WO2021115243A1 - 一种应用于地铁列车的可编程逻辑控制系统 - Google Patents

一种应用于地铁列车的可编程逻辑控制系统 Download PDF

Info

Publication number
WO2021115243A1
WO2021115243A1 PCT/CN2020/134445 CN2020134445W WO2021115243A1 WO 2021115243 A1 WO2021115243 A1 WO 2021115243A1 CN 2020134445 W CN2020134445 W CN 2020134445W WO 2021115243 A1 WO2021115243 A1 WO 2021115243A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
programmable logic
logic control
boards
output
Prior art date
Application number
PCT/CN2020/134445
Other languages
English (en)
French (fr)
Inventor
刘博�
吴景国
刘鹏
李元治
李美华
王欣立
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2021115243A1 publication Critical patent/WO2021115243A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres

Definitions

  • the invention relates to the field of low-voltage control circuits for rail transit vehicles, in particular to a programmable logic control system applied to subway trains.
  • the low-voltage control loop of subway trains is a complex and important subsystem in the entire train electