WO2021116737A1 - Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura - Google Patents

Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura Download PDF

Info

Publication number
WO2021116737A1
WO2021116737A1 PCT/IB2019/060712 IB2019060712W WO2021116737A1 WO 2021116737 A1 WO2021116737 A1 WO 2021116737A1 IB 2019060712 W IB2019060712 W IB 2019060712W WO 2021116737 A1 WO2021116737 A1 WO 2021116737A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
rotational speed
pond
upper section
culture
Prior art date
Application number
PCT/IB2019/060712
Other languages
English (en)
French (fr)
Inventor
Pablo Arturo Venegas Cabello
Katherine Alejandra LLANCALEO SÁNCHEZ
Original Assignee
Universidad Católica De La Santísima Concepción
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Católica De La Santísima Concepción filed Critical Universidad Católica De La Santísima Concepción
Priority to CA3161544A priority Critical patent/CA3161544A1/en
Priority to PCT/IB2019/060712 priority patent/WO2021116737A1/es
Priority to EP19955534.3A priority patent/EP4074175A4/en
Publication of WO2021116737A1 publication Critical patent/WO2021116737A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Non-invasive self-cleaning system and method that allows continuous removal of solid waste in aquaculture culture ponds
  • the present invention relates to the aquaculture industry.
  • the present invention relates to a system and a method that allows the continuous removal of solid waste that accumulates in the ponds used in confined aquaculture, optimizing the fluid-dynamic conditions that ensure the formation of the self-cleaning effect in the pond with low energy consumption.
  • the system and method allow the removal of solid waste, even when the conditions of rotation speed of the water and / or the aspect ratio between the diameter of the pond and the height of the water, do not allow the fluid-dynamic conditions to ensure the conventional self-cleaning.
  • the present technology allows the removal of solid waste and particles without generating circular velocity values in the water that negatively affect the normal development of the species in culture, as well as, without the need to structurally modify the existing ponds.
  • this Conventional self-cleaning effect is achieved by generating circular and radial flow patterns in the water of the ponds, using for this the control and variation of the direction and rotational speed of the bodies of water within the ponds.
  • the first flow pattern is the so-called primary flow, which corresponds to the rotational flow of the water around the center of the pond.
  • a secondary flow is created that corresponds to a radial flow towards the center of the vorticity of the primary flow, which is characterized by displacing the solid bodies towards the center, generating a conventional self-cleaning effect.
  • the particles that are dragged by the secondary flow must reach a drain, mainly central and then exit through it, which is ultimately defined by the aspect ratio of the culture pond.
  • the aspect ratio of the culture pond (D / h), which corresponds to the relationship between the inner diameter of the pond (D) and the height of useful water (h) , it should be kept between 1: 4 to 1: 3.
  • the aspect ratio is less than 1: 3
  • the secondary flow that is formed does not manage to displace solid waste to the center of the vorticity of the primary flow, whereby solid waste is entrained but accumulates inside the pond, forming concentric rings between the pond wall and the central drain.
  • a filter element is located in the center and immersed in the volume of water within a vertical chamber.
  • the lower surface of the filter element is fed with air that rises and transports the water through the filter, which is preferably of the biological type, where the biological type filter can act as a culture surface for a culture of microorganisms that decompose the matter. organic and ammonia in the water, and where it also describes the regulation of the speed of the water in the tank to an optimal value for a specific type and size of fish.
  • the technology described in this document does not allow pond self-cleaning, but rather requires a filtration system inside the culture tank, and also does not allow to generate a conventional self-cleaning effect in culture ponds with aspect ratios.
  • a system and a method is required that allows the continuous and effective removal of solid waste that accumulates in the culture ponds used in aquaculture, avoiding the deterioration of water quality and its negative effect. on the species in culture, even when the fluid-dynamic conditions that ensure the formation of the conventional self-cleaning effect in the ponds are not possible to achieve, due to the fact that the required water flow rate negatively affects the species in culture or that the pond aspect ratio (D / h) is not adequate.
  • the present system and method is used in aquaculture without the need to modify existing ponds, and allows self-cleaning in culture ponds even when the aspect ratio (D / h) between pond diameter (D) and height of Useful water (h) is less than that required to achieve fluid-dynamic conditions that allow generating a conventional self-cleaning effect, and that allows self-cleaning in culture ponds even when the water speed required for the safe and healthy cultivation of the species in culture is less than the speed required to reach the fluid-dynamic conditions that allow generating a conventional self-cleaning effect.
  • FIG. 1 shows a schematic view of the cleaning system installed in a circular pond, according to an exemplary embodiment.
  • FIG. 2 shows a schematic plan view of a separator with a central opening and an outer opening, according to an exemplary embodiment.
  • FIG. 3 shows a schematic plan view of a separator like the one in FIG. 2 having rectangular radial openings, in accordance with an exemplary embodiment.
  • FIG. 4 shows a schematic plan view of a separator like the one in FIG. 2 having radial openings with variable section, according to an exemplary embodiment.
  • FIG. 5 shows a schematic plan view of a separator like the one in FIG. 2 having radial openings in the shape of concentric arcs, in accordance with an exemplary embodiment.
  • FIG. 6 shows a schematic view of the cleaning system installed in a circular pond like the one in FIG. 1 wherein the upper injector and the lower injector have multiple outlets such as a flute-type vertical sprinkler, in accordance with an exemplary embodiment.
  • FIG. 7 shows a schematic view of the cleaning system installed in a circular pond like the one in FIG. 6 wherein the upper injector and the lower injector are in separate water injection devices, according to an exemplary embodiment.
  • FIG. 8 shows a schematic view of the cleaning system installed in a circular pond like the one in FIG. 6 wherein the lower injector has an eductor injector, according to an exemplary embodiment.
  • FIG. 9 shows a schematic view of the cleaning system installed in a circular pond similar to that of FIG. 1 wherein the lower injector is replaced by means for driving water located within the lower section of the tank, according to an exemplary embodiment.
  • the present invention refers to a self-cleaning system that allows the continuous removal of solid waste in culture ponds used in aquaculture.
  • the system comprises a separator with a diameter similar to that of the culture pond, which is installed inside the culture pond to achieve horizontal separation of the latter, separating the pond and the body of water into an upper section and a lower section.
  • the species that are in the cultivation process are located, while in the lower section of the pond fluid-dynamic conditions are generated that generate vorticity, suction and self-cleaning of the entire pond, so that in said lower section accumulate and eliminate solid waste.
  • the separator comprises a divider, a central opening, radial openings and an outer opening, where the central opening and the radial openings have a screen that prevents the passage of crop species to the lower section, but that allows the transfer of water with the solid waste towards the lower section, and where the outer opening is dimensioned in such a way as to allow the entry of a water injection device, whose dimensions will depend on the hydrodynamic configurations that are desired to be generated in the water.
  • the separator has fixing means, which allow fixing and regulating its vertical position in the culture pond of said separator, where the fixing means correspond to a plurality of vertical supports or legs located on the periphery of its lower face that are they rest on the bottom of the pond, or ropes, chains or other elements that allow the separator to be hung from the top of the pond.
  • a water injection device is installed that injects a first water flow in the upper section and another device that injects a second water flow in the lower section. Wherein the first flow of water that is injected into the upper section causes the mass of water within the upper section to rotate with a first rotational speed, generating at least one primary flow within the upper section.
  • the injection device allows to regulate the flow of water in the upper section, allowing the flow rate to be adequate for the development of the species in culture.
  • the second flow of water that is injected into the lower section generates that the mass of water within the lower section rotates with a second rotational speed, generating primary and secondary flows that produce a suction vortex on the entire lower surface. of the separating disc, dragging the particles on the top surface of the disc downward.
  • the second injection system allows controlling the second flow rate to control the vorticity within the lower section.
  • the velocity of the water in the lower section is greater than the velocity of the water in the upper section, so that, in the areas of interaction between the sections, such as in the central opening and the radial openings of the separator, a pressure difference that displaces solid waste from the upper section to the lower section through the phenomenon of lift and drag.
  • the solid waste from the upper section moves through the water flows within the upper section, and is quickly drawn into the interaction zones between the sections, from where it is sucked into the lower section by the pressure difference. between the two sections.
  • the solid waste is transported by the primary and secondary streams of the vorticity of the lower section towards a central drain connected to a drain pipe, and is transported out of the culture pond to conventional cleaning systems. and filtration for water treatment.
  • the present self-cleaning system allows a rapid and continuous elimination of the solid waste generated by the species in culture and their feeding and that accumulate in the culture ponds, maintaining a safe speed for the species in culture. in the upper section, with the benefits of self-cleaning of the culture pond, even when the relationship between the diameter of the pond and the height of useful water (D / h) is less than that required for conventional self-cleaning to occur.
  • the flow rate injected in each section must be regulated so that the second rotational speed in the lower section is greater than the first. rotational speed in the upper section.
  • the second rotational speed in the lower section is at least twice the first rotational speed in the upper section.
  • the second rotational speed in the lower section is at least three times the first rotational speed in the upper section.
  • the second rotational speed in the lower section is at least 3.2 times the first rotational speed in the upper section.
  • the water injection system injects water in the upper section and / or in the lower section through various water injectors, such as injectors with a large diameter nozzle, several diameter nozzles smaller vertical sprinkler type, individual eductors or a combination thereof.
  • the lower injection system is composed of one or more eductor injectors, which optimize the mixing of the water and the formation of the self-cleaning phenomenon.
  • the number of eductor injectors used will depend on the hydraulic diameter of the culture tank, the size of the eductor, and the speed and mixing requirements necessary for the operation of the self-cleaning system.
  • the present invention is that it is non-invasive or harmful to the species in culture, that the removal of residues is continuous, that it is not necessary to modify or replace existing culture ponds and allows self-cleaning in culture ponds in where the aspect ratio of the culture pond (D / h) does not allow to achieve fluid-dynamic conditions that allow generating a conventional self-cleaning effect.
  • the present invention has to be possible to reduce the volumes of water necessary for production, since the present technology allows generating a self-cleaning effect even when the aspect ratio is much lower than 1: 3, thus allowing maintain smaller columns of water within the culture ponds, reducing the volume of water required to achieve self-cleaning in the culture ponds.
  • the energy consumption associated with the movement of water within the culture pond is reduced.
  • the rapid removal of solid waste prevents the cultured species from being exposed for a long time to the exposure of sub-lethal levels of any of the water quality variables, improving their quality of life, level of stress and development, which translates into improvements in productivity due to adequate health conditions for the crop species.
  • the spacer is formed from a plurality of removable and replaceable subsections that make up the spacer. Additionally, in some embodiments of the invention, the sieve of the central opening and of the radial openings is removably mounted, so that the sieve used at each moment of the cultivation process is changed and adjusted according to the required sizes. to prevent the passage of growing crop species from the upper section to the lower section, and in turn allow the passage of solid waste from the upper section to the lower section.
  • the sieve of the central aperture and radial apertures has a mesh aperture of less than 15% of the average size of the specimen being cultured, more preferably less than 10% of the average size of the specimen that is being cultured. being cultivated, in order to avoid damage or stress on the culture specimens caused by the suction generated by the separator.
  • the screen is made of metals such as steel, aluminum and copper alloys, of polymeric materials or of a combination of them, such as metallic mesh coated with polymers.
  • the fixing means correspond to a plurality of vertical supports or legs that have a graduation with evenly spaced marks or graduation in centimeters to facilitate their vertical adjustment and the horizontality of their surface, where the means The fixing points correspond to at least three vertical supports or legs located in the peripheral zone of the separator and at least three vertical supports or legs located in the central zone.
  • the separator is located at a height of at least 10% of the height of the water within the pond, more preferably at a height of at least 15% of the height of the water within the pond to ensure better operation of the solids removal system.
  • the radial openings have substantially constant section concentric arc geometry. In other embodiments of the present technology, the radial openings are rectangular in shape. In other embodiments of the present technology, the radial openings are formed by a plurality of shallow ramp-shaped suction intakes with curved walls, similar to ducts. NACA, in order to reduce the disturbance in the flow caused by the suction in the areas of the grates.
  • the lower injector is replaced by means for driving water located within the lower section, which are driven by a motor to give movement to the mass of water within the lower section to reach and maintain the second speed. rotational.
  • said means for driving water can be propellers, turbines, rotating blades, blades or other suitable mechanical elements.
  • the bottom of the pond is conical towards a drain in the central zone of the bottom of the culture pond, with a slope of less than 15%, more preferably less than 10% to ensure a better operation of the water system. removal of solids.
  • a non-invasive self-cleaning system that allows the continuous removal of solid waste in aquaculture culture ponds (200), comprising: at least one drain (203) in the central zone of the lower part of the culture pond (200); a separator (300) that separates the interior of the pond (200) into an upper section (201) and a lower section (202), wherein the separator (300) comprises a divider (301), a central opening (302) with screen (303), an outer opening (304) and a plurality of radial or concentric openings (305) with screen (303); at least one water injection device (400, 401), comprising at least one pipe (410, 420), at least one upper injector (411) and at least one lower injector (421); wherein said at least one upper injector (411) injects a first flow (Q1) of water in the upper section (201) of the pond (200) that generates a first rotational speed (w1) in the mass of water of the upper section (
  • the second rotational speed (OÜ2) is at least three times the first rotational speed (w1) of the body of water in the upper section (S1).
  • spacer 300 is formed from multiple removable spacer subsections.
  • the screen (305) is removable and replaceable, so that it allows the screen to be replaced according to the size and stage of development of the crop species.
  • the at least one lower injector (421) are eductor injectors.
  • the first rotational speed (col) and the second rotational speed (w2) have the same natural direction of the Coriolis force.
  • said at least one upper injector (411) and at least one lower injector (421) have the discharge positioned at an angle between 25 ° and 70 ° with respect to the tangent line of the tank wall. cultivation.
  • the upper section (201) is subdivided into at least two subsections (201a, 201b), where each subsection has a lower rotational speed than the subsection directly below.
  • a non-invasive self-cleaning system that allows the continuous removal of solid waste in aquaculture culture ponds (200), comprising: at least one drain (203) in the central zone of the lower part of the culture pond (200); a separator (300) that separates the interior of the pond (200) into an upper section (201) and a lower section (202), wherein the separator (300) comprises a divider (301), a central opening (302) with screen (303) and a plurality of radial or concentric openings (305) with screen (303); at least one water injection device (400, 401), comprising at least one pipe (410, 420) and at least one upper injector (411); and means for driving water (422) located within the lower section (202); wherein said at least one upper injector (411) injects a first flow (Q1) of water in the upper section (201) of the pond (200) that generates a first rotational speed (w1) in the mass of water of the upper section (
  • the means for driving water (422) are propellers, turbines, rotating blades, vanes, or other suitable mechanical elements.
  • a non-invasive self-cleaning method that allows the continuous removal of solid waste in culture ponds (200) for aquaculture, which comprises the steps of: injecting a first flow (Q1) of water in an upper section (201) of the pond (200); injecting a second stream (Q2) of water into a lower section (202) of the pond (200); generate a first rotational speed (w1) in a first body of water in an upper section (201) of the pond
  • the method further comprises the step of replacing the sieve according to the size and development stage of the culture species and as shown in Figure 4, the sieve (303) is equal to the screen of the plurality of radial or concentric apertures (305) or as shown in FIG. 5, the screen (303) is different from the screen of the plurality of radial or concentric apertures (305).
  • the lower injector 421 is an injection system composed of multiple injectors, wherein said injectors are eductor injectors.
  • the described culture system was used for the cultivation and production of salmon in their freshwater stage in circular culture ponds with 1.2 meters in diameter, and 0.5 meters deep, where the separator was built in the form of diameter disc similar to the inner diameter of the culture pond, so that the space between the separator and the inner wall of the culture pond was small enough to prevent the passage of salmon from the upper section to the lower section.
  • the separator was constructed with a central opening of 10 centimeters in diameter and 8 radial openings equally spaced in the shape of a rectangle 40 centimeters long by 10 centimeters wide, where the central opening and the radial openings were covered with a removable mesh screen. made of stainless steel wire with a mesh opening of 2.5 millimeters.
  • the disc was introduced into the culture pond and was positioned 0.15 meter from the base of the pond by means of support legs resting on the base of the pond.
  • an upper injector was entered in the upper section of the tank and a lower injector in the lower area of the tank through an external opening of the separator, where a sprinkler-type water injection system was used in the upper injector.
  • vertical (flute) was used in the upper injector.
  • eductor-type water injection system was used in the lower injector. Both injection systems were positioned so that the outlet flow was directed at 45 ° with respect to the tangent line to the inner edge of the pond.
  • the water and crop species were introduced to the pond, and through a water supply pipe or water pumps connected to the upper and lower injectors, a flow rate of water 7 liters per minute, and in the lower section a flow rate of 21.2 liters per minute was introduced, so that the rotational speed in the upper section was 4.6 cm / s and the rotational speed in the lower section was 14.2 cm / s, where the velocities were measured at the distal end of the diameter.
  • the solid residues in the upper section were drawn by the primary flow in said upper section towards the radial openings, where they were sucked towards the lower section by the pressure gradient generated in said zones.
  • the solid waste was transported by the primary and secondary flows to a drain in the central area of the bottom of the culture pond, and then transported the water to a conventional filtering system through pipes.
  • the effect of the separator was determined during the maintenance of sea urchin (Loxechinus albus, sea urchir ⁇ ).
  • sea urchin Lixechinus albus, sea urchir ⁇
  • the separator was installed in the pond, sea water was added and then 30 urchins of 4 cm in diameter were placed.
  • the same water inflow rate was used in the upper and lower section of the pond, generating rotational speeds in the upper section of 4.3 cm / s and the rotational speed in the lower section was 14.5 cm / s, where the velocities were measured at the distal end of the diameter.
  • the Hedgehogs were fed every 3 days with pieces of green algae (Ulva spp) and brown algae (Lessonia spp).
  • the same phenomenon occurred with the salmon of example 1 was detected for a period of 40 days, the solid residues in the upper section (pieces of algae and feces) were dragged by the primary flow in said section upper towards the radial openings, where they were sucked towards the lower section by the pressure gradient generated in said zones.
  • the solid waste was transported by the primary and secondary flows to a drain in the central area of the bottom of the culture pond, and then transported the water to a conventional filtering system through pipes.
  • example 2 should be considered relevant for the application of this new technology in the cultivation and production of fish, molluscs and crustaceans that present in their life cycle a benthic development stage, as sessile or hemisessile species, or that require the use of devices or elements such as artificial shelters for their correct cultivation.
  • These culture requirements negatively affect the formation of the second flow pattern in production ponds, limiting the benefits generated by the self-cleaning effect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

