WO2021117156A1 - Indoor machine for air-conditioner - Google Patents

Indoor machine for air-conditioner Download PDF

Info

Publication number
WO2021117156A1
WO2021117156A1 PCT/JP2019/048429 JP2019048429W WO2021117156A1 WO 2021117156 A1 WO2021117156 A1 WO 2021117156A1 JP 2019048429 W JP2019048429 W JP 2019048429W WO 2021117156 A1 WO2021117156 A1 WO 2021117156A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
blower
indoor unit
outlet
Prior art date
Application number
PCT/JP2019/048429
Other languages
French (fr)
Japanese (ja)
Inventor
健一 迫田
智哉 福井
翔太 森川
皓亮 宮脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/048429 priority Critical patent/WO2021117156A1/en
Priority to JP2021563507A priority patent/JP7229392B2/en
Publication of WO2021117156A1 publication Critical patent/WO2021117156A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers

Definitions

  • the present invention relates to an indoor unit of an air conditioner in which a first blower, a second blower and a heat exchanger are provided inside a housing.
  • Patent Document 1 provides centrifugal fans at both ends of the main body and a heat exchanger at the center of the main body.
  • the indoor unit of the air conditioner is disclosed.
  • the inside of the main body is divided into three in the width direction by a partition in which a communication port is formed. Of these, a suction port for sucking air is formed in the central portion, and a heat exchanger for heat exchange between the air sucked from the suction port and the refrigerant is provided.
  • an air flow path connecting the suction port and the communication port is formed. Further, air outlets for blowing air are formed at both ends, and centrifugal fans are provided to guide the air that has passed through the communication port to the air outlet after being sucked from the suction port and exchanging heat.
  • the air sucked from the suction port in the central portion passes through the communication port after heat exchange with the refrigerant by the heat exchanger, reaches the suction side of the centrifugal fan, and reaches the suction side of the centrifugal fan. It is blown into the room from the blowout side through the outlets at both ends.
  • the indoor unit of the air conditioner is usually installed near the ceiling of the air-conditioned space used by the user.
  • air is sucked from the central portion, and the heat-exchanged air is blown out from both ends. That is, the heat-exchanged air is not blown out near the central portion of the indoor unit.
  • the momentum of the blown out air is strong and the speed is high. For this reason, strong air may hit the user in the air-conditioned space and impair the comfort of the user.
  • the present invention has been made to solve the above problems, and provides an indoor unit of an air conditioner that does not impair the comfort of the user.
  • the indoor unit of the air exchanger according to the present invention extends in the width direction and is one end in the width direction, a first side surface on which a first suction port for sucking air is formed, and the other end in the width direction.
  • a housing having a second side surface on which a second suction port for sucking air is formed and a connecting surface connecting the first side surface and the second side surface, and a housing extending in the width direction in the housing.
  • a heat exchanger that exchanges heat between the refrigerant and air, and a first blower that is provided at one end in the width direction of the housing and sends air sucked from the first suction port to the heat exchanger.
  • a second blower provided at the other end in the width direction of the housing and sending the air sucked from the second suction port to the heat exchanger is provided, and the first blower is provided on the connecting surface of the housing. And an air outlet is formed to blow out the air sent to the heat exchanger by the second blower and exchanged heat with the refrigerant.
  • the air outlet is formed on the connecting surface connecting the first side surface and the second side surface. Therefore, the air outlet can be made larger than the case where the air outlet is formed on the first side surface or the second side surface. In this case, the momentum of the air blown out from the outlet is weak and the speed is low. Therefore, even if the user in the air-conditioned space is exposed to air, it is possible to prevent the user from being impaired in comfort.
  • FIG. It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the indoor unit which concerns on Embodiment 1.
  • FIG. It is a front view which shows the indoor unit which concerns on Embodiment 1.
  • FIG. It is a top sectional view which shows the indoor unit which concerns on Embodiment 1.
  • FIG. It is a top sectional view which shows the indoor unit which concerns on Embodiment 2.
  • FIG. It is a top sectional view which shows the indoor unit which concerns on 1st modification of Embodiment 2.
  • It is a top sectional view which shows the indoor unit which concerns on the 2nd modification of Embodiment 2.
  • It is a top sectional view which shows the indoor unit which concerns on the 3rd modification of Embodiment 2.
  • FIG. 2 It is a side sectional view which shows the indoor unit which concerns on Embodiment 3.
  • FIG. 2 is a side sectional view which shows the indoor unit which concerns on Embodiment 4.
  • FIG. It is a side sectional view which shows the indoor unit which concerns on Embodiment 4.
  • FIG. It is a top sectional view which shows the indoor unit which concerns on Embodiment 5.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 is a device that adjusts the air in the room, and includes an outdoor unit 2 and an indoor unit 3 as shown in FIG.
  • the outdoor unit 2 is provided with, for example, a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, and an expansion unit 10.
  • the indoor unit 3 is provided with, for example, a heat exchanger 11, a first blower 12a, and a second blower 12b.
  • the compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the heat exchanger 11 are connected by a refrigerant pipe 5 to form a refrigerant circuit 4.
  • the compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant.
  • the flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve.
  • the outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant.
  • the outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted.
  • the heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant.
  • the heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the first blower 12a and the second blower 12b are devices that send indoor air to the heat exchanger 11.
  • the refrigerant may be water or antifreeze.
  • cooling operation Next, the operation mode of the air conditioner 1 will be described.
  • the cooling operation In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, and in the outdoor heat exchanger 8, the outdoor blower. It exchanges heat with the outdoor air sent by No. 9 and condenses and liquefies.
  • the condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the heat exchanger 11 that acts as an evaporator, and in the heat exchanger 11, heat is exchanged with the indoor air sent by the first blower 12a and the second blower 12b. Evaporates and vaporizes. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 11 acting as a condenser, and in the heat exchanger 11, the first blower It exchanges heat with the room air sent by the 12a and the second blower 12b, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room.
  • the condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 8 that acts as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 to evaporate and vaporize. To do.
  • the evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
  • FIG. 2 is a perspective view showing the indoor unit 3 according to the first embodiment
  • FIG. 3 is a front view showing the indoor unit 3 according to the first embodiment.
  • the indoor unit 3 will be described in detail.
  • the indoor unit 3 includes a housing 20 extending in the width direction, for example, a wall-mounted room in which the back surface 27 of the housing 20 is fixed to the wall of the air-conditioned space. Used as a unit.
  • the housing 20 has, for example, a rectangular parallelepiped shape, and has a first side surface 21, a second side surface 22, and a connecting surface 23.
  • the first side surface 21 is one end in the width direction of the housing 20, and a first suction port 31a for sucking air is formed.
  • the first suction port 31a has a slit shape extending in the depth direction of the housing 20, and four suction ports 31a are formed along the height direction of the housing 20.
  • the second side surface 22 is the other end of the housing 20 in the width direction, and a second suction port 31b for sucking air is formed.
  • the second suction port 31b has a slit shape extending in the depth direction of the housing 20, and four suction ports 31b are formed along the height direction of the housing 20 (not shown).
  • the connection surface 23 has an upper surface 24, a lower surface 25, a front surface 26, and a back surface 27.
  • An air outlet 32 for blowing air is formed on the connecting surface 23.
  • the air outlet 32 extends in the width direction of the housing 20.
  • the air outlet 32 has, for example, a substantially rectangular shape.
  • the outlet 32 includes an upper outlet 32a and a lower outlet 32b.
  • the upper surface 24 extends in the width direction to form the upper portion of the housing 20, and an upper air outlet 32a extending in the width direction is formed.
  • the upper air outlet 32a blows air toward the upper side of the housing 20.
  • the lower surface 25 extends in the width direction to form the lower portion of the housing 20, and a lower outlet 32b extending in the width direction is formed.
  • the lower outlet 32b blows air toward the lower side of the housing 20.
  • the housing 20 is formed with an outlet air passage 33 extending in the height direction, and the outlet air passage 33 connects the upper outlet 32a and the lower outlet 32b.
  • the front surface 26 extends in the width direction to form the front portion of the housing 20.
  • the back surface 27 extends in the width direction to form the back portion of the housing 20.
  • One end of the housing 20 in the width direction is a first blower chamber 28a whose main purpose is to blow air, and the other end is a second blower chamber 28b whose main purpose is to blow air.
  • the central part is a heat exchange chamber 29 whose main purpose is heat exchange action.
  • the heat exchange chamber 29 is longer in the width direction than the air blower chamber, and the air outlet 32 is also longer in the width direction.
  • FIG. 4 is a top sectional view showing the indoor unit 3 according to the first embodiment, and is a sectional view taken along the line AA of FIG.
  • the housing 20 is formed with a first ventilation passage 34 and a second ventilation passage 35.
  • the first ventilation passage 34 connects the first suction port 31a and the air outlet 32, and air flows from the first blower 12a toward the heat exchanger 11.
  • the first ventilation passage 34 includes a first front ventilation passage 34a and a first back ventilation passage 34b.
  • the first front ventilation passage 34a extends from the first suction port 31a to the front surface 26 side.
  • the first back ventilation passage 34b extends from the first suction port 31a to the back surface 27 side.
  • the second ventilation passage 35 connects the second suction port 31b and the air outlet 32, and air flows from the second blower 12b toward the heat exchanger 11.
  • the second ventilation passage 35 includes a second front ventilation passage 35a and a second back ventilation passage 35b.
  • the second front ventilation passage 35a extends from the second suction port 31b to the front surface 26 side.
  • the second back ventilation passage 35b extends from the second suction port 31b to the back surface 27 side.
  • the first ventilation passage 34 and the second ventilation passage 35 are formed on the connection surface 23 side of the heat exchanger 11.
  • the first ventilation passage 34 and the second ventilation passage 35 are connected on the heat exchanger 11 side. That is, the first front ventilation passage 34a and the second front ventilation passage 35a are connected on the heat exchanger 11 side, and the first back ventilation passage 34b and the second back ventilation passage 35b are heat exchangers. It is connected on the 11th side.
  • the heat exchanger 11 extends in the width direction in the housing 20, and is provided in the heat exchange chamber 29 of the housing 20.
  • the length of the heat exchanger 11 in the width direction is equivalent to the length of the air outlet 32 in the width direction.
  • two heat exchangers 11 are provided so as to sandwich the air outlet 32.
  • the heat exchanger 11 has a plurality of fins 11a and a heat transfer tube (not shown).
  • the plurality of fins 11a are plate-shaped members arranged at intervals.
  • the heat transfer tube is a tube that extends in the width direction of the housing 20 and is inserted into the plurality of fins 11a, and a refrigerant that conveys cold heat or heat flows inside.
  • the heat transfer pipe is connected to the outdoor unit 2 by a refrigerant pipe 5.
  • the plurality of fins 11a are arranged at equal intervals.
  • the first blower 12a is provided in the first blower chamber 28a, and is, for example, a centrifugal blower or a mixed flow blower.
  • the first blower 12a has a first blade 15a, the suction side of the first blower 12a faces the first suction port 31a, and the first blade 15a of the first blower 12a is provided.
  • the outlet side is connected to the first ventilation passage 34. That is, the first blower 12a sends the air sucked from the first suction port 31a to the first ventilation passage 34.
  • the first blower 12a is rotationally driven by the first motor 13a, and rotates with the rotation of the first rotating shaft 14a attached to the first motor 13a.
  • a plurality of first blowers 12a may be provided. As a result, the first blower 12a can obtain a desired air volume even if the dimensions of the indoor unit 3 are restricted.
  • the second blower 12b is provided in the second blower chamber 28b, and is, for example, a centrifugal blower or a mixed flow blower.
  • the second blower 12b has a second wing 15b, the suction side of the second blower 12b faces the second suction port 31b, and the second wing 15b of the second blower 12b is provided.
  • the outlet side is connected to the second ventilation passage 35. That is, the second blower 12b sends the air sucked from the second suction port 31b to the second ventilation passage 35.
  • the second blower 12b is rotationally driven by the second motor 13b, and rotates with the rotation of the second rotating shaft 14b attached to the second motor 13b.
  • a plurality of second blowers 12b may be provided.
  • the second blower 12b can obtain a desired air volume even if the dimensions of the indoor unit 3 are restricted.
  • the first rotating shaft 14a of the first blower 12a and the second rotating shaft 14b of the second blower 12b are arranged on the same shaft.
  • the air that has flowed into the heat exchange chamber 29 flows into each of the heat exchangers 11 provided in the heat exchange chamber 29, and in the heat exchanger 11, heat is exchanged with the refrigerant flowing inside the plurality of heat transfer tubes. ..
  • the heat-exchanged air flows out from the heat exchanger 11 as conditioned air and is blown out from the upper outlet 32a and the lower outlet 32b.
  • the air outlet 32 is formed on the connecting surface 23 connecting the first side surface 21 and the second side surface 22. Therefore, the outlet 32 can be made larger than the case where the outlet 32 is formed on the first side surface 21 or the second side surface 22.
  • the air outlet 32 extends in the width direction of the housing 20. In this case, the air blown out from the outlet 32 is wide, so that the momentum is weak and the speed is low. Therefore, even if the user in the air-conditioned space is exposed to air, it is possible to prevent the user from being impaired in comfort.
  • the housing 20 is formed with a first ventilation passage 34 in which the first suction port 31a and the air outlet 32 are connected and air flows from the first blower 12a toward the heat exchanger 11. .
  • the housing 20 is formed with a second ventilation passage 35 in which the second suction port 31b and the air outlet 32 are connected and air flows from the second blower 12b toward the heat exchanger 11. ing.
  • the first blower 12a and the second blower 12b are centrifugal blowers or mixed flow blowers, and the first ventilation passage 34 and the second ventilation passage 35 are closer to the connection surface 23 than the heat exchanger 11. It is formed.
  • the first blower 12a and the second blower 12b are arranged on the side of the heat exchanger 11, the first blower 12a and the second blower 12b have a relatively large diameter. A blower can be used. Therefore, noise can be reduced and performance can be improved.
  • the connecting surface 23 has an upper surface 24 and a lower surface 25, and the outlet 32 includes an upper outlet 32a formed on the upper surface 24 and a lower outlet 32b formed on the lower surface 25.
  • the housing 20 is formed with an outlet air passage 33 that connects the upper outlet 32a and the lower outlet 32b. Therefore, the cold air during cooling or the warm air during heating is blown out from both the upper outlet 32a and the lower outlet 32b. Therefore, it is possible to prevent cold air or warm air from staying in the lower or upper part of the air-conditioned space. Therefore, the indoor unit 3 can quickly adjust the air-conditioned space to a desired temperature.
  • FIG. 5 is a top sectional view showing the indoor unit 103 according to the second embodiment.
  • the shape of the heat exchanger 111 is different from that of the first embodiment.
  • the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the heat exchanger 111 is inclined in the width direction. Specifically, the fins 111a extend outward from the end to the center of the heat exchanger 111. As a result, the first ventilation passage 34 and the second ventilation passage 35 become narrower toward the center in the width direction of the heat exchanger 111.
  • the first ventilation passage 34 and the second ventilation passage 35 become narrower toward the center in the width direction of the heat exchanger 111. Therefore, the first ventilation passage 34 and the second ventilation passage 35 have a large air passage area at the central portion of the heat exchanger 111 and a small air passage area at both ends of the heat exchanger 111. Therefore, the air having a high velocity in the central portion of the heat exchanger 111 is decelerated due to the small air passage area. As a result, the wind speed distribution in the width direction of the air passing through the heat exchanger 111 can be made uniform. Therefore, the pressure loss generated when the air passes through the heat exchanger 111 can be reduced. As a result, the indoor unit 103 can suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and the second blower 12b.
  • the heat exchanger 111 has a height. It may be tilted in the direction. In this case, the heat exchanger 111 may be bent, or a plurality of heat exchangers 111 on the plate may be installed.
  • FIG. 6 is a top sectional view showing the indoor unit 203 according to the first modification of the second embodiment.
  • the distance between the plurality of fins 211a of the heat exchanger 211 is different from that of the first embodiment.
  • the distance between the central portions of the heat exchanger 211 is narrow, and the distance between both end portions of the heat exchanger 211 is wide.
  • the pressure loss of the air passing through the central portion of the heat exchanger 211 becomes large, and the pressure loss of the air passing through both end portions of the heat exchanger 211 becomes small.
  • the velocity of air at the central portion of the heat exchanger 211 may be faster than the velocity of air at both ends of the heat exchanger 211.
  • the air having a high speed in the central portion of the heat exchanger 211 passes through the portion of the heat exchanger 211 where the pressure loss is large, and thus decelerates.
  • the wind speed distribution in the width direction of the air passing through the heat exchanger 211 can be made uniform.
  • FIG. 7 is a top sectional view showing the indoor unit 303 according to the second modification of the second embodiment.
  • the second modification is different from the first embodiment in that the indoor unit 303 includes an internal vane 340.
  • the internal vane 340 is provided on the end side of the heat exchanger 11 in the first ventilation passage 34 and the second ventilation passage 35 to adjust the direction of air.
  • the internal vane 340 is provided on the upstream side of the heat exchanger 11.
  • the direction of the air flowing through the first ventilation passage 34 and the second ventilation passage 35 is changed to the direction in which the air flows into the heat exchanger 11 by the internal vane 340. Therefore, the speed of air passing through both ends of the heat exchanger 11 becomes high.
  • the velocity of air in the central portion of the heat exchanger 11 may be faster than the velocity of air in both ends of the heat exchanger 11. Since the internal vane 340 increases the velocity of the air passing through both ends of the heat exchanger 11, the wind velocity distribution in the width direction of the air passing through the heat exchanger 11 can be made uniform. This makes it possible to reduce the pressure loss that occurs when air passes through the heat exchanger 11. As a result, it is possible to suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and the second blower 12b.
  • FIG. 8 is a top sectional view showing an indoor unit 403 according to a third modification of the second embodiment.
  • the third modification is different from the first embodiment in that the indoor unit 403 is provided with the partition plate 450.
  • the partition plate 450 is provided at a position facing the central portion in the width direction of the heat exchanger 11, and is a member that separates the first ventilation passage 34 and the second ventilation passage 35. ..
  • the partition plate 450 is provided at a position facing the central portion in the width direction of the heat exchanger 11, and is a member that separates the first ventilation passage 34 and the second ventilation passage 35. ..
  • the partition plate 450 is provided at a position facing the central portion in the width direction of the heat exchanger 11, and is a member that separates the first ventilation passage 34 and the second ventilation passage 35. ..
  • the pressure loss generated by the collision and mixing of air can be reduced. Therefore, it is possible to suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and
  • FIG. 9 is a side sectional view showing the indoor unit 503 according to the third embodiment.
  • the third embodiment is different from the first embodiment in that the upper vane 560a and the lower vane 560b are provided.
  • the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the upper vane 560a is provided on the upper surface 24 and adjusts the direction of the air blown out from the upper air outlet 32a.
  • the lower vane 560b is provided on the lower surface 25 and adjusts the direction of the air blown from the lower outlet 32b.
  • the upper vane 560a and the lower vane 560b may be configured to be driven independently of each other.
  • the indoor unit 503 can independently control the direction of the air blown from the upper outlet 32a and the direction of the air blown from the lower outlet 32b. Therefore, the controllability of the air flow is improved, and the comfort of the user is improved.
  • the indoor unit 503 closes the lower vane 560b to close the lower air outlet 32b, opens the upper vane 560a to open the upper air outlet 32a.
  • the cooled air generally stays in the lower part of the air-conditioned space. Since the cooled air is blown out only from the upper air outlet 32a during the cooling operation, the temperature of the air-conditioned space can be quickly made uniform. In this case, after the temperature of the air-conditioned space is made uniform, the indoor unit 503 opens the lower vane 560b and opens the lower air outlet 32b.
  • the indoor unit 503 closes the upper vane 560a, closes the upper air outlet 32a, opens the lower vane 560b, and opens the lower air outlet 32b.
  • the heated air generally stays in the upper part of the air-conditioned space. Since the heated air is blown out only from the lower air outlet 32b during the heating operation, the temperature of the air-conditioned space can be quickly made uniform. In this case, after the temperature of the air-conditioned space is made uniform, the indoor unit 503 opens the upper vane 560a and opens the upper air outlet 32a. Therefore, according to the third embodiment, the temperature of the air-conditioned space can be quickly made uniform without impairing the controllability of the air flow.
  • FIG. 10 is a side sectional view showing the indoor unit 603 according to the fourth embodiment.
  • the fourth embodiment is different from the third embodiment in that it includes an auxiliary vane 670.
  • the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the third embodiment will be mainly described.
  • the auxiliary vane 670 is provided in the blowout air passage 33 and adjusts the direction of the air.
  • Auxiliary vanes 670 are provided on the downstream side of the heat exchanger 11, and a plurality of auxiliary vanes 670 are arranged on the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side.
  • the direction of the air that has passed through the heat exchanger 11 is changed to the upper outlet 32a or the lower outlet 32b side by the auxiliary vane 670. At that time, the direction of the air passing through the heat exchanger 11 on the front surface 26 side and the direction of the air passing through the heat exchanger 11 on the back surface 27 side may be different.
  • the direction of the air flowing through the heat exchanger 11 on the front surface 26 side is changed to the upper outlet 32a side by the auxiliary vane 670, and the air is blown out from the upper outlet 32a.
  • the direction of the air flowing through the heat exchanger 11 on the back surface 27 side is changed to the lower outlet 32b side by the auxiliary vane 670, and the air is blown out from the lower outlet 32b.
  • FIG. 11 is a side sectional view showing the indoor unit 603 according to the fourth embodiment.
  • the auxiliary vane 670 is provided in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the outlet air passage 33, and the heat exchanger 11 and the back surface on the front surface 26 side of the outlet air passage 33 are provided.
  • An auxiliary vane 670 is not provided at a position away from the heat exchanger 11 on the 27 side. Then, the auxiliary vane 670 is controlled so that the direction of the air passing through the heat exchanger 11 on the front surface 26 side and the direction of the air passing through the heat exchanger 11 on the back surface 27 side are the same, and the upper vane 560a and the lower portion are controlled.
  • the vane 560b may be opened.
  • the direction of the conditioned air AA that has passed through the heat exchanger 11 is changed to the upper outlet 32a side or the lower outlet 32b side by the auxiliary vane 670. Therefore, the air flows only in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the blowout air passage 33. At this time, the air flowing only in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the blowout air passage 33 is viscous, and the heat exchanger 11 on the front surface 26 side of the blowout air passage 33 And the air staying at a position away from the heat exchanger 11 on the back surface 27 side is dragged.
  • the air staying at a position away from the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side of the blowout air passage 33 also becomes the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the front surface 26 side in the blowout air passage 33. It flows in the same direction as the air that flows only in the vicinity of the heat exchanger 11 on the back surface 27 side.
  • the upper vane 560a and the lower vane 560b are open.
  • the air RA in the air-conditioned space is dragged by the viscosity of the heat-exchanged air-conditioned air AA and is blown out from the lower air outlet 32b. It flows into 33. Then, the inflowing air RA is blown out from the upper air outlet 32a together with the heat-exchanged conditioned air AA.
  • the air RA in the air-conditioned space is dragged by the viscosity of the heat-exchanged air-conditioned air AA and blown out from the upper air outlet 32a. It flows into the road 33. Then, the inflowing air RA is blown out from the lower outlet 32b together with the heat-exchanged conditioned air AA.
  • the indoor unit 603 can obtain a larger air volume than the air volume generated by the rotational drive of the first blower 12a and the second blower 12b.
  • the air in the air-conditioned space circulates in the air-conditioned space via the upper air outlet 32a and the lower air outlet 32b, so that the temperature of the air-conditioned space can be quickly made uniform and the user can use it. Comfort can be improved.
  • FIG. 12 is a top sectional view showing the indoor unit 703 according to the fifth embodiment.
  • the fifth embodiment is different from the first embodiment in that the motor 713 for rotationally driving the first blower 12a and the second blower 12b is one.
  • the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the first blower 12a and the second blower 12b are arranged at positions symmetrical with respect to the center in the depth direction of the indoor unit 703. Then, the first blower 12a and the second blower 12b are connected by the same drive shaft 716, and the drive shaft 716 is rotationally driven by a single motor 713 to rotationally drive the drive shaft 716. As described above, since the indoor unit 703 is realized by a single motor 713, the productivity is improved by reducing the number of motors 713.
  • the rotation direction of the first blade 15a of the first blower 12a and the rotation direction of the second blade 15b of the second blower 12b may be opposite to each other. That is, in this case, the case where the first blower 12a is viewed from the outside on the first end side of the housing 20 and the case where the second blower 12b is viewed from the outside on the second end side of the housing 20.
  • the rotation directions of the first blower 12a and the second blower 12b are opposite to each other. As a result, the vortex of air generated by rotating the first blade 15a and the second blade 15b of the first blower 12a and the second blower 12b in the rotation direction in the housing 20 is reversed when viewed from the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

