1.
  • parameters indicating the delay time between the O-RU 120 and the intermediate device 130 may be acquired.
  • the parameters eg, T_FH2_min, T_FH2_max
  • the parameters may be measured or calculated by the intermediate device 130 based on the UL signal.
  • Parameters eg, T_FH2_min, T_FH2_max
  • FH2_min, T_FH2_max may be received from intermediate device 130.
  • the acquisition unit 113 may acquire the parameters shown below for the DL signal.
  • the parameters may include parameters (Ta1_min, Ta1_max) that define the transmission window (Transmission window (DL)) of the O-DU110.
  • the parameters (Ta1_min, Ta1_max) may be interpreted as the measurement results from the output at the O-DU port (R1) to the wireless transmission.
  • the parameters (Ta1_min, Ta1_max) may be measured by a delay measurement message (Measured Transport Method).
  • the parameters may include parameters (Ta2_min, Ta2_max) that define the reception window (Reception window (DL)) of the O-RU120.
  • the parameters (Ta2_min, Ta2_max) may be interpreted as measurement results from reception at the O-RU port (R2) to wireless transmission.
  • the parameters (Ta2_min, Ta2_max) are an example of the ability information of O-RU120.
  • the parameters (Ta2_min, Ta2_max) may be received from O-RU120.
  • the parameter may include a parameter (T12_min) indicating the difference between Ta1_min and Ta2_min.
  • the parameter may include a parameter (T12_max) indicating the difference between Ta1_max and Ta2_max.
  • a parameter (for example, T_Copy) indicating the processing time of the intermediate device 130 may be acquired.
  • the parameter (eg, T_Copy) may be received from the intermediate device 130.
  • the processing time in the intermediate device 130 may be interpreted as the time inside the intermediate device 130 required to copy the FH signal transmitted to the plurality of O-RU 120s in the intermediate device 130.
  • the processing time may be a time required for the duplication itself plus a time such as a certain margin.
  • the processing time may be referred to by another name, for example, operating time, internal delay, processing delay, replication time, and the like.
  • parameters indicating the delay time between the intermediate device 130 and the O-DU110 may be acquired.
  • the parameters eg, T_FH1_min, T_FH1_max
  • the parameters may be measured or calculated by the intermediate device 130 based on the DL signal.
  • Parameters eg, T_FH1_min, T_FH1_max
  • T_FH1_min, T_FH1_max may be received from intermediate device 130.
  • parameters indicating the delay time between the O-RU 120 and the intermediate device 130 may be acquired.
  • Parameters eg, T_FH2_min, T_FH2_max
  • Parameters may be measured or calculated on the O-RU120 based on the DL signal.
  • Parameters eg, T_FH2_min, T_FH2_max
  • min and max may mean the minimum and maximum values of propagation delay.
  • the propagation delay may be referred to by another name, for example, transmission delay, transmission time, delay time, transfer delay, delay, or the like.
  • Notification unit 115 notifies each information.
  • the notification unit 115 notifies the intermediate device 130 of parameters (for example, TH_min, TH_max) used for determining the data reception timing in the intermediate device 130.
  • the parameters eg, TH_min, TH_max
  • the processing time eg, T_Comb, T_Copy
  • the notification unit 115 constitutes a transmission unit that transmits parameters (for example, TH_min, TH_max) to the intermediate device 130.
  • the control unit 117 controls the values of various parameters used on the FH.
  • the control unit 117 controls the value related to the propagation delay between O-DU110 and O-RU120 (including the case where the intermediate device 130 intervenes).
  • control unit 117 may determine the reception window (Ta4_min, Ta4_max) applied to the O-DU110 itself based on the propagation delay (T34_min, T34_max) between O-DU110 and O-RU120 for the UL signal. Good. Similarly, the control unit 117 determines the transmission window (Ta1_min, Ta1_max) applied to the O-DU110 itself based on the DL propagation delay (T12_min, T12_max) between the O-DU110 and the O-RU120 for the DL signal. You may.
  • control unit 117 constitutes a control unit that determines parameters (for example, TH_min, TH_max) used in determining the data reception timing in the intermediate device 130.
  • the control unit 117 may determine the parameters (for example, TH_min, TH_max) based on the processing time (for example, T_Comb, T_Copy) in the intermediate device 130.
  • the control unit 117 may determine the parameters of the O-DU 110 based on the capability information of the O-RU 120.
  • the control unit 117 may determine the parameters based on the delay time between the intermediate device 130 and the O-DU 110.
  • the control unit 117 may determine the parameters based on the delay time between the O-RU 120 and the intermediate device 130.
  • control unit 117 may determine parameters (for example, TH_min, TH_max) for the UL signal based on the following equation as shown in FIG.
  • Ta3_min is an example of the ability information of O-RU120.
  • T_FH2_min is the minimum delay time between O-RU120 and intermediate device 130.
  • Ta4_max is the sum of Ta3_max and T34_max.
  • Ta3_max is an example of the ability information of O-RU120.
  • T34_max is the maximum propagation delay for the UL signal between O-DU110 and O-RU120.
  • T_FH1_max is the maximum value of the delay time between the intermediate device 130 and the O-DU110.
  • T_Comb is the processing time of the intermediate device 130.
  • the parameters (TH_min, TH_max) may be considered as parameters that define the reception window of the intermediate device 130 regarding the UL signal.
  • the parameters (TH_min, TH_max) may be considered as a threshold value used for determining the reception timing of the UL signal.
  • the formulas for calculating TH_min and TH_max are not limited to the above formulas.
  • the formulas for calculating TH_min and TH_max may be rewritten as long as the relationship shown in FIG. 7 is satisfied.
  • the minimum propagation delay values eg, T_FH1_min, T_FH2_min
  • the minimum delay time may be set to zero.
  • control unit 117 may determine parameters (for example, TH_min, TH_max) based on the following equation as shown in FIG.
  • Ta1_max is the sum of Ta2_max and T12_min.
  • Ta2_max is an example of the ability information of O-RU120.
  • T12_min is the minimum value of the propagation delay for the DL signal between O-DU110 and O-RU120 (ie, T_FH1_min + T_Copy + T_FH2_min).
  • T_FH1_min is the minimum value of the delay time between the intermediate device 130 and the O-DU110.
  • Ta1_min is the sum of Ta2_min and T12_max.
  • Ta2_min is an example of the ability information of O-RU120.
  • T12_max is the maximum value of the propagation delay for the DL signal between O-DU110 and O-RU120 (ie, T_FH1_max + T_Copy + T_FH2_max).
  • FH2_max is the maximum delay time between O-RU120 and intermediate device 130.
  • T_Copy is the processing time of the intermediate device 130.
  • the parameters (TH_min, TH_max) may be considered as parameters that define the reception window of the intermediate device 130 regarding the UL signal.
  • the parameters (TH_min, TH_max) may be considered as a threshold value used for determining the reception timing of the DL signal.
  • the formulas for calculating TH_min and TH_max are not limited to the above formulas.
  • the formulas for calculating TH_min and TH_max may be rewritten as long as the relationship shown in FIG. 8 is satisfied.
  • the minimum propagation delay values eg, T_FH1_min, T_FH2_min
  • the minimum value of the propagation delay (for example, T_FH1_min, T_FH2_min) may be set to zero.
  • FIG. 6 is a functional block configuration diagram of the intermediate device 130. As shown in FIG. 6, the intermediate device 130 is provided on the FH and includes a communication unit 131, a notification unit 133, an acquisition unit 135, and a control unit 137.
  • Communication unit 131 executes communication with O-DU110 and O-RU120. Specifically, the communication unit 131 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
  • Notification unit 133 notifies each information.
  • the notification unit 133 notifies the O-DU 110 of parameters (for example, T_Comb, T_Copy) indicating the processing time of the intermediate device 130.
  • Acquisition unit 135 acquires various parameters. For example, the acquisition unit 135 acquires parameters (for example, TH_min, TH_max) used in determining the data reception timing in the intermediate device 130. In the embodiment, the acquisition unit 135 constitutes a reception unit that receives parameters (for example, TH_min, TH_max) from the O-DU 110.
  • parameters for example, TH_min, TH_max
  • the acquisition unit 135 constitutes a reception unit that receives parameters (for example, TH_min, TH_max) from the O-DU 110.
  • the control unit 137 constitutes a control unit that executes control for determining the data reception timing in the intermediate device 130. Specifically, the control unit 137 executes control for determining the data reception timing based on the parameters (TH_min, TH_max) received from the O-DU 110. For example, the control unit 137 may determine whether or not the data is received at a timing earlier than the timing defined by the parameter (TH_min) based on the parameter (TH_min) received from the O-DU 110. The control unit 137 may determine whether or not the data is received at a timing later than the timing defined by the parameter (TH_max) based on the parameter (TH_max) received from the O-DU 110.
  • the control unit 137 may have a counter (Performance counter (s)) shown in FIG.
  • the control unit 137 may have a counter (for example, Rx_on_time_for_shared_cell) that counts the number of times data is received at an appropriate timing. The appropriate timing is later than the timing defined by the parameter (TH_min) and earlier than the timing defined by the parameter (TH_max).
  • the control unit 137 may have a counter (Rx_early_for_shared_cell) that counts the number of times data is received at a timing earlier than the timing defined by the parameter (TH_min).
  • the control unit 137 may have a counter (Rx_late_for_shared_cell) that counts the number of times data is received at a timing later than the timing defined by the parameter (TH_max).
  • the name and meaning of the counter shown in FIG. 9 are arbitrary.
  • the names (Rx_on_time, Rx_early, Rx_late) of the counters (Performance counter (s)) defined in ORAN-WG4.CUS.0-v02.00 may be used.
  • the count value of such a count is used to determine whether or not the installation position of the intermediate device 130 is appropriate.
  • the telecommunications carrier may change the installation position of the intermediate device 130 based on the count value.
  • the intermediate device 130 may have both a counter used as the intermediate device 130 and a counter used as the O-RAN.
  • the counter used as O-RAN may be the counter (Performance counter (s)) defined in ORAN-WG4.CUS.0-v02.00.
  • the O-DU 110 receives parameters (for example, T_Comb, T_Copy) indicating the processing time of the intermediate device 130 from the intermediate device 130.
  • the O-DU110 may receive parameters indicating the delay time between the intermediate device 130 and the O-DU110 (for example, T_FH1_min, T_FH1_max).
  • the O-DU110 receives parameters indicating the ability information of the O-RU120 (for example, T3a_min, T3a_max, T2a_min, T2a_max).
  • the O-DU110 may receive parameters indicating the delay time between the O-RU 120 and the intermediate device 130 (for example, T_FH2_min, T_FH2_max).
  • the O-DU 110 determines the parameters (for example, TH_min, TH_max) used to determine the data reception timing in the intermediate device 130.
  • the O-DU110 may determine the parameters based on the processing time of the intermediate device 130.