Se presenta un sistema y un método de autolimpieza que permiten la remoción continua de los residuos sólidos en los estanques de cultivo a través de la generación de un vórtice para la concentración y succión de residuos a través del movimiento giratorio del cuerpo de agua con velocidades rotacionales distintas. El presente sistema y un método es utilizado en la acuicultura sin necesidad de modificar los estanques existentes, y permite la autolimpieza en los estanques de cultivo incluso cuando la relación de aspecto (D/h) entre el diámetro del estanque (D) y altura de agua útil (h) es menor a la requerida para alcanzar las condiciones fluido-dinámicas que permiten generar un efecto de autolimpieza convencional, y que permite la autolimpieza en los estanques de cultivo incluso cuando la velocidad del agua requerida para el cultivo seguro y saludable de la especie en cultivo es menor que la velocidad requerida para alcanzar las condiciones fluido-dinámicas que permiten generar un efecto de autolimpieza convencional.

Description

Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con la industria de la acuicultura. En particular, la presente invención se relaciona con un sistema y un método que permite la remoción continua de los residuos sólidos que se acumulan en los estanques utilizados en la acuicultura confinada, optimizando las condiciones fluido-dinámicas que aseguran la formación del afecto de autolimpieza en el estanque con bajo consumo energético. El sistema y método permiten la remoción de los residuos sólidos, incluso cuando las condiciones de velocidad de rotación del agua y/o la relación de aspecto entre el diámetro del estanque y la altura del agua, no permiten las condiciones fluido-dinámicas para asegurar la autolimpieza convencional. La presente tecnología permite la remoción de los residuos sólidos y partículas sin generar valores de velocidad circular en el agua que afecten negativamente al normal desarrollo de las especies en cultivo, así como también, sin la necesidad de modificar estructuralmente los estanques existentes.
ESTADO DEL ARTE
Una de las principales problemáticas que presentan los estanques de cultivo utilizados en acuicultura para la mantención de las especies en cultivo, es la acumulación de residuos sólidos y partículas en su interior, provenientes de sólidos suspendidos y sediméntales que vienen mezclados en el agua o que son generados durante el proceso de cultivo, como alimento no consumido y heces entre otros. El proceso de oxidación natural de estos residuos acumulados provoca una disminución del oxígeno disuelto disponible en el agua de los estanques, así como también provoca un aumento de compuestos nocivos y/o tóxicos para las especies en cultivo, como, por ejemplo, nitrogenados amoniacales y dióxido de carbono, entre otros. Estas variaciones en las condiciones de calidad del agua pueden ser nocivas para el desarrollo de las especies en cultivo, provocando un riesgo sanitario del cultivo y un aumento del impacto medioambiental al desechar los efluentes del proceso de cultivo.
En la actualidad, para lograr niveles adecuados de remoción y retiro de los sólidos que se acumulan en los estanques circulares, se hace necesario asegurar condiciones fluido- dinámicas que permitan generar un efecto de autolimpieza convencional. En la práctica, este efecto de autolimpieza convencional se logra generando patrones de flujo circulares y radiales en el agua de los estanques, utilizando para esto el control y variación de la dirección y velocidad rotacional de los cuerpos de agua dentro de los estanques.
El primer patrón de flujo es el llamado flujo primario, que corresponde al flujo rotacional del agua en torno al centro del estanque. Cuando la velocidad del agua en el flujo primario es lo suficientemente alta, tanto como 15 cm/s o más, se crea un flujo secundario que corresponde a un flujo radial hacia el centro de la vorticidad del flujo primario, el cual se caracteriza por desplazar los cuerpos sólidos hacia el centro, generando un efecto de autolimpieza convencional. Sin embargo, para que la autolimpieza efectivamente ocurra, las partículas que son arrastradas por el flujo secundario deben llegar hasta un desagüe, principalmente central y luego salir a través de él, lo que en última instancia es definido por la relación de aspecto que posea el estanque de cultivo.
El estado del arte revela que para que la autolimpieza efectivamente ocurra, la relación de aspecto del estanque de cultivo (D/h), que corresponde a la relación entre el diámetro interior del estanque (D) y la altura de agua útil (h), debe mantenerse entre 1:4 a 1 :3. En los estanques de cultivo donde la relación de aspecto es menor a 1:3, se logran las condiciones fluido-dinámicas que permitan generar un efecto de autolimpieza convencional, sin embargo, el flujo secundario que se forma no consigue desplazar los residuos sólidos hasta el centro de la vorticidad del flujo primario, por lo que los residuos sólidos son arrastrado pero se acumulan dentro del estanque, formando anillos concéntricos entre la pared del estanque y el desagüe central.
Por otro lado, existe una interrelación entre velocidad del agua y actividad natatoria de las especies de cultivo. Cuando la velocidad del agua es mayor que la velocidad óptima para la actividad natatoria de las especies, la natación se hace insostenible y estresante, influyendo en la salud de las especies, en su tono muscular, en su respiración e incluso en la distribución de las especies dentro del estanque. Así, las velocidades de flujo dentro de los estanques de cultivo se encuentran limitadas a las velocidades seguras y saludables para la especie en cultivo y a la etapa de desarrollo en qué se encuentre. Esta limitación resulta evidente en las crías jóvenes (alevines), donde la velocidad del agua para remover y limpiar los sólidos está fuertemente restringida a la capacidad natatoria de la etapa de desarrollo de la especie en cultivo, por lo que muchas veces la limitación de la velocidad de flujo para asegurar velocidades seguras y saludables para la especie en cultivo, impide generar las condiciones fluido-dinámicas que permitan generar un efecto de autolimpieza convencional. Dentro de lo conocido en el arte previo, se encuentra la solicitud WO 1988/009615 A1 , que divulga un dispositivo para acuicultura que reduce el consumo de agua, la descarga de agua contaminada y la energía necesaria para la calefacción que consiste en una unidad para la piscicultura, que incluye un estanque o una jaula cerrada que recibe agua a través de una tubería de suministro de agua o una bomba. Un elemento filtrante está situado en el centro y sumergido en el volumen de agua dentro de una cámara vertical. La superficie inferior del elemento filtrante es alimentada con aire que sube y transporta el agua a través del filtro, que es preferiblemente de tipo biológico, en donde el filtro de tipo biológico puede actuar como superficie de cultivo para un cultivo de microorganismos que descomponen la materia orgánica y el amoníaco en el agua, y en donde además se describe la regulación de la velocidad del agua en el tanque a un valor óptimo para un tipo y tamaño específico de peces. Sin embargo, la tecnología descrita en este documento no permite la autolimpieza de estanque, si no que requiere de un sistema de filtración al interior del tanque de cultivo, y además no permite generar un efecto de autolimpieza convencional en estanques de cultivo con relaciones de aspecto (D/h) menores a 1:3, así como tampoco permite generar un efecto de autolimpieza convencional cuando las velocidades de flujo para asegurar velocidades seguras y saludables son inferiores a las requeridas para generar las condiciones fluido- dinámicas que permitan generar un efecto de autolimpieza convencional, por lo que las enseñanzas de la solicitud WO 1988/009615 A1 no permiten solucionar los problemas técnicos antes mencionados.
De acuerdo con lo señalado anteriormente, se requiere de un sistema y un método que permita la remoción continua y efectiva de los residuos sólidos que se acumulan en los estanques de cultivo utilizados en acuicultura, evitando el deterioro de la calidad del agua y su efecto negativo sobre las especies en cultivo, incluso cuando las condiciones fluido- dinámicas que aseguran la formación del efecto de autolimpieza convencional en los estanques no son posibles de alcanzar, producto de que la velocidad de flujo del agua requerida afecta negativamente a las especies en cultivo o que la razón de aspecto del estanque (D/h) no es la adecuada.
Finalmente, en términos prácticos es requerido que la tecnología actual evite la necesidad de realizar modificaciones físicas mayores en los estanques de cultivo, ya que afectan negativamente la efectividad operacional y económica de las mejoras propuestas.
