WO2021115295A1 - 一种智能3d采集模组、具有3d采集装置的移动终端 - Google Patents

一种智能3d采集模组、具有3d采集装置的移动终端 Download PDF

Info

Publication number
WO2021115295A1
WO2021115295A1 PCT/CN2020/134747 CN2020134747W WO2021115295A1 WO 2021115295 A1 WO2021115295 A1 WO 2021115295A1 CN 2020134747 W CN2020134747 W CN 2020134747W WO 2021115295 A1 WO2021115295 A1 WO 2021115295A1
Authority
WO
WIPO (PCT)
Prior art keywords
image acquisition
mobile terminal
acquisition device
image
module
Prior art date
Application number
PCT/CN2020/134747
Other languages
English (en)
French (fr)
Inventor
左忠斌
左达宇
Original Assignee
左忠斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911293687.1A external-priority patent/CN111050154B/zh
Priority claimed from CN201911276020.0A external-priority patent/CN111064949B/zh
Application filed by 左忠斌 filed Critical 左忠斌
Publication of WO2021115295A1 publication Critical patent/WO2021115295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/261Image signal generators with monoscopic-to-stereoscopic image conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals

Definitions

  • the present invention relates to the technical field of object collection, in particular to the technical field of using a camera to perform three-dimensional collection of a target in a mobile terminal.
  • 3D acquisition methods include structured light method and laser scanning method, but these methods all require a light source and a beam shaping system, which are costly, consume a lot of power, and take up a lot of space.
  • mobile phones usually have 1-3 cameras to achieve some special shooting effects, such as background blur.
  • camera system that can be used for 3D acquisition on mobile phones. If only the current camera system is used, it is difficult to perform 3D stitching due to the limited shooting angle, and 3D images cannot be obtained. If you want to increase the shooting angle and increase the redundancy of the captured images, you need to set up multiple cameras.
  • the Digital Emily project of the University of Southern California uses a spherical bracket to fix hundreds of cameras at different positions and angles on the bracket. This conventional system that uses image acquisition equipment for 3D acquisition is difficult to use on small-sized mobile terminal devices such as mobile phones.
  • the present invention is proposed to provide a mobile terminal equipped with a three-dimensional image acquisition module that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • One aspect of the present invention provides a mobile terminal with a lifting type rotating 3D collection device, including a lifting device, a rotation device, and an image collection device;
  • the lifting device, the rotating device, and the image acquisition device are connected in sequence;
  • the lifting device, the rotating device, and the image acquisition device can all be partially or completely stored in the mobile terminal housing;
  • the light entrance of the image capture device is exposed outside the casing of the mobile terminal;
  • the image acquisition device is connected to the mobile terminal for data.
  • Another aspect of the present invention provides a mobile terminal with a hidden rotating 3D acquisition device, including a rotating device and an image acquisition device;
  • the rotating device is connected to the image acquisition device and is located in the housing of the mobile terminal;
  • the part of the mobile terminal housing corresponding to the image acquisition device is made of light-transmitting material
  • the image acquisition device is connected to the mobile terminal for data.
  • the lifting device, the rotating device, and the image acquisition device can be separated or inseparable from each other.
  • the lifting device, the rotating device, the image acquisition device and the mobile terminal housing can be separated or inseparable from each other.
  • the image acquisition device is a visible light camera, an infrared camera or a combination of both.
  • the visible light camera and the infrared camera rotate independently of each other.
  • the data connection mode is an interface that cooperates with a Type-c interface, a MicroUSB interface, a USB interface, a Lightning interface, a wifi interface, a Bluetooth interface, and a cellular network interface, or an image acquisition device internally communicates with the mobile terminal through the data interface connection.
  • the image collected by the image collection device during the collection process is displayed on the screen of the mobile terminal in real time.
  • the position of the photosensitive element of the image acquisition device during the rotation satisfies:
  • is the adjustment coefficient, ⁇ 0.596.
  • ⁇ 0.432 preferably, ⁇ 0.113.
  • the third aspect of the present invention provides an intelligent 3D acquisition module for a mobile terminal, including a data interface, a motion driving device, a motion device, and an image acquisition device;
  • the image acquisition device is set on the movement device
  • the motion drive device is connected to the motion device
  • the motion drive device is electrically connected to the mobile terminal through the data interface
  • the image acquisition device is electrically connected to the mobile terminal through a data interface
  • the motion device drives the image acquisition device to move, thereby acquiring images of the target from different angles;
  • the above image is used to construct 3D information of the target.
  • the movement device includes a guide rail and/or a turntable.
  • the module and the mobile terminal are independent of each other, and the module and the mobile terminal are rigidly connected.
  • a mobile terminal is embedded in the module, and the module is internally connected to the mobile terminal through a data interface.
  • the image acquisition device includes a visible light image acquisition device and/or an infrared image acquisition device.
  • the image acquisition device extends out of the module housing.
  • the area where the image acquisition device moves further includes a light-transmitting shell part.
  • the module is connected to a voice module and/or a display module in the mobile terminal.
  • the direction of the optical axis of the image collection device is different.
  • the mobile terminal receives multiple images sent by the data interface, and the mobile terminal processor synthesizes them into a 3D model of the target; or, the module includes a processor to synthesize the images obtained by the image acquisition device into a 3D model, And send to the mobile terminal through the data interface.
  • the collection position of the image collection device is:
  • the fourth aspect of the present invention also provides a mobile terminal, which includes any of the above-mentioned modules.
  • the present invention also provides a mobile terminal with a 3D acquisition device, including a rotation device and an image acquisition device;
  • the rotating device drives the image acquisition device to rotate
  • the entire device can be moved, which is convenient for users to use outdoors, and is convenient for users to perform 3D acquisition and synthesis modeling at any time.
  • the rotation axis of the image capturing device and the photosensitive element of the image capturing device are separated from each other, so that 3D capturing can be realized in a small space.
  • FIG. 1 is a schematic structural diagram of a hidden state of a three-dimensional acquisition module of a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a raised state of a three-dimensional acquisition module of a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of another structure hidden state of the three-dimensional acquisition module of the mobile terminal according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of another structure of a three-dimensional acquisition module of a mobile terminal in a raised state according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged schematic diagram of another structure of the three-dimensional acquisition module of the mobile terminal according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a third structure of a three-dimensional acquisition module of a mobile terminal according to Embodiment 1 of the present invention.
  • FIG. 7 is an enlarged schematic diagram of the third structure of the three-dimensional acquisition module of the mobile terminal according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a three-dimensional acquisition module of a mobile terminal according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of an implementation manner of a 3D acquisition module in Embodiment 3 of the present invention.
  • FIG. 10 is a schematic structural diagram of another implementation manner of the 3D acquisition module in Embodiment 3 of the present invention.
  • FIG. 11 is a schematic structural diagram of a third implementation manner of a 3D acquisition module in Embodiment 3 of the present invention.
  • FIG. 12 is a schematic structural diagram of a fourth implementation manner of a 3D acquisition module in Embodiment 3 of the present invention.
  • FIG. 13 is a schematic structural diagram of a fifth implementation manner of a 3D acquisition module in Embodiment 3 of the present invention.
  • an embodiment of the present invention provides a three-dimensional acquisition module for a mobile terminal. As shown in Figure 1 to Figure 8, it specifically includes: a data interface, a lifting device 1, a rotating device 2, and an image acquisition device 3.
  • the image acquisition device 3 is arranged on the rotating device 2, and the rotating device 2 is arranged on the lifting device 1.
  • the rotating device 2 and the image acquisition device 3 can be fully or partially housed in the mobile phone housing or exposed case.
  • the lifting device can be a sliding rail, a telescopic pole or other similar objects.
  • the lifting device 1 can be driven by a lifting driving device for automatic lifting, or the user can manually push and pull to realize lifting.
  • the rotating device 2 can drive the image acquisition device 3 to rotate, so that the image acquisition device scans a certain range.
  • the scanning direction is preferably a horizontal direction
  • the above-mentioned rotation is autorotation, that is, the rotation axis passes through the image acquisition device 3.
  • the special rotation axis passes through the mobile terminal, and the rotation axis is longitudinally parallel to the mobile terminal.
  • the image acquisition device 3 continuously shoots pictures or videos, that is, the process of rotating scanning and image acquisition is synchronized, and the image acquisition device 3 is also rotating during the image acquisition process.
  • the direction facing the screen of the mobile phone is 0°
  • the rotation angle of the image acquisition device 3 is -60° ⁇ +60°. In this way, when the user points the camera at himself, the image acquisition device 3 can scan the entire face of the user.
  • the above scanning angle can also be expanded, for example -75° ⁇ +75°.
  • the rotation axis of the image capturing device and the photosensitive element of the image capturing device are separated from each other, so as to ensure that the captured images can be used to synthesize a 3D model.
  • the above-mentioned rotating device 2 may have a built-in rotating drive device, such as a motor. However, the rotating device 2 may not be provided with a rotating driving device, and it may be placed in the lifting device 1, even in the housing of the mobile terminal.
  • the rotation driving device drives the rotation device 2 to rotate through a connecting rod, gear, belt or similar transmission structure.
  • the lifting structure 1 and the rotating structure mentioned above are all set in the mobile terminal, they can have multiple connection modes with the mobile terminal.
  • the lifting device 1 is fixedly connected to the mobile terminal, and the rotating device 2 is detachably connected to the lifting device. That is, the rotating device 2 and the image capture device 3 on it can be connected to the mobile terminal in a post-insertion manner, especially the connection To the lifting device 1.
  • the lifting device 1, the rotating device 2, and the image acquisition device 3 are all inseparably connected to the mobile terminal.
  • the lifting device 1, the rotating device 2, and the image acquisition device 3 are all detachably connected to the mobile terminal.
  • the connection between the above-mentioned mechanical structures can be realized by a variety of ways, such as a slot, a protrusion, a snap, and a lock.
  • the entire module is external, and the mechanical connection and electrical connection are realized by the same structure.
  • the mobile phone module is connected to the mobile phone through a mechanical connector/electrical connector, and the mobile phone module and the mobile phone are relatively rigidly connected, so that the two are integrated.
  • the earphone plug described above is inserted into the earphone jack of the mobile terminal, and the mechanical connection and the electrical connection are realized at the same time.
  • Both the module and the mobile phone can be rigidly fixed to each other, and signals can be transmitted between each other.
  • the mechanical connection can also utilize additional mechanical connections. For example, additional plugs and jacks, protrusions and card slots are provided between the module and the mobile phone to achieve a rigid and fixed connection between the module and the mobile phone.
  • the module has a headphone plug, a microUSB plug, a TepyC plug, and a Lightning plug, which are correspondingly inserted into the corresponding sockets of the mobile phone, but this kind of insertion is only used for mechanical connection, not For signal transmission, the signal is connected by other means.
  • the module and the mobile phone are integrated.
  • the module can be fixed relative to the target, and pictures from different angles can be taken through the movement of the image acquisition device.
  • the data interface can be an interface that cooperates with a Type-c interface, a MicroUSB interface, a USB interface, a Lightning interface, a wifi interface, a Bluetooth interface, and a cellular network interface, so as to connect with the mobile terminal in a wired or wireless manner.
  • the entire module is built-in.
  • the data interface can be directly connected to the processor of the mobile terminal internally. That is to say, the above structure is integrated with the mobile terminal.
  • the lifting device drives the rotating device and the image acquisition device to rise until the light entrance of the image acquisition device is completely exposed to the mobile phone shell.
  • the rotating device starts to rotate from 0° to the left to the - ⁇ angle, then to the right to the ⁇ angle, and then to 0°. Where 0° is the vertical direction of the mobile phone screen.
  • the optical center of the image acquisition device is collected at a certain distance L, so that the multiple images collected by the image acquisition device can be used for 3D synthesis, and the synthesis accuracy and the synthesis time are taken into account.
  • L The specific setting method of L is subject to follow-up.
  • the image acquisition device does not rely on manual movement, but precisely rotates according to the purpose of the acquisition (the rotation conditions and shooting position are limited by the above L), so that the accuracy of the 3D acquisition information can be guaranteed.
  • the image information collection will be uneven, incomplete, and even difficult to match and splice into a 3D image.
  • it does not rely on moving or rotating the entire mobile phone to achieve image capture, because this kind of movement either requires the mobile phone to be installed on an additional track, or it is free movement without a track.
  • the former limits the usage scenarios, while the latter leads to a decrease in the quality of the collection.
  • the image acquisition device 3 sends the collected images to the mobile terminal processor through the data interface.
  • a 3D synthesis algorithm is stored in the mobile terminal, so the above-mentioned multiple images are 3D synthesized in the processor of the mobile terminal, and the synthesized result is finally displayed on the screen. That is, the processor is used to synthesize the 3D model of the target object according to the 3D synthesis algorithm according to the multiple images collected by the image acquisition device to obtain the 3D information of the target object. Users can display 3D point cloud images, 3D grid images, 3D rendered images, and 3D models with texture mapping as needed.
  • the processing capabilities of mobile terminals are limited, and excessive data processing will bring a long time delay, affect users to use other functions, and cause a sharp increase in power consumption. Therefore, after receiving the multiple images, the processor of the mobile terminal sends the multiple images to the cloud platform through the communication interface of the mobile terminal, performs 3D synthesis in the cloud platform, and transmits the combined 3D image back to the mobile terminal , Or according to the user's choice, download the corresponding 3D composite image or model from the cloud platform.
  • the image acquisition device 3 can also be tilted, so that the acquisition range of the image acquisition device can be expanded.
  • a larger collection range in the vertical direction can also be achieved through the lifting of the lifting device 1.
  • the lifting device 1 and the rotating device 2 may include a magnetic levitation device, so that the moving process is smoother and the user experience is improved.
  • the image acquisition device 3 may be a visible light camera/camera module or an infrared camera/camera module.
  • the visible light camera will not be able to collect the image completely.
  • the infrared camera can be used for collection, and in the subsequent processing, the images collected by the visible light camera and the infrared camera can be matched and fused with each other to realize 3D information collection.
  • the infrared camera and the visible light camera can be arranged side by side on the rotating device 2. Or use two rotating devices 2 to drive the visible light camera and the infrared camera respectively, so that the scanning processes of the two cameras are independent of each other.
  • the image acquisition device 3 can also use a single camera with a wider spectral sensing range, and take both a visible light camera and an infrared camera into consideration.
  • the light source is an LED lamp bead, but a smart light source can also be provided, for example, different light source brightness, brightness, etc. can be selected according to needs.
  • the light source is used to illuminate the target to prevent the target from being too dark to affect the collection effect and accuracy. But at the same time, it is necessary to prevent the light source from being too bright, causing the loss of target texture information.
  • the light source can also use the mobile terminal's own light source to illuminate the part to be scanned.
  • the light source can rotate together with the image acquisition device to ensure consistent lighting conditions in the acquisition area.
  • the mobile terminal's own light source can also be used.
  • the brightness of the built-in light source can be controlled through software.
  • the image collected by the image collection device 3 can be transmitted to the display module of the mobile terminal for display, so as to facilitate the user to observe the self-collection process.
  • the acquisition module that is too far or too close to the target it can be displayed through the display module, and can be reminded through the voice module.
  • the image collected by the module may not be displayed in the display module of the mobile terminal, but the information that it is too far or too close to the target object can be voiced through the mobile terminal to prompt the user to move.
  • the connection between the module and the voice or display module of the mobile terminal is also realized through the data interface of the module.
  • the mobile terminal may not have a lifting device, or although it has a lifting device, the lifting device may not be required during collection.
  • the image capturing device must be lifted out of the mobile terminal housing.
  • the rotating device 2 and the image capturing device 3 are both located in the housing of the mobile terminal.
  • the rotating device 2 can still drive the image capturing device 3 to rotate, but the mobile terminal housing corresponding to the rotating area of the image capturing device 3 should be a transparent material, such as a transparent resin material.
  • the image capture device 3 can still scan and capture images without being exposed to the outside of the housing.
  • the light-transmitting material only needs to transmit infrared light, and does not need to transmit visible light.
  • the wavelength of light that the light-transmitting material can transmit can match the wavelength collected by the image collecting device 3.
  • the shooting position needs to be optimized. Since the mobile terminal is usually small in size, the optimization of the position of the image acquisition device 3 should be based on the photosensitive element of the image acquisition device 3. In other words, the position of the photosensitive element of the image acquisition device 3 during the rotation should satisfy:
  • the separation distance of the location preferably satisfies the following empirical formula:
  • the two adjacent acquisition positions of the photosensitive element meet the following conditions:
  • is the adjustment coefficient, ⁇ 0.596.
  • d takes the length of the rectangle; when the above two positions are along the width direction of the photosensitive element, d is the width of the rectangle.
  • the distance from the photosensitive element to the surface of the target along the optical axis is taken as T.
  • L is A n, A n + 1 linear distance optical center of two photosensitive elements, and A n, A n + 1 of two adjacent photosensitive elements A n- 1.
  • parameters such as object size and field of view angle are used as methods for estimating the position of the mobile phone camera module, and the relationship between the two positions is also expressed by angle. Since the angle is not easy to measure in actual use, it is more inconvenient in actual use. And, the size of the object will change with the change of the measuring object. For example, after collecting the 3D information of an adult's head, and then collecting the head of a child, the head size needs to be re-measured and recalculated. The above-mentioned inconvenient measurement and multiple re-measurements will cause measurement errors, which will lead to errors in the estimation of the position of the mobile phone camera module.
  • this solution provides the empirical conditions that the mobile phone camera module position needs to meet, not only avoids measuring angles that are difficult to accurately measure, but also does not require direct measurement of the size of the object.
  • d and f are fixed parameters of the mobile phone camera module.
  • T is only a straight line distance, which can be easily measured by traditional measuring methods, such as rulers and laser rangefinders. Therefore, the empirical formula of the present invention makes the preparation process convenient and quick, and at the same time improves the positioning accuracy of the mobile phone camera module position, so that the mobile phone camera module can be set in an optimized position, thereby taking into account 3D synthesis at the same time. For accuracy and speed, see the following for specific experimental data.
  • the distance T between the CCD and the surface of the object can be obtained according to the above formula, which makes the equipment It becomes easy when designing and debugging. Since the mobile phone camera module parameters (focal length f, CCD size) are determined when the mobile phone camera module is purchased, and will be marked in the product description, it is easy to obtain. Therefore, the camera position can be easily calculated according to the above formula, without the need for tedious field angle measurement and object size measurement. In the same way, when collecting different objects, the measurement of the size of the object is more cumbersome due to the different size of the object.
  • the position of the camera of the mobile phone determined by the present invention can take into account the synthesis time and the synthesis effect. Therefore, the above empirical condition is one of the invention points of the present invention.
  • an embodiment of the present invention provides an intelligent 3D acquisition module for a mobile terminal. As shown in Figs. 9-13, it specifically includes: a data interface 11, a motion driving device 12, a motion device 13, and an image acquisition device 3.
  • the image acquisition device 3 is arranged on the movement device 13.
  • the moving device 13 may be a guide rail including a sliding table.
  • the image acquisition device 3 is installed on the sliding table, or the housing of the image acquisition device 3 is directly installed on the guide rail as a sliding table, or the housing of the image acquisition device 3 and the module housing are mutually connected.
  • a sliding fit is formed to realize the translation of the image acquisition device 3 on the guide rail.
  • the motion driving device 12 is connected to the motion device 13 and can drive a sliding table or directly drive the housing of the image acquisition device 3 to move.
  • the corresponding structure can also be driven to make the image acquisition device 3 move in translation.
  • the image acquisition device 3 does not rely on manual movement, but is driven and moved according to the purpose of the acquisition, and has certain requirements for the acquisition position, and needs to meet the empirical formula setting (detailed below), so that it can Ensure the accuracy of 3D information collected. If you only rely on the customer's manual movement, it will cause uneven and incomplete image information collection, and it will even be difficult to match and stitch into a 3D image. At the same time, it does not rely on moving the entire mobile phone to achieve image capture, because this kind of movement either requires the mobile phone to be installed on an additional track, or it is free movement without a track. The former limits the usage scenarios, while the latter leads to a decrease in the quality of the collection.
  • the guide rail has a curved shape, such as a circular arc, so that when the image acquisition device 3 moves on it, the movement track is an arc, so as to realize the rotation around the target. As shown in Figure 12 and 13.
  • the guide rail is linear, so that when the image acquisition device 3 moves on it, the movement track is a straight line, so as to realize the scanning of the target.
  • the image acquisition device 3 moves linearly on the guide rail, it can rotate relative to the linear guide rail, so that its optical axis approximately rotates around the target.
  • the linear guide needs to be combined with the turntable. As shown in Figure 9, 10, 11.
  • each image acquisition device 3 moves along a single guide rail, and the motion track is similar to the above.
  • two image acquisition devices 3 can be set to move along the upper and lower guide rails respectively, so that the acquisition range can be expanded, and at the same time, more pictures can be acquired per unit time, which is more efficient.
  • the two image acquisition devices 3 may be cameras of different wavelength bands, such as infrared wavelength band and visible light wavelength band.
  • two image acquisition devices 3 running side by side on a single rail can also improve efficiency.
  • the image acquisition device 3 is exposed outside the housing of the acquisition module, that is, the housing of the acquisition module has a corresponding groove, and the image acquisition device 3 protrudes from the groove, as shown in Figs. 10, 11, and 12.
  • the image capture device 3 can be extended out of the groove when needed, and retracted into the housing when it is not working.
  • the groove has a cover, which can close the groove when the image capture device 3 is retracted to avoid dust.
  • the housing of the acquisition module opposite to the image acquisition device 3 is made of a transparent material. In this way, the image acquisition device 3 can directly perform motion acquisition without extending the housing. This is beneficial to waterproof and dustproof.
  • the motion drive device 12 Since the motion drive device 12 is connected to the motion device 3 and drives the image acquisition device 3 to move according to the predetermined requirements of 3D acquisition, the motion drive device 12 needs to have a data interface 11 to receive corresponding motion instructions, that is, the motion drive device 12 passes through The data interface 11 is electrically connected to the mobile terminal.
  • the motion driving device 12 may be a motor, a motor, etc., and the motion device may be a slider, a sliding rail, a turntable, or the like.
  • the entire module is an external type.
  • the data interface 11 can be an interface that matches with a Type-c interface, a MicroUSB interface, a USB interface, a Lightning interface, a wifi interface, a Bluetooth interface, and a cellular network interface. Connect with the mobile terminal through wired or wireless means.
  • the entire module is built-in.
  • the data interface 11 can be directly connected to the processor of the mobile terminal internally.
  • the processor is used to synthesize a 3D model of the target object according to a 3D synthesis algorithm according to the multiple images collected by the image acquisition device to obtain 3D information of the target object.
  • the structure of the module is a part of the mobile phone, that is, although the present invention is described as a module, in fact, these structures already belong to a part of the mobile phone and are already completed when the mobile phone is produced and manufactured.
  • the image acquisition device 3 is electrically connected to the mobile terminal through the data interface 11, so as to transmit the collected images to the mobile terminal for storage and subsequent 3D processing.
  • the module Whether it is external or internal, there is a mechanical connection between the module and the mobile terminal.
  • the module is inserted into the earphone jack of the mobile terminal through the earphone plug. Since the module and the mobile terminal must transmit control signals and image data to each other, in addition to the mechanical connection, there is also an electrical connection, especially a signal connection.
  • the mechanical connection and the electrical connection are realized by the same structure.
  • the mobile phone module is connected to the mobile phone through a mechanical connector/electrical connector, and the mobile phone module and the mobile phone are relatively rigidly connected, so that the two are integrated.
  • the earphone plug described above is inserted into the earphone jack of the mobile terminal, and the mechanical connection and the electrical connection are realized at the same time.
  • Both the module and the mobile phone can be rigidly fixed to each other, and signals can be transmitted between each other.
  • the mechanical connection can also utilize additional mechanical connections. For example, additional plugs and jacks, protrusions and card slots are provided between the module and the mobile phone to achieve a rigid and fixed connection between the module and the mobile phone.
  • the module has a headphone plug, a microUSB plug, a TepyC plug, and a Lightning plug, which are correspondingly inserted into the corresponding sockets of the mobile phone, but this kind of insertion is only used for mechanical connection, not For signal transmission, the signal is connected by other means.
  • the module and the mobile phone are integrated.
  • the module can be fixed relative to the target object, and pictures from different angles can be taken by the movement of the image acquisition device 3.
  • the above-mentioned moving device 13 may also be a turntable, which provides the image acquisition device 3 with the possibility of rotation.
  • the image acquisition device 3 is enabled to collect images in multiple directions by rotating horizontally or up and down. It can be understood that the movement device 13 may also be a combination of a guide rail and a turntable.
  • the movement device 3 may include a magnetic levitation device, so that the moving process is smoother and the user experience is improved.
  • the image acquisition device 3 moves in the housing of the module, and the housing part involved in the movement area is made of a transparent material, such as a transparent resin material.
  • the image acquisition device 3 may be a visible light camera/camera module or an infrared camera/camera module.
  • the visible light camera will not be able to collect the image completely.
  • the infrared camera can be used for collection, and in the subsequent processing, the images collected by the visible light camera and the infrared camera can be matched and fused with each other to realize 3D information collection.
  • the infrared camera and the visible light camera can be side by side in the track. It is also possible to set up two tracks to install an infrared camera and a visible light camera respectively. And you can also use a single camera with a wider spectral sensing range, while taking into account visible light cameras and infrared cameras.
  • the shell of the module has a light source, and the light source is an LED lamp bead, but a smart light source can also be set, for example, different light source brightness, brightness, etc. can be selected according to needs.
  • the light source is used to illuminate the target to prevent the target from being too dark to affect the collection effect and accuracy. But at the same time, it is necessary to prevent the light source from being too bright, causing the loss of target texture information.
  • the light source can also use the mobile terminal's own light source to illuminate the part to be scanned.
  • the images collected by the module can be transmitted to the display module of the mobile terminal for display, so as to facilitate the user to observe their own collection process.
  • the acquisition module that is too far or too close to the target it can be displayed through the display module, and can be reminded through the voice module.
  • the image collected by the module may not be displayed in the display module of the mobile terminal, but the information that it is too far or too close to the target object can be voiced through the mobile terminal to prompt the user to move.
  • the connection between the module and the voice or display module of the mobile terminal is also realized through the data interface 11 of the module.
  • the optical axis direction of the image acquisition device 3 changes relative to the target at different acquisition positions.
  • the positions of two adjacent image acquisition devices 3, or the two adjacent acquisition positions of the image acquisition device 4 meet the following requirements condition:
  • d takes the length of the rectangle; when the above two positions are along the width direction of the photosensitive element of the image capture device, d is the width of the rectangle.
  • the distance from the photosensitive element to the surface of the target along the optical axis is taken as T.
  • L is A n, A n + 1 two linear distance optical center of the image pickup apparatus, and A n, A n + 1 of two adjacent image pickup devices A
  • it is not limited to 4 adjacent positions, and more positions can be used for average calculation.
  • L should be the linear distance between the optical centers of the two image capture devices, but because the position of the optical centers of the image capture devices is not easy to determine in some cases, the photosensitive of the image capture devices can also be used in some cases.
  • the center of the component, the geometric center of the image capture device, the center of the axis connecting the image capture device and the pan/tilt (or platform, bracket), the center of the proximal or distal lens surface instead of Within the acceptable range, therefore, the above-mentioned range is also within the protection scope of the present invention.
  • parameters such as object size and field of view angle are used as methods for estimating the position of the mobile phone camera module, and the relationship between the two positions is also expressed by angle. Since the angle is not easy to measure in actual use, it is more inconvenient in actual use. And, the size of the object will change with the change of the measuring object. For example, after collecting the 3D information of an adult's head, and then collecting the head of a child, the head size needs to be re-measured and recalculated. The above-mentioned inconvenient measurement and multiple re-measurements will cause measurement errors, which will lead to errors in the estimation of the position of the mobile phone camera module.
  • this solution provides the empirical conditions that the mobile phone camera module position needs to meet, not only avoids measuring angles that are difficult to accurately measure, but also does not require direct measurement of the size of the object.
  • d and f are fixed parameters of the mobile phone camera module.
  • T is only a straight line distance, which can be easily measured by traditional measuring methods, such as rulers and laser rangefinders. Therefore, the empirical formula of the present invention makes the preparation process convenient and quick, and at the same time improves the positioning accuracy of the mobile phone camera module position, so that the mobile phone camera module can be set in an optimized position, thereby taking into account 3D synthesis at the same time. For accuracy and speed, see the following for specific experimental data.
  • the above scope is only the best embodiment and does not constitute a limitation on the protection scope.
  • the parameters of the mobile phone camera module (focal length f, CCD size) and the distance T between the CCD and the surface of the object can be obtained according to the above formula, which makes It becomes easy when designing and debugging the equipment. Since the camera parameters (focal length f, CCD size) are determined when the mobile phone camera module is purchased, and will be marked in the product description, it is easy to obtain. Therefore, it is easy to calculate the position of the mobile phone camera module according to the above formula, without the need for tedious field angle measurement and object size measurement.
  • the measurement of the size of the object is more cumbersome due to the different size of the object.
  • the position of the mobile phone camera module can be determined more conveniently.
  • the position of the mobile phone camera module determined by the present invention can take into account the synthesis time and the synthesis effect. Therefore, the above empirical condition is one of the invention points of the present invention.
  • the rotation movement of the present invention is that during the acquisition process, the previous position acquisition plane and the next position acquisition plane cross instead of being parallel, or the optical axis of the image acquisition device at the previous position crosses the optical axis of the image acquisition position at the next position. Instead of parallel. That is to say, the movement of the acquisition area of the image acquisition device around or partly around the target object can be regarded as the relative rotation of the two.
  • the examples of the present invention enumerate more rotational motions with tracks, it can be understood that as long as non-parallel motion occurs between the acquisition area of the image acquisition device and the target, it is in the category of rotation, and the present invention can be used. Qualification.
  • the protection scope of the present invention is not limited to the orbital rotation in the embodiment.
  • the adjacent acquisition positions in the present invention refer to two adjacent positions on the moving track where the acquisition action occurs when the image acquisition device moves relative to the target. This is usually easy to understand for the movement of the image capture device. However, when the target object moves to cause the two to move relative to each other, at this time, the movement of the target object should be converted into the target object's immobility according to the relativity of the movement, and the image acquisition device moves. At this time, measure the two adjacent positions of the image acquisition device where the acquisition action occurs in the transformed movement track.
  • the above-mentioned target object, target object, and object all represent objects for which three-dimensional information is pre-acquired. It can be a physical object, or it can be a combination of multiple objects. For example, it can be a vehicle, a large sculpture, etc.
  • the three-dimensional information of the target includes a three-dimensional image, a three-dimensional point cloud, a three-dimensional grid, a local three-dimensional feature, a three-dimensional size, and all parameters with a three-dimensional feature of the target.
  • the so-called three-dimensional in the present invention refers to three-dimensional information of XYZ, especially depth information, which is essentially different from only two-dimensional plane information. It is also essentially different from the definitions called three-dimensional, panoramic, holographic, and three-dimensional, but actually only include two-dimensional information, especially depth information.
  • the collection area mentioned in the present invention refers to the range that an image collection device (such as a camera) can shoot.
  • the image acquisition device in the present invention can be CCD, CMOS, camera, video camera, industrial camera, monitor, camera, mobile phone, tablet, notebook, mobile terminal, wearable device, smart glasses, smart watch, smart bracelet and belt All devices with image capture function.
  • the 3D information of multiple regions of the target obtained in the above embodiment can be used for comparison, for example, for identity recognition.
  • the 3D acquisition device can be used to collect and obtain the 3D information of the human face and iris again, and compare it with the standard data. If the comparison is successful, the next step is allowed.
  • This kind of comparison can also be used for the identification of fixed assets such as antiques and artworks, that is, first obtain 3D information of multiple areas of antiques and artworks as standard data, and obtain 3D information of multiple areas again when authentication is required.
  • the three-dimensional information of multiple regions of the target obtained in the above embodiments can be used to design, produce, and manufacture accessory items for the target. For example, by obtaining three-dimensional data of the oral cavity and teeth of the human body, more suitable dentures can be designed and manufactured for the human body.
  • the three-dimensional information of the target obtained in the above embodiments can also be used to measure the geometric size and contour of the target.
  • modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions based on some or all of the components in the device of the present invention according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Studio Devices (AREA)