  • the O-DU110 may determine the parameters based on the capability information of the O-RU120.
  • the O-DU110 may determine the parameters based on the delay time between the intermediate device 130 and the O-DU110.
  • the O-DU110 may determine the parameters based on the delay time between the O-RU120 and the intermediate device 130.
  • step S13 the O-DU110 transmits the parameters (for example, TH_min, TH_max) determined in step S12 to the intermediate device 130.
  • the parameters for example, TH_min, TH_max
  • the intermediate device 130 determines the data reception timing based on the parameters (for example, TH_min, TH_max) received in step S13. For example, as described with reference to FIG. 9, the intermediate device 130 may count the number of times data is received at an appropriate timing. The intermediate device 130 may count the number of times data is received at a timing earlier than the timing defined by the parameter (TH_min). The intermediate device 130 may count the number of times data is received at a timing later than the timing defined by the parameter (TH_max).
  • the parameters for example, TH_min, TH_max
  • the O-DU 110 determines the parameters (for example, TH_min, TH_max) used in the intermediate device 130 for determining the data reception timing, and transmits the determined parameters to the intermediate device 130. You may. According to such a configuration, the intermediate device 130 can appropriately determine the data reception timing. As a result, it can be determined whether or not the installation position of the intermediate device 130 is appropriate.
  • the parameters for example, TH_min, TH_max
  • the parameters may be determined based on the processing time of the intermediate device 130. According to such a configuration, an appropriate parameter can be set as a parameter used for determining the data reception timing in the intermediate device 130.
  • the parameters may be determined based on the capability information of the O-RU120 or based on the delay time between the intermediate device 130 and the O-DU110.
  • O-DU110 may be determined based on the delay time between O-RU120 and intermediate device 130. According to such a configuration, more appropriate parameters can be set.
  • whether or not the installation position of the intermediate device 130 is appropriate by introducing a new mechanism (for example, the counter shown in FIG. 9) that the data reception timing should be determined in the intermediate device 130. Can be determined.
  • a new mechanism for example, the counter shown in FIG. 9
  • the DL signal can be considered in the same way as the UL signal, the UL signal will be described here as an example.
  • FIG. 11 illustrates a case where the propagation delay of FH2-1 is larger than the propagation delay of FH2-2.
  • the O-DU 110 determines the parameters (for example, TH_min, TH_max) used in the intermediate device 130 for determining the data reception timing, as in the embodiment.
  • the O-DU110 may determine TH_min with reference to the O-RU120Y having a small propagation delay.
  • O-DU110 may determine TH_max with reference to O-RU120X, which has a large propagation delay. Therefore, TH_min and TH_max may be expressed by the following equations.
  • Ta4_max is the sum of Ta3_max (O-RU120X) and T34_max (O-RU120X).
  • T34_max (O-RU120X) is the sum of T_FH2-1max, T_Comb (O-RU120X), and T_FH1_max.
  • modification 1 can be applied to the case where three or more O-RU120s are provided on the air side of the intermediate device 130. That is, TH_min is determined based on O-RU120 having the smallest propagation delay, and TH_max is determined based on O-RU120 having the largest propagation delay.
  • the DL signal can be considered in the same way as the UL signal, the UL signal will be described here as an example.
  • an intermediate device 130P and an intermediate device 130Q are provided in series between the O-DU 110 and the O-RU 120.
  • the FH between the O-DU110 and the intermediate device 130P is called FH1
  • the FH between the intermediate device 130P and the intermediate device 130Q is called FH2
  • the FH between the intermediate device 130Q and the O-RU120X Is called FH3.
  • the O-DU110 determines the parameters (TH_min and TH_max) for each of the intermediate device 130P and the intermediate device 130Q.
  • the parameters used in the intermediate device 130P are called TH (p) _min and TH (p) _max, and the parameters used in the intermediate device 130Q are called TH (q) _min and TH (q) _max.
  • these parameters may be expressed by the following equation as shown in FIG.
  • the concept of the second modification can also be applied to the case where three or more intermediate devices 130 are provided between the O-DU 110 and the O-RU 120.
  • TH_min and TH_max are used as the names of the parameters used in determining the data reception timing in the intermediate device 130.
  • the embodiment is not limited to this.
  • TH_min may be referred to as the start timing of the receive window of the intermediate device 130, or may be referred to as a parameter that defines the start timing.
  • TH_max may be referred to as the end timing of the receive window of the intermediate device 130, or may be referred to as a parameter that defines the end timing.
  • reception window of the intermediate device 130 may be referred to as a waiting time of the intermediate device 130 when two or more O-RA 130s are provided on the air side of the intermediate device 130.
  • the O-DU 110 notifies the intermediate device 130 of TH_min and TH_max) as parameters used for determining the reception timing.
  • the embodiment is not limited to this.
  • information known to the intermediate device 130 eg, max-T_Comb
  • the O-DU110 can be sent to the intermediate device 130. The amount of signaling can be reduced.
  • FIGS. 3B and 3C an example in which FHM or O-RU (cascade connection) is applied as the intermediate device 130 is shown separately, but on the same FH, with FHM. , O-RU by cascade connection may be configured in a complex manner.
  • the configuration of the FH according to the O-RAN specifications has been described, but the FH does not necessarily have to comply with the O-RAN specifications.
  • the FH does not necessarily have to comply with the O-RAN specifications.
  • at least some of the O-DU110, O-RU120 and intermediate device 130 may comply with the FH specifications specified in 3GPP.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIGS. 5 and 6) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 110 O-DU 111 Communication unit 113 Acquisition unit 115 Parameter control unit 117 Parameter notification unit 120 O-RU 130 Intermediate device (FHM) 130A O-RU 131 Communication unit 133 Processing time notification unit 135 Parameter acquisition unit 137 Parameter setting unit 200 UE 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device constituting a first base station installed in a front hall is provided with a control unit that determines the parameter used for determining a data reception timing in an intermediate device installed in the front hall, and a transmission unit that transmits the parameter to the intermediate device.

Description

通信装置Communication device
 本発明は、フロントホールインタフェースに対応した通信装置に関する。 The present invention relates to a communication device corresponding to a front hall interface.
 5G時代の無線アクセスネットワーク(RAN)のオープン化とインテリジェント化の推進を目的に、O-RAN Allianceが設立され、今日では多くの事業者/ベンダが加盟し議論が行われている。 The O-RAN Alliance was established with the aim of promoting the openness and intelligentization of wireless access networks (RAN) in the 5G era, and today many businesses / vendors are joining and discussing.
 O-RANでは複数のアーキテクチャが議論されており、その中の一つとして、異なるベンダ間のベースバンド処理部と無線部の相互接続を実現するオープンなフロントホール(FH)インタフェースが議論されている。 Multiple architectures are being discussed at O-RAN, one of which is the open fronthaul (FH) interface that enables the interconnection of baseband processing and radio between different vendors. ..
 具体的には、O-RANでは、レイヤ2機能、ベースバンド信号処理、及び無線信号処理を行う機能群としてO-RAN Distributed Unit(O-DU)及びO-RAN Radio Unit(O-RU)が定義されており、O-DUとO-RUと間のインタフェースとして議論されている。 Specifically, in O-RAN, O-RAN Distributed Unit (O-DU) and O-RAN Radio Unit (O-RU) are function groups that perform layer 2 functions, baseband signal processing, and radio signal processing. It is defined and discussed as an interface between O-DU and O-RU.
 O-DUは、主として、下位層の機能(lower layer functional)に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。O-RUは、主として、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。 O-DU is a logical node that mainly hosts the wireless link control layer (RLC), medium access control layer (MAC), and PHY-High layer based on the lower layer functional. The O-RU is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division.
 O-RANでは、物理(PHY)レイヤ内にO-DU/O-RUの機能分担点が置かれているため、厳しいタイミング精度が求められる。このため、FHの遅延管理が行われており、その方法として送信ウインドウ、受信ウインドウが用いられている(非特許文献1)。 In O-RAN, the function sharing points of O-DU / O-RU are placed in the physical (PHY) layer, so strict timing accuracy is required. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method (Non-Patent Document 1).
 また、現在のO-RAN FH仕様では、1O-RUで1セルを構成する置局方法が前提である。一方、複数O-RUで1セルを構成する置局方法もあり、それに向けた仕様の拡張が検討されている。具体的には、O-RUを束ねる装置(FHM:Fronthaul Multiplexing)を用いる構成(FHM構成)、及び連続してO-RUを接続する構成(カスケード構成)が検討されている。これらを纏めてShared Cellと呼ばれている。なお、以下の説明では、FHM及び中間に介在するO-RU(カスケードO-RU)をまとめて、中間装置(仮称)と呼称する。 In addition, the current O-RAN FH specifications are premised on a stationing method in which one cell is composed of one O-RU. On the other hand, there is also a stationing method in which one cell is composed of multiple O-RUs, and expansion of specifications for that is being considered. Specifically, a configuration using a device for bundling O-RUs (FHM: Fronthaul Multiplexing) (FHM configuration) and a configuration for continuously connecting O-RUs (cascade configuration) are being studied. Collectively, these are called Shared Cell. In the following description, FHM and O-RU (cascade O-RU) intervening in the middle are collectively referred to as an intermediate device (tentative name).
 ところで、上述したようなShared Cellの構成においては、中間装置の設置位置に応じて、O-DU~中間装置、中間装置~中間装置、中間装置~O-RUなどのFH遅延が変わる。 By the way, in the shared cell configuration as described above, the FH delay of O-DU to intermediate device, intermediate device to intermediate device, intermediate device to O-RU, etc. changes depending on the installation position of the intermediate device.
 しかしながら、中間装置の設置位置が適切であるか否かを判定する仕組みが存在しておらず、中間装置を含むFHを最適化することが難しい。 However, there is no mechanism for determining whether or not the installation position of the intermediate device is appropriate, and it is difficult to optimize the FH including the intermediate device.
 そこで、本発明は、このような状況に鑑みてなされたものであり、フロントホール(FH)インタフェースにおけるShared Cell構成が適用される場合でも、中間装置の設置位置が適切であるか否かを判定することを可能とする通信装置を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and it is determined whether or not the installation position of the intermediate device is appropriate even when the Shared Cell configuration in the front hall (FH) interface is applied. It is an object of the present invention to provide a communication device capable of performing the above.
 本開示の一態様は、フロントホール上に設けられる第1基地局を構成する通信装置であって、前記フロントホール上に設けられる中間装置においてデータの受信タイミングの判定に用いられるパラメータを決定する制御部と、前記パラメータを前記中間装置に送信する送信部と、を備える。 One aspect of the present disclosure is a communication device constituting a first base station provided on the front hall, and is a control for determining parameters used for determining a data reception timing in the intermediate device provided on the front hall. A unit and a transmission unit that transmits the parameters to the intermediate device are provided.
 本開示の一態様は、フロントホール上に設けられる中間装置を構成する通信装置であって、前記中間装置においてデータの受信タイミングを判定する制御を実行する制御部と、前記フロントホール上に設けられる第1基地局から、前記受信タイミングの判定に用いるパラメータを受信する受信部と、を備える。 One aspect of the present disclosure is a communication device that constitutes an intermediate device provided on the front hall, and is provided on the front hall and a control unit that executes control for determining data reception timing in the intermediate device. It includes a receiving unit that receives parameters used for determining the reception timing from the first base station.
図1は、実施形態に係る無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. 図2は、実施形態に係るフロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す図である。FIG. 2 is a diagram showing an example of an internal configuration of the gNB 100 that employs the front hole (FH) interface according to the embodiment. 図3Aは、実施形態に係るフロントホールの構成例(中間装置なし)を示す図である。FIG. 3A is a diagram showing a configuration example (without an intermediate device) of the front hole according to the embodiment. 図3Bは、実施形態に係るフロントホールの構成例(中間装置あり、FHM構成)を示す図である。FIG. 3B is a diagram showing a configuration example of a front hole according to an embodiment (with an intermediate device and an FHM configuration). 図3Cは、実施形態に係るフロントホールの構成例(中間装置あり、カスケード構成)を示す図である。FIG. 3C is a diagram showing a configuration example of a front hole according to an embodiment (with an intermediate device and a cascade configuration). 図4は、実施形態に係るO-DU110~O-RU120間のフロントホール(FH)における各種信号を示す図である。FIG. 4 is a diagram showing various signals in the front hole (FH) between O-DU110 and O-RU120 according to the embodiment. 図5は、実施形態に係るO-DU110の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of the O-DU 110 according to the embodiment. 図6は、実施形態に係る中間装置130の機能ブロック構成図である。FIG. 6 is a functional block configuration diagram of the intermediate device 130 according to the embodiment. 図7は、実施形態に係るULにおけるフロントホールの遅延管理例を示す図である。FIG. 7 is a diagram showing an example of delay management of a front hole in UL according to the embodiment. 図8は、実施形態に係るDLにおけるフロントホールの遅延管理例を示す図である。FIG. 8 is a diagram showing an example of delay management of the front hole in the DL according to the embodiment. 図9は、実施形態に係るカウンタの一例を示す図である。FIG. 9 is a diagram showing an example of a counter according to the embodiment. 図10は、実施形態に係る無線通信方法を示す図である。FIG. 10 is a diagram showing a wireless communication method according to the embodiment. 図11は、変更例1に係るULにおけるフロントホールの遅延管理例を示す図である。FIG. 11 is a diagram showing an example of delay management of the front hole in UL according to the first modification. 図12は、変更例1に係るDLにおけるフロントホールの遅延管理例を示す図である。FIG. 12 is a diagram showing an example of delay management of the front hole in the DL according to the change example 1. 図13は、O-DU110及び中間装置130のハードウェア構成の一例を示す図である。FIG. 13 is a diagram showing an example of the hardware configuration of the O-DU 110 and the intermediate device 130.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。実施形態では、無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. In the embodiment, the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, User Equipment 200, hereinafter, UE200). )including.
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100 (hereinafter, gNB100). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、4Gに従ったコアネットワーク(Evolved Packet Core、不図示)又は5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単にネットワークと表現されてもよい。 The NG-RAN20 actually contains multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is a core network according to 4G (Evolved Packet Core, not shown) or a core according to 5G. Connected to a network (5GC, not shown). In addition, NG-RAN20 and 5GC may be simply expressed as a network.
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G. The gNB100 and UE200 include Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC), which communicates simultaneously between the UE and multiple NG-RAN Nodes.
 また、実施形態では、gNB100は、O-RANによって規定されているフロントホール(FH)インタフェースを採用する。 Also, in the embodiment, the gNB100 adopts the front hole (FH) interface specified by O-RAN.
 (2)フロントホールの構成
 図2は、フロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す。図2に示すように、gNB100は、O-DU110(O-RAN Distributed Unit)及びO-RU120(O-RAN Radio Unit)を含む。O-DU110とO-RU120とは、3GPPで規定されている物理(PHY)レイヤ内において機能的に分離(Function split)されている。
(2) Front Hall Configuration Figure 2 shows an example of the internal configuration of the gNB100 that employs a front hole (FH) interface. As shown in FIG. 2, the gNB100 includes an O-DU110 (O-RAN Distributed Unit) and an O-RU120 (O-RAN Radio Unit). O-DU110 and O-RU120 are functionally separated within the physical (PHY) layer defined by 3GPP.
 O-DU110は、O-RAN分散ユニットと呼ばれてもよい。O-DU110は、主として、下位層の機能(lower layer functional)に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。ここで、O-DU110は、O-RU120に対してNG-RAN20に近い側に設けられる。以下において、NG-RAN20に近い側をRAN側と称することがある。 O-DU110 may be called an O-RAN distribution unit. The O-DU110 is a logical node that mainly hosts a wireless link control layer (RLC), a medium access control layer (MAC), and a PHY-High layer based on the lower layer functional. Here, the O-DU110 is provided on the side closer to the NG-RAN20 with respect to the O-RU120. In the following, the side closer to NG-RAN20 may be referred to as the RAN side.
 O-RU120は、O-RAN無線ユニットと呼ばれてもよい。O-RU120は、主として、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。ここで、O-RU120は、O-DU110に対してNG-RAN20から離れた側に設けられる。以下において、NG-RAN20から離れた側を無線(air)側と称することがある。 O-RU120 may be called an O-RAN radio unit. The O-RU120 is a logical node that mainly hosts the PHY-Low layer and RF processing based on the low-level functional division. Here, the O-RU120 is provided on the side away from the NG-RAN20 with respect to the O-DU110. In the following, the side away from the NG-RAN 20 may be referred to as the radio (air) side.
 PHY-Highレイヤは、Forward Error Correction(FEC)エンコード/デコード、スクランブル、変調/復調など、フロントホールインタフェースのO-DU110側でのPHY処理の部分である。 The PHY-High layer is the part of PHY processing on the O-DU110 side of the front hole interface, such as Forward Error Correction (FEC) encoding / decoding, scrambling, and modulation / demodulation.
 PHY-Lowレイヤは、Fast Fourier Transform(FFT)/iFFT、デジタルビームフォーミング、Physical Random Access Channel(PRACH)抽出及びフィルタリングなど、フロントホールインタフェースのO-RU120側でのPHY処理の部分である。 The PHY-Low layer is the part of PHY processing on the O-RU120 side of the front hole interface, such as Fast Fourier Transform (FFT) / iFFT, digital beamforming, Physical Random Access Channel (PRACH) extraction and filtering.
 O-CUは、O-RAN Control Unitの略であり、Packet Data Convergence Protocol(PDCP)、Radio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びその他の制御機能をホストする論理ノードである。 O-CU is an abbreviation for O-RANControlUnit, which is a logical node that hosts PacketDataConvergenceProtocol (PDCP), RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and other control functions. ..
 なお、フロントホール(FH)は、無線基地局(基地局装置)のベースバンド処理部と無線装置間の回線と解釈されてもよく、光ファイバなどが用いられる。 The front hall (FH) may be interpreted as a line between the baseband processing unit of a wireless base station (base station device) and the wireless device, and an optical fiber or the like is used.
 (3)Shared Cell構成
 O-RANでは、上述したように、複数O-RUで1セルを構成する置局方法もあり、O-RUを束ねる装置(FHM:Fronthaul Multiplexing)を用いる構成、及び連続してO-RUを接続する構成(カスケード構成)が検討されている。これらを纏めてShared Cellと呼ばれている。
(3) Shared Cell configuration As described above, in O-RAN, there is also a stationing method in which one cell is configured by multiple O-RUs, a configuration using a device (FHM: Fronthaul Multiplexing) that bundles O-RUs, and continuous operation. A configuration for connecting O-RUs (cascade configuration) is being studied. Collectively, these are called Shared Cell.
 図3A~図3Cは、フロントホールの構成例を示す。図3Aは、1O-RUで1セルを構成する例である。一方、図3B及び図3Cは、Shared Cell構成の例を示す。 FIGS. 3A to 3C show a configuration example of the front hall. FIG. 3A is an example in which one cell is configured by 1O-RU. On the other hand, FIGS. 3B and 3C show an example of the Shared Cell configuration.
 具体的には、図3Bは、FHM130を用いた構成例を示す。また、図3Cは、O-RU130AをO-DU110とO-RU120との間に介在させてカスケード接続した例を示す。 Specifically, FIG. 3B shows a configuration example using FHM130. Further, FIG. 3C shows an example in which O-RU130A is interposed between O-DU110 and O-RU120 and cascade-connected.
 図3Bの場合、FHM130は、それぞれのO-RU120からの2つのFH信号を合成(combine)した上で、O-DU110に送信する。このようなケースにおいて、O-DU110は、FHM130よりもRAN側に設けられる第1基地局の一例であり、O-RU120は、FHM130よりもair側に設けられる第2基地局の一例である。 In the case of FIG. 3B, the FHM130 combines two FH signals from each O-RU120 and then transmits the two FH signals to the O-DU110. In such a case, the O-DU110 is an example of a first base station provided on the RAN side of the FHM130, and the O-RU120 is an example of a second base station provided on the air side of the FHM130.
 また、図3Cの場合、O-RU130Aは、O-RU130A(O-RU(1))自身が無線区間で受信した信号と、O-RU120(O-RU(2))から受信したFH信号とを合成した上で、O-DU110に送信する。このようなケースにおいて、O-DU110は、FHM130よりもRAN側に設けられる第1基地局の一例であり、O-RU120(O-RU(2))は、FHM130よりもair側に設けられる第2基地局の一例である。 Further, in the case of FIG. 3C, the O-RU130A includes a signal received by the O-RU130A (O-RU (1)) itself in the radio section and an FH signal received from the O-RU120 (O-RU (2)). Is synthesized and then sent to O-DU110. In such a case, the O-DU110 is an example of the first base station provided on the RAN side of the FHM130, and the O-RU120 (O-RU (2)) is provided on the air side of the FHM130. This is an example of two base stations.
 なお、以下の説明では、FHM130及びO-RU130Aを纏めて中間装置130と呼称する。但し、中間装置の名称は、別の名称で呼ばれても構わない。中間装置130は、第1基地局を構成するO-DU110よりもair側に設けられており、第2基地局を構成するO-RU120よりもRAN側に設けられる。 In the following description, FHM130 and O-RU130A are collectively referred to as intermediate device 130. However, the name of the intermediate device may be called by another name. The intermediate device 130 is provided on the air side of the O-DU 110 constituting the first base station, and is provided on the RAN side of the O-RU 120 constituting the second base station.
 このようなShared Cell構成の特徴としては、中間装置130は、下りリンク(DL)については、O-DU110(第1基地局)から受信したDL信号をO-RU120(第2基地局)に転送する。なお、O-RUのカスケード接続の場合には、中間装置130は、さらに当該O-RU自身のDL信号を送信してもよい。 As a feature of such a Shared Cell configuration, the intermediate device 130 transfers the DL signal received from the O-DU110 (first base station) to the O-RU120 (second base station) for the downlink (DL). To do. In the case of cascade connection of O-RU, the intermediate device 130 may further transmit the DL signal of the O-RU itself.
 また、中間装置130は、上りリンク(UL)については、O-RU120(第2基地局)から受信したUL信号を合成して、O-DU110(第1基地局)に転送する。なお、O-RUのカスケード接続の場合には、さらにO-RU自身が受信した無線信号も合わせて合成する。 For the uplink (UL), the intermediate device 130 synthesizes the UL signal received from the O-RU120 (second base station) and transfers it to the O-DU110 (first base station). In the case of O-RU cascade connection, the radio signal received by O-RU itself is also combined.
 このような特徴によって、O-DU110は、あたかも1つのO-RUが接続している場合と同様に信号処理が可能となる。 With such features, the O-DU110 can process signals as if one O-RU was connected.
 (4)O-DU~O-RU間における各種信号
 図4は、O-DU110~O-RU120間のフロントホール(FH)における各種信号を示す。図4に示すように、O-DU110~O-RU120間では、複数のプレーンにおける信号が送受信される。
(4) Various signals between O-DU and O-RU Fig. 4 shows various signals in the front hole (FH) between O-DU110 and O-RU120. As shown in FIG. 4, signals in a plurality of planes are transmitted and received between O-DU110 and O-RU120.
 具体的には、U/C/M/S-planeの信号が送受信される。C-Planeは、制御信号を転送するためのプロトコルであり、U-Planeは、ユーザデータを転送するためのプロトコルである。また、S-Planeは、装置間の同期(Synchronization)を実現するためのプロトコルである。M-Planeは、保守監視信号を扱うマネージメントプレーンである。 Specifically, U / C / M / S-plane signals are transmitted and received. C-Plane is a protocol for transferring control signals, and U-Plane is a protocol for transferring user data. In addition, S-Plane is a protocol for realizing synchronization between devices. M-Plane is a management plane that handles maintenance and monitoring signals.
 より具体的には、U-Plane信号は、O-RU120が無線区間に送信する(DL)、無線区間より受信する(UL)信号を含み、digital IQ signalでやり取りされる。なお、いわゆるU-Plane信号(User Datagram Protocol (UDP)及びTransmission Control Protocol (TCP)などのデータ)に加え、3GPPで定義されているC-Plane(RRC, Non-Access Stratum (NAS)など)も、FH観点では全てU-Planeとなることに留意する必要がある。 More specifically, the U-Plane signal includes a (DL) signal transmitted by the O-RU120 to the radio section and a (UL) signal received from the radio section, and is exchanged by a digital IQ signal. In addition to so-called U-Plane signals (data such as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)), C-Plane (RRC, Non-Access Stratum (NAS), etc.) defined by 3GPP is also available. , It should be noted that all are U-Planes from the viewpoint of FH.
 C-Plane信号は、U-Plane信号の送受信に関する各種制御のために必要な信号(対応するU-Planeの無線リソースマッピング及びビームフォーミングに関わる情報を通知するための信号)を含む。なお、3GPPで定義されているC-Plane(RRC, NASなど)とは、完全に別の信号を指すことに留意する必要がある。 The C-Plane signal includes signals necessary for various controls related to transmission / reception of U-Plane signals (signals for notifying information related to radio resource mapping and beamforming of the corresponding U-Plane). It should be noted that the signal is completely different from the C-Plane (RRC, NAS, etc.) defined in 3GPP.
 M-Plane信号は、O-DU110/O-RU120の管理のために必要な信号を含む。例えば、O-RU120からO-RU120の各種ハードウェア(HW)能力を通知したり、O-DU110からO-RU120へ各種設定値を通知したりするための信号である。 The M-Plane signal includes the signal necessary for managing the O-DU110 / O-RU120. For example, it is a signal for notifying various hardware (HW) capabilities of O-RU120 to O-RU120 and notifying various setting values from O-DU110 to O-RU120.
 S-Plane信号は、O-DU110/O-RU120間の同期制御のために必要な信号である。 The S-Plane signal is a signal required for synchronous control between O-DU110 / O-RU120.
 (5)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、O-DU110及び中間装置130の機能ブロック構成について説明する。
(5) Functional Block Configuration of Wireless Communication System Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of the O-DU 110 and the intermediate device 130 will be described.
 (5.1)O-DU110
 図5は、O-DU110の機能ブロック構成図である。図5に示すように、O-DU110は、通信部111、取得部113、通知部115及び制御部117を備える。
(5.1) O-DU110
FIG. 5 is a functional block configuration diagram of the O-DU110. As shown in FIG. 5, the O-DU 110 includes a communication unit 111, an acquisition unit 113, a notification unit 115, and a control unit 117.
 通信部111は、O-RU120及び中間装置130との通信を実行する。具体的には、通信部111は、FH回線と接続され、図4に示した各種プレーンの信号を送受信することができる。 The communication unit 111 executes communication with the O-RU 120 and the intermediate device 130. Specifically, the communication unit 111 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
 取得部113は、各種パラメータを取得する。例えば、取得部113は、UL信号について以下に示すパラメータを取得してもよい。 Acquisition unit 113 acquires various parameters. For example, the acquisition unit 113 may acquire the parameters shown below for the UL signal.
 パラメータは、O-DU110の受信ウインドウ(Reception window(UL))を定義するパラメータ(Ta4_min、Ta4_max)を含んでもよい。パラメータ(Ta4_min、Ta4_max)は、O-RUアンテナでの受信からO-DUポート(R4)での受信までの測定結果と解釈されてもよい。パラメータ(Ta4_min、Ta4_max)は、遅延測定メッセージによって測定されてもよい(Measured Transport Method)。 The parameters may include parameters (Ta4_min, Ta4_max) that define the reception window (Reception window (UL)) of the O-DU110. The parameters (Ta4_min, Ta4_max) may be interpreted as the measurement results from reception at the O-RU antenna to reception at the O-DU port (R4). The parameters (Ta4_min, Ta4_max) may be measured by a delay measurement message (Measured Transport Method).
 パラメータは、O-RU120の送信ウインドウ(Transmission window(UL))を定義するパラメータ(Ta3_min、Ta3_max)を含んでもよい。パラメータ(Ta3_min、Ta3_max)は、O-RUアンテナでの受信からO-RUポート(R3)での出力までの測定結果と解釈されてもよい。パラメータ(Ta3_min、Ta3_max)は、O-RU120の能力情報の一例である。パラメータ(Ta3_min、Ta3_max)は、O-RU120から受信されてもよい。 The parameters may include the parameters (Ta3_min, Ta3_max) that define the transmission window (UL) of the O-RU120. The parameters (Ta3_min, Ta3_max) may be interpreted as the measurement results from reception at the O-RU antenna to output at the O-RU port (R3). The parameters (Ta3_min, Ta3_max) are an example of the ability information of O-RU120. The parameters (Ta3_min, Ta3_max) may be received from O-RU120.
 パラメータは、Ta4_minとTa3_minとの差異を示すパラメータ(T34_min)を含んでもよい。パラメータは、Ta4_maxとTa3_maxとの差異を示すパラメータ(T34_max)を含んでもよい。 The parameter may include a parameter (T34_min) indicating the difference between Ta4_min and Ta3_min. The parameter may include a parameter (T34_max) indicating the difference between Ta4_max and Ta3_max.
 パラメータは、中間装置130の処理時間を示すパラメータ(例えば、T_Comb)を取得してもよい。パラメータ(例えば、T_Comb)は、中間装置130から受信されてもよい。中間装置130内の処理時間とは、中間装置130において複数のO-RU120から受信したFH信号を合成(combine)するために必要な中間装置130内部での時間と解釈されてもよい。処理時間は、合成自体に要する時間に一定のマージンなどの時間が加えられたものであってもよい。処理時間は、別の名称、例えば、動作時間、内部遅延、処理遅延、合成時間などと呼ばれてもよい。 As the parameter, a parameter (for example, T_Comb) indicating the processing time of the intermediate device 130 may be acquired. The parameter (eg, T_Comb) may be received from the intermediate device 130. The processing time in the intermediate device 130 may be interpreted as the time inside the intermediate device 130 required to combine the FH signals received from the plurality of O-RU 120s in the intermediate device 130. The processing time may be a time required for the synthesis itself plus a time such as a certain margin. The processing time may be referred to by another name, for example, operating time, internal delay, processing delay, synthesis time, and the like.
 パラメータは、中間装置130とO-DU110との間の遅延時間を示すパラメータ(例えば、T_FH1_min、T_FH1_max)を取得してもよい。パラメータ(例えば、T_FH1_min、T_FH1_max)は、UL信号に基づいてO-DU110で測定又は算出されてもよい。以下において、中間装置130とO-DU110との間のFHをFH1と呼ぶ。 As the parameter, parameters indicating the delay time between the intermediate device 130 and the O-DU110 (for example, T_FH1_min, T_FH1_max) may be acquired. Parameters (eg, T_FH1_min, T_FH1_max) may be measured or calculated by the O-DU110 based on the UL signal. In the following, the FH between the intermediate device 130 and the O-DU110 will be referred to as FH1.
 パラメータは、O-RU120と中間装置130との間の遅延時間を示すパラメータ(例えば、T_FH2_min、T_FH2_max)を取得してもよい。パラメータ(例えば、T_FH2_min、T_FH2_max)は、UL信号に基づいて中間装置130で測定又は算出されてもよい。パラメータ(例えば、T_FH2_min、T_FH2_max)は、中間装置130から受信されてもよい。以下において、O-RU120と中間装置130との間のFHをFH2と呼ぶ。 As the parameter, parameters indicating the delay time between the O-RU 120 and the intermediate device 130 (for example, T_FH2_min, T_FH2_max) may be acquired. The parameters (eg, T_FH2_min, T_FH2_max) may be measured or calculated by the intermediate device 130 based on the UL signal. Parameters (eg, T_FH2_min, T_FH2_max) may be received from intermediate device 130. In the following, the FH between the O-RU 120 and the intermediate device 130 will be referred to as FH2.
 取得部113は、DL信号について以下に示すパラメータを取得してもよい。 The acquisition unit 113 may acquire the parameters shown below for the DL signal.