DESCRIPCION DE LA INVENCIÓN Para subsanar el problema técnico planteado, se presenta un sistema y un método de autolimpieza que permiten la remoción continua de los residuos sólidos en los estanques de cultivo a través de la generación de un vórtice para la concentración y succión de residuos a través del movimiento giratorio del cuerpo de agua con velocidades rotacionales distintas.
El presente sistema y un método es utilizado en la acuicultura sin necesidad de modificar los estanques existentes, y permite la autolimpieza en los estanques de cultivo incluso cuando la relación de aspecto (D/h) entre el diámetro del estanque (D) y altura de agua útil (h) es menor a la requerida para alcanzar las condiciones fluido-dinámicas que permiten generar un efecto de autolimpieza convencional, y que permite la autolimpieza en los estanques de cultivo incluso cuando la velocidad del agua requerida para el cultivo seguro y saludable de la especie en cultivo es menor que la velocidad requerida para alcanzar las condiciones fluido-dinámicas que permiten generar un efecto de autolimpieza convencional.
DESCRIPCIÓN DE LAS FIGURAS
La FIG. 1 muestra una vista esquemática del sistema de limpieza instalado en un estanque circular, de acuerdo con una modalidad ejemplar.
La FIG. 2 muestra una vista esquemática en planta de un separador con una abertura central y una abertura exterior, de acuerdo con una modalidad ejemplar.
La FIG. 3 muestra una vista esquemática en planta de un separador como el de la FIG. 2 que tiene aberturas radiales rectangulares, de acuerdo con una modalidad ejemplar.
La FIG. 4 muestra una vista esquemática en planta de un separador como el de la FIG. 2 que tiene aberturas radiales con sección variable, de acuerdo con una modalidad ejemplar.
La FIG. 5 muestra una vista esquemática en planta de un separador como el de la FIG. 2 que tiene aberturas radiales con forma de arcos concéntricos, de acuerdo con una modalidad ejemplar.
La FIG. 6 muestra una vista esquemática del sistema de limpieza instalado en un estanque circular como el de la FIG. 1 en donde el inyector superior y el inyector inferior tiene múltiples salidas tal como un rociador vertical tipo flauta, de acuerdo con una modalidad ejemplar. La FIG. 7 muestra una vista esquemática del sistema de limpieza instalado en un estanque circular como el de la FIG. 6 en donde el inyector superior y el inyector inferior están en dispositivos de inyección de agua separados, de acuerdo con una modalidad ejemplar.
La FIG. 8 muestra una vista esquemática del sistema de limpieza instalado en un estanque circular como el de la FIG. 6 en donde el inyector inferior tiene un inyector eductor, de acuerdo con una modalidad ejemplar.
La FIG. 9 muestra una vista esquemática del sistema de limpieza instalado en un estanque circular similar al de la FIG. 1 en donde el inyector inferior es reemplazado por medios para impulsar agua ubicados dentro de la sección inferior del estanque, de acuerdo con una modalidad ejemplar.
DESCRIPCION DETALLADA DE LA INVENCIÓN
La presente invención está referida a un sistema de autolimpieza que permite la remoción continua de los residuos sólidos en los estanques de cultivo utilizados en acuicultura. El sistema comprende un separador de un diámetro similar al del estanque de cultivo, que se instala al interior del estanque de cultivo para lograr una separación horizontal de éste, separando el estanque y el cuerpo de agua en una sección superior y una sección inferior. En la sección superior del estanque se ubican las especies que están en proceso de cultivo, mientras que en la sección inferior del estanque se generan condiciones fluido- dinámicas que generan vorticidad, succión y autolimpieza del estanque completo, por lo que en dicha sección inferior se acumulan y eliminan los residuos sólidos.
El separador comprende un divisor, una abertura central, aberturas radiales y una abertura exterior, en donde la abertura central y las aberturas radiales poseen un tamiz que evita el paso de especies de cultivo a la sección inferior, pero que permite el traspaso de agua con los residuos sólidos hacia la sección inferior, y en donde la abertura exterior se dimensiona de modo de permitir el ingreso de un dispositivo de inyección de agua, cuyas dimensiones dependerá de las configuraciones hidrodinámicas que se deseen generar en el agua. El separador posee medios de fijación, los que permiten fijar y regular su posición vertical en el estanque de cultivo de dicho separador, en donde los medios de fijación corresponden a una pluralidad de soportes verticales o patas ubicadas en la periferia de su cara inferior que se apoyan en el fondo del estanque, o bien cuerdas, cadenas u otros elementos que permiten colgar dicho separador desde la parte superior del estanque. En el estanque de cultivo se instala un dispositivo de inyección de agua que inyecta un primer caudal de agua en la sección superior y otro dispositivo que inyecta un segundo caudal de agua en la sección inferior. En donde el primer caudal de agua que es inyectado en la sección superior genera que la masa de agua dentro de la sección superior rote con una primera velocidad rotacional, generando al menos un flujo primario dentro de la sección superior. El dispositivo de inyección permite regular el caudal de ingreso de agua en la sección superior, permitiendo que la velocidad de flujo sea adecuada para el desarrollo de la especie en cultivo. Por otro lado, el segundo caudal de agua que es inyectado en la sección inferior genera que la masa de agua dentro de la sección inferior rote con una segunda velocidad rotacional, generando flujos primario y secundario que producen un vórtice de succión en toda la superficie inferior del disco de separación, arrastrando las partículas de la superficie superior del disco hacia abajo. El segundo sistema de inyección permite controlar el segundo caudal para controlar la vorticidad dentro de la sección inferior.
La velocidad del agua en la sección inferior es mayor a la velocidad del agua de la sección superior, por lo que, en las zonas de interacción entre las secciones, como por ejemplo en la abertura central y las aberturas radiales del separador, se genera una diferencia de presión que desplaza los residuos sólidos desde la sección superior hacia la sección inferior mediante el fenómeno de sustentación y arrastre. De esta forma, los residuos sólidos de la sección superior se mueven por los flujos de agua dentro de la sección superior, y son rápidamente arrastrados a las zonas de interacción entre las secciones, desde donde son succionadas hacia la sección inferior por la diferencia de presión entre las dos secciones.
Una vez traspasados a la sección inferior, los residuos sólidos son transportados por los flujos primario y secundario de la vorticidad de la sección inferior hacia un desagüe central conectado a una tubería de desagüe, y son transportados fuera del estanque de cultivo a sistemas convencionales de limpieza y filtración para el tratamiento del agua. De esta manera, el presente sistema de autolimpieza permite una rápida y continua eliminación de los residuos sólidos generados por las especies en cultivo y la alimentación de los mismos y que se acumulan en los estanques de cultivo, manteniendo una velocidad segura para las especies en cultivo en la sección superior, con los beneficios de la autolimpieza del estanque de cultivo, incluso cuando la relación entre el diámetro del estanque y altura de agua útil (D/h) es menor a la requerida para que la autolimpieza convencional ocurra.
En la presente invención, el caudal inyectado en cada sección debe ser regulado de modo que la segunda velocidad rotacional en la sección inferior es mayor que la primera velocidad rotacional en la sección superior. En una realización preferente de la invención, la segunda velocidad rotacional en la sección inferior es al menos el doble que la primera velocidad rotacional en la sección superior. En una realización aún más preferente de la invención, la segunda velocidad rotacional en la sección inferior es al menos el triple que la primera velocidad rotacional en la sección superior. En una realización incluso más preferente de la invención, la segunda velocidad rotacional en la sección inferior es al menos 3,2 veces la primera velocidad rotacional en la sección superior.
En algunas modalidades de la presente invención, el sistema de inyección de agua inyecta agua en la sección superior y/o en la sección inferior mediante variados inyectores de agua, como, por ejemplo, inyectores con una boquilla de gran diámetro, varias boquillas de diámetro menor tipo rociador vertical, eductores individuales o una combinación de los mismos. Preferentemente el sistema de inyección inferior está compuesto por uno o más inyectores eductores, los que optimizan la mezcla del agua y la formación del fenómeno de autolimpieza. El número de inyectores eductores usados dependerá del diámetro hidráulico del estanque de cultivo, del tamaño del eductor, y de los requerimientos de velocidad y mezcla necesarios para la operación del sistema de autolimpieza.