Abstract

提供了一种用于移动终端的智能3D采集模组及具有3D采集装置的移动终端,其中具有3D采集装置的移动终端包括旋转装置和图像采集装置;旋转装置带动图像采集装置旋转;图像采集装置的感光元件在转动过程中位置满足预设条件。首次提出在移动终端中能够应用图像拼接原理进行3D采集的装置结构。首次提出在移动终端中使用相机在水平面自转的方式来扫描目标物,实现3D合成,避免使用过多轨道导致体积过大,同时避免自由移动带来的合成困难。

Description

一种智能3D采集模组、具有3D采集装置的移动终端 技术领域
本发明涉及物体采集技术领域,特别涉及在移动终端中利用相机进行目标物三维采集技术领域。
背景技术
目前常见的3D采集方法包括结构光法、激光扫描法,但这些方法都需要设置光源及光束整形系统,成本较高,耗电量大,且占用空间较大。
而目前手机通常具有1-3个摄像头,从而实现一些特殊的拍摄效果,例如背景虚化等。但是目前还没有能够用于在手机上进行3D采集的摄像头系统。如果仅使用目前摄像头系统,由于拍摄角度有限,难以进行3D拼接,无法得到3D图像。如果要增加拍摄角度,提高拍摄图像的冗余度,需要设置多个摄像头。例如南加州大学的Digital Emily项目,采用球型支架,在支架上不同位置不同角度固定了上百个相机。这种常规的采用图像采集设备进行3D采集的系统难以用于手机等小体积的移动终端设备上。
现有也有使用旋转装置进行3D采集的设备,但通常都是具有载物台,放置好目标物,然后使得相机绕目标物转动进行采集的。
同时,目前也有通过移动手机来直接利用手机上的摄像头拍摄目标物多个角度图像再进行3D拼接的。然而,这种移动要么需要将手机安装在额外轨道上,要么就是无轨道的自由移动。前者限制了使用场景,而后者导致采集质量下降。
目前也有手机上设置可以转动的摄像头,通常采用手动或电动方式驱动,但其目的是为了拍摄相应角度图片,而并不是为了实现扫描,也更无法合成3D模型。
在现有技术中,也曾提出使用包括旋转角度、目标物尺寸、物距的经验公式限定相机位置,从而兼顾合成速度和效果。然而在实际应用中发现:除非有精确量角装置,否则用户对角度并不敏感,难以准确确定角度;目标物尺寸难以准确确定,特别是某些应用场合目标物需要频繁更换,每次测量带来大量额外工作量,并且需要专业设备才能准确测量不规则目标物。测量的误差导致相机位置设定误差,从而会影响采集合成速度和效果;准确度和速度还需要进一步提高。因此,本领域急需能够应用于移动终端的小体积、高质量、低成本3D 采集装置。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的配置有三维图像采集模组的移动终端。
本发明的一方面提供了一种具有升降式旋转3D采集装置的移动终端,包括升降装置、旋转装置、图像采集装置;
其中升降装置、旋转装置、图像采集装置依次连接;
在非使用状态,升降装置、旋转装置、图像采集装置均能够部分或全部收纳于移动终端外壳中;
在使用状态,图像采集装置的入光口暴露于移动终端外壳外;
图像采集装置与移动终端数据连接。
本发明的另一方面提供了一种具有隐藏式旋转3D采集装置的移动终端,包括旋转装置、图像采集装置;
其中旋转装置与图像采集装置连接,并且位于移动终端的外壳内;
图像采集装置对应的移动终端外壳的部分为透光材料构成;
图像采集装置与移动终端数据连接。
可选的,升降装置、旋转装置、图像采集装置相互可分离或不可分离设置。
可选的,升降装置、旋转装置、图像采集装置与移动终端外壳相互可分离或不可分离设置。
可选的,所述图像采集装置为可见光相机、红外相机或两者的组合。
可选的,可见光相机和红外相机相互独立转动。
可选的,所述数据连接方式为与Type-c接口、MicroUSB接口、USB接口、Lightning接口、wifi接口、蓝牙接口、蜂窝网络接口相配合的接口或图像采集装置通过数据接口在内部与移动终端连接。
可选的,所述图像采集装置在采集过程中采集的图像实时在移动终端屏幕上显示。
可选的,图像采集装置的感光元件在转动过程中位置满足:
Figure PCTCN2020134747-appb-000001
其中L为在相邻两个采集位置时感光元件光心的直线距离;f为图像采集装置1的焦距;d为感光元件(CCD)的矩形长度或宽度;T为图像采集装置1感光元件沿着光轴到目标物表面的距离;δ为调整系数,δ<0.596。
可选的,δ<0.432,优选的,δ<0.113。
本发明第三方面提供了一种用于移动终端的智能3D采集模组,包括数据接口、运动驱动装置、运动装置和图像采集装置;
其中图像采集装置设置在运动装置上;
运动驱动装置与运动装置连接;
运动驱动装置通过数据接口与移动终端电连接;
图像采集装置通过数据接口与移动终端电连接;
运动装置带动图像采集装置运动,从而从不同角度采集目标物图像;
上述图像用于构建目标物3D信息。
可选的,所述运动装置包括导轨和/或转台。
可选的,所述模组和移动终端相互独立,所述模组与移动终端刚性连接。
可选的,所述模组内嵌入移动终端,所述模组通过数据接口在内部与移动终端连接。
可选的,图像采集装置为多个。
可选的,所述图像采集装置包括可见光图像采集装置和/或红外图像采集装置。
可选的,图像采集装置伸出所述模组外壳。
可选的,所述图像采集装置运动的区域还包括透光外壳部。
可选的,所述模组与移动终端中的语音模块连接和/或显示模块连接。
可选的,在不同采集位置,图像采集装置的光轴方向不同。
可选的,移动终端接收数据接口发送的多张图像,移动终端处理器将其合成为目标物的3D模型;或,模组内包括处理器,将图像采集装置获得的图像合成为3D模型,并通过数据接口发送给移动终端。
可选的,图像采集装置的采集位置为:
Figure PCTCN2020134747-appb-000002
δ<0.593
其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件(CCD)的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
本发明第四方面还提供了一种移动终端,包括上述任意一种模组。
本发明还提供了一种具有3D采集装置的移动终端,包括旋转装置和图像采集装置;
旋转装置带动图像采集装置旋转;
图像采集装置的感光元件在转动过程中位置满足:
Figure PCTCN2020134747-appb-000003
其中L为在相邻两个采集位置时感光元件光心的直线距离;f为图像采集装置的焦距;d为感光元件的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
发明点及技术效果
1、首次提出在移动终端中能够应用图像拼接原理进行3D采集的装置结构。
2、首次提出在移动终端中使用相机在水平面自转的方式来扫描目标物,实现3D合成,避免使用过多轨道导致体积过大,同时避免自由移动带来的合成困难。
3、能够实现移动终端的外接,方便在现有手机上增加新的3D采集功能。采用外置连接方式,无需改造目前已有手机,通用性更强,成本更低。
4、整个设备可以移动,方便用户户外使用,方便用户随时进行3D采集和合成建模。
5、优化相机采集位置,提高合成速度和合成精度。且优化位置时,无需测量角度,无需测量目标尺寸,适用性更强。
6、图像采装置的旋转轴与图像采集装置的感光元件相互分离设置,这样能够实现在小空间内实现3D采集。
7、通过图像采集装置的移动降低相机的使用数量。
8、采用外置连接方式,无需改造目前已有手机,通用性更强,成本更低。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的移动终端的三维采集模组隐藏状态的结构示意图;
图2为本发明实施例1提供的移动终端的三维采集模组升起状态的结构示意图;
图3为本发明实施例1提供的移动终端的三维采集模组另一种结构隐藏状态的示意图;
图4为本发明实施例1提供的移动终端的三维采集模组另一种结构升起状态的示意图;
图5为本发明实施例1提供的移动终端的三维采集模组另一种结构的放大示意图;
图6为本发明实施例1提供的移动终端的三维采集模组第三种结构的示意图;
图7为本发明实施例1提供的移动终端的三维采集模组第三种结构的放大示意图;
图8为本发明实施例2提供的移动终端的三维采集模组的示意图;
图9为本发明实施例3中3D采集模组的一种实施方式结构示意图;
图10为本发明实施例3中3D采集模组的另一种实施方式结构示意图;
图11为本发明实施例3中3D采集模组的第三种实施方式结构示意图;
图12为本发明实施例3中3D采集模组的第四种实施方式结构示意图;
图13为本发明实施例3中3D采集模组的第五种实施方式结构示意图;
附图标记与各部件的对应关系如下:
1升降装置,2旋转装置,3图像采集装置,
11数据接口,12运动驱动装置,13运动装置。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1
为解决上述技术问题,本发明的一实施例提供了一种用于移动终端的三维采集模组。如图1-图8所示,具体包括:数据接口、升降装置1、旋转装置2和图像采集装置3。
其中图像采集装置3设置在旋转装置2上,旋转装置2设置于升降装置1上,通过升降装置1伸缩,可以将旋转装置2、图像采集装置3全部/部分收纳于手机壳体中,或露出壳体。升降装置可以为滑轨、伸缩杆或其他类似物。升降装置1可以由升降驱动装置驱动进行自动升降,也可以用户手动通过推拉实现升降。
旋转装置2可带动图像采集装置3旋转,从而使得图像采集装置扫描一定的范围。扫描方向优选为水平方向,且上述旋转为自转,即旋转轴通过图像采集装置3。特别的旋转轴通过移动终端,旋转轴与移动终端纵向平行。在扫描的过程中,图像采集装置3连续拍摄图片或视频,也就是说旋转扫描和图像采集的过程是同步的,在图像采集的过程中图像采集装置3也在旋转。当然,也可以在旋转装置转动某个角度后停止,图像采集装置3再进行拍摄,拍摄完成后继续转动下一个角度,以此类推。
通常情况下,为以正对手机屏幕方向为0°,图像采集装置3旋转的角度为-60°~+60°。这样,用户在将摄像头对准自己时,图像采集装置3可以扫描用户整个面部。当然,有时用户使用手机扫描其他物体,因此上述扫描角度也可以扩大,例如-75°~+75°。图像采装置的旋转轴与图像采集装置的感光元件相互分离,这样才能保证采集的图像可以用来合成3D模型。
上述旋转装置2内可以内置旋转驱动装置,例如马达。但旋转装置2也可以不设置旋转驱动装置,而将其放置在升降装置1中,甚至在移动终端壳体内。 旋转驱动装置通过连杆、齿轮、带或类似传动结构,驱动旋转装置2旋转。
虽然上述提到的升降结构1、旋转结构均是设置在移动终端中,但是它们与移动终端可以具有多种连接方式。例如,(1)升降装置1与移动终端固定连接,旋转装置2与升降装置可分离连接,即旋转装置2及其上的图像采集装置3可以采用后插入的方式连接至移动终端,特别是连接至升降装置1。(2)升降装置1、旋转装置2、图像采集装置3均与移动终端不可分离连接。(3)升降装置1、旋转装置2、图像采集装置3均与移动终端可分离连接。上述机械结构之间的连接可以通过卡槽、凸起、卡合、锁定等多种方式实现。
在一种实施例中整个模组为外置式,所述机械连接与电学连接通过同一结构实现。手机模组通过机械连接件/电学连接件与手机连接,并且使得手机模组与手机相对刚性连接,从而使得两者成为一体。例如上述描述的耳机插头插入移动终端的耳机插孔中,同时实现了机械连接和电学连接。既可以把模组与手机相互刚性固定起来,又可以相互之间传递信号。机械连接也可以利用额外的机械连接方式。例如在模组和手机之间设置额外的插头和插孔、凸起和卡槽等方式实现模组和手机之间的刚性固定连接。当然,也可以使用手机现有的插口,例如模组上具有耳机插头、microUSB插头、TepyC插头、Lightning插头,对应插入手机的相应上述插孔中,但这种插入仅用作机械连接,而不进行信号传递,信号由其他方式连接。通过这样的机械连接,模组与手机成为一体,用户手持手机固定不动时模组能够相对目标物固定,通过图像采集装置的移动来拍摄不同角度图片。此时数据接口可以为与Type-c接口、MicroUSB接口、USB接口、Lightning接口、wifi接口、蓝牙接口、蜂窝网络接口相配合的接口,从而通过有线或者无线方式与移动终端连接。
在另一种实施例中整个模组为内置式,此时数据接口可直接在内部与移动终端的处理器连接。也就是说上述结构与移动终端成为一体。
升降装置驱动旋转装置和图像采集装置上升,直到图像采集装置的入光口全部露出手机外壳。旋转装置开始从0°向左旋转至-β角,再向右旋转至β角,再旋转至0°。其中0°为手机屏幕垂直的方向。在旋转过程中,图像采集装置的光心间隔一定距离L进行采集,从而使得图像采集装置采集到的多张图像能够用于3D合成,并且兼顾合成精度和合成时间。具体L的设定方法以后续为准。也就是说或,图像采集装置并不是依靠手动移动的,而是根据采集目的进行精确转动的(转动条件、拍摄位置由上述L限定),这样可以保证3D采集信息的准确。如果仅依靠客户手动移动或转动,会导致图像信息采集不均匀, 不完备,甚至难以匹配拼接成3D图像。同时,也不是依靠移动或转动整个手机来实现图像采集,因为这种移动要么需要将手机安装在额外轨道上,要么就是无轨道的自由移动。前者限制了使用场景,而后者导致采集质量下降。
图像采集装置3将采集到的图像通过数据接口发送至移动终端处理器。移动终端中存储有3D合成算法,因此在移动终端的处理器中对上述多张图像进行3D合成,并最终将合成结果在屏幕上显示。也就是处理器,用以根据图像采集装置采集的多个图像,根据3D合成算法,合成目标物3D模型,得到目标物3D信息。用户可以根据需要显示3D点云图像、3D网格图像、3D渲染后的图像、以及具有纹理映射的3D模型。
但是,移动终端处理能力有限,过大的数据处理会带来较长时延,影响用户使用其它功能,并且会带来耗电量急剧升高。因此,移动终端的处理器在接收到上述多个图像后,通过移动终端的通讯接口将上述多张图片发送至云平台,在云平台中进行3D合成,并将和3D合成图像传送回移动终端中,或根据用户选择,从云平台上下载相应的3D合成图像或模型。
在一种实施例中图像采集装置3也可以进行俯仰转动,这样可以扩展图像采集装置的采集范围。当然,也可以通过升降装置1的升降实现垂直方向更大的采集范围。
为了方便图像采集装置3的平移或转动,升降装置1和旋转装置2可以包括磁浮装置,使得移动过程更加顺畅,提高用户体验。
图像采集装置3可以为可见光相机/摄像头模组,也可以为红外相机/摄像头模组。在夜间进行采集时,由于光线限制,可见光相机将无法完整采集图像。此时可以使用红外相机进行采集,并在后续处理时,将可见光相机和红外相机采集的图像相互匹配融合,实现3D信息采集。当然,也可以只依靠可见光相机或红外相机中的一种。
在具有红外相机的方案中,红外相机和可见光相机可以并排在旋转装置2之上。或者使用两个旋转装置2,分别驱动可见光相机和红外相机,使得两个相机扫描过程相互独立。
当然图像采集装置3也可以使用光谱感应范围更广的单相机,同时兼顾可见光相机和红外相机。
图像采集装置3的入光口附近具有光源,光源为LED灯珠,但也可以设置智能光源,例如可以根据需要选择不同的光源亮度、亮灭等。光源用来照亮目标物,防止目标物过暗影响采集效果和精度。但同时也要防止光源过亮,导致 目标物纹理信息损失。光源也可以使用移动终端自带光源,以照亮待扫描部分为准。光源可以随图像采集装置一起转动,从而保证采集区域光照条件一致。在一种实施例中,也可以使用移动终端自带光源。或在使用自带光源时,通过软件控制自带光源的亮度。
为了提高用户体验,可以将图像采集装置3采集到的图像传输至移动终端的显示模块中进行显示,以方便用户观察自己采集过程。特别是对于采集模组对于目标物距离过远或者过近,都可以通过显示模块显示出来,并且可以通过语音模块进行提醒。可以理解,模组采集到的图像可以不在移动终端的显示模块中显示,但其与目标物距离过远或者过近的信息可以通过移动终端语音播报,以提示用户进行移动。模组与移动终端的语音或显示模块连接也通过模组的数据接口实现。
实施例2
引用实施例1的内容,除此外移动终端也可以不具有升降装置,或虽然具有升降装置,也可以在采集时并不需要升降装置一定要把图像采集装置升至移动终端外壳外。此时旋转装置2和图像采集装置3均位于移动终端的外壳中。旋转装置2依然可以驱动图像采集装置3转动,但此次图像采集装置3旋转区域对应的移动终端外壳应当为透光材料,例如为透明树脂材料。从而使得,图像采集装置3不暴露于外壳外依然可以扫描采集图像。当然,如果图像采集装置3为红外相机,那么该透光材料只需要透射红外光即可,无需透射可见光。也就是说,该透光材料能够透射的光线波长,与图像采集装置3采集的波长相匹配即可。
旋转位置优化
为了提高3D合成速度和效果,在旋转拍摄过程中,需要对拍摄位置进行优化。由于移动终端通常体积较小,因此对于图像采集装置3位置的优化应当以图像采集装置3的感光元件为准。也就是说,图像采集装置3的感光元件在转动过程中的位置应当满足:
根据大量实验,位置的间隔距离优选满足如下经验公式:
在进行3D采集时,感光元件相邻两个采集位置满足如下条件:
Figure PCTCN2020134747-appb-000004
其中L为在相邻两个采集位置时感光元件光心的直线距离;f为图像采集装置1的焦距;d为感光元件(CCD)的矩形长度或宽度;T为图像采集装置1感光元件沿着光轴到目标物表面的距离;δ为调整系数,δ<0.596。
当上述两个位置是沿感光元件长度方向时,d取矩形长度;当上述两个位置是沿感光元件宽度方向时,d取矩形宽度。
在两个位置中的任何一个位置时,感光元件沿着光轴到目标物表面的距离作为T。除了这种方法外,在另一种情况下,L为A n、A n+1两个感光元件光心的直线距离,与A n、A n+1两个感光元件相邻的A n-1、A n+2两个感光元件和A n、A n+1两个感光元件各自感光元件沿着光轴到目标物表面的距离分别为T n-1、T n、T n+1、T n+2,T=(T n-1+T n+T n+1+T n+2)/4。当然可以不只限于相邻4个位置,也可以用更多的位置进行平均值计算。
通常情况下,现有技术中均采用物体尺寸、视场角等参数作为推算手机摄像头模组位置的方式,并且两个位置关系也采用角度表达。由于角度在实际使用过程中并不好测量,因此在实际使用时较为不便。并且,物体尺寸会随着测量物体的变化而改变。例如,在进行一个成年人头部3D信息采集后,再进行儿童头部采集时,就需要重新测量头部尺寸,重新推算。上述不方便的测量以及多次重新测量都会带来测量的误差,从而导致手机摄像头模组位置推算错误。而本方案根据大量实验数据,给出了手机摄像头模组位置需要满足的经验条件,不仅避免测量难以准确测量的角度,而且不需要直接测量物体大小尺寸。经验条件中d、f均为手机摄像头模组固定参数,在出厂时,厂家即会给出相应参数,无需测量。而T仅为一个直线距离,用传统测量方法,例如直尺、激光测距仪均可以很便捷的测量得到。因此,本发明的经验公式使得准备过程变得方便快捷,同时也提高了手机摄像头模组位置的排布准确度,使得手机摄像头模组能够设置在优化的位置中,从而在同时兼顾了3D合成精度和速度,具体实验数据参见下述。
采用手机摄像头模组,利用本发明装置,进行实验,得到了如下实验结果。
序号 δ值 合成时间 合成区域面积
1 0.7033 1.2min /
2 0.5960 1.6min 65%
3 0.4316 1.7min 90%
4 0.1131 1.9min 100%
从上述实验结果及大量实验经验可以得出,δ的值应当满足δ<0.596,此时已经能够合成部分3D模型,虽然有一部分无法自动合成,但是在要求不高的情况下也是可以接受的,并且可以通过手动或者更换算法的方式弥补无法合成的部分。特别是δ的值满足δ<0.432时,能够最佳地兼顾合成效果和合成时间的平衡;为了获得更好的合成效果可以选择δ<0.113,此时合成时间会上升,但合成质量更好。而当δ为0.7033时,已经无法合成。但这里应当注意,以上范围仅仅是最佳实施例,并不构成对保护范围的限定。
并且从上述实验可以看出,对于相机拍照位置的确定,只需要获取手机摄像头模组参数(焦距f、CCD尺寸)、CCD与物体表面的距离T即可根据上述公式得到,这使得在进行设备设计和调试时变得容易。由于手机摄像头模组参数(焦距f、CCD尺寸)在手机摄像头模组购买时就已经确定,并且是产品说明中就会标示的,很容易获得。因此根据上述公式很容易就能够计算得到相机位置,而不需要再进行繁琐的视场角测量和物体尺寸测量。同理,在采集不同物体时,由于物体大小不同,对于物体尺寸的测量也较为繁琐。而使用本发明的方法,无需进行物体尺寸测量,能够更为便捷地确定手机摄像头模组位置。并且使用本发明确定的手机摄像头位置,能够兼顾合成时间和合成效果。因此,上述经验条件是本发明的发明点之一。
以上数据仅为验证该公式条件所做实验得到的,并不对发明构成限定。即使没有这些数据,也不影响该公式的客观性。本领域技术人员可以根据需要调整设备参数和步骤细节进行实验,得到其他数据也是符合该公式条件的。
实施例3
手机模组结构:
为解决上述技术问题,本发明的一实施例提供了一种用于移动终端的智能3D采集模组。如图9-图13所示,具体包括:数据接口11、运动驱动装置12、运动装置13和图像采集装置3。
其中图像采集装置3设置在运动装置13上。运动装置13可以为包括滑台的导轨,图像采集装置3安装在滑台上,或者图像采集装置3的外壳本身作为滑台直接安装在导轨上,或者图像采集装置3的外壳与模组外壳相互形成滑动配合,实现图像采集装置3在导轨上平移。运动驱动装置12与运动装置13连接,可以驱动滑台,或者直接驱动图像采集装置3的外壳移动。对于丝杠或齿啮合导轨,也可以驱动相应结构,从而使得图像采集装置3平移。也就是说或, 图像采集装置3并不是依靠手动移动的,而是根据采集目的进行驱动移动的,并且对采集位置具有一定的要求,需要符合经验公式设定(具体下面详述),这样可以保证3D采集信息的准确。如果仅依靠客户手动移动,会导致图像信息采集不均匀,不完备,甚至难以匹配拼接成3D图像。同时,也不是依靠移动整个手机来实现图像采集,因为这种移动要么需要将手机安装在额外轨道上,要么就是无轨道的自由移动。前者限制了使用场景,而后者导致采集质量下降。
所述导轨为曲线型,例如为圆弧,使得图像采集装置3在其上运动时,运动轨迹为弧形,从而实现绕目标物转动。如图12、13。
所述导轨为直线型,使得图像采集装置3在其上运动时,运动轨迹为直线,从而实现对目标物的扫描。当然,图像采集装置3在导轨上直线运动的同时,其可以相对于直线导轨旋转,从而使得其光轴近似绕目标物转动。此时直线导轨需要和转台结合。如图9、10、11。
图像采集装置3可以为多个,每个图像采集装置3沿单一导轨运动,运动轨迹类似上述。例如可以设置两个图像采集装置3,分别沿上下导轨运动,这样可以扩大采集范围,同时也可以在单位时间内采集更多的图片,效率更高。当然,为了特殊需要,两个图像采集装置3可以分别为不同波段的相机,例如红外波段和可见光波段。同时,也可以一个导轨运行多个图像采集装置4。例如在单一导轨上运行并排的两个图像采集装置3,同样可以提高效率。
在一种情况下,图像采集装置3暴露于采集模组外壳之外,即采集模组的外壳具有相应的凹槽,图像采集装置3从凹槽伸出,如图10、11、12。当然,也可以进一步设计,图像采集装置3可以在需要时伸出凹槽,而在不工作时收回外壳中。并且凹槽具有盖,能够在图像采集装置3收回时封闭凹槽,避免灰尘。
在一种情况下,如图9、13,在图像采集装置3的运动轨迹上,与图像采集装置3相对的采集模组的外壳为透明材料制成。这样,图像采集装置3无需伸出外壳,即可直接进行运动采集。这样有利于防水、防尘。
由于运动驱动装置12驱动与运动装置3连接,驱动图像采集装置3按照3D采集的预定要求进行移动,因此运动驱动装12置需要具有数据接口11,接收相应的运动指令,即运动驱动装置12通过数据接口11与移动终端电连接。运动驱动装置12可以为电机、马达等,运动装置可以为滑块、滑轨、转台等。
在一种实施例中整个模组为外置式,此时数据接口11可以为与Type-c接口、MicroUSB接口、USB接口、Lightning接口、wifi接口、蓝牙接口、蜂窝 网络接口相配合的接口,从而通过有线或者无线方式与移动终端连接。
在另一种实施例中整个模组为内置式,此时数据接口11可直接在内部与移动终端的处理器连接。
处理器,用以根据图像采集装置采集的多个图像,根据3D合成算法,合成目标物3D模型,得到目标物3D信息。
在另一种实施例中,模组的结构为手机的一部分,即虽然本发明用模组去描述,但实际上这些结构已经属于手机的一部分,在生产、制造手机时就已经完成。
为缩小整个模组的体积及耗电量,图像采集装置3通过数据接口11与移动终端电连接,从而将采集到的图像传输至移动终端进行存储和后续3D处理。
无论是外置式还是内置式,模组与移动终端都存在机械连接。例如在外置式中,模组通过耳机插头插入移动终端的耳机插孔中。由于模组和移动终端之间要相互传递控制信号和图像数据,因此除了机械连接两者之间还存在电学连接,特别是信号连接。
在外置式时,所述机械连接与电学连接通过同一结构实现。手机模组通过机械连接件/电学连接件与手机连接,并且使得手机模组与手机相对刚性连接,从而使得两者成为一体。例如上述描述的耳机插头插入移动终端的耳机插孔中,同时实现了机械连接和电学连接。既可以把模组与手机相互刚性固定起来,又可以相互之间传递信号。机械连接也可以利用额外的机械连接方式。例如在模组和手机之间设置额外的插头和插孔、凸起和卡槽等方式实现模组和手机之间的刚性固定连接。当然,也可以使用手机现有的插口,例如模组上具有耳机插头、microUSB插头、TepyC插头、Lightning插头,对应插入手机的相应上述插孔中,但这种插入仅用作机械连接,而不进行信号传递,信号由其他方式连接。通过这样的机械连接,模组与手机成为一体,用户手持手机固定不动时模组能够相对目标物固定,通过图像采集装置3的移动来拍摄不同角度图片。
在一种实施例中上述运动装置13也可以为转台,为图像采集装置3提供转动的可能。使得图像采集装置3通过水平或上下转动采集多个方向的图像。可以理解,运动装置13也可以为导轨和转台的结合。
为了方便图像采集装置3的平移或转动,运动装置3可以包括磁浮装置,使得移动过程更加顺畅,提高用户体验。
图像采集装置3在模组的外壳内运动,其运动区域涉及的外壳部分为透明材料制成,例如为透明树脂材料。
图像采集装置3可以为可见光相机/摄像头模组,也可以为红外相机/摄像头模组。在夜间进行采集时,由于光线限制,可见光相机将无法完整采集图像。此时可以使用红外相机进行采集,并在后续处理时,将可见光相机和红外相机采集的图像相互匹配融合,实现3D信息采集。当然,也可以只依靠可见光相机或红外相机中的一种。并且图像采集装置3也可以为多个。
在具有红外相机的方案中,红外相机和可见光相机可以并排在轨道中。也可以设置两个轨道,分别安装红外相机和可见光相机。并且也可以使用光谱感应范围更广的单相机,同时兼顾可见光相机和红外相机。
模组的外壳具有光源,光源为LED灯珠,但也可以设置智能光源,例如可以根据需要选择不同的光源亮度、亮灭等。光源用来照亮目标物,防止目标物过暗影响采集效果和精度。但同时也要防止光源过亮,导致目标物纹理信息损失。光源也可以使用移动终端自带光源,以照亮待扫描部分为准。
为了提高用户体验,可以将模组采集到的图像传输至移动终端的显示模块中进行显示,以方便用户观察自己采集过程。特别是对于采集模组对于目标物距离过远或者过近,都可以通过显示模块显示出来,并且可以通过语音模块进行提醒。可以理解,模组采集到的图像可以不在移动终端的显示模块中显示,但其与目标物距离过远或者过近的信息可以通过移动终端语音播报,以提示用户进行移动。模组与移动终端的语音或显示模块连接也通过模组的数据接口11实现。
图像采集装置采集位置优化
在进行3D采集时,图像采集装置3在不同采集位置光轴方向相对于目标物发生变化,此时相邻两个图像采集装置3的位置,或图像采集装置4相邻两个采集位置满足如下条件:
Figure PCTCN2020134747-appb-000005
δ<0.593,
其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件(CCD)的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
当上述两个位置是沿图像采集装置感光元件长度方向时,d取矩形长度;当上述两个位置是沿图像采集装置感光元件宽度方向时,d取矩形宽度。
图像采集装置在两个位置中的任何一个位置时,感光元件沿着光轴到目标物表面的距离作为T。除了这种方法外,在另一种情况下,L为A n、A n+1两个图像采集装置光心的直线距离,与A n、A n+1两个图像采集装置相邻的A n-1、A n+2两个图像采集装置和A n、A n+1两个图像采集装置各自感光元件沿着光轴到目标物表面的距离分别为T n-1、T n、T n+1、T n+2,T=(T n-1+T n+T n+1+T n+2)/4。当然可以不只限于相邻4个位置,也可以用更多的位置进行平均值计算。
如上所述,L应当为两个图像采集装置光心的直线距离,但由于图像采集装置光心位置在某些情况下并不容易确定,因此在某些情况下也可以使用图像采集装置的感光元件中心、图像采集装置的几何中心、图像采集装置与云台(或平台、支架)连接的轴中心、镜头近端或远端表面的中心替代,经过试验发现由此带来的误差是在可接受的范围内的,因此上述范围也在本发明的保护范围之内。
通常情况下,现有技术中均采用物体尺寸、视场角等参数作为推算手机摄像头模组位置的方式,并且两个位置关系也采用角度表达。由于角度在实际使用过程中并不好测量,因此在实际使用时较为不便。并且,物体尺寸会随着测量物体的变化而改变。例如,在进行一个成年人头部3D信息采集后,再进行儿童头部采集时,就需要重新测量头部尺寸,重新推算。上述不方便的测量以及多次重新测量都会带来测量的误差,从而导致手机摄像头模组位置推算错误。而本方案根据大量实验数据,给出了手机摄像头模组位置需要满足的经验条件,不仅避免测量难以准确测量的角度,而且不需要直接测量物体大小尺寸。经验条件中d、f均为手机摄像头模组固定参数,在购买手机摄像头模组时,厂家即会给出相应参数,无需测量。而T仅为一个直线距离,用传统测量方法,例如直尺、激光测距仪均可以很便捷的测量得到。因此,本发明的经验公式使得准备过程变得方便快捷,同时也提高了手机摄像头模组位置的排布准确度,使得手机摄像头模组能够设置在优化的位置中,从而在同时兼顾了3D合成精度和速度,具体实验数据参见下述。
采用市售手机摄像头模组,利用本发明装置,进行实验,得到了如下实验结果。
序号 δ值 合成时间 合成区域面积
1 0.7033 1.2min /
2 0.5930 1.6min 65%
3 0.4316 1.7min 90%
4 0.1121 1.9min 100%
从上述实验结果及大量实验经验可以得出,δ的值应当满足δ<0.593,此时已经能够合成部分3D模型,虽然有一部分无法自动合成,但是在要求不高的情况下也是可以接受的,并且可以通过手动或者更换算法的方式弥补无法合成的部分。特别是δ的值满足δ<0.4316时,能够最佳地兼顾合成效果和合成时间的平衡;为了获得更好的合成效果可以选择δ<0.1121,此时合成时间会上升,但合成质量更好。而当δ为0.7033时,已经无法合成。但这里应当注意,以上范围仅仅是最佳实施例,并不构成对保护范围的限定。并且从上述实验可以看出,对于手机摄像头模组拍照位置的确定,只需要获取手机摄像头模组参数(焦距f、CCD尺寸)、CCD与物体表面的距离T即可根据上述公式得到,这使得在进行设备设计和调试时变得容易。由于相机参数(焦距f、CCD尺寸)在手机摄像头模组购买时就已经确定,并且是产品说明中就会标示的,很容易获得。因此根据上述公式很容易就能够计算得到手机摄像头模组位置,而不需要再进行繁琐的视场角测量和物体尺寸测量。同理,在采集不同物体时,由于物体大小不同,对于物体尺寸的测量也较为繁琐。而使用本发明的方法,无需进行物体尺寸测量,能够更为便捷地确定手机摄像头模组位置。并且使用本发明确定的手机摄像头模组位置,能够兼顾合成时间和合成效果。因此,上述经验条件是本发明的发明点之一。
以上数据仅为验证该公式条件所做实验得到的,并不对发明构成限定。即使没有这些数据,也不影响该公式的客观性。本领域技术人员可以根据需要调整设备参数和步骤细节进行实验,得到其他数据也是符合该公式条件的。
本发明所述的转动运动,为在采集过程中前一位置采集平面和后一位置采集平面发生交叉而不是平行,或前一位置图像采集装置光轴和后一位置图像采集位置光轴发生交叉而不是平行。也就是说,图像采集装置的采集区域环绕或部分环绕目标物运动,均可以认为是两者相对转动。虽然本发明实施例中列举更多的为有轨道的转动运动,但是可以理解,只要图像采集设备的采集区域和目标物之间发生非平行的运动,均是转动范畴,均可以使用本发明的限定条件。 本发明保护范围并不限定于实施例中的有轨道转动。
本发明所述的相邻采集位置是指,在图像采集装置相对目标物移动时,移动轨迹上的发生采集动作的两个相邻位置。这通常对于图像采集装置运动容易理解。但对于目标物发生移动导致两者相对移动时,此时应当根据运动的相对性,将目标物的运动转化为目标物不动,而图像采集装置运动。此时再衡量图像采集装置在转化后的移动轨迹中发生采集动作的两个相邻位置。
上述目标物体、目标物、及物体皆表示预获取三维信息的对象。可以为一实体物体,也可以为多个物体组成物。例如可以为车辆、大型雕塑等。所述目标物的三维信息包括三维图像、三维点云、三维网格、局部三维特征、三维尺寸及一切带有目标物三维特征的参数。本发明里所谓的三维是指具有XYZ三个方向信息,特别是具有深度信息,与只有二维平面信息具有本质区别。也与一些称为三维、全景、全息、三维,但实际上只包括二维信息,特别是不包括深度信息的定义有本质区别。
本发明所说的采集区域是指图像采集装置(例如相机)能够拍摄的范围。本发明中的图像采集装置可以为CCD、CMOS、相机、摄像机、工业相机、监视器、摄像头、手机、平板、笔记本、移动终端、可穿戴设备、智能眼镜、智能手表、智能手环以及带有图像采集功能所有设备。
以上实施例获得的目标物多个区域的3D信息可以用于进行比对,例如用于身份的识别。首先利用本发明的方案获取人体面部和虹膜的3D信息,并将其存储在服务器中,作为标准数据。当使用时,例如需要进行身份认证进行支付、开门等操作时,可以用3D获取装置再次采集并获取人体面部和虹膜的3D信息,将其与标准数据进行比对,比对成功则允许进行下一步动作。可以理解,这种比对也可以用于古董、艺术品等固定财产的鉴别,即先获取古董、艺术品多个区域的3D信息作为标准数据,在需要鉴定时,再次获取多个区域的3D信息,并与标准数据进行比对,鉴别真伪。以上实施例获得的目标物多个区域的三维信息可以用于为该目标物设计、生产、制造配套物。例如,获得人体口腔、牙齿三维数据,可以为人体设计、制造更为合适的假牙。以上实施例获得的目标物的三维信息也可以用于对该目标物的几何尺寸、外形轮廓进行测量。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或 多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的基于本发明装置中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的 限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (19)

  1. 一种具有3D采集装置的移动终端,其特征在于:包括旋转装置和图像采集装置;
    旋转装置带动图像采集装置旋转;
    图像采集装置的感光元件在转动过程中位置满足:
    Figure PCTCN2020134747-appb-100001
    其中L为在相邻两个采集位置时感光元件光心的直线距离;f为图像采集装置的焦距;d为感光元件的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
  2. 如权利要求1所述的移动终端,其特征在于:还包括升降装置,
    其中升降装置、旋转装置、图像采集装置依次连接;
    在非使用状态,升降装置、旋转装置、图像采集装置均能够部分或全部收纳于移动终端外壳中;
    在使用状态,图像采集装置的入光口暴露于移动终端外壳外;
    图像采集装置与移动终端数据连接;
    图像采集装置的旋转轴与图像采集装置的感光元件相互分离;
    在图像采集的过程中图像采集装置也在旋转;或,在旋转装置转动某个角度后停止,图像采集装置再进行拍摄,拍摄完成后继续转动下一个角度,以此类推。
  3. 如权利要求1所述的移动终端,其特征在于:
    其中旋转装置与图像采集装置连接,并且位于移动终端的外壳内;
    图像采集装置对应的移动终端外壳的部分为透光材料构成;
    图像采集装置与移动终端数据连接;
    图像采集装置的旋转轴与图像采集装置的感光元件相互分离;
    在图像采集的过程中图像采集装置也在旋转;或,在旋转装置转动某个角度后停止,图像采集装置再进行拍摄,拍摄完成后继续转动下一个角度,以此类推。
  4. 一种用于移动终端的智能3D采集模组,其特征在于:包括数据接口、 运动驱动装置、运动装置和图像采集装置;
    其中图像采集装置设置在运动装置上;
    运动驱动装置与运动装置连接;
    运动驱动装置通过数据接口与移动终端电连接;
    图像采集装置通过数据接口与移动终端电连接;
    运动装置带动图像采集装置运动,实现对目标物的扫描,从而从不同角度采集目标物图像;
    上述图像用于构建目标物3D信息;
    图像采集装置的采集位置为:
    Figure PCTCN2020134747-appb-100002
    其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
  5. 如权利要求1-4任一所述的移动终端或采集模组,其特征在于:δ<0.596,优选δ<0.593,更优选δ<0.432,最优选δ<0.113。
  6. 如权利要求2所述的移动终端,其特征在于:升降装置、旋转装置、图像采集装置相互可分离或不可分离设置。
  7. 如权利要求2所述的移动终端,其特征在于:升降装置、旋转装置、图像采集装置与移动终端外壳相互可分离或不可分离设置。
  8. 如权利要求1-4任一所述的移动终端或采集模组,其特征在于:所述图像采集装置为可见光相机、红外相机或两者的组合。
  9. 如权利要求8所述的移动终端或采集模组,其特征在于:可见光相机和红外相机相互独立转动。
  10. 如权利要求1-4任一所述的移动终端或采集模组,其特征在于:所述图像采集装置在采集过程中采集的图像实时在移动终端屏幕上显示。
  11. 如权利要求4所述的采集模组,其特征在于:所述运动装置包括导轨和/或转台。
  12. 如权利要求4所述的采集模组,其特征在于:所述模组和移动终端相互独立,所述模组与移动终端刚性连接。
  13. 如权利要求4所述的采集模组,其特征在于:所述模组内嵌入移动终端,所述模组通过数据接口在内部与移动终端连接。
  14. 如权利要求4所述的采集模组,其特征在于:图像采集装置为多个。
  15. 如权利要求4所述的采集模组,其特征在于:图像采集装置伸出所述模组外壳。
  16. 如权利要求4所述的采集模组,其特征在于:所述图像采集装置运动的区域还包括透光外壳部。
  17. 如权利要求4所述的采集模组,其特征在于:在不同采集位置,图像采集装置的光轴方向不同。
  18. 如权利要求4所述的采集模组,其特征在于:移动终端接收数据接口发送的多张图像,移动终端处理器将其合成为目标物的3D模型;或,模组内包括处理器,将图像采集装置获得的图像合成为3D模型,并通过数据接口发送给移动终端。
  19. 一种移动终端,其特征在于,包括权利要求4、5、8-18任一所述的采集模组。
PCT/CN2020/134747 2019-12-12 2020-12-09 一种智能3d采集模组、具有3d采集装置的移动终端 WO2021115295A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911293687.1A CN111050154B (zh) 2019-12-12 2019-12-12 一种具有升降式旋转3d采集装置的移动终端
CN201911276020.0A CN111064949B (zh) 2019-12-12 2019-12-12 用于移动终端的智能3d采集模组
CN201911276020.0 2019-12-12
CN201911293687.1 2019-12-12

Publications (1)

Publication Number Publication Date
WO2021115295A1 true WO2021115295A1 (zh) 2021-06-17

Family

ID=76328846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134747 WO2021115295A1 (zh) 2019-12-12 2020-12-09 一种智能3d采集模组、具有3d采集装置的移动终端

Country Status (1)

Country Link
WO (1) WO2021115295A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486862A (zh) * 2021-08-04 2021-10-08 河南华辰智控技术有限公司 一种基于生物识别技术的金融安全防护系统
CN114414477A (zh) * 2021-12-21 2022-04-29 苏州天准科技股份有限公司 用于机动车零部件的多角度检测装置及组装装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285637A1 (en) * 2013-03-20 2014-09-25 Mediatek Inc. 3d image capture method with 3d preview of preview images generated by monocular camera and related electronic device thereof
US8922625B2 (en) * 2009-11-19 2014-12-30 Lg Electronics Inc. Mobile terminal and controlling method thereof
CN205921673U (zh) * 2016-08-29 2017-02-01 赵罗强 一种带有立体拍摄功能的移动终端
CN106934777A (zh) * 2017-03-10 2017-07-07 北京小米移动软件有限公司 扫描图像获取方法及装置
CN111050154A (zh) * 2019-12-12 2020-04-21 天目爱视(北京)科技有限公司 一种具有升降式旋转3d采集装置的移动终端
CN111064949A (zh) * 2019-12-12 2020-04-24 天目爱视(北京)科技有限公司 用于移动终端的智能3d采集模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922625B2 (en) * 2009-11-19 2014-12-30 Lg Electronics Inc. Mobile terminal and controlling method thereof
US20140285637A1 (en) * 2013-03-20 2014-09-25 Mediatek Inc. 3d image capture method with 3d preview of preview images generated by monocular camera and related electronic device thereof
CN205921673U (zh) * 2016-08-29 2017-02-01 赵罗强 一种带有立体拍摄功能的移动终端
CN106934777A (zh) * 2017-03-10 2017-07-07 北京小米移动软件有限公司 扫描图像获取方法及装置
CN111050154A (zh) * 2019-12-12 2020-04-21 天目爱视(北京)科技有限公司 一种具有升降式旋转3d采集装置的移动终端
CN111064949A (zh) * 2019-12-12 2020-04-24 天目爱视(北京)科技有限公司 用于移动终端的智能3d采集模组

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486862A (zh) * 2021-08-04 2021-10-08 河南华辰智控技术有限公司 一种基于生物识别技术的金融安全防护系统
CN113486862B (zh) * 2021-08-04 2024-03-22 河南华辰智控技术有限公司 一种基于生物识别技术的金融安全防护系统
CN114414477A (zh) * 2021-12-21 2022-04-29 苏州天准科技股份有限公司 用于机动车零部件的多角度检测装置及组装装置
CN114414477B (zh) * 2021-12-21 2023-03-21 苏州天准科技股份有限公司 用于机动车零部件的多角度检测装置及组装装置

Similar Documents

Publication Publication Date Title
CN111050154B (zh) 一种具有升降式旋转3d采集装置的移动终端
CN111060023B (zh) 一种高精度3d信息采集的设备及方法
WO2021115295A1 (zh) 一种智能3d采集模组、具有3d采集装置的移动终端
CN106500628B (zh) 一种含有多个不同波长激光器的三维扫描方法及扫描仪
CN110567371A (zh) 用于3d信息采集的光照控制系统
CN111006586B (zh) 一种用于3d信息采集的智能控制方法
WO2021115301A1 (zh) 一种近距离目标物3d采集设备
CN110986768B (zh) 一种用于目标物3d信息高速采集测量设备
US20150207963A1 (en) Photographic lighting system for tactile tablet
CN111292239A (zh) 一种三维模型拼接设备及方法
CN110827196A (zh) 一种能够对目标物多区域同时进行3d信息采集的装置
CN111160136A (zh) 一种标准化3d信息采集测量方法及系统
CN111064949B (zh) 用于移动终端的智能3d采集模组
CN211373522U (zh) 近距离3d信息采集设备及3d合成、显微、附属物制作设备
CN110973763B (zh) 一种足部智能3d信息采集测量设备
CN211085114U (zh) 带背景板的3d信息采集设备
CN211375621U (zh) 一种虹膜3d信息采集设备及虹膜识别设备
CN211178346U (zh) 用于移动终端的三维采集的模组
WO2021115296A1 (zh) 用于移动终端的超薄型三维采集的模组
CN111126145B (zh) 一种避免光源像影响的虹膜3d信息获取系统
CN210609483U (zh) 用于移动终端的三维采集的模组
CN210629707U (zh) 一种具有自转式3d采集模块的移动终端
CN211085115U (zh) 标准化生物三维信息采集装置
WO2021115297A1 (zh) 3d信息采集的设备及方法
CN113111788B (zh) 一种具有调整装置的虹膜3d信息获取设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899384

Country of ref document: EP

Kind code of ref document: A1