 パラメータは、O-DU110の送信ウインドウ(Transmission window(DL))を定義するパラメータ(Ta1_min、Ta1_max)を含んでもよい。パラメータ(Ta1_min、Ta1_max)は、O-DUポート(R1)での出力から無線送信までの測定結果と解釈されてもよい。パラメータ(Ta1_min、Ta1_max)は、遅延測定メッセージによって測定されてもよい(Measured Transport Method)。 The parameters may include parameters (Ta1_min, Ta1_max) that define the transmission window (Transmission window (DL)) of the O-DU110. The parameters (Ta1_min, Ta1_max) may be interpreted as the measurement results from the output at the O-DU port (R1) to the wireless transmission. The parameters (Ta1_min, Ta1_max) may be measured by a delay measurement message (Measured Transport Method).
 パラメータは、O-RU120の受信ウインドウ(Reception window(DL))を定義するパラメータ(Ta2_min、Ta2_max)を含んでもよい。パラメータ(Ta2_min、Ta2_max)は、O-RUポート(R2)での受信から無線送信まで測定結果と解釈されてもよい。パラメータ(Ta2_min、Ta2_max)は、O-RU120の能力情報の一例である。パラメータ(Ta2_min、Ta2_max)は、O-RU120から受信されてもよい。 The parameters may include parameters (Ta2_min, Ta2_max) that define the reception window (Reception window (DL)) of the O-RU120. The parameters (Ta2_min, Ta2_max) may be interpreted as measurement results from reception at the O-RU port (R2) to wireless transmission. The parameters (Ta2_min, Ta2_max) are an example of the ability information of O-RU120. The parameters (Ta2_min, Ta2_max) may be received from O-RU120.
 パラメータは、Ta1_minとTa2_minとの差異を示すパラメータ(T12_min)を含んでもよい。パラメータは、Ta1_maxとTa2_maxとの差異を示すパラメータ(T12_max)を含んでもよい。 The parameter may include a parameter (T12_min) indicating the difference between Ta1_min and Ta2_min. The parameter may include a parameter (T12_max) indicating the difference between Ta1_max and Ta2_max.
 パラメータは、中間装置130の処理時間を示すパラメータ(例えば、T_Copy)を取得してもよい。パラメータ(例えば、T_Copy)は、中間装置130から受信されてもよい。中間装置130内の処理時間とは、中間装置130において複数のO-RU120に送信するFH信号を複製(copy)するために必要な中間装置130内部での時間と解釈されてもよい。処理時間は、複製自体に要する時間に一定のマージンなどの時間が加えられたものであってもよい。処理時間は、別の名称、例えば、動作時間、内部遅延、処理遅延、複製時間などと呼ばれてもよい。 As the parameter, a parameter (for example, T_Copy) indicating the processing time of the intermediate device 130 may be acquired. The parameter (eg, T_Copy) may be received from the intermediate device 130. The processing time in the intermediate device 130 may be interpreted as the time inside the intermediate device 130 required to copy the FH signal transmitted to the plurality of O-RU 120s in the intermediate device 130. The processing time may be a time required for the duplication itself plus a time such as a certain margin. The processing time may be referred to by another name, for example, operating time, internal delay, processing delay, replication time, and the like.
 パラメータは、中間装置130とO-DU110との間の遅延時間を示すパラメータ(例えば、T_FH1_min、T_FH1_max)を取得してもよい。パラメータ(例えば、T_FH1_min、T_FH1_max)は、DL信号に基づいて中間装置130で測定又は算出されてもよい。パラメータ(例えば、T_FH1_min、T_FH1_max)は、中間装置130から受信されてもよい。 As the parameter, parameters indicating the delay time between the intermediate device 130 and the O-DU110 (for example, T_FH1_min, T_FH1_max) may be acquired. The parameters (eg, T_FH1_min, T_FH1_max) may be measured or calculated by the intermediate device 130 based on the DL signal. Parameters (eg, T_FH1_min, T_FH1_max) may be received from intermediate device 130.
 パラメータは、O-RU120と中間装置130との間の遅延時間を示すパラメータ(例えば、T_FH2_min、T_FH2_max)を取得してもよい。パラメータ(例えば、T_FH2_min、T_FH2_max)は、DL信号に基づいてO-RU120で測定又は算出されてもよい。パラメータ(例えば、T_FH2_min、T_FH2_max)は、O-RU120から受信されてもよい。 As the parameter, parameters indicating the delay time between the O-RU 120 and the intermediate device 130 (for example, T_FH2_min, T_FH2_max) may be acquired. Parameters (eg, T_FH2_min, T_FH2_max) may be measured or calculated on the O-RU120 based on the DL signal. Parameters (eg, T_FH2_min, T_FH2_max) may be received from O-RU120.
 なお、min, maxは、伝搬遅延の最小値及び最大値を意味してよい。また、伝搬遅延は、別の名称、例えば、伝送遅延、伝送時間、遅延時間、転送遅延、遅延などと呼ばれてもよい。 Note that min and max may mean the minimum and maximum values of propagation delay. Further, the propagation delay may be referred to by another name, for example, transmission delay, transmission time, delay time, transfer delay, delay, or the like.
 通知部115は、各情報を通知する。例えば、通知部115は、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を中間装置130に通知する。後述するように、パラメータ(例えば、TH_min、TH_max)は、中間装置130内の処理時間(例えば、T_Comb、T_Copy)に基づいて決定される。実施形態では、通知部115は、パラメータ(例えば、TH_min、TH_max)を中間装置130に送信する送信部を構成する。 Notification unit 115 notifies each information. For example, the notification unit 115 notifies the intermediate device 130 of parameters (for example, TH_min, TH_max) used for determining the data reception timing in the intermediate device 130. As will be described later, the parameters (eg, TH_min, TH_max) are determined based on the processing time (eg, T_Comb, T_Copy) in the intermediate device 130. In the embodiment, the notification unit 115 constitutes a transmission unit that transmits parameters (for example, TH_min, TH_max) to the intermediate device 130.
 制御部117は、FH上において用いられる各種パラメータの値を制御する。特に、実施形態では、制御部117は、O-DU110~O-RU120間(中間装置130が介在する場合を含む)の伝搬遅延に関する値を制御する。 The control unit 117 controls the values of various parameters used on the FH. In particular, in the embodiment, the control unit 117 controls the value related to the propagation delay between O-DU110 and O-RU120 (including the case where the intermediate device 130 intervenes).
 例えば、制御部117は、UL信号についてO-DU110~O-RU120間の伝搬遅延(T34_min、T34_max)に基づいて、O-DU110自身に適用される受信ウィンドウ(Ta4_min、Ta4_max)を決定してもよい。同様に、制御部117は、DL信号についてO-DU110~O-RU120間のDLの伝搬遅延(T12_min、T12_max)に基づいて、O-DU110自身に適用される送信ウィンドウ(Ta1_min、Ta1_max)を決定してもよい。 For example, the control unit 117 may determine the reception window (Ta4_min, Ta4_max) applied to the O-DU110 itself based on the propagation delay (T34_min, T34_max) between O-DU110 and O-RU120 for the UL signal. Good. Similarly, the control unit 117 determines the transmission window (Ta1_min, Ta1_max) applied to the O-DU110 itself based on the DL propagation delay (T12_min, T12_max) between the O-DU110 and the O-RU120 for the DL signal. You may.
 実施形態では、制御部117は、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を決定する制御部を構成する。制御部117は、中間装置130内の処理時間(例えば、T_Comb、T_Copy)に基づいてパラメータ(例えば、TH_min、TH_max)を決定してもよい。制御部117は、O-DU110は、O-RU120の能力情報に基づいてパラメータを決定してもよい。制御部117は、中間装置130とO-DU110との間の遅延時間に基づいてパラメータを決定してもよい。制御部117は、O-RU120と中間装置130との間の遅延時間に基づいてパラメータを決定してもよい。 In the embodiment, the control unit 117 constitutes a control unit that determines parameters (for example, TH_min, TH_max) used in determining the data reception timing in the intermediate device 130. The control unit 117 may determine the parameters (for example, TH_min, TH_max) based on the processing time (for example, T_Comb, T_Copy) in the intermediate device 130. The control unit 117 may determine the parameters of the O-DU 110 based on the capability information of the O-RU 120. The control unit 117 may determine the parameters based on the delay time between the intermediate device 130 and the O-DU 110. The control unit 117 may determine the parameters based on the delay time between the O-RU 120 and the intermediate device 130.
 例えば、制御部117は、UL信号については、図7に示すように、以下の式に基づいてパラメータ(例えば、TH_min、TH_max)を決定してもよい。 For example, the control unit 117 may determine parameters (for example, TH_min, TH_max) for the UL signal based on the following equation as shown in FIG.
 TH_min=Ta3_min+T_FH2_min
 TH_max=Ta4_max-T_FH1_max-T_Comb
 ここで、Ta3_minは、O-RU120の能力情報の一例である。T_FH2_minは、O-RU120と中間装置130との間の遅延時間の最小値である。Ta4_maxは、Ta3_max及びT34_maxの合計である。Ta3_maxは、O-RU120の能力情報の一例である。T34_maxは、O-DU110とO-RU120と間のUL信号に関する伝搬遅延の最大値である。T_FH1_maxは、中間装置130とO-DU110との間の遅延時間の最大値である。T_Combは、中間装置130の処理時間である。
TH_min = Ta3_min + T_FH2_min
TH_max = Ta4_max-T_FH1_max-T_Comb
Here, Ta3_min is an example of the ability information of O-RU120. T_FH2_min is the minimum delay time between O-RU120 and intermediate device 130. Ta4_max is the sum of Ta3_max and T34_max. Ta3_max is an example of the ability information of O-RU120. T34_max is the maximum propagation delay for the UL signal between O-DU110 and O-RU120. T_FH1_max is the maximum value of the delay time between the intermediate device 130 and the O-DU110. T_Comb is the processing time of the intermediate device 130.
 図7に示すように、パラメータ(TH_min、TH_max)は、UL信号に関する中間装置130の受信ウインドウを定義するパラメータであると考えてもよい。パラメータ(TH_min、TH_max)は、UL信号の受信タイミングの判定に用いる閾値と考えてもよい。 As shown in FIG. 7, the parameters (TH_min, TH_max) may be considered as parameters that define the reception window of the intermediate device 130 regarding the UL signal. The parameters (TH_min, TH_max) may be considered as a threshold value used for determining the reception timing of the UL signal.
 さらには、TH_minについては、T_FH2_minを考慮せずにTa3_minを用いてもよい(すなわち、TH_min= Ta3_minであってもよい)。 Furthermore, for TH_min, Ta3_min may be used without considering T_FH2_min (that is, TH_min = Ta3_min may be used).