Entre las ventajas de la presente invención se tiene que es no invasiva ni dañina para las especies en cultivo, que la remoción de residuos es continua, que no se requiere modificar ni reemplazar los estanques de cultivo existentes y permite la autolimpieza en estanques de cultivo en donde la relación de aspecto de estanque de cultivo (D/h) no permite alcanzar las condiciones fluido-dinámicas que permitan generar un efecto de autolimpieza convencional.
Entre otras ventajas de la presente invención se tiene que permite disminuir los volúmenes de agua necesarios para la producción, ya que la presente tecnología permite generar un efecto de autolimpieza incluso cuando la relación de aspecto es muy inferior a 1 :3, por lo que permite mantener menores columnas de agua dentro de los estanques de cultivo, reduciendo el volumen de agua requerido para lograr la autolimpieza en los estanques de cultivo. Esto implica que los sistemas de tratamiento y acondicionamiento de agua asociados pueden ser de menores dimensiones y de menor capacidad, al mismo tiempo que requieren de menor espacio físico, y de menos energía para operar. Al disminuir el volumen de agua necesario para la producción, los consumos de energía asociados al movimiento del agua dentro del estanque de cultivo se ven reducidos. Además, el rápido retiro de los residuos sólidos evita que las especies en cultivo se vean expuestas de forma prolongada a la exposición de niveles sub-letales de alguna de las variables de calidad de agua, mejorando su calidad de vida, nivel de estrés y desarrollo, lo que se traduce en mejoras en la productividad por condiciones de salud adecuadas para las especies de cultivo.
En algunas modalidades de la presente tecnología, el separador está formado a partir de una pluralidad de subsecciones desmontables y reemplazables que conforman dicho separador. Adicionalmente, en algunas modalidades de la invención, el tamiz de la abertura central y de las aberturas radiales está montado de manera removible, de modo que el tamiz empleado en cada momento del proceso de cultivo se vaya cambiando y ajustando de acuerdo con los tamaños requeridos para evitar el paso de las especies de cultivo en crecimiento desde la sección superior a la sección inferior, y a su vez permitir el paso de los residuos sólidos desde la sección superior a la sección inferior.
En algunas modalidades de la presente tecnología, el tamiz de la abertura central y de las aberturas radiales tiene una abertura de malla menor al 15% del tamaño promedio del espécimen que se está cultivando, más preferentemente menor al 10% del tamaño promedio del espécimen que se está cultivando, de modo de evitar daños o estrés en los especímenes de cultivo producto de la succión que se genera torno del separador. En donde el tamiz se fabrica de metales como acero, aluminio y aleaciones de cobre, de materiales poliméricos o de una combinación de ellos, tales como mallas metálicas recubiertas con polímeros.
En algunas modalidades de la presente tecnología, los medios de fijación corresponden a una pluralidad de soportes verticales o patas que tienen una graduación con marcas equiespaciadas o graduación en centímetros para facilitar su ajuste vertical y la horizontalidad de su superficie, en donde en donde los medios de fijación corresponden a al menos de tres soportes verticales o patas ubicadas en la zona periférica del separador y al menos tres soportes verticales o patas ubicadas en la zona central.
En algunas modalidades de la presente tecnología, el separador está ubicado a una altura de al menos el 10% de la altura del agua dentro del estanque, más preferentemente a una altura de al menos el 15% de la altura del agua dentro del estanque para asegurar una mejor operación del sistema de remoción de sólidos.
En algunas modalidades de la invención, las aberturas radiales tienen geometría de arcos concéntricos de sección sustancialmente constante. En otras modalidades de la presente tecnología, las aberturas radiales tienen forma rectangular. En otras realizaciones de la presente tecnología, las aberturas radiales se conforman por una pluralidad de tomas de succión con forma de rampa poco profunda con paredes curvas, similar a los conductos NACA, de modo de reducir la perturbación en el flujo causada por la succión en las zonas de las rejillas.
En algunas modalidades de la invención, el inyector inferior es reemplazado por medios para impulsar agua ubicados dentro de la sección inferior, los cuales son accionados mediante un motor para conferir movimiento la masa de agua dentro de la sección inferior para alcanzar y mantener la segunda velocidad rotacional. En donde dichos medios para impulsar agua pueden ser hélices, turbinas, paletas giratorias, álabes u otros elementos mecánicos adecuados.
En algunas modalidades de la presente tecnología, el fondo del estanque es cónico hacia un desagüe en la zona central del fondo del estanque de cultivo, con una pendiente menor al 15%, más preferentemente menor al 10% para asegurar una mejor operación del sistema de remoción de sólidos.
En una modalidad preferente de la presente invención, se tiene un sistema de autolimpieza (100) no invasivo que permite la remoción continua de residuos sólidos en estanques (200) de cultivo para acuicultura, que comprende: al menos un desagüe (203) en la zona central de la parte inferior del estanque (200) de cultivo; un separador (300) que separa el interior del estanque (200) en una sección superior (201) y una sección inferior (202), en donde el separador (300) comprende un divisor (301), una abertura central (302) con tamiz (303), una abertura exterior (304) y una pluralidad de aberturas radiales o concéntricas (305) con tamiz (303); al menos un dispositivo de inyección (400, 401) de agua, que comprende al menos una tubería (410, 420), al menos un inyector superior (411) y al menos un inyector inferior (421); en donde dicho al menos un inyector superior (411) inyecta un primer caudal (Q1) de agua en la sección superior (201) del estanque (200) que genera una primera velocidad rotacional (w1) en la masa de agua de la sección superior (201); en donde dicho al menos un inyector inferior (421) inyecta un segundo caudal (Q2) de agua en la sección inferior (202) del estanque (200) que genera una segunda velocidad rotacional (w2) en la masa de agua de la sección inferior (202); en donde la segunda velocidad rotacional (w2) de la masa de agua de la sección inferior (202) es mayor que la primera velocidad rotacional (w1) de la masa de agua de la sección superior (201).
En otra modalidad preferente de la presente invención, la segunda velocidad rotacional (OÜ2) es al menos el triple que la primera velocidad rotacional (w1) de la masa de agua de la sección superior (S1). En otra modalidad preferente de la presente invención, el separador (300) se forma a partir de múltiples subsecciones desmontables de separador.
En otra modalidad preferente de la presente invención, el tamiz (305) es removible y reemplazable, de modo que permite reemplazar el tamiz según el tamaño y la etapa de desarrollo de la especie de cultivo.
En otra modalidad preferente de la presente invención, los al menos un inyector inferior (421) son inyectores eductores.
En otra modalidad preferente de la presente invención, la primera velocidad rotacional (col) y la segunda velocidad rotacional (w2) tienen la misma dirección natural de la fuerza de Coriolis.
En otra modalidad preferente de la presente invención, dichos al menos un inyector superior (411) y al menos un inyector inferior (421) tienen la descarga posicionada en un ángulo entre 25° y 70° respecto de la recta tangente de la pared del estanque de cultivo.
En otra modalidad preferente de la presente invención, la sección superior (201) es subdividida en al menos dos subsecciones (201a, 201b), en donde cada subsección tiene una velocidad rotacional menor que la de la subsección directamente debajo.
En otra modalidad preferente de la presente invención, se presenta un sistema de autolimpieza (100) no invasivo que permite la remoción continua de residuos sólidos en estanques (200) de cultivo para acuicultura, que comprende: al menos un desagüe (203) en la zona central de la parte inferior del estanque (200) de cultivo; un separador (300) que separa el interior del estanque (200) en una sección superior (201) y una sección inferior (202), en donde el separador (300) comprende un divisor (301), una abertura central (302) con tamiz (303) y una pluralidad de aberturas radiales o concéntricas (305) con tamiz (303); al menos un dispositivo de inyección (400, 401) de agua, que comprende al menos una tubería (410, 420) y al menos un inyector superior (411); y medios para impulsar agua (422) ubicados dentro de la sección inferior (202); en donde dicho al menos un inyector superior (411) inyecta un primer caudal (Q1) de agua en la sección superior (201) del estanque (200) que genera una primera velocidad rotacional (w1) en la masa de agua de la sección superior (201); en donde los medios para impulsar agua (422) impulsan la masa de agua en la sección inferior (202) del estanque (200) y generan una segunda velocidad rotacional (w2) en la masa de agua de la sección inferior (202); en donde la segunda velocidad rotacional (w2) de la masa de agua de la sección inferior (202) es mayor que la primera velocidad rotacional (w1) de la masa de agua de la sección superior (201).
En otra modalidad preferente de la presente invención, los medios para impulsar agua (422) son hélices, turbinas, paletas giratorias, álabes u otros elementos mecánicos adecuados.
En otra modalidad preferente de la presente invención, se presenta un método de autolimpieza no invasivo que permite la remoción continua de residuos sólidos en estanques de cultivo (200) para acuicultura, que comprende las etapas de: inyectar un primer caudal (Q1) de agua en una sección superior (201) del estanque (200); inyectar un segundo caudal (Q2) de agua en una sección inferior (202) del estanque (200); generar una primera velocidad rotacional (w1) en una primera masa de agua de una sección superior (201) del estanque
(200) de cultivo; generar una segunda velocidad rotacional (w2) en una segunda masa de agua de una sección inferior (202) del estanque (200) de cultivo; desplazar los residuos sólidos desde la sección superior (201) a la sección inferior (202) mediante una diferencia de presión; y extraer un caudal de agua desde el estanque (200) de cultivo a través de un desagüe (203); en donde la segunda velocidad rotacional (w2) de la masa de agua de la sección inferior (202) es mayor que la primera velocidad rotacional (w1) de la masa de agua de la sección superior
(201).
En otra modalidad preferente de la presente invención, el método además comprende el paso de reemplazar el tamiz según el tamaño y la etapa de desarrollo de la especie de cultivo y tal como se muestra en la figura 4, el tamiz (303) es igual al tamiz de la pluralidad de aberturas radiales o concéntricas (305) o como se muestra en la figura 5, el tamiz (303) es distinto al tamiz de la pluralidad de aberturas radiales o concéntricas (305).
En otra modalidad preferente de la presente invención, el inyector inferior 421 es un sistema de inyección compuesto por múltiples inyectores, en donde dichos inyectores son inyectores eductores.
EJEMPLOS DE APLICACIÓN
EJEMPLO 1.
El sistema de cultivo descrito se usó para el cultivo y producción de salmones en su etapa de agua dulce en estanques de cultivo circulares con 1,2 metros de diámetro, y 0,5 metros de profundidad, en donde el separador se construyó en forma de disco de diámetro similar al diámetro interior del estanque de cultivo, de modo que el espacio entre el separador y la pared interior del estanque de cultivo fue lo suficientemente pequeña para evitar el paso de los salmones desde la sección superior a la sección inferior. El separador se construyó con una abertura central de 10 centímetros de diámetro y 8 aberturas radiales equiespaciadas con forma de rectángulo de 40 centímetros de largo por 10 centímetros de ancho, en donde la abertura central y las aberturas radiales fueron cubiertas con un tamiz removible de malla de alambre de acero inoxidable con abertura de malla de 2,5 milímetros. El disco se introdujo en el estanque de cultivo y se posicionó a 0,15 metro de la base del estanque mediante patas de soporte apoyadas en la base del estanque.
Para esta realización, se ingresó un inyector superior en la sección superior del estanque y un inyector inferior en la zona inferior del estanque a través de una abertura exterior del separador, en donde en el inyector superior se empleó un sistema de inyección de agua tipo rociador vertical (flauta), y en el inyector inferior se empleó un sistema de inyección de agua tipo eductor. Ambos sistemas de inyección se posicionaron de modo que el caudal de salida quedó direccionado a 45° respecto de la recta tangente al borde interior del estanque.
Con los equipos posicionados dentro del estanque se procedió a introducir el agua y las especies de cultivo al estanque, y mediante una tubería de suministro de agua o bombas de agua conectadas a los inyectores superior e inferior, se introdujo en la sección superior un caudal de agua 7 litros por minuto, y en la sección inferior se introdujo un caudal de 21 ,2 litros por minuto, de modo que la velocidad rotacional en la sección superior fue de 4,6 cm/s y la velocidad rotacional en la sección inferior fue de 14,2 cm/s, en donde las velocidades fueron medidas en el extremo distal del diámetro. Bajo estas condiciones, los residuos sólidos en la sección superior fueron arrastrados por el flujo primario en dicha sección superior hacia las aberturas radiales, donde fueron succionados hacia la sección inferior por el gradiente de presión generado en dichas zonas. Una vez en la sección inferior del estanque, los residuos sólidos fueron transportados por los flujos primarios y secundarios hacia un desagüe en la zona central del fondo del estanque de cultivo, para luego transportar el agua hacia un sistema de filtrado convencional mediante tuberías.
En la medida que los salmones fueron creciendo, aumentó la cantidad de alimento introducido y las deposiciones de los peces fueron creciendo en tamaño, por lo que se realizaron sucesivos cambios de tamiz, reemplazando la malla de acero por mallas con mayor abertura de modo que los residuos sólidos de mayor tamaño fueran capaces de traspasar el separador, pero sin permitir que los salmones traspasasen a la sección inferior del estanque de cultivo.
EJEMPLO 2
En este ejemplo se determinó el efecto del separador durante la mantención de erizo de mar ( Loxechinus albus, sea urchirí). Para este fin se utilizó el mismo estanque de 1 ,2 m de diámetro y el mismo separador, al cual se le cambió sólo el tamiz removible por uno de abertura de malla de 0,5 cm. En el estanque se instaló el separador, se agregó agua de mar y luego se colocaron 30 erizos de 4 cm de diámetro. Para facilitar la comparación, se utilizó el mismo caudal de ingreso de agua en la sección superior e inferior del estanque, generando velocidades de rotacional en la sección superior de 4,3 cm/s y la velocidad rotacional en la sección inferior fue de 14,5 cm/s, en donde las velocidades fueron medidas en el extremo distal del diámetro. Los Erizos fueron alimentados cada 3 días con trozos de alga verde ( Ulva spp) y el alga parda ( Lessonia spp ).
Bajo estas condiciones de operación, se detectó, por un período de 40 días, el mismo fenómeno ocurrido con los salmones del ejemplo 1 , los residuos sólidos en la sección superior (trozos de algas y heces) fueron arrastrados por el flujo primario en dicha sección superior hacia las aberturas radiales, donde fueron succionados hacia la sección inferior por el gradiente de presión generado en dichas zonas. Una vez en la sección inferior del estanque, los residuos sólidos fueron transportados por los flujos primarios y secundarios hacia un desagüe en la zona central del fondo del estanque de cultivo, para luego transportar el agua hacia un sistema de filtrado convencional mediante tuberías.
Los resultados del ejemplo 2 deben ser considerados relevantes para la aplicación de esta nueva tecnología en el cultivo y producción de peces, moluscos y crustáceos que presentan en su ciclo de vida una etapa de desarrollo bentónica, como especies sésiles o hemisésiles, o que requieren el uso de dispositivos o elementos como refugios artificiales para su correcto cultivo. Estos requerimientos de cultivo afectan negativamente la formación del segundo patrón de flujo en los estanques de producción, limitando los beneficios que genera el efecto de autolimpieza. En este grupo de especies se encuentran principalmente peces planos como Turbot ( Scophthalmus maximus), Hirame ( Paralichthys olivaceus), Halibut ( Hippoglossus hippoglossus), Bacalao del Atlántico ( Gadus morhua), equinodermos como erizo de mar, crustáceos como camarones, langostas, y moluscos como abulones, pulpos, entre otros. Finalmente, con la finalidad de facilitar la lectura y comprensión de la presente invención, se incorpora a continuación un listado con los números de referencia de los componentes mencionados:
100 sistema de limpieza
200 estanque
201 sección superior
202 sección inferior
203 desagüe
300 separador
301 divisor
302 abertura central
303 tamiz
304 abertura exterior
305 aberturas radiales
400 dispositivo de inyección
401 dispositivo de inyección
410 tubería
411 inyector superior
420 tubería
421 inyector inferior
422 medios para impulsar agua coi primera velocidad rotacional oü2 segunda velocidad rotacional Qi primer caudal
Q2 segundo caudal

Claims

REIVINDICACIONES
1- Un sistema de autolimpieza (100) no invasivo que permite la remoción continua de residuos sólidos en estanques (200) de cultivo para acuicultura, CARACTERIZADO porque comprende: al menos un desagüe (203) en la zona central de la parte inferior del estanque (200) de cultivo; un separador (300) que separa el interior del estanque (200) en una sección superior
(201) y una sección inferior (202), en donde el separador (300) comprende un divisor (301), una abertura central (302) con tamiz (303), una abertura exterior (304) y una pluralidad de aberturas radiales o concéntricas (305) con tamiz (303); al menos un dispositivo de inyección (400, 401) de agua, que comprende al menos una tubería (410, 420), al menos un inyector superior (411) y al menos un inyector inferior (421); en donde dicho al menos un inyector superior (411) inyecta un primer caudal (Qi) de agua en la sección superior (201) del estanque (200) que genera una primera velocidad rotacional (wi) en la masa de agua de la sección superior (201); en donde dicho al menos un inyector inferior (421) inyecta un segundo caudal (Q2) de agua en la sección inferior (202) del estanque (200) que genera una segunda velocidad rotacional (002) en la masa de agua de la sección inferior (202); y en donde la segunda velocidad rotacional (002) de la masa de agua de la sección inferior
(202) es mayor que la primera velocidad rotacional (001) de la masa de agua de la sección superior (201).
2- El sistema de acuerdo con la reivindicación 1, CARACTERIZADO porque la segunda velocidad rotacional (002) es al menos el triple que la primera velocidad rotacional (001) de la masa de agua de la sección superior (S1).
3- El sistema de acuerdo con la reivindicación 1, CARACTERIZADO porque el separador (300) se forma a partir de múltiples subsecciones desmontables de separador.
4- El sistema de acuerdo con la reivindicación 1, CARACTERIZADO porque el tamiz (305) es removible y reemplazable, de modo que permite reemplazar el tamiz según el tamaño y la etapa de desarrollo de la especie de cultivo. 5- El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque los al menos un inyector inferior (421) son inyectores eductores.
6- El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque la primera velocidad rotacional (coi) y la segunda velocidad rotacional (002) tienen la misma dirección natural de la fuerza de Coriolis.
7- El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque dichos al menos un inyector superior (411) y al menos un inyector inferior (421) tienen la descarga posicionada en un ángulo entre 25° y 70° respecto de la recta tangente de la pared del estanque de cultivo.
8- El sistema de acuerdo con la reivindicación 1 , CARACTERIZADO porque la sección superior (201) es subdividida en al menos dos subsecciones (201a, 201b), en donde cada subsección tiene una velocidad rotacional menor que la de la subsección directamente debajo.
9- Un sistema de autolimpieza (100) no invasivo que permite la remoción continua de residuos sólidos en estanques (200) de cultivo para acuicultura, CARACTERIZADO porque comprende: al menos un desagüe (203) en la zona central de la parte inferior del estanque (200) de cultivo; un separador (300) que separa el interior del estanque (200) en una sección superior (201) y una sección inferior (202), en donde el separador (300) comprende un divisor (301), una abertura central (302) con tamiz (303) y una pluralidad de aberturas radiales o concéntricas (305) con tamiz (303); al menos un dispositivo de inyección (400, 401) de agua, que comprende al menos una tubería (410, 420) y al menos un inyector superior (411); y medios para impulsar agua (422) ubicados dentro de la sección inferior (202); en donde dicho al menos un inyector superior (411) inyecta un primer caudal (Q1) de agua en la sección superior (201) del estanque (200) que genera una primera velocidad rotacional (001) en la masa de agua de la sección superior (201); en donde los medios para impulsar agua (422) impulsan la masa de agua en la sección inferior (202) del estanque (200) y generan una segunda velocidad rotacional (002) en la masa de agua de la sección inferior (202); y en donde la segunda velocidad rotacional (002) de la masa de agua de la sección inferior
(202) es mayor que la primera velocidad rotacional (001) de la masa de agua de la sección superior (201).
10- El sistema de acuerdo con la reivindicación 9, CARACTERIZADO porque la segunda velocidad rotacional (002) es al menos el triple que la primera velocidad rotacional (001) de la masa de agua de la sección superior (201).
11- El sistema de acuerdo con la reivindicación 9, CARACTERIZADO porque los medios para impulsar agua (422) son hélices, turbinas, paletas giratorias, álabes u otros elementos mecánicos adecuados.
12- El sistema de acuerdo con la reivindicación 9, CARACTERIZADO porque la primera velocidad rotacional (001) y la segunda velocidad rotacional (002) tienen la misma dirección natural de la fuerza de Coriolis.
13- Un método de autolimpieza no invasivo que permite la remoción continua de residuos sólidos en estanques (200) de cultivo para acuicultura, CARACTERIZADO porque comprende las etapas de: inyectar un primer caudal (Q1) de agua en una sección superior (201) del estanque (200); inyectar un segundo caudal (Q2) de agua en una sección inferior (202) del estanque
(200) generar una primera velocidad rotacional (001) en una primera masa de agua de una sección superior (201) del estanque (200) de cultivo; generar una segunda velocidad rotacional (002) en una segunda masa de agua de una sección inferior (202) del estanque (200) de cultivo; desplazar los residuos sólidos desde la sección superior (201) a la sección inferior (202) mediante una diferencia de presión; y extraer un caudal de agua desde el estanque (200) de cultivo a través de un desagüe
(203); en donde la segunda velocidad rotacional (w2) de la masa de agua de la sección inferior (202) es mayor que la primera velocidad rotacional (001) de la masa de agua de la sección superior (201). 14- El método de acuerdo con la reivindicación 13, CARACTERIZADO porque la segunda velocidad rotacional (002) es al menos el triple que la primera velocidad rotacional (001) de la masa de agua de la sección superior (S1). 15- El método de acuerdo con la reivindicación 13, CARACTERIZADO porque además comprende el paso de reemplazar el tamiz según el tamaño y la etapa de desarrollo de la especie de cultivo.
PCT/IB2019/060712 2019-12-12 2019-12-12 Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura WO2021116737A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3161544A CA3161544A1 (en) 2019-12-12 2019-12-12 Non-invasive self-cleaning system and method that allows the continuous removal of solid waste in culture ponds for aquaculture
PCT/IB2019/060712 WO2021116737A1 (es) 2019-12-12 2019-12-12 Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura
EP19955534.3A EP4074175A4 (en) 2019-12-12 2019-12-12 SYSTEM AND NON-INVASIVE SELF-CLEANING PROCESS THAT ALLOWS THE CONTINUOUS REMOVAL OF SOLID WASTE IN AQUACULTURE PONDS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/060712 WO2021116737A1 (es) 2019-12-12 2019-12-12 Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura

Publications (1)

Publication Number Publication Date
WO2021116737A1 true WO2021116737A1 (es) 2021-06-17

Family

ID=76329763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/060712 WO2021116737A1 (es) 2019-12-12 2019-12-12 Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura

Country Status (3)

Country Link
EP (1) EP4074175A4 (es)
CA (1) CA3161544A1 (es)
WO (1) WO2021116737A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651780A (zh) * 2022-04-26 2022-06-24 宜宾职业技术学院 水产养殖水体粪污稳定旋转沉降及排污装置与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1528179A (en) * 1923-08-13 1925-03-03 Henry L Baldridge Fish-hatchery pond
US3884186A (en) * 1971-07-15 1975-05-20 William P Hickey Tank, filter and deproteinator for marine life
WO1988009615A1 (en) 1987-06-12 1988-12-15 Stiftelsen For Industriell Og Teknisk Forskning Ve Fish cultivation tank
US6093320A (en) * 1998-11-30 2000-07-25 Future Sea Technologies Inc Tank cleaning system
US20110174232A1 (en) * 2008-08-08 2011-07-21 Maritime Oppdrett As Fishfarming Pen
CN202035386U (zh) * 2011-04-15 2011-11-16 钱玉芳 自动清洁鱼缸
KR101566390B1 (ko) * 2015-07-10 2015-11-06 대한민국 원형수조용 수직형 선회류 분사장치
CN106962258A (zh) * 2017-05-06 2017-07-21 安徽帝都农业生态园有限公司 一种能自动清理垃圾的养殖池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044950A1 (fr) * 1998-03-06 1999-09-10 Nkk Corporation Procede et appareil de traitement des eaux usees
CN204047624U (zh) * 2014-08-14 2014-12-31 安徽华亿农牧科技发展有限公司 一种水产养殖池垃圾自动清理装置
CN107996488B (zh) * 2017-11-09 2021-02-02 安徽有机良庄农业科技股份有限公司 一种周期性换水增氧水产养殖箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1528179A (en) * 1923-08-13 1925-03-03 Henry L Baldridge Fish-hatchery pond
US3884186A (en) * 1971-07-15 1975-05-20 William P Hickey Tank, filter and deproteinator for marine life
WO1988009615A1 (en) 1987-06-12 1988-12-15 Stiftelsen For Industriell Og Teknisk Forskning Ve Fish cultivation tank
US6093320A (en) * 1998-11-30 2000-07-25 Future Sea Technologies Inc Tank cleaning system
US20110174232A1 (en) * 2008-08-08 2011-07-21 Maritime Oppdrett As Fishfarming Pen
CN202035386U (zh) * 2011-04-15 2011-11-16 钱玉芳 自动清洁鱼缸
KR101566390B1 (ko) * 2015-07-10 2015-11-06 대한민국 원형수조용 수직형 선회류 분사장치
CN106962258A (zh) * 2017-05-06 2017-07-21 安徽帝都农业生态园有限公司 一种能自动清理垃圾的养殖池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651780A (zh) * 2022-04-26 2022-06-24 宜宾职业技术学院 水产养殖水体粪污稳定旋转沉降及排污装置与方法
CN114651780B (zh) * 2022-04-26 2024-03-22 宜宾职业技术学院 水产养殖水体粪污稳定旋转沉降及排污装置与方法

Also Published As

Publication number Publication date
EP4074175A4 (en) 2023-09-06
EP4074175A1 (en) 2022-10-19
CA3161544A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US5660141A (en) Process and arrangement for the supply of water to a pond
CN105613389B (zh) 一种对虾养殖系统
CN204707768U (zh) 循环水鱼类种苗培育系统
KR101507052B1 (ko) 와류 형성을 위한 사육수 분사용 노즐
KR101330704B1 (ko) 에어리프트를 이용한 순환식 양식 시스템
CN109329175A (zh) 一种绿色低碳高效工业化生态养殖池塘结构
CN112624506A (zh) 一种水产养殖尾水综合处理系统及方法
CN103719011B (zh) 一种沉淀分离式养殖池
US20170118963A1 (en) Farming apparatus for aquatic organisms living in sandy soil
CN106719246A (zh) 基于气提循环的工厂化对虾养殖系统和方法
CN108835001A (zh) 一种气体旋流集污的养殖池系统
JP2006217822A (ja) 魚介類の養殖装置及び養殖方法
CN110143697A (zh) 一种水产池净化装置及水产养殖系统
CN104969899B (zh) 日本囊对虾养殖池自动清污装置及方法
CN105638552B (zh) 一种可去除水体中二氧化碳的渔业养殖装置及使用方法
WO2021116737A1 (es) Sistema y método no invasivo de autolimpieza que permite la remoción continua de residuos sólidos en estanques de cultivo para acuicultura
CN207744589U (zh) 一种漂浮式池塘内循环流水鱼养殖水槽尾水处理系统
CN107279000A (zh) 南美白对虾的循环养殖方法
JP2007159507A (ja) 貝類養殖槽および貝類養殖方法
CN108566913A (zh) 一种池塘循环流水正方形养殖槽系统
JP5913717B1 (ja) 砂地生息水中生物の養殖装置
CN110036967B (zh) 双鱼塘循环水生态养鱼系统
CN115053853B (zh) 一种新型高效生态漂浮水产苗种流水培育养殖系统
CN104351097B (zh) 一种流水式贝类苗种繁育系统
CA3161544C (en) Non-invasive self-cleaning system and method that allows the continuous removal of solid waste in culture ponds for aquaculture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3161544

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019955534

Country of ref document: EP

Effective date: 20220712