This indoor machine (3) for an air-conditioner is provided with: a casing (20) extending in the width direction and having a first lateral surface (21) which is one end in the width direction and in which a first suction port (31a) for sucking air is formed, a second lateral surface (22) which is the other end in the width direction and in which a second suction port (31b) for sucking air is formed, and a connection surface which connects the first and second lateral surfaces; a heat exchanger (11) that extends in the width direction in the casing, and exchanges heat between a refrigerant and the air; a first blower (12a) that is provided to the one end of the casing in the width direction and that feeds the air sucked through the first suction port to the heat exchanger; and a second blower (12b) that is provided to the other end of the casing in the width direction and that feeds the air sucked through the second suction port to the heat exchanger. A blow-out port (32) for blowing out the air fed to the heat exchanger by the first and second blowers and heat-exchanged with the refrigerant is formed in the connection surface of the casing.

Description

空気調和機の室内機Indoor unit of air conditioner
 本発明は、第1の送風機、第2の送風機及び熱交換器が筐体の内部に設けられた空気調和機の室内機に関する。 The present invention relates to an indoor unit of an air conditioner in which a first blower, a second blower and a heat exchanger are provided inside a housing.
 従来、送風機と熱交換器とが筐体の内部に設けられた空気調和機の室内機が知られている。送風能力を高めることを目的に、送風機として遠心ファンが採用された例として、特許文献1には、本体の両端部にそれぞれ遠心ファンが設けられ、本体の中央部に熱交換器が設けられた空気調和機の室内機が開示されている。特許文献1は、本体の内部が、連通口が形成された仕切りによって幅方向において3つに区画されている。このうち、中央部には、空気を吸い込む吸込口が形成されており、吸込口から吸い込まれた空気と冷媒との間で熱交換する熱交換器が設けられている。 Conventionally, an indoor unit of an air conditioner in which a blower and a heat exchanger are provided inside a housing is known. As an example in which a centrifugal fan is adopted as a blower for the purpose of enhancing the blowing capacity, Patent Document 1 provides centrifugal fans at both ends of the main body and a heat exchanger at the center of the main body. The indoor unit of the air conditioner is disclosed. In Patent Document 1, the inside of the main body is divided into three in the width direction by a partition in which a communication port is formed. Of these, a suction port for sucking air is formed in the central portion, and a heat exchanger for heat exchange between the air sucked from the suction port and the refrigerant is provided.
 そして、中央部には、吸込口と連通口とを接続する空気流路が形成されている。また、両端部には、空気を吹き出す吹出口が形成されており、吸込口から吸い込まれて熱交換された後に連通口を通過した空気を吹出口に導く遠心ファンが設けられている。特許文献1において、中央部の吸込口から吸い込まれた空気は、熱交換器で冷媒との間で熱交換された後に連通口を通過し、遠心ファンの吸い込み側に至り、遠心ファンの側面の吹き出し側から両端部の吹出口をとおって室内に吹き出される。 And, in the central part, an air flow path connecting the suction port and the communication port is formed. Further, air outlets for blowing air are formed at both ends, and centrifugal fans are provided to guide the air that has passed through the communication port to the air outlet after being sucked from the suction port and exchanging heat. In Patent Document 1, the air sucked from the suction port in the central portion passes through the communication port after heat exchange with the refrigerant by the heat exchanger, reaches the suction side of the centrifugal fan, and reaches the suction side of the centrifugal fan. It is blown into the room from the blowout side through the outlets at both ends.
特開2004-92950号公報Japanese Unexamined Patent Publication No. 2004-92950
 空気調和機の室内機は、通例、使用者が使用する空調対象空間の天井付近に設置される場合が多い。特許文献1に開示された空気調和機の室内機は、中央部から空気が吸い込まれ、熱交換された空気が両端部から吹き出される。即ち、室内機の中央部付近には、熱交換された空気が吹き出されない。このように、室内機の両端部という狭い空間からのみ、熱交換された空気が吹き出されるため、吹き出される空気の勢いが強く速度が速い。このため、勢いが強い空気が、空調対象空間にいる使用者に当たって、使用者の快適性を損なうおそれがある。 The indoor unit of the air conditioner is usually installed near the ceiling of the air-conditioned space used by the user. In the indoor unit of the air conditioner disclosed in Patent Document 1, air is sucked from the central portion, and the heat-exchanged air is blown out from both ends. That is, the heat-exchanged air is not blown out near the central portion of the indoor unit. In this way, since the heat-exchanged air is blown out only from the narrow space of both ends of the indoor unit, the momentum of the blown out air is strong and the speed is high. For this reason, strong air may hit the user in the air-conditioned space and impair the comfort of the user.
 本発明は、上記のような課題を解決するためになされたもので、使用者の快適性を損なわない空気調和機の室内機を提供するものである。 The present invention has been made to solve the above problems, and provides an indoor unit of an air conditioner that does not impair the comfort of the user.
 本発明に係る空気調和機の室内機は、幅方向に延在し、幅方向の一端部であり、空気を吸い込む第1の吸込口が形成された第1の側面、幅方向の他端部であり、空気を吸い込む第2の吸込口が形成された第2の側面及び第1の側面と第2の側面とを接続する接続面を有する筐体と、筐体において幅方向に延在し、冷媒と空気との間で熱交換する熱交換器と、筐体の幅方向の一端部に設けられ、第1の吸込口から吸いこまれた空気を熱交換器に送る第1の送風機と、筐体の幅方向の他端部に設けられ、第2の吸込口から吸いこまれた空気を熱交換器に送る第2の送風機と、を備え、筐体の接続面には、第1の送風機及び第2の送風機によって熱交換器に送られて冷媒との間で熱交換された空気を吹き出す吹出口が形成されている。 The indoor unit of the air exchanger according to the present invention extends in the width direction and is one end in the width direction, a first side surface on which a first suction port for sucking air is formed, and the other end in the width direction. A housing having a second side surface on which a second suction port for sucking air is formed and a connecting surface connecting the first side surface and the second side surface, and a housing extending in the width direction in the housing. A heat exchanger that exchanges heat between the refrigerant and air, and a first blower that is provided at one end in the width direction of the housing and sends air sucked from the first suction port to the heat exchanger. A second blower provided at the other end in the width direction of the housing and sending the air sucked from the second suction port to the heat exchanger is provided, and the first blower is provided on the connecting surface of the housing. And an air outlet is formed to blow out the air sent to the heat exchanger by the second blower and exchanged heat with the refrigerant.
 本発明によれば、吹出口が、第1の側面と第2の側面とを接続する接続面に形成されている。このため、吹出口が第1の側面又は第2の側面に形成される場合に比べて、吹出口を大きくすることができる。この場合、吹出口から吹き出される空気の勢いが弱く速度が低い。従って、空調対象空間にいる使用者に空気が当たっても、使用者の快適性を損なうことを抑制することができる。 According to the present invention, the air outlet is formed on the connecting surface connecting the first side surface and the second side surface. Therefore, the air outlet can be made larger than the case where the air outlet is formed on the first side surface or the second side surface. In this case, the momentum of the air blown out from the outlet is weak and the speed is low. Therefore, even if the user in the air-conditioned space is exposed to air, it is possible to prevent the user from being impaired in comfort.
実施の形態1に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る室内機を示す斜視図である。It is a perspective view which shows the indoor unit which concerns on Embodiment 1. FIG. 実施の形態1に係る室内機を示す正面図である。It is a front view which shows the indoor unit which concerns on Embodiment 1. FIG. 実施の形態1に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on Embodiment 1. FIG. 実施の形態2に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on Embodiment 2. FIG. 実施の形態2の第1変形例に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on 1st modification of Embodiment 2. 実施の形態2の第2変形例に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on the 2nd modification of Embodiment 2. 実施の形態2の第3変形例に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on the 3rd modification of Embodiment 2. 実施の形態3に係る室内機を示す側面断面図である。It is a side sectional view which shows the indoor unit which concerns on Embodiment 3. FIG. 実施の形態4に係る室内機を示す側面断面図である。It is a side sectional view which shows the indoor unit which concerns on Embodiment 4. FIG. 実施の形態4に係る室内機を示す側面断面図である。It is a side sectional view which shows the indoor unit which concerns on Embodiment 4. FIG. 実施の形態5に係る室内機を示す上面断面図である。It is a top sectional view which shows the indoor unit which concerns on Embodiment 5.
 以下、本発明の空気調和機の室内機の実施の形態について、図面を参照しながら説明する。なお、本発明は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本発明の理解を容易にするために方向を表す用語を適宜用いるが、これは本発明を説明するためのものであって、これらの用語は本発明を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。 Hereinafter, embodiments of the indoor unit of the air conditioner of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the following drawings including FIG. 1, the relationship between the sizes of the constituent members may differ from the actual one. Further, in the following description, terms indicating directions are appropriately used in order to facilitate understanding of the present invention, but these terms are for explaining the present invention and these terms limit the present invention. is not it. Examples of the term indicating the direction include "top", "bottom", "right", "left", "front", "rear", and the like.
実施の形態1.
 図1は、実施の形態1に係る空気調和機1を示す回路図である。空気調和機1は、室内の空気を調整する装置であり、図1に示すように、室外機2と、室内機3とを備えている。室外機2には、例えば圧縮機6、流路切替装置7、室外熱交換器8、室外送風機9及び膨張部10が設けられている。室内機3には、例えば熱交換器11、第1の送風機12a及び第2の送風機12bが設けられている。
Embodiment 1.
FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. The air conditioner 1 is a device that adjusts the air in the room, and includes an outdoor unit 2 and an indoor unit 3 as shown in FIG. The outdoor unit 2 is provided with, for example, a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, and an expansion unit 10. The indoor unit 3 is provided with, for example, a heat exchanger 11, a first blower 12a, and a second blower 12b.
 圧縮機6、流路切替装置7、室外熱交換器8、膨張部10及び熱交換器11が冷媒配管5により接続されて冷媒回路4が構成されている。圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路4において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機9は、室外熱交換器8に室外空気を送る機器である。 The compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the expansion unit 10, and the heat exchanger 11 are connected by a refrigerant pipe 5 to form a refrigerant circuit 4. The compressor 6 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant. The flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve. The outdoor heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant. The outdoor heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation. The outdoor blower 9 is a device that sends outdoor air to the outdoor heat exchanger 8.
 膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部10は、例えば開度が調整される電子式膨張弁である。熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。第1の送風機12a及び第2の送風機12bは、熱交換器11に室内空気を送る機器である。なお、冷媒は、水でもよく不凍液でもよい。 The expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant. The expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted. The heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant. The heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The first blower 12a and the second blower 12b are devices that send indoor air to the heat exchanger 11. The refrigerant may be water or antifreeze.
 (運転モード、冷房運転)
 次に、空気調和機1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱交換器11に流入し、熱交換器11において、第1の送風機12a及び第2の送風機12bによって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, and in the outdoor heat exchanger 8, the outdoor blower. It exchanges heat with the outdoor air sent by No. 9 and condenses and liquefies. The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the heat exchanger 11 that acts as an evaporator, and in the heat exchanger 11, heat is exchanged with the indoor air sent by the first blower 12a and the second blower 12b. Evaporates and vaporizes. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する熱交換器11に流入し、熱交換器11において、第1の送風機12a及び第2の送風機12bによって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 11 acting as a condenser, and in the heat exchanger 11, the first blower It exchanges heat with the room air sent by the 12a and the second blower 12b, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room. The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 8 that acts as an evaporator, and in the outdoor heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 to evaporate and vaporize. To do. The evaporated low-temperature and low-pressure gas-like refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (室内機3)
 図2は、実施の形態1に係る室内機3を示す斜視図であり、図3は、実施の形態1に係る室内機3を示す正面図である。次に、室内機3について詳細に説明する。図2及び図3に示すように、室内機3は、幅方向に延在する筐体20を備えており、例えば筐体20の背面27が空調対象空間の壁に固定される壁掛け型の室内ユニットとして用いられる。
(Indoor unit 3)
FIG. 2 is a perspective view showing the indoor unit 3 according to the first embodiment, and FIG. 3 is a front view showing the indoor unit 3 according to the first embodiment. Next, the indoor unit 3 will be described in detail. As shown in FIGS. 2 and 3, the indoor unit 3 includes a housing 20 extending in the width direction, for example, a wall-mounted room in which the back surface 27 of the housing 20 is fixed to the wall of the air-conditioned space. Used as a unit.
 (筐体20)
 筐体20は、例えば直方体状をなしており、第1の側面21と、第2の側面22と、接続面23とを有している。第1の側面21は、筐体20の幅方向の一端部であり、空気を吸い込む第1の吸込口31aが形成されている。第1の吸込口31aは、筐体20の奥行方向に延びるスリット状をなしており、筐体20の高さ方向に沿って四個形成されている。第2の側面22は、筐体20の幅方向の他端部であり、空気を吸い込む第2の吸込口31bが形成されている。第2の吸込口31bは、筐体20の奥行方向に延びるスリット状をなしており、筐体20の高さ方向に沿って四個形成されている(図示せず)。
(Case 20)
The housing 20 has, for example, a rectangular parallelepiped shape, and has a first side surface 21, a second side surface 22, and a connecting surface 23. The first side surface 21 is one end in the width direction of the housing 20, and a first suction port 31a for sucking air is formed. The first suction port 31a has a slit shape extending in the depth direction of the housing 20, and four suction ports 31a are formed along the height direction of the housing 20. The second side surface 22 is the other end of the housing 20 in the width direction, and a second suction port 31b for sucking air is formed. The second suction port 31b has a slit shape extending in the depth direction of the housing 20, and four suction ports 31b are formed along the height direction of the housing 20 (not shown).
 接続面23は、上面24と、下面25と、前面26と、背面27とを有している。接続面23には、空気を吹き出す吹出口32が形成されている。吹出口32は、筐体20の幅方向に延在している。吹出口32は、例えば略長方形状をなしている。本実施の形態1では、吹出口32は、上部吹出口32aと下部吹出口32bとを含む。上面24は、幅方向に延びて筐体20の上部を構成するものであり、幅方向に延在する上部吹出口32aが形成されている。上部吹出口32aは筐体20の上方に向けて空気を吹き出す。下面25は、幅方向に延びて筐体20の下部を構成するものであり、幅方向に延在する下部吹出口32bが形成されている。下部吹出口32bは筐体20の下方に向けて空気を吹き出す。なお、筐体20には、高さ方向に延びる吹出風路33が形成されており、吹出風路33は、上部吹出口32aと下部吹出口32bとを接続している。 The connection surface 23 has an upper surface 24, a lower surface 25, a front surface 26, and a back surface 27. An air outlet 32 for blowing air is formed on the connecting surface 23. The air outlet 32 extends in the width direction of the housing 20. The air outlet 32 has, for example, a substantially rectangular shape. In the first embodiment, the outlet 32 includes an upper outlet 32a and a lower outlet 32b. The upper surface 24 extends in the width direction to form the upper portion of the housing 20, and an upper air outlet 32a extending in the width direction is formed. The upper air outlet 32a blows air toward the upper side of the housing 20. The lower surface 25 extends in the width direction to form the lower portion of the housing 20, and a lower outlet 32b extending in the width direction is formed. The lower outlet 32b blows air toward the lower side of the housing 20. The housing 20 is formed with an outlet air passage 33 extending in the height direction, and the outlet air passage 33 connects the upper outlet 32a and the lower outlet 32b.
 前面26は、幅方向に延びて筐体20の前部を構成するものである。背面27は、幅方向に延びて筐体20の背部を構成するものである。なお、筐体20の幅方向の一端部は送風作用を主目的とする第1の送風室28aとなっており、他端部は送風作用を主目的とする第2の送風室28bとなっており、中央部は熱交換作用を主目的とする熱交換室29となっている。ここで、熱交換室29は、送風室に比べて幅方向に長く、吹出口32も幅方向に長い。 The front surface 26 extends in the width direction to form the front portion of the housing 20. The back surface 27 extends in the width direction to form the back portion of the housing 20. One end of the housing 20 in the width direction is a first blower chamber 28a whose main purpose is to blow air, and the other end is a second blower chamber 28b whose main purpose is to blow air. The central part is a heat exchange chamber 29 whose main purpose is heat exchange action. Here, the heat exchange chamber 29 is longer in the width direction than the air blower chamber, and the air outlet 32 is also longer in the width direction.
 図4は、実施の形態1に係る室内機3を示す上面断面図であり、図3のA-A断面図である。図4に示すように、筐体20には、第1の通風路34と第2の通風路35とが形成されている。第1の通風路34は、第1の吸込口31aと吹出口32とを接続し、第1の送風機12aから熱交換器11に向かって空気が流れる。第1の通風路34は、第1の前部通風路34aと第1の背部通風路34bとを含む。第1の前部通風路34aは、第1の吸込口31aから前面26側に延びている。第1の背部通風路34bは、第1の吸込口31aから背面27側に延びている。 FIG. 4 is a top sectional view showing the indoor unit 3 according to the first embodiment, and is a sectional view taken along the line AA of FIG. As shown in FIG. 4, the housing 20 is formed with a first ventilation passage 34 and a second ventilation passage 35. The first ventilation passage 34 connects the first suction port 31a and the air outlet 32, and air flows from the first blower 12a toward the heat exchanger 11. The first ventilation passage 34 includes a first front ventilation passage 34a and a first back ventilation passage 34b. The first front ventilation passage 34a extends from the first suction port 31a to the front surface 26 side. The first back ventilation passage 34b extends from the first suction port 31a to the back surface 27 side.
 第2の通風路35は、第2の吸込口31bと吹出口32とを接続し、第2の送風機12bから熱交換器11に向かって空気が流れる。第2の通風路35は、第2の前部通風路35aと第2の背部通風路35bとを含む。第2の前部通風路35aは、第2の吸込口31bから前面26側に延びている。第2の背部通風路35bは、第2の吸込口31bから背面27側に延びている。また、第1の通風路34及び第2の通風路35は、熱交換器11よりも接続面23側に形成されている。なお、第1の通風路34及び第2の通風路35は、熱交換器11側において接続されている。即ち、第1の前部通風路34a及び第2の前部通風路35aは、熱交換器11側において接続され、第1の背部通風路34b及び第2の背部通風路35bは、熱交換器11側において接続されている。 The second ventilation passage 35 connects the second suction port 31b and the air outlet 32, and air flows from the second blower 12b toward the heat exchanger 11. The second ventilation passage 35 includes a second front ventilation passage 35a and a second back ventilation passage 35b. The second front ventilation passage 35a extends from the second suction port 31b to the front surface 26 side. The second back ventilation passage 35b extends from the second suction port 31b to the back surface 27 side. Further, the first ventilation passage 34 and the second ventilation passage 35 are formed on the connection surface 23 side of the heat exchanger 11. The first ventilation passage 34 and the second ventilation passage 35 are connected on the heat exchanger 11 side. That is, the first front ventilation passage 34a and the second front ventilation passage 35a are connected on the heat exchanger 11 side, and the first back ventilation passage 34b and the second back ventilation passage 35b are heat exchangers. It is connected on the 11th side.
 (熱交換器11)
 熱交換器11は、筐体20において幅方向に延在しており、筐体20の熱交換室29に設けられている。熱交換器11の幅方向の長さは、吹出口32の幅方向の長さと同等である。本実施の形態1において、熱交換器11は、吹出口32を挟むように2個設けられている。熱交換器11は、複数のフィン11aと、伝熱管(図示せず)とを有している。複数のフィン11aは、間隔を空けて並べられた板状の部材である。伝熱管は、筐体20の幅方向に延びて複数のフィン11aに挿入される管であり、内部に冷熱又は温熱を搬送する冷媒が流れる。伝熱管は、室外機2と冷媒配管5によって接続されている。本実施の形態1では、複数のフィン11aは、等間隔で並べられている。
(Heat exchanger 11)
The heat exchanger 11 extends in the width direction in the housing 20, and is provided in the heat exchange chamber 29 of the housing 20. The length of the heat exchanger 11 in the width direction is equivalent to the length of the air outlet 32 in the width direction. In the first embodiment, two heat exchangers 11 are provided so as to sandwich the air outlet 32. The heat exchanger 11 has a plurality of fins 11a and a heat transfer tube (not shown). The plurality of fins 11a are plate-shaped members arranged at intervals. The heat transfer tube is a tube that extends in the width direction of the housing 20 and is inserted into the plurality of fins 11a, and a refrigerant that conveys cold heat or heat flows inside. The heat transfer pipe is connected to the outdoor unit 2 by a refrigerant pipe 5. In the first embodiment, the plurality of fins 11a are arranged at equal intervals.
 (第1の送風機12a)
 第1の送風機12aは、第1の送風室28aに設けられており、例えば遠心送風機又は斜流送風機である。第1の送風機12aは第1の翼15aを有しており、第1の送風機12aの吸込側は第1の吸込口31aと対向し、第1の送風機12aの第1の翼15aが設けられた吹出側は第1の通風路34に接続されている。即ち、第1の送風機12aは、第1の吸込口31aから吸い込んだ空気を、第1の通風路34に送る。第1の送風機12aは、第1のモータ13aによって回転駆動するものであり、第1のモータ13aに取り付けられた第1の回転軸14aの回転に伴って回転する。なお、第1の送風機12aは、複数設けられてもよい。これにより、第1の送風機12aは、室内機3の寸法に制限が課されても、所望の風量を得ることができる。
(First blower 12a)
The first blower 12a is provided in the first blower chamber 28a, and is, for example, a centrifugal blower or a mixed flow blower. The first blower 12a has a first blade 15a, the suction side of the first blower 12a faces the first suction port 31a, and the first blade 15a of the first blower 12a is provided. The outlet side is connected to the first ventilation passage 34. That is, the first blower 12a sends the air sucked from the first suction port 31a to the first ventilation passage 34. The first blower 12a is rotationally driven by the first motor 13a, and rotates with the rotation of the first rotating shaft 14a attached to the first motor 13a. A plurality of first blowers 12a may be provided. As a result, the first blower 12a can obtain a desired air volume even if the dimensions of the indoor unit 3 are restricted.
 (第2の送風機12b)
 第2の送風機12bは、第2の送風室28bに設けられており、例えば遠心送風機又は斜流送風機である。第2の送風機12bは第2の翼15bを有しており、第2の送風機12bの吸込側は第2の吸込口31bと対向し、第2の送風機12bの第2の翼15bが設けられた吹出側は第2の通風路35に接続されている。即ち、第2の送風機12bは、第2の吸込口31bから吸い込んだ空気を、第2の通風路35に送る。第2の送風機12bは、第2のモータ13bによって回転駆動するものであり、第2のモータ13bに取り付けられた第2の回転軸14bの回転に伴って回転する。なお、第2の送風機12bは、複数設けられてもよい。これにより、第2の送風機12bは、室内機3の寸法に制限が課されても、所望の風量を得ることができる。なお、第1の送風機12aの第1の回転軸14a及び第2の送風機12bの第2の回転軸14bは、同一の軸上に配置されている。
(Second blower 12b)
The second blower 12b is provided in the second blower chamber 28b, and is, for example, a centrifugal blower or a mixed flow blower. The second blower 12b has a second wing 15b, the suction side of the second blower 12b faces the second suction port 31b, and the second wing 15b of the second blower 12b is provided. The outlet side is connected to the second ventilation passage 35. That is, the second blower 12b sends the air sucked from the second suction port 31b to the second ventilation passage 35. The second blower 12b is rotationally driven by the second motor 13b, and rotates with the rotation of the second rotating shaft 14b attached to the second motor 13b. A plurality of second blowers 12b may be provided. As a result, the second blower 12b can obtain a desired air volume even if the dimensions of the indoor unit 3 are restricted. The first rotating shaft 14a of the first blower 12a and the second rotating shaft 14b of the second blower 12b are arranged on the same shaft.
 (空気の流れ)
 次に、室内機3における空気の流れについて説明する。第1の送風機12a及び第2の送風機12bが第1のモータ13a及び第2のモータ13bによって回転駆動すると、空調対象空間の空気は、第1の吸込口31a及び第2の吸込口31bから吸い込まれる。吸い込まれた空気は、第1の送風機12a及び第2の送風機12bによって第1の送風室28a及び第2の送風室28bの内部に吹き出され、第1の通風路34及び第2の通風路35をとおって熱交換室29に流入する。熱交換室29に流入した空気は、熱交換室29に設けられたそれぞれの熱交換器11に流れ、熱交換器11において、複数の伝熱管の内部に流れる冷媒との間で熱交換される。熱交換された空気は、空調空気として、熱交換器11から流出して上部吹出口32a及び下部吹出口32bから吹き出す。
(the flow of air)
Next, the air flow in the indoor unit 3 will be described. When the first blower 12a and the second blower 12b are rotationally driven by the first motor 13a and the second motor 13b, the air in the air-conditioned space is sucked from the first suction port 31a and the second suction port 31b. Is done. The sucked air is blown into the inside of the first blower chamber 28a and the second blower chamber 28b by the first blower 12a and the second blower 12b, and the first ventilation passage 34 and the second ventilation passage 35 It flows into the heat exchange chamber 29 through. The air that has flowed into the heat exchange chamber 29 flows into each of the heat exchangers 11 provided in the heat exchange chamber 29, and in the heat exchanger 11, heat is exchanged with the refrigerant flowing inside the plurality of heat transfer tubes. .. The heat-exchanged air flows out from the heat exchanger 11 as conditioned air and is blown out from the upper outlet 32a and the lower outlet 32b.
 本実施の形態1によれば、吹出口32が、第1の側面21と第2の側面22とを接続する接続面23に形成されている。このため、吹出口32が第1の側面21又は第2の側面22に形成される場合に比べて、吹出口32を大きくすることができる。本実施の形態1では、吹出口32は、筐体20の幅方向に延在している。この場合、吹出口32から吹き出される空気は、幅広となるため、勢いが弱く速度が低い。従って、空調対象空間にいる使用者に空気が当たっても、使用者の快適性を損なうことを抑制することができる。 According to the first embodiment, the air outlet 32 is formed on the connecting surface 23 connecting the first side surface 21 and the second side surface 22. Therefore, the outlet 32 can be made larger than the case where the outlet 32 is formed on the first side surface 21 or the second side surface 22. In the first embodiment, the air outlet 32 extends in the width direction of the housing 20. In this case, the air blown out from the outlet 32 is wide, so that the momentum is weak and the speed is low. Therefore, even if the user in the air-conditioned space is exposed to air, it is possible to prevent the user from being impaired in comfort.
 また、筐体20には、第1の吸込口31aと吹出口32とを接続し、第1の送風機12aから熱交換器11に向かって空気が流れる第1の通風路34が形成されている。そして、筐体20には、第2の吸込口31bと吹出口32とを接続し、第2の送風機12bから熱交換器11に向かって空気が流れる第2の通風路35と、が形成されている。そして、第1の送風機12a及び第2の送風機12bは、遠心送風機又は斜流送風機であり、第1の通風路34及び第2の通風路35は、熱交換器11よりも接続面23側に形成されている。このように、第1の送風機12a及び第2の送風機12bが熱交換器11よりも側方に配置されているため、第1の送風機12a及び第2の送風機12bには、比較的大径の送風機を用いることができる。従って、騒音を低減し、性能を向上させることができる。 Further, the housing 20 is formed with a first ventilation passage 34 in which the first suction port 31a and the air outlet 32 are connected and air flows from the first blower 12a toward the heat exchanger 11. .. Then, the housing 20 is formed with a second ventilation passage 35 in which the second suction port 31b and the air outlet 32 are connected and air flows from the second blower 12b toward the heat exchanger 11. ing. The first blower 12a and the second blower 12b are centrifugal blowers or mixed flow blowers, and the first ventilation passage 34 and the second ventilation passage 35 are closer to the connection surface 23 than the heat exchanger 11. It is formed. As described above, since the first blower 12a and the second blower 12b are arranged on the side of the heat exchanger 11, the first blower 12a and the second blower 12b have a relatively large diameter. A blower can be used. Therefore, noise can be reduced and performance can be improved.
 更に、接続面23は、上面24及び下面25を有し、吹出口32は、上面24に形成された上部吹出口32aと、下面25に形成された下部吹出口32bと、を含む。そして、筐体20には、上部吹出口32aと下部吹出口32bとを接続する吹出風路33が形成されている。このため、冷房時の冷気又は暖房時の暖気は、上部吹出口32a及び下部吹出口32bのいずれもから吹き出される。よって、空調対象空間の下部又は上部に、冷気又は暖気が滞留することを抑制することができる。従って、室内機3は、空調対象空間を迅速に所望の温度に調整することができる。 Further, the connecting surface 23 has an upper surface 24 and a lower surface 25, and the outlet 32 includes an upper outlet 32a formed on the upper surface 24 and a lower outlet 32b formed on the lower surface 25. The housing 20 is formed with an outlet air passage 33 that connects the upper outlet 32a and the lower outlet 32b. Therefore, the cold air during cooling or the warm air during heating is blown out from both the upper outlet 32a and the lower outlet 32b. Therefore, it is possible to prevent cold air or warm air from staying in the lower or upper part of the air-conditioned space. Therefore, the indoor unit 3 can quickly adjust the air-conditioned space to a desired temperature.
実施の形態2.
 図5は、実施の形態2に係る室内機103を示す上面断面図である。本実施の形態2は、熱交換器111の形状が、実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 5 is a top sectional view showing the indoor unit 103 according to the second embodiment. In the second embodiment, the shape of the heat exchanger 111 is different from that of the first embodiment. In the second embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図5に示すように、熱交換器111が幅方向において傾斜している。具体的には、熱交換器111の端部から中央部にかけてフィン111aが外側に広がっている。これにより、第1の通風路34及び第2の通風路35は、熱交換器111の幅方向の中央に向かうに従って狭くなっている。 As shown in FIG. 5, the heat exchanger 111 is inclined in the width direction. Specifically, the fins 111a extend outward from the end to the center of the heat exchanger 111. As a result, the first ventilation passage 34 and the second ventilation passage 35 become narrower toward the center in the width direction of the heat exchanger 111.
 第1の送風機12a及び第2の送風機12bから流出した空気は、第1の通風路34及び第2の通風路35をとおって熱交換器111に流入する。その際、熱交換器111の両端部において、空気は、第1の通風路34及び第2の通風路35から直ちに熱交換器111に流入する。そして、空気は、熱交換器111の中央部において、第1の通風路34及び第2の通風路35をある程度通過した後に熱交換器111に流入する。このため、熱交換器111の中央部における空気の速度は、熱交換器111の両端部における空気の速度よりも速い場合がある。 The air flowing out from the first blower 12a and the second blower 12b flows into the heat exchanger 111 through the first ventilation passage 34 and the second ventilation passage 35. At that time, at both ends of the heat exchanger 111, air immediately flows into the heat exchanger 111 from the first ventilation passage 34 and the second ventilation passage 35. Then, the air flows into the heat exchanger 111 after passing through the first ventilation passage 34 and the second ventilation passage 35 to some extent in the central portion of the heat exchanger 111. Therefore, the velocity of air in the central portion of the heat exchanger 111 may be faster than the velocity of air in both ends of the heat exchanger 111.
 本実施の形態2では、第1の通風路34及び第2の通風路35は、熱交換器111の幅方向の中央に向かうに従って狭くなっている。このため、第1の通風路34及び第2の通風路35は、熱交換器111の中央部において風路面積が大きく、熱交換器111の両端部において風路面積が小さい。よって、熱交換器111の中央部において速度が速い空気は、風路面積が小さいことによって減速する。これにより、熱交換器111を通過する空気の幅方向の風速分布を均一化させることができる。よって、空気が熱交換器111を通過する際に発生する圧力損失を低減させることができる。これにより、室内機103は、第1の送風機12a及び第2の送風機12bの動力の増大、風量の減少及び運転騒音の増大を抑制することができる。 In the second embodiment, the first ventilation passage 34 and the second ventilation passage 35 become narrower toward the center in the width direction of the heat exchanger 111. Therefore, the first ventilation passage 34 and the second ventilation passage 35 have a large air passage area at the central portion of the heat exchanger 111 and a small air passage area at both ends of the heat exchanger 111. Therefore, the air having a high velocity in the central portion of the heat exchanger 111 is decelerated due to the small air passage area. As a result, the wind speed distribution in the width direction of the air passing through the heat exchanger 111 can be made uniform. Therefore, the pressure loss generated when the air passes through the heat exchanger 111 can be reduced. As a result, the indoor unit 103 can suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and the second blower 12b.
 また、これにより、上部吹出口32a及び下部吹出口32bから吹き出される空気の幅方向の風速分布も均一化される。このため、気流の制御性が向上し、使用者の快適性が向上する。なお、第1の送風機12a及び第2の送風機12bから第1の通風路34及び第2の通風路35に流入する空気の高さ方向の分布がばらついている場合、熱交換器111が高さ方向において傾斜していてもよい。この場合、熱交換器111が曲げられてもよいし、プレート上の熱交換器111が複数枚設置されてもよい。 Further, as a result, the wind speed distribution in the width direction of the air blown from the upper outlet 32a and the lower outlet 32b is also made uniform. Therefore, the controllability of the air flow is improved, and the comfort of the user is improved. When the distribution of the air flowing from the first blower 12a and the second blower 12b into the first ventilation passage 34 and the second ventilation passage 35 in the height direction varies, the heat exchanger 111 has a height. It may be tilted in the direction. In this case, the heat exchanger 111 may be bent, or a plurality of heat exchangers 111 on the plate may be installed.
 (第1変形例)
 図6は、実施の形態2の第1変形例に係る室内機203を示す上面断面図である。第1変形例は、熱交換器211の複数のフィン211aの間隔が実施の形態1と相違する。図6に示すように、複数のフィン211aは、熱交換器211の中央部の間隔が狭く、熱交換器211の両端部の間隔が広い。これにより、熱交換器211の中央部を通過する空気の圧力損失が大きくなり、熱交換器211の両端部を通過する空気の圧力損失が小さくなる。
(First modification)
FIG. 6 is a top sectional view showing the indoor unit 203 according to the first modification of the second embodiment. In the first modification, the distance between the plurality of fins 211a of the heat exchanger 211 is different from that of the first embodiment. As shown in FIG. 6, in the plurality of fins 211a, the distance between the central portions of the heat exchanger 211 is narrow, and the distance between both end portions of the heat exchanger 211 is wide. As a result, the pressure loss of the air passing through the central portion of the heat exchanger 211 becomes large, and the pressure loss of the air passing through both end portions of the heat exchanger 211 becomes small.
 前述の如く、熱交換器211の中央部における空気の速度は、熱交換器211の両端部における空気の速度よりも速い場合がある。この場合、熱交換器211の中央部において速度が速い空気は、熱交換器211における圧力損失が大きい部分を通過するため、減速する。これにより、熱交換器211を通過する空気の幅方向の風速分布を均一化させることができる。 As described above, the velocity of air at the central portion of the heat exchanger 211 may be faster than the velocity of air at both ends of the heat exchanger 211. In this case, the air having a high speed in the central portion of the heat exchanger 211 passes through the portion of the heat exchanger 211 where the pressure loss is large, and thus decelerates. As a result, the wind speed distribution in the width direction of the air passing through the heat exchanger 211 can be made uniform.
 (第2変形例)
 図7は、実施の形態2の第2変形例に係る室内機303を示す上面断面図である。第2変形例は、室内機303が内部ベーン340を備えている点で実施の形態1と相違する。図7に示すように、内部ベーン340は、第1の通風路34及び第2の通風路35における熱交換器11の端部側に設けられ、空気の向きを調整する。このように、内部ベーン340は、熱交換器11の上流側に設けられている。これにより、第1の通風路34及び第2の通風路35に流れる空気の向きは、内部ベーン340によって熱交換器11に流入する方向に変えられる。このため、熱交換器11の両端部を通過する空気の速度が速くなる。
(Second modification)
FIG. 7 is a top sectional view showing the indoor unit 303 according to the second modification of the second embodiment. The second modification is different from the first embodiment in that the indoor unit 303 includes an internal vane 340. As shown in FIG. 7, the internal vane 340 is provided on the end side of the heat exchanger 11 in the first ventilation passage 34 and the second ventilation passage 35 to adjust the direction of air. As described above, the internal vane 340 is provided on the upstream side of the heat exchanger 11. As a result, the direction of the air flowing through the first ventilation passage 34 and the second ventilation passage 35 is changed to the direction in which the air flows into the heat exchanger 11 by the internal vane 340. Therefore, the speed of air passing through both ends of the heat exchanger 11 becomes high.
 前述の如く、熱交換器11の中央部における空気の速度は、熱交換器11の両端部における空気の速度よりも速い場合がある。内部ベーン340によって、熱交換器11の両端部を通過する空気の速度が速くなるため、熱交換器11を通過する空気の幅方向の風速分布を均一化させることができる。これにより、空気が熱交換器11を通過する際に発生する圧力損失を低減させることができる。これにより、第1の送風機12a及び第2の送風機12bの動力の増大、風量の減少及び運転騒音の増大を抑制することができる。 As described above, the velocity of air in the central portion of the heat exchanger 11 may be faster than the velocity of air in both ends of the heat exchanger 11. Since the internal vane 340 increases the velocity of the air passing through both ends of the heat exchanger 11, the wind velocity distribution in the width direction of the air passing through the heat exchanger 11 can be made uniform. This makes it possible to reduce the pressure loss that occurs when air passes through the heat exchanger 11. As a result, it is possible to suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and the second blower 12b.
 (第3変形例)
 図8は、実施の形態2の第3変形例に係る室内機403を示す上面断面図である。第3変形例は、室内機403が仕切板450を備えている点で実施の形態1と相違する。図8に示すように、仕切板450は、熱交換器11の幅方向の中央部に対向する位置に設けられ、第1の通風路34と第2の通風路35とを区画する部材である。これにより、第1の通風路34に流れる空気と、第2の通風路35に流れる空気とが、熱交換器11の中央部に対向する位置において衝突することを回避することができる。このため、空気同士が衝突して混合することによって発生する圧力損失を、低減することができる。従って、第1の送風機12a及び第2の送風機12bの動力の増大、風量の減少及び運転騒音の増大を抑制することができる。
(Third modification example)
FIG. 8 is a top sectional view showing an indoor unit 403 according to a third modification of the second embodiment. The third modification is different from the first embodiment in that the indoor unit 403 is provided with the partition plate 450. As shown in FIG. 8, the partition plate 450 is provided at a position facing the central portion in the width direction of the heat exchanger 11, and is a member that separates the first ventilation passage 34 and the second ventilation passage 35. .. As a result, it is possible to prevent the air flowing through the first ventilation passage 34 and the air flowing through the second ventilation passage 35 from colliding with each other at a position facing the central portion of the heat exchanger 11. Therefore, the pressure loss generated by the collision and mixing of air can be reduced. Therefore, it is possible to suppress an increase in power, a decrease in air volume, and an increase in operating noise of the first blower 12a and the second blower 12b.
実施の形態3.
 図9は、実施の形態3に係る室内機503を示す側面断面図である。本実施の形態3は、上部ベーン560a及び下部ベーン560bを備えている点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3.
FIG. 9 is a side sectional view showing the indoor unit 503 according to the third embodiment. The third embodiment is different from the first embodiment in that the upper vane 560a and the lower vane 560b are provided. In the third embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図9に示すように、上部ベーン560aは、上面24に設けられ、上部吹出口32aから吹き出される空気の向きを調整する。また、下部ベーン560bは、下面25に設けられ、下部吹出口32bから吹き出される空気の向きを調整する。ここで、上部ベーン560a及び下部ベーン560bは、それぞれ独立に駆動するように構成されてもよい。この場合、室内機503は、上部吹出口32aから吹き出される空気の向きと、下部吹出口32bから吹き出される空気の向きとを独立に制御することができる。従って、気流の制御性が向上し、使用者の快適性が向上する。 As shown in FIG. 9, the upper vane 560a is provided on the upper surface 24 and adjusts the direction of the air blown out from the upper air outlet 32a. Further, the lower vane 560b is provided on the lower surface 25 and adjusts the direction of the air blown from the lower outlet 32b. Here, the upper vane 560a and the lower vane 560b may be configured to be driven independently of each other. In this case, the indoor unit 503 can independently control the direction of the air blown from the upper outlet 32a and the direction of the air blown from the lower outlet 32b. Therefore, the controllability of the air flow is improved, and the comfort of the user is improved.
 また、例えば冷房運転時に、室内機503は、下部ベーン560bを閉じて下部吹出口32bを閉止し、上部ベーン560aを開いて上部吹出口32aを開放する。冷却された空気は、概して、空調対象空間の下部に滞留する。冷房運転時に、上部吹出口32aのみから冷却された空気が吹き出されるため、空調対象空間の温度を迅速に均一化させることができる。この場合、空調対象空間の温度が均一化された後、室内機503は下部ベーン560bを開いて下部吹出口32bを開放する。 Further, for example, during the cooling operation, the indoor unit 503 closes the lower vane 560b to close the lower air outlet 32b, opens the upper vane 560a to open the upper air outlet 32a. The cooled air generally stays in the lower part of the air-conditioned space. Since the cooled air is blown out only from the upper air outlet 32a during the cooling operation, the temperature of the air-conditioned space can be quickly made uniform. In this case, after the temperature of the air-conditioned space is made uniform, the indoor unit 503 opens the lower vane 560b and opens the lower air outlet 32b.
 また、例えば暖房運転時に、室内機503は、上部ベーン560aを閉じて上部吹出口32aを閉止し、下部ベーン560bを開いて下部吹出口32bを開放する。加熱された空気は、概して、空調対象空間の上部に滞留する。暖房運転時に、下部吹出口32bのみから加熱された空気が吹き出されるため、空調対象空間の温度を迅速に均一化させることができる。この場合、空調対象空間の温度が均一化された後、室内機503は、上部ベーン560aを開いて上部吹出口32aを開放する。従って、本実施の形態3によれば、気流の制御性を損なわずに、空調対象空間の温度を迅速に均一化させることができる。 Further, for example, during the heating operation, the indoor unit 503 closes the upper vane 560a, closes the upper air outlet 32a, opens the lower vane 560b, and opens the lower air outlet 32b. The heated air generally stays in the upper part of the air-conditioned space. Since the heated air is blown out only from the lower air outlet 32b during the heating operation, the temperature of the air-conditioned space can be quickly made uniform. In this case, after the temperature of the air-conditioned space is made uniform, the indoor unit 503 opens the upper vane 560a and opens the upper air outlet 32a. Therefore, according to the third embodiment, the temperature of the air-conditioned space can be quickly made uniform without impairing the controllability of the air flow.
実施の形態4.
 図10は、実施の形態4に係る室内機603を示す側面断面図である。本実施の形態4は、補助ベーン670を備えている点で、実施の形態3と相違する。本実施の形態4では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態3との相違点を中心に説明する。
Embodiment 4.
FIG. 10 is a side sectional view showing the indoor unit 603 according to the fourth embodiment. The fourth embodiment is different from the third embodiment in that it includes an auxiliary vane 670. In the fourth embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the third embodiment will be mainly described.
 図10に示すように、補助ベーン670は、吹出風路33に設けられ、空気の向きを調整する。補助ベーン670は、熱交換器11の下流側に設けられており、前面26側の熱交換器11と背面27側の熱交換器11に複数配置されている。熱交換器11を通過した空気の向きは、補助ベーン670によって、上部吹出口32a又は下部吹出口32b側に変えられる。その際、前面26側の熱交換器11を通過した空気の向きと、背面27側の熱交換器11を通過した空気の向きとが相違してもよい。これにより、例えば前面26側の熱交換器11に流れる空気の向きが補助ベーン670によって上部吹出口32a側に変えられ、空気は上部吹出口32aから吹き出される。また、背面27側の熱交換器11に流れる空気の向きが補助ベーン670によって下部吹出口32b側に変えられ、空気は下部吹出口32bから吹き出される。このように、室内機603が補助ベーン670を備えることによって、上部ベーン560a及び下部ベーン560bにおける気流の制御性が向上する。 As shown in FIG. 10, the auxiliary vane 670 is provided in the blowout air passage 33 and adjusts the direction of the air. Auxiliary vanes 670 are provided on the downstream side of the heat exchanger 11, and a plurality of auxiliary vanes 670 are arranged on the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side. The direction of the air that has passed through the heat exchanger 11 is changed to the upper outlet 32a or the lower outlet 32b side by the auxiliary vane 670. At that time, the direction of the air passing through the heat exchanger 11 on the front surface 26 side and the direction of the air passing through the heat exchanger 11 on the back surface 27 side may be different. As a result, for example, the direction of the air flowing through the heat exchanger 11 on the front surface 26 side is changed to the upper outlet 32a side by the auxiliary vane 670, and the air is blown out from the upper outlet 32a. Further, the direction of the air flowing through the heat exchanger 11 on the back surface 27 side is changed to the lower outlet 32b side by the auxiliary vane 670, and the air is blown out from the lower outlet 32b. As described above, when the indoor unit 603 is provided with the auxiliary vane 670, the controllability of the airflow in the upper vane 560a and the lower vane 560b is improved.
 図11は、実施の形態4に係る室内機603を示す側面断面図である。補助ベーン670は、吹出風路33において、前面26側の熱交換器11及び背面27側の熱交換器11の近傍に設けられ、吹出風路33のうち前面26側の熱交換器11及び背面27側の熱交換器11から離れた位置には、補助ベーン670が設けられていない。そして、前面26側の熱交換器11を通過する空気の向きと背面27側の熱交換器11を通過する空気の向きとが同一となるように補助ベーン670が制御され、上部ベーン560a及び下部ベーン560bが開放されてもよい。 FIG. 11 is a side sectional view showing the indoor unit 603 according to the fourth embodiment. The auxiliary vane 670 is provided in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the outlet air passage 33, and the heat exchanger 11 and the back surface on the front surface 26 side of the outlet air passage 33 are provided. An auxiliary vane 670 is not provided at a position away from the heat exchanger 11 on the 27 side. Then, the auxiliary vane 670 is controlled so that the direction of the air passing through the heat exchanger 11 on the front surface 26 side and the direction of the air passing through the heat exchanger 11 on the back surface 27 side are the same, and the upper vane 560a and the lower portion are controlled. The vane 560b may be opened.
 この場合、図11に示すように、熱交換器11を通過した空調空気AAの向きは、補助ベーン670によって上部吹出口32a側又は下部吹出口32b側に変えられる。このため、空気は、吹出風路33における前面26側の熱交換器11及び背面27側の熱交換器11の近傍のみに流れる。このとき、吹出風路33における前面26側の熱交換器11及び背面27側の熱交換器11の近傍のみに流れる空気は、粘性によって、吹出風路33のうち前面26側の熱交換器11及び背面27側の熱交換器11から離れた位置に滞留する空気を引きずり込む。これにより、吹出風路33のうち前面26側の熱交換器11及び背面27側の熱交換器11から離れた位置に滞留する空気も、吹出風路33における前面26側の熱交換器11及び背面27側の熱交換器11の近傍のみに流れる空気と同じ方向に流れる。 In this case, as shown in FIG. 11, the direction of the conditioned air AA that has passed through the heat exchanger 11 is changed to the upper outlet 32a side or the lower outlet 32b side by the auxiliary vane 670. Therefore, the air flows only in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the blowout air passage 33. At this time, the air flowing only in the vicinity of the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side in the blowout air passage 33 is viscous, and the heat exchanger 11 on the front surface 26 side of the blowout air passage 33 And the air staying at a position away from the heat exchanger 11 on the back surface 27 side is dragged. As a result, the air staying at a position away from the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the back surface 27 side of the blowout air passage 33 also becomes the heat exchanger 11 on the front surface 26 side and the heat exchanger 11 on the front surface 26 side in the blowout air passage 33. It flows in the same direction as the air that flows only in the vicinity of the heat exchanger 11 on the back surface 27 side.
 この場合、上部ベーン560a及び下部ベーン560bは開いている。例えば、上部吹出口32aから熱交換された空調空気AAが吹き出される場合、空調対象空間の空気RAが、熱交換された空調空気AAの粘性に引きずられて、下部吹出口32bから吹出風路33に流入する。そして、流入した空気RAは、上部吹出口32aから、熱交換された空調空気AAと共に吹き出される。また例えば、下部吹出口32bから熱交換された空調空気AAが吹き出される場合、空調対象空間の空気RAが、熱交換された空調空気AAの粘性に引きずられて、上部吹出口32aから吹出風路33に流入する。そして、流入した空気RAは、下部吹出口32bから、熱交換された空調空気AAと共に吹き出される。 In this case, the upper vane 560a and the lower vane 560b are open. For example, when the heat-exchanged air-conditioned air AA is blown out from the upper air outlet 32a, the air RA in the air-conditioned space is dragged by the viscosity of the heat-exchanged air-conditioned air AA and is blown out from the lower air outlet 32b. It flows into 33. Then, the inflowing air RA is blown out from the upper air outlet 32a together with the heat-exchanged conditioned air AA. Further, for example, when the heat-exchanged air-conditioned air AA is blown out from the lower outlet 32b, the air RA in the air-conditioned space is dragged by the viscosity of the heat-exchanged air-conditioned air AA and blown out from the upper air outlet 32a. It flows into the road 33. Then, the inflowing air RA is blown out from the lower outlet 32b together with the heat-exchanged conditioned air AA.
 このように、本実施の形態4によれば、室内機603は、第1の送風機12a及び第2の送風機12bの回転駆動より生じた風量よりも多い風量を得ることができる。このように、空調対象空間の空気が、上部吹出口32a及び下部吹出口32bを介して空調対象空間内を循環するため、空調対象空間の温度を迅速に均一化させることができ、使用者の快適性を向上させることができる。 As described above, according to the fourth embodiment, the indoor unit 603 can obtain a larger air volume than the air volume generated by the rotational drive of the first blower 12a and the second blower 12b. In this way, the air in the air-conditioned space circulates in the air-conditioned space via the upper air outlet 32a and the lower air outlet 32b, so that the temperature of the air-conditioned space can be quickly made uniform and the user can use it. Comfort can be improved.
実施の形態5.
 図12は、実施の形態5に係る室内機703を示す上面断面図である。本実施の形態5は、第1の送風機12a及び第2の送風機12bを回転駆動するモータ713が一つである点で、実施の形態1と相違する。本実施の形態5では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5.
FIG. 12 is a top sectional view showing the indoor unit 703 according to the fifth embodiment. The fifth embodiment is different from the first embodiment in that the motor 713 for rotationally driving the first blower 12a and the second blower 12b is one. In the fifth embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図12に示すように、第1の送風機12a及び第2の送風機12bは、室内機703の奥行方向の中央に対して対称の位置に配置されている。そして、第1の送風機12a及び第2の送風機12bは、同一の駆動シャフト716によって接続され、単一のモータ713によって駆動シャフト716が回転駆動されることにより、回転駆動する。このように、室内機703は、単一のモータ713によって実現されるため、モータ713の個数を減らすことによって生産性が向上する。 As shown in FIG. 12, the first blower 12a and the second blower 12b are arranged at positions symmetrical with respect to the center in the depth direction of the indoor unit 703. Then, the first blower 12a and the second blower 12b are connected by the same drive shaft 716, and the drive shaft 716 is rotationally driven by a single motor 713 to rotationally drive the drive shaft 716. As described above, since the indoor unit 703 is realized by a single motor 713, the productivity is improved by reducing the number of motors 713.
 なお、第1の送風機12aの第1の翼15aの回転方向と第2の送風機12bの第2の翼15bの回転方向とが反対であるように構成されてもよい。即ち、この場合、筐体20の第1の端部側の外側から第1の送風機12aをみた場合と、筐体20の第2の端部側の外側から第2の送風機12bをみた場合とで、第1の送風機12a及び第2の送風機12bの回転方向が反対である。これにより、筐体20内に、第1の送風機12a及び第2の送風機12bの第1の翼15a及び第2の翼15bの回転方向に回転して発生する空気の渦が、外側からみて逆方向の回転であるため、内部で同方向の回転となる。この場合、第1の送風機12aによって生じる渦と、第2の送風機12bによって生じる渦とが衝突しても、渦の方向が同じであるため、騒音の発生を抑制することができる。 The rotation direction of the first blade 15a of the first blower 12a and the rotation direction of the second blade 15b of the second blower 12b may be opposite to each other. That is, in this case, the case where the first blower 12a is viewed from the outside on the first end side of the housing 20 and the case where the second blower 12b is viewed from the outside on the second end side of the housing 20. The rotation directions of the first blower 12a and the second blower 12b are opposite to each other. As a result, the vortex of air generated by rotating the first blade 15a and the second blade 15b of the first blower 12a and the second blower 12b in the rotation direction in the housing 20 is reversed when viewed from the outside. Since it is a rotation in a direction, it is internally rotated in the same direction. In this case, even if the vortex generated by the first blower 12a and the vortex generated by the second blower 12b collide, the direction of the vortex is the same, so that the generation of noise can be suppressed.
 1 空気調和機、2 室外機、3 室内機、4 冷媒回路、5 冷媒配管、6 圧縮機、7 流路切替装置、8 室外熱交換器、9 室外送風機、10 膨張部、11 熱交換器、11a フィン、12a 第1の送風機、12b 第2の送風機、13a 第1のモータ、13b 第2のモータ、14a 第1の回転軸、14b 第2の回転軸、15a 第1の翼、15b 第2の翼、20 筐体、21 第1の側面、22 第2の側面、23 接続面、24 上面、25 下面、26 前面、27 背面、28a 第1の送風室、28b 第2の送風室、29 熱交換室、31a 第1の吸込口、31b 第2の吸込口、32 吹出口、32a 上部吹出口、32b 下部吹出口、33 吹出風路、34 第1の通風路、34a 第1の前部通風路、34b 第1の背部通風路、35 第2の通風路、35a 第2の前部通風路、35b 第2の背部通風路、103 室内機、111 熱交換器、111a フィン、203 室内機、211 熱交換器、211a フィン、303 室内機、340 内部ベーン、403 室内機、450 仕切板、503 室内機、560a 上部ベーン、560b 下部ベーン、603 室内機、670 補助ベーン、703 室内機、713 モータ、714 回転軸、716 駆動シャフト。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 refrigerant pipe, 6 compressor, 7 flow path switching device, 8 outdoor heat exchanger, 9 outdoor blower, 10 expansion part, 11 heat exchanger, 11a fins, 12a first blower, 12b second blower, 13a first motor, 13b second motor, 14a first rotation shaft, 14b second rotation shaft, 15a first blade, 15b second Wings, 20 housings, 21 first side surface, 22 second side surface, 23 connection surface, 24 upper surface, 25 lower surface, 26 front surface, 27 rear surface, 28a first air chamber, 28b second air chamber, 29 Heat exchange chamber, 31a first suction port, 31b second suction port, 32 outlet, 32a upper outlet, 32b lower outlet, 33 outlet air passage, 34 first ventilation passage, 34a first front part Ventilation passage, 34b 1st back ventilation passage, 35 2nd ventilation passage, 35a 2nd front ventilation passage, 35b 2nd back ventilation passage, 103 indoor unit, 111 heat exchanger, 111a fin, 203 indoor unit , 211 heat exchanger, 211a fin, 303 indoor unit, 340 internal vane, 403 indoor unit, 450 partition plate, 503 indoor unit, 560a upper vane, 560b lower vane, 603 indoor unit, 670 auxiliary vane, 703 indoor unit, 713 Motor, 714 rotating shaft, 716 drive shaft.

Claims (15)

  1.  幅方向に延在し、幅方向の一端部であり、空気を吸い込む第1の吸込口が形成された第1の側面、幅方向の他端部であり、空気を吸い込む第2の吸込口が形成された第2の側面及び前記第1の側面と第2の側面とを接続する接続面を有する筐体と、
     前記筐体において幅方向に延在し、冷媒と空気との間で熱交換する熱交換器と、
     前記筐体の幅方向の一端部に設けられ、前記第1の吸込口から吸いこまれた空気を前記熱交換器に送る第1の送風機と、
     前記筐体の幅方向の他端部に設けられ、前記第2の吸込口から吸いこまれた空気を前記熱交換器に送る第2の送風機と、を備え、
     前記筐体の前記接続面には、前記第1の送風機及び前記第2の送風機によって前記熱交換器に送られて冷媒との間で熱交換された空気を吹き出す吹出口が形成されている
     空気調和機の室内機。
    It extends in the width direction, is one end in the width direction, is the first side surface on which the first suction port for sucking air is formed, and the other end in the width direction, and is the second suction port for sucking air. A housing having a formed second side surface and a connecting surface connecting the first side surface and the second side surface,
    A heat exchanger extending in the width direction in the housing and exchanging heat between the refrigerant and air,
    A first blower provided at one end in the width direction of the housing and sending air sucked from the first suction port to the heat exchanger.
    A second blower provided at the other end in the width direction of the housing and sending air sucked from the second suction port to the heat exchanger is provided.
    An air outlet is formed on the connection surface of the housing to blow out air sent to the heat exchanger by the first blower and the second blower and exchanged heat with the refrigerant. Indoor unit of the harmony machine.
  2.  前記筐体には、
     前記第1の吸込口と前記吹出口とを接続し、前記第1の送風機から前記熱交換器に向かって空気が流れる第1の通風路と、
     前記第2の吸込口と前記吹出口とを接続し、前記第2の送風機から前記熱交換器に向かって空気が流れる第2の通風路と、が形成されている
     請求項1記載の空気調和機の室内機。
    The housing has
    A first ventilation path that connects the first suction port and the air outlet and allows air to flow from the first blower toward the heat exchanger.
    The air conditioning according to claim 1, wherein the second suction port and the air outlet are connected to form a second ventilation path through which air flows from the second blower toward the heat exchanger. Indoor unit of the machine.
  3.  前記第1の通風路及び前記第2の通風路は、
     前記熱交換器の幅方向の中央に向かうに従って狭くなっている
     請求項2記載の空気調和機の室内機。
    The first ventilation passage and the second ventilation passage are
    The indoor unit of the air conditioner according to claim 2, which becomes narrower toward the center in the width direction of the heat exchanger.
  4.  前記第1の通風路及び前記第2の通風路における前記熱交換器の端部側に設けられ、空気の向きを調整する内部ベーンを更に備える
     請求項2又は3記載の空気調和機の室内機。
    The indoor unit of the air conditioner according to claim 2 or 3, further provided with an internal vane provided on the end side of the heat exchanger in the first ventilation passage and the second ventilation passage to adjust the direction of air. ..
  5.  前記熱交換器の幅方向の中央部に対向する位置に設けられ、前記第1の通風路と前記第2の通風路とを区画する仕切板を更に備える
     請求項2~4のいずれか1項に記載の空気調和機の室内機。
    Any one of claims 2 to 4, further provided with a partition plate provided at a position facing the central portion in the width direction of the heat exchanger and separating the first ventilation passage and the second ventilation passage. The indoor unit of the air conditioner described in.
  6.  前記第1の送風機及び前記第2の送風機は、遠心送風機又は斜流送風機であり、
     前記第1の通風路及び前記第2の通風路は、
     前記熱交換器よりも前記接続面側に形成されている
     請求項2~5のいずれか1項に記載の空気調和機の室内機。
    The first blower and the second blower are centrifugal blowers or mixed flow blowers.
    The first ventilation passage and the second ventilation passage are
    The indoor unit of an air conditioner according to any one of claims 2 to 5, which is formed on the connection surface side of the heat exchanger.
  7.  前記吹出口は、
     前記筐体の幅方向に延在している
     請求項1~6のいずれか1項に記載の空気調和機の室内機。
    The outlet is
    The indoor unit of the air conditioner according to any one of claims 1 to 6, which extends in the width direction of the housing.
  8.  前記接続面は、
     上面及び下面を有し、
     前記吹出口は、
     前記上面に形成された上部吹出口と、
     前記下面に形成された下部吹出口と、を含む
     請求項1~7のいずれか1項に記載の空気調和機の室内機。
    The connection surface
    Has an upper surface and a lower surface
    The outlet is
    The upper air outlet formed on the upper surface and
    The indoor unit of an air conditioner according to any one of claims 1 to 7, further comprising a lower air outlet formed on the lower surface.
  9.  前記上面に設けられ、前記上部吹出口から吹き出される空気の向きを調整する上部ベーンと、
     前記下面に設けられ、前記下部吹出口から吹き出される空気の向きを調整する下部ベーンと、を更に備える
     請求項8記載の空気調和機の室内機。
    An upper vane provided on the upper surface and adjusting the direction of the air blown from the upper outlet,
    The indoor unit of the air conditioner according to claim 8, further comprising a lower vane provided on the lower surface and adjusting the direction of air blown from the lower air outlet.
  10.  前記筐体には、
     前記上部吹出口と前記下部吹出口とを接続する吹出風路が形成されている
     請求項8又は9記載の空気調和機の室内機。
    The housing has
    The indoor unit of the air conditioner according to claim 8 or 9, wherein an outlet air passage connecting the upper outlet and the lower outlet is formed.
  11.  前記吹出風路に設けられ、空気の向きを調整する補助ベーンを更に備える
     請求項10記載の空気調和機の室内機。
    The indoor unit of an air conditioner according to claim 10, further comprising an auxiliary vane provided in the blow air passage and adjusting the direction of air.
  12.  前記上部吹出口は前記筐体の上方に向けて空気を吹き出し、前記下部吹出口は前記筐体の下方に向けて空気を吹き出す
     請求項8~11のいずれか1項に記載の空気調和機の室内機。
    The air conditioner according to any one of claims 8 to 11, wherein the upper air outlet blows air toward the upper side of the housing, and the lower air outlet blows air toward the lower side of the housing. Indoor unit.
  13.  前記熱交換器は、
     間隔を空けて並べられた複数のフィンと、
     複数の前記フィンに挿入される伝熱管と、を有し、
     複数の前記フィンは、
     前記熱交換器の中央部の間隔が狭く、前記熱交換器の両端部の間隔が広い
     請求項1~12のいずれか1項に記載の空気調和機の室内機。
    The heat exchanger is
    With multiple fins arranged at intervals,
    Having a heat transfer tube inserted into the plurality of fins,
    The plurality of the fins
    The indoor unit of an air conditioner according to any one of claims 1 to 12, wherein the distance between the central portions of the heat exchanger is narrow and the distance between both ends of the heat exchanger is wide.
  14.  前記第1の送風機の第1の回転軸及び前記第2の送風機の第2の回転軸は、同一の軸上に配置されている
     請求項1~13のいずれか1項に記載の空気調和機の室内機。
    The air conditioner according to any one of claims 1 to 13, wherein the first rotating shaft of the first blower and the second rotating shaft of the second blower are arranged on the same shaft. Indoor unit.
  15.  前記第1の送風機及び前記第2の送風機は、第1の翼及び第2の翼をそれぞれ有し、
     前記第1の翼の回転方向と前記第2の翼の回転方向とが反対である
     請求項1~14のいずれか1項に記載の空気調和機の室内機。
    The first blower and the second blower have a first wing and a second wing, respectively.
    The indoor unit of an air conditioner according to any one of claims 1 to 14, wherein the rotation direction of the first blade and the rotation direction of the second blade are opposite to each other.
PCT/JP2019/048429 2019-12-11 2019-12-11 Indoor machine for air-conditioner WO2021117156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/048429 WO2021117156A1 (en) 2019-12-11 2019-12-11 Indoor machine for air-conditioner
JP2021563507A JP7229392B2 (en) 2019-12-11 2019-12-11 indoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048429 WO2021117156A1 (en) 2019-12-11 2019-12-11 Indoor machine for air-conditioner

Publications (1)

Publication Number Publication Date
WO2021117156A1 true WO2021117156A1 (en) 2021-06-17

Family

ID=76330006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048429 WO2021117156A1 (en) 2019-12-11 2019-12-11 Indoor machine for air-conditioner

Country Status (2)

Country Link
JP (1) JP7229392B2 (en)
WO (1) WO2021117156A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178535A (en) * 1988-12-28 1990-07-11 Matsushita Electric Ind Co Ltd Fan device for air conditioner
JPH11118199A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Air conditioner
KR20070078255A (en) * 2006-01-26 2007-07-31 엘지전자 주식회사 Indoor unit of air conditioner
KR20180079710A (en) * 2017-01-02 2018-07-11 엘지전자 주식회사 air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798127A (en) * 1993-09-29 1995-04-11 Sanyo Electric Co Ltd Air-conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178535A (en) * 1988-12-28 1990-07-11 Matsushita Electric Ind Co Ltd Fan device for air conditioner
JPH11118199A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Air conditioner
KR20070078255A (en) * 2006-01-26 2007-07-31 엘지전자 주식회사 Indoor unit of air conditioner
KR20180079710A (en) * 2017-01-02 2018-07-11 엘지전자 주식회사 air conditioner

Also Published As

Publication number Publication date
JP7229392B2 (en) 2023-02-27
JPWO2021117156A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN109891155B (en) Indoor unit and air conditioning device
JP5805214B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
CN210772705U (en) Indoor unit and air conditioner
WO2017199444A1 (en) Centrifugal blower, air conditioner, and refrigeration cycle device
WO2017187570A1 (en) Air conditioner
KR100702323B1 (en) Ceiling-type air conditioning apparatus having auxiliary outlet
WO2020213031A1 (en) Air blower, indoor unit for air conditioning device, and air conditioning device
JP2012184886A (en) Air conditioner
WO2021117156A1 (en) Indoor machine for air-conditioner
CN111630327B (en) Indoor unit of air conditioner
WO2016170652A1 (en) Indoor unit and air conditioning device
WO2018003103A1 (en) Air conditioner, air conditioning device, and refrigeration cycle device
WO2021229794A1 (en) Air conditioner indoor unit and air conditioner
EP3726150B1 (en) Heat exchange unit and air conditioning device having same mounted therein
WO2018016012A1 (en) Heat source unit and refrigeration cycle device
JP6925571B1 (en) Blower, indoor unit and air conditioner
JPWO2019123743A1 (en) Indoor unit of air conditioner
JPH0783458A (en) Indoor device for air conditioner
WO2022158263A1 (en) Wall-mounted air-conditioning indoor unit, and air-conditioning device
WO2020195153A1 (en) Air conditioner
WO2021152775A1 (en) Centrifugal blower and air conditioner provided with same
WO2017060973A1 (en) Air blower, outdoor unit, and refrigeration cycle device
KR20050118946A (en) Window type air conditioner
JP4552557B2 (en) Air conditioner indoor unit
WO2018163412A1 (en) Indoor unit and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955579

Country of ref document: EP

Kind code of ref document: A1