 なお、TH_min及びTH_maxを算出する式は、上述した式に限定されるものではない。TH_min及びTH_maxを算出する式は、図7に示す関係を満たす範囲において書き換えられてもよい。このようなケースにおいて、TH_min及びTH_maxを算出する式において、伝搬遅延の最小値(例えば、T_FH1_min、T_FH2_min)が考慮されなくてもよい。言い換えると、遅延時間の最小値(例えば、T_FH1_min、T_FH2_min)をゼロとしてもよい。 The formulas for calculating TH_min and TH_max are not limited to the above formulas. The formulas for calculating TH_min and TH_max may be rewritten as long as the relationship shown in FIG. 7 is satisfied. In such cases, the minimum propagation delay values (eg, T_FH1_min, T_FH2_min) need not be considered in the equations for calculating TH_min and TH_max. In other words, the minimum delay time (for example, T_FH1_min, T_FH2_min) may be set to zero.
 同様に、制御部117は、DL信号については、図8に示すように、以下の式に基づいてパラメータ(例えば、TH_min、TH_max)を決定してもよい。 Similarly, for the DL signal, the control unit 117 may determine parameters (for example, TH_min, TH_max) based on the following equation as shown in FIG.
 TH_min=Ta1_max-T_FH1_min (=T2a_max+T_FH2_min+T_copy)
 TH_max=Ta1_min-T_FH1_max (=T2a_min+T_FH2_max+T_copy)
 ここで、Ta1_maxは、Ta2_maxとT12_minとの合計である。Ta2_maxは、O-RU120の能力情報の一例である。T12_minは、O-DU110とO-RU120と間のDL信号に関する伝搬遅延の最小値(すなわち、T_FH1_min+T_Copy+T_FH2_min)である。T_FH1_minは、中間装置130とO-DU110との間の遅延時間の最小値である。Ta1_minは、Ta2_minとT12_maxとの合計である。Ta2_minは、O-RU120の能力情報の一例である。T12_maxは、O-DU110とO-RU120と間のDL信号に関する伝搬遅延の最大値(すなわち、T_FH1_max+T_Copy+T_FH2_max)である。FH2_maxは、O-RU120と中間装置130との間の遅延時間の最大値である。T_Copyは、中間装置130の処理時間である。
TH_min = Ta1_max-T_FH1_min (= T2a_max + T_FH2_min + T_copy)
TH_max = Ta1_min-T_FH1_max (= T2a_min + T_FH2_max + T_copy)
Here, Ta1_max is the sum of Ta2_max and T12_min. Ta2_max is an example of the ability information of O-RU120. T12_min is the minimum value of the propagation delay for the DL signal between O-DU110 and O-RU120 (ie, T_FH1_min + T_Copy + T_FH2_min). T_FH1_min is the minimum value of the delay time between the intermediate device 130 and the O-DU110. Ta1_min is the sum of Ta2_min and T12_max. Ta2_min is an example of the ability information of O-RU120. T12_max is the maximum value of the propagation delay for the DL signal between O-DU110 and O-RU120 (ie, T_FH1_max + T_Copy + T_FH2_max). FH2_max is the maximum delay time between O-RU120 and intermediate device 130. T_Copy is the processing time of the intermediate device 130.
 図8に示すように、パラメータ(TH_min、TH_max)は、UL信号に関する中間装置130の受信ウインドウを定義するパラメータであると考えてもよい。パラメータ(TH_min、TH_max)は、DL信号の受信タイミングの判定に用いる閾値と考えてもよい。 As shown in FIG. 8, the parameters (TH_min, TH_max) may be considered as parameters that define the reception window of the intermediate device 130 regarding the UL signal. The parameters (TH_min, TH_max) may be considered as a threshold value used for determining the reception timing of the DL signal.
 さらには、TH_maxについては、T_FH1_minを考慮せずにTa1_maxを用いてもよい(すなわち、TH_min= Ta3_minであってもよい)。 Furthermore, for TH_max, Ta1_max may be used without considering T_FH1_min (that is, TH_min = Ta3_min may be used).
 なお、TH_min及びTH_maxを算出する式は、上述した式に限定されるものではない。TH_min及びTH_maxを算出する式は、図8に示す関係を満たす範囲において書き換えられてもよい。このようなケースにおいて、TH_min及びTH_maxを算出する式において、伝搬遅延の最小値(例えば、T_FH1_min、T_FH2_min)が考慮されなくてもよい。言い換えると、伝搬遅延の最小値(例えば、T_FH1_min、T_FH2_min)をゼロとしてもよい。 The formulas for calculating TH_min and TH_max are not limited to the above formulas. The formulas for calculating TH_min and TH_max may be rewritten as long as the relationship shown in FIG. 8 is satisfied. In such cases, the minimum propagation delay values (eg, T_FH1_min, T_FH2_min) need not be considered in the equations for calculating TH_min and TH_max. In other words, the minimum value of the propagation delay (for example, T_FH1_min, T_FH2_min) may be set to zero.
 (5.2)中間装置130
 図6は、中間装置130の機能ブロック構成図である。図6に示すように、中間装置130は、FH上に設けられ、通信部131、通知部133、取得部135及び制御部137を備える。
(5.2) Intermediate device 130
FIG. 6 is a functional block configuration diagram of the intermediate device 130. As shown in FIG. 6, the intermediate device 130 is provided on the FH and includes a communication unit 131, a notification unit 133, an acquisition unit 135, and a control unit 137.
 通信部131は、O-DU110及びO-RU120との通信を実行する。具体的には、通信部131は、FH回線と接続され、図4に示した各種プレーンの信号を送受信することができる。 Communication unit 131 executes communication with O-DU110 and O-RU120. Specifically, the communication unit 131 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
 通知部133は、各情報を通知する。例えば、通知部133は、中間装置130の処理時間を示すパラメータ(例えば、T_Comb、T_Copy)をO-DU110に通知する。 Notification unit 133 notifies each information. For example, the notification unit 133 notifies the O-DU 110 of parameters (for example, T_Comb, T_Copy) indicating the processing time of the intermediate device 130.
 取得部135は、各種パラメータを取得する。例えば、取得部135は、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を取得する。実施形態では、取得部135は、パラメータ(例えば、TH_min、TH_max)をO-DU110から受信する受信部を構成する。 Acquisition unit 135 acquires various parameters. For example, the acquisition unit 135 acquires parameters (for example, TH_min, TH_max) used in determining the data reception timing in the intermediate device 130. In the embodiment, the acquisition unit 135 constitutes a reception unit that receives parameters (for example, TH_min, TH_max) from the O-DU 110.
 制御部137は、中間装置130においてデータの受信タイミングを判定する制御を実行する制御部を構成する。具体的には、制御部137は、O-DU110から受信するパラメータ(TH_min、TH_max)に基づいて、データの受信タイミングを判定する制御を実行する。例えば、制御部137は、O-DU110から受信するパラメータ(TH_min)に基づいて、パラメータ(TH_min)で定義されるタイミングよりも早いタイミングでデータを受信したか否かを判定してもよい。制御部137は、O-DU110から受信するパラメータ(TH_max)に基づいて、パラメータ(TH_max)で定義されるタイミングよりも遅いタイミングでデータを受信したか否かを判定してもよい。 The control unit 137 constitutes a control unit that executes control for determining the data reception timing in the intermediate device 130. Specifically, the control unit 137 executes control for determining the data reception timing based on the parameters (TH_min, TH_max) received from the O-DU 110. For example, the control unit 137 may determine whether or not the data is received at a timing earlier than the timing defined by the parameter (TH_min) based on the parameter (TH_min) received from the O-DU 110. The control unit 137 may determine whether or not the data is received at a timing later than the timing defined by the parameter (TH_max) based on the parameter (TH_max) received from the O-DU 110.
 ここで、制御部137は、図9に示すカウンタ(Performance counter(s))を有していてもよい。例えば、制御部137は、適切なタイミングでデータが受信された回数をカウントするカウンタ(例えば、Rx_on_time_for_shared_cell)を有していてもよい。適切なタイミングは、パラメータ(TH_min)で定義されるタイミングよりも遅く、パラメータ(TH_max)で定義されるタイミングよりも早いタイミングである。制御部137は、パラメータ(TH_min)で定義されるタイミングよりも早いタイミングでデータを受信した回数をカウントするカウンタ(Rx_early_for_shared_cell)を有してもよい。制御部137は、パラメータ(TH_max)で定義されるタイミングよりも遅いタイミングでデータを受信した回数をカウントするカウンタ(Rx_late_for_shared_cell)を有してもよい。 Here, the control unit 137 may have a counter (Performance counter (s)) shown in FIG. For example, the control unit 137 may have a counter (for example, Rx_on_time_for_shared_cell) that counts the number of times data is received at an appropriate timing. The appropriate timing is later than the timing defined by the parameter (TH_min) and earlier than the timing defined by the parameter (TH_max). The control unit 137 may have a counter (Rx_early_for_shared_cell) that counts the number of times data is received at a timing earlier than the timing defined by the parameter (TH_min). The control unit 137 may have a counter (Rx_late_for_shared_cell) that counts the number of times data is received at a timing later than the timing defined by the parameter (TH_max).
 但し、図9に示すカウンタの名称及び意味は任意である。例えば、ORAN-WG4.CUS.0-v02.00で定義されているカウンタ(Performance counter(s))の名称(Rx_on_time、Rx_early、Rx_late)などが用いられてもよい。このようなカウントのカウント値は、中間装置130の設置位置が適切であるか否かの判定に用いられる。例えば、通信事業者は、カウント値に基づいて中間装置130の設置位置を変更してもよい。 However, the name and meaning of the counter shown in FIG. 9 are arbitrary. For example, the names (Rx_on_time, Rx_early, Rx_late) of the counters (Performance counter (s)) defined in ORAN-WG4.CUS.0-v02.00 may be used. The count value of such a count is used to determine whether or not the installation position of the intermediate device 130 is appropriate. For example, the telecommunications carrier may change the installation position of the intermediate device 130 based on the count value.
 なお、中間装置130がO-RANとしても機能する場合には、中間装置130は、中間装置130として用いるカウンタ及びO-RANとして用いるカウンタの双方を有していてもよい。O-RANとして用いるカウンタは、ORAN-WG4.CUS.0-v02.00で定義されているカウンタ(Performance counter(s))であってもよい。 When the intermediate device 130 also functions as an O-RAN, the intermediate device 130 may have both a counter used as the intermediate device 130 and a counter used as the O-RAN. The counter used as O-RAN may be the counter (Performance counter (s)) defined in ORAN-WG4.CUS.0-v02.00.
 (6)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、gNB100を構成するO-DU110~O-RU120間(中間装置130を含む)の動作について説明する。
(6) Operation of Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, the operation between O-DU110 and O-RU120 (including the intermediate device 130) constituting the gNB100 will be described.
 図10に示すように、ステップS10において、O-DU110は、中間装置130の処理時間を示すパラメータ(例えば、T_Comb、T_Copy)を中間装置130から受信する。O-DU110は、中間装置130とO-DU110との間の遅延時間を示すパラメータ(例えば、T_FH1_min、T_FH1_max)を受信してもよい。 As shown in FIG. 10, in step S10, the O-DU 110 receives parameters (for example, T_Comb, T_Copy) indicating the processing time of the intermediate device 130 from the intermediate device 130. The O-DU110 may receive parameters indicating the delay time between the intermediate device 130 and the O-DU110 (for example, T_FH1_min, T_FH1_max).
 ステップS11において、O-DU110は、O-RU120の能力情報を示すパラメータ(例えば、T3a_min、T3a_max、T2a_min、T2a_max)を受信する。O-DU110は、O-RU120と中間装置130との遅延時間を示すパラメータ(例えば、T_FH2_min、T_FH2_max)を受信してもよい。 In step S11, the O-DU110 receives parameters indicating the ability information of the O-RU120 (for example, T3a_min, T3a_max, T2a_min, T2a_max). The O-DU110 may receive parameters indicating the delay time between the O-RU 120 and the intermediate device 130 (for example, T_FH2_min, T_FH2_max).
 ステップS12において、O-DU110は、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を決定する。O-DU110は、中間装置130の処理時間に基づいてパラメータを決定してもよい。O-DU110は、O-RU120の能力情報に基づいてパラメータを決定してもよい。O-DU110は、中間装置130とO-DU110との間の遅延時間に基づいてパラメータを決定してもよい。O-DU110は、O-RU120と中間装置130との間の遅延時間に基づいてパラメータを決定してもよい。 In step S12, the O-DU 110 determines the parameters (for example, TH_min, TH_max) used to determine the data reception timing in the intermediate device 130. The O-DU110 may determine the parameters based on the processing time of the intermediate device 130. The O-DU110 may determine the parameters based on the capability information of the O-RU120. The O-DU110 may determine the parameters based on the delay time between the intermediate device 130 and the O-DU110. The O-DU110 may determine the parameters based on the delay time between the O-RU120 and the intermediate device 130.
 ステップS13において、O-DU110は、ステップS12で決定したパラメータ(例えば、TH_min、TH_max)を中間装置130に送信する。 In step S13, the O-DU110 transmits the parameters (for example, TH_min, TH_max) determined in step S12 to the intermediate device 130.
 ステップS14において、中間装置130は、ステップS13で受信したパラメータ(例えば、TH_min、TH_max)に基づいて、データの受信タイミングを判定する。例えば、図9で説明したように、中間装置130は、適切なタイミングでデータを受信した回数をカウントしてもよい。中間装置130は、パラメータ(TH_min)で定義されるタイミングよりも早いタイミングでデータを受信した回数をカウントしてもよい。中間装置130は、パラメータ(TH_max)で定義されるタイミングよりも遅いタイミングでデータを受信した回数をカウントしてもよい。 In step S14, the intermediate device 130 determines the data reception timing based on the parameters (for example, TH_min, TH_max) received in step S13. For example, as described with reference to FIG. 9, the intermediate device 130 may count the number of times data is received at an appropriate timing. The intermediate device 130 may count the number of times data is received at a timing earlier than the timing defined by the parameter (TH_min). The intermediate device 130 may count the number of times data is received at a timing later than the timing defined by the parameter (TH_max).
 (7)作用・効果
 実施形態では、O-DU110は、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を決定し、決定されたパラメータを中間装置130に送信してもよい。このような構成によれば、中間装置130にデータの受信タイミングを適切に判定することができる。ひいては、中間装置130の設置位置が適切であるか否かを判定することができる。
(7) Action / Effect In the embodiment, the O-DU 110 determines the parameters (for example, TH_min, TH_max) used in the intermediate device 130 for determining the data reception timing, and transmits the determined parameters to the intermediate device 130. You may. According to such a configuration, the intermediate device 130 can appropriately determine the data reception timing. As a result, it can be determined whether or not the installation position of the intermediate device 130 is appropriate.
 実施形態では、パラメータ(例えば、TH_min、TH_max)は、中間装置130の処理時間に基づいて決定されてもよい。このような構成によれば、中間装置130においてデータの受信タイミングの判定に用いられるパラメータとして適切なパラメータを設定することができる。 In the embodiment, the parameters (eg, TH_min, TH_max) may be determined based on the processing time of the intermediate device 130. According to such a configuration, an appropriate parameter can be set as a parameter used for determining the data reception timing in the intermediate device 130.
 実施形態では、パラメータ(例えば、TH_min、TH_max)は、O-RU120の能力情報に基づいて決定されてもよく、中間装置130とO-DU110との間の遅延時間に基づいて決定されてもよく、O-DU110は、O-RU120と中間装置130との間の遅延時間に基づいて決定されてもよい。このような構成によれば、さらに適切なパラメータを設定することができる。 In embodiments, the parameters (eg, TH_min, TH_max) may be determined based on the capability information of the O-RU120 or based on the delay time between the intermediate device 130 and the O-DU110. , O-DU110 may be determined based on the delay time between O-RU120 and intermediate device 130. According to such a configuration, more appropriate parameters can be set.
 実施形態では、中間装置130においてデータの受信タイミングを判定すべきであるという新たな仕組み(例えば、図9に示すカウンタ)を導入することによって、中間装置130の設置位置が適切であるか否かを判定することができる。 In the embodiment, whether or not the installation position of the intermediate device 130 is appropriate by introducing a new mechanism (for example, the counter shown in FIG. 9) that the data reception timing should be determined in the intermediate device 130. Can be determined.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
[Change example 1]
Hereinafter, modification 1 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described.
 実施形態では、中間装置130のair側に1つのO-RU120が設けられるケースについて例示した。これに対して、変更例1では、中間装置130のair側に2以上のO-RU120が設けられるケースについて説明する。DL信号についてはUL信号と同様に考えることが可能であるため、ここではUL信号を例に挙げて説明する。 In the embodiment, a case where one O-RU120 is provided on the air side of the intermediate device 130 is illustrated. On the other hand, in the first modification, a case where two or more O-RU 120s are provided on the air side of the intermediate device 130 will be described. Since the DL signal can be considered in the same way as the UL signal, the UL signal will be described here as an example.
 図11に示すように、中間装置130のair側には、O-RU120X及びO-RU120Yが設けられる。ここでは、O-DU110と中間装置130との間のFHについてFH1と呼び、中間装置130とO-RU120Xとの間のFHについてはFH2-1と呼び、中間装置130とO-RU120Yとの間のFHについてはFH2-2と呼ぶ。図11では、FH2-1の伝搬遅延がFH2-2の伝搬遅延よりも大きいケースについて例示する。 As shown in FIG. 11, O-RU120X and O-RU120Y are provided on the air side of the intermediate device 130. Here, the FH between the O-DU110 and the intermediate device 130 is called FH1, the FH between the intermediate device 130 and the O-RU120X is called FH2-1, and between the intermediate device 130 and the O-RU120Y. FH is called FH2-2. FIG. 11 illustrates a case where the propagation delay of FH2-1 is larger than the propagation delay of FH2-2.
 このようなケースにおいても、O-DU110は、実施形態と同様に、中間装置130においてデータの受信タイミングの判定に用いられるパラメータ(例えば、TH_min、TH_max)を決定する。 Even in such a case, the O-DU 110 determines the parameters (for example, TH_min, TH_max) used in the intermediate device 130 for determining the data reception timing, as in the embodiment.
 ここで、O-DU110は、伝搬遅延が小さいO-RU120Yを基準としてTH_minを決定してもよい。O-DU110は、伝搬遅延が大きいO-RU120Xを基準としてTH_maxを決定してもよい。従って、TH_min及びTH_maxは以下の式によって表されてもよい。 Here, the O-DU110 may determine TH_min with reference to the O-RU120Y having a small propagation delay. O-DU110 may determine TH_max with reference to O-RU120X, which has a large propagation delay. Therefore, TH_min and TH_max may be expressed by the following equations.
 TH_min=Ta3_min(O-RU120Y)+T_FH2-2_min
 TH_max=Ta4_max-T_FH1_max-T_Comb
 ここで、Ta4_maxは、Ta3_max(O-RU120X)及びT34_max(O-RU120X)の合計である。T34_max(O-RU120X)は、T_FH2-1max、T_Comb(O-RU120X)、T_FH1_maxの合計である。
TH_min = Ta3_min (O-RU120Y) + T_FH2-2_min
TH_max = Ta4_max-T_FH1_max-T_Comb
Here, Ta4_max is the sum of Ta3_max (O-RU120X) and T34_max (O-RU120X). T34_max (O-RU120X) is the sum of T_FH2-1max, T_Comb (O-RU120X), and T_FH1_max.
 なお、中間装置130のair側には3つ以上のO-RU120が設けられるケースについても変更例1の考え方を適用可能である。すなわち、TH_minは、伝搬遅延が最小のO-RU120を基準として決定され、TH_maxは、伝搬遅延が最大のO-RU120を基準として決定される。 Note that the concept of modification 1 can be applied to the case where three or more O-RU120s are provided on the air side of the intermediate device 130. That is, TH_min is determined based on O-RU120 having the smallest propagation delay, and TH_max is determined based on O-RU120 having the largest propagation delay.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
[Change example 2]
Hereinafter, modification 2 of the embodiment will be described. In the following, the differences from the embodiments will be mainly described.
 実施形態では、O-DU110とO-RU120との間に1つの中間装置130が設けられるケースについて例示した。これに対して、変更例2では、O-DU110とO-RU120との間に2以上の中間装置130が直列的に設けられるケースについて例示する。DL信号についてはUL信号と同様に考えることが可能であるため、ここではUL信号を例に挙げて説明する。 In the embodiment, a case where one intermediate device 130 is provided between the O-DU 110 and the O-RU 120 is illustrated. On the other hand, in the second modification, a case where two or more intermediate devices 130 are provided in series between the O-DU 110 and the O-RU 120 will be illustrated. Since the DL signal can be considered in the same way as the UL signal, the UL signal will be described here as an example.
 図12に示すように、O-DU110とO-RU120との間に中間装置130P及び中間装置130Qが直列的に設けられる。ここでは、O-DU110と中間装置130Pとの間のFHについてFH1と呼び、中間装置130Pと中間装置130Qとの間にFHについてFH2と呼び、中間装置130QとO-RU120Xとの間のFHについてはFH3と呼ぶ。 As shown in FIG. 12, an intermediate device 130P and an intermediate device 130Q are provided in series between the O-DU 110 and the O-RU 120. Here, the FH between the O-DU110 and the intermediate device 130P is called FH1, the FH between the intermediate device 130P and the intermediate device 130Q is called FH2, and the FH between the intermediate device 130Q and the O-RU120X. Is called FH3.
 このようなケースにおいて、O-DU110は、中間装置130P及び中間装置130Qのそれぞれについてパラメータ(TH_min及びTH_max)を決定する。中間装置130Pで用いるパラメータについてはTH(p)_min及びTH(p)_maxと呼び、中間装置130Qで用いるパラメータについてはTH(q)_min及びTH(q)_maxと呼ぶ。例えば、これらのパラメータは、図12に示すように以下の式によって表されてもよい。 In such a case, the O-DU110 determines the parameters (TH_min and TH_max) for each of the intermediate device 130P and the intermediate device 130Q. The parameters used in the intermediate device 130P are called TH (p) _min and TH (p) _max, and the parameters used in the intermediate device 130Q are called TH (q) _min and TH (q) _max. For example, these parameters may be expressed by the following equation as shown in FIG.
 TH(p)_min=Ta3_min+T_FH3_min+T_Comb(中間装置130Q)+T_FH2_min
 TH(p)_max=Ta4_max-T_FH1_max-T_Comb(中間装置130P)
 TH(q)_min=Ta3_min+T_FH3_min
 TH(p)_max=Ta4_max-T_FH1_max-T_Comb(中間装置130P)-T_FH2_max-T_Comb(中間装置130Q)
 なお、O-DU110とO-RU120との間に3つ以上の中間装置130が設けられるケースについても変更例2の考え方を適用可能である。
TH (p) _min = Ta3_min + T_FH3_min + T_Comb (intermediate device 130Q) + T_FH2_min
TH (p) _max = Ta4_max-T_FH1_max-T_Comb (intermediate device 130P)
TH (q) _min = Ta3_min + T_FH3_min
TH (p) _max = Ta4_max-T_FH1_max-T_Comb (intermediate device 130P)-T_FH2_max-T_Comb (intermediate device 130Q)
The concept of the second modification can also be applied to the case where three or more intermediate devices 130 are provided between the O-DU 110 and the O-RU 120.
 [その他の実施形態]
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other Embodiments]
Although the contents of the present invention have been described above with reference to Examples, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and various modifications and improvements can be made.
 例えば、上述した実施形態では、中間装置130においてデータの受信タイミングの判定に用いられるパラメータの名称としてTH_min及びTH_maxを用いた。しかしながら、実施形態はこれに限定されるものではない。例えば、TH_minは、中間装置130の受信ウインドウの開始タイミングと称されてもよく、開始タイミングを定義するパラメータと称されてもよい。同様に、TH_maxは、中間装置130の受信ウインドウの終了タイミングと称されてもよく、終了タイミングを定義するパラメータと称されてもよい。中間装置130の受信ウインドウという用語については、中間装置130のair側に2以上のO-RA130が設けられる場合において、中間装置130の待ち時間と称されてもよい。 For example, in the above-described embodiment, TH_min and TH_max are used as the names of the parameters used in determining the data reception timing in the intermediate device 130. However, the embodiment is not limited to this. For example, TH_min may be referred to as the start timing of the receive window of the intermediate device 130, or may be referred to as a parameter that defines the start timing. Similarly, TH_max may be referred to as the end timing of the receive window of the intermediate device 130, or may be referred to as a parameter that defines the end timing. The term reception window of the intermediate device 130 may be referred to as a waiting time of the intermediate device 130 when two or more O-RA 130s are provided on the air side of the intermediate device 130.
 上述した実施形態では、O-DU110から中間装置130に対して、受信タイミングの判定に用いられるパラメータとしてTH_min及びTH_max)を通知する。しかしながら、実施形態はこれに限定されるものではない。例えば、中間装置130にとって既知の情報(例えば、max-T_Comb)については通知されなくてもよい。例えば、TH_maxを例に挙げると、“Ta4_max-T_FH1_max”が既に中間装置130に通知されている場合には、“max-T_Comb”の通知を省略することによって、O-DU110から中間装置130へのシグナリング量を削減することができる。 In the above-described embodiment, the O-DU 110 notifies the intermediate device 130 of TH_min and TH_max) as parameters used for determining the reception timing. However, the embodiment is not limited to this. For example, information known to the intermediate device 130 (eg, max-T_Comb) need not be notified. For example, taking TH_max as an example, if “Ta4_max-T_FH1_max” has already been notified to the intermediate device 130, by omitting the notification of “max-T_Comb”, the O-DU110 can be sent to the intermediate device 130. The amount of signaling can be reduced.
 上述した実施形態では、図3B及び図3Cに示したように、中間装置130として、FHMまたはO-RU(カスケード接続)が適用される例を別個に図示したが、同一FH上において、FHMと、カスケード接続によるO-RUが複合的に構成されてもよい。 In the above-described embodiment, as shown in FIGS. 3B and 3C, an example in which FHM or O-RU (cascade connection) is applied as the intermediate device 130 is shown separately, but on the same FH, with FHM. , O-RU by cascade connection may be configured in a complex manner.
 上述した実施形態では、O-RANの仕様に従ったFHの構成について説明したが、FHは、必ずしもO-RANの仕様に従っていなくてもよい。例えば、O-DU110、O-RU120及び中間装置130の少なくとも一部は、3GPPにおいて規定されるFHの仕様に従っていてもよい。 In the above-described embodiment, the configuration of the FH according to the O-RAN specifications has been described, but the FH does not necessarily have to comply with the O-RAN specifications. For example, at least some of the O-DU110, O-RU120 and intermediate device 130 may comply with the FH specifications specified in 3GPP.
 上述した実施形態の説明に用いたブロック構成図(図5、6)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 5 and 6) used in the description of the above-described embodiment show blocks for functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter. As described above, the method of realizing each of them is not particularly limited.
 さらに、上述したO-DU110及び中間装置130(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned O-DU110 and the intermediate device 130 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 13, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図5,6参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 5 and 6) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS) and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 O-DU
 111 通信部
 113 取得部
 115 パラメータ制御部
 117 パラメータ通知部
 120 O-RU
 130 中間装置(FHM)
 130A O-RU
 131 通信部
 133 処理時間通知部
 135 パラメータ取得部
 137 パラメータ設定部
 200 UE
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
110 O-DU
111 Communication unit 113 Acquisition unit 115 Parameter control unit 117 Parameter notification unit 120 O-RU
130 Intermediate device (FHM)
130A O-RU
131 Communication unit 133 Processing time notification unit 135 Parameter acquisition unit 137 Parameter setting unit 200 UE
1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Claims (5)

  1.  フロントホール上に設けられる第1基地局を構成する通信装置であって、
     前記フロントホール上に設けられる中間装置においてデータの受信タイミングの判定に用いられるパラメータを決定する制御部と、
     前記パラメータを前記中間装置に送信する送信部と、を備える、通信装置。
    A communication device that constitutes the first base station provided on the front hall.
    A control unit that determines the parameters used to determine the data reception timing in the intermediate device provided on the front hall.
    A communication device including a transmission unit that transmits the parameters to the intermediate device.
  2. 前記制御部は、前記中間装置内の処理時間に基づいて、前記中間装置に設定されるパラメータを決定する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit determines a parameter set in the intermediate device based on the processing time in the intermediate device.
  3.  前記制御部は、前記フロントホール上に設けられる第2基地局の能力情報に基づいて前記パラメータを決定する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit determines the parameters based on the capability information of the second base station provided on the front hall.
  4.  前記制御部は、前記中間装置と前記通信装置との間における遅延時間及び前記第2基地局と前記中間装置との間における遅延時間の少なくともいずれか1つに基づいて前記パラメータを決定する、請求項1又は請求項2に記載の通信装置。 The control unit determines the parameter based on at least one of a delay time between the intermediate device and the communication device and a delay time between the second base station and the intermediate device. The communication device according to claim 1 or 2.
  5.  フロントホール上に設けられる中間装置を構成する通信装置であって、
     前記中間装置においてデータの受信タイミングを判定する制御を実行する制御部と、
     前記フロントホール上に設けられる第1基地局から、前記受信タイミングの判定に用いるパラメータを受信する受信部と、を備える、通信装置。
     
    A communication device that constitutes an intermediate device installed on the front hall.
    A control unit that executes control to determine the data reception timing in the intermediate device, and
    A communication device including a receiving unit that receives parameters used for determining the reception timing from a first base station provided on the front hall.
PCT/JP2019/049051 2019-12-13 2019-12-13 Communication device WO2021117245A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/049051 WO2021117245A1 (en) 2019-12-13 2019-12-13 Communication device
CN201980102472.9A CN114788332A (en) 2019-12-13 2019-12-13 Communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049051 WO2021117245A1 (en) 2019-12-13 2019-12-13 Communication device

Publications (1)

Publication Number Publication Date
WO2021117245A1 true WO2021117245A1 (en) 2021-06-17

Family

ID=76330140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049051 WO2021117245A1 (en) 2019-12-13 2019-12-13 Communication device

Country Status (2)

Country Link
CN (1) CN114788332A (en)
WO (1) WO2021117245A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192333A1 (en) * 2017-04-20 2018-10-25 Huawei Technologies Co., Ltd. Remote radio head equipped with user equipment terminal capability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018192333A1 (en) * 2017-04-20 2018-10-25 Huawei Technologies Co., Ltd. Remote radio head equipped with user equipment terminal capability

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on Integrated Access and Backhaul; (Release 16)", 3GPP TR 38.874, no. V16.0.0, 10 January 2019 (2019-01-10), pages 11 - 12, 23-25, XP051591643 *
UMESH, ANIL, YAJIMA, TATSURO, NAKANO, TETSU, OKAYAMA, TAKASHI: "Overview of O-RAN Front Haul Specifications", NTT DOCOMO TECHNICAL JOURNAL, vol. 27, no. 1, 30 April 2019 (2019-04-30), pages 43 - 55 *

Also Published As

Publication number Publication date
CN114788332A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2020230201A1 (en) User device and base station device
WO2021144976A1 (en) Communication device
WO2021152860A1 (en) Terminal and communication method
JPWO2020170405A1 (en) User equipment and base station equipment
JP7407833B2 (en) Communication device
WO2021144972A1 (en) Communication device
WO2020235318A1 (en) User equipment and base station device
WO2021199415A1 (en) Terminal, and communication method
WO2021149110A1 (en) Terminal and communication method
WO2021140674A1 (en) Terminal and communication method
WO2021166044A1 (en) Communication device
WO2022149194A1 (en) Terminal, base station, and communication method
WO2022029947A1 (en) Terminal, base station device, and feedback method
WO2020246185A1 (en) Terminal and base station
JP7170842B2 (en) User equipment and base station equipment
EP4040886A1 (en) Terminal and base station
WO2021070396A1 (en) Terminal and communication method
JP2021158449A (en) Communication device
WO2021117245A1 (en) Communication device
JPWO2020161907A1 (en) User device
JPWO2020157987A1 (en) User equipment and base station equipment
WO2022079869A1 (en) Terminal, base station, and communication method
EP4280655A1 (en) Terminal, communication method, and base station
WO2020230623A1 (en) User equipment and base station device
EP4102909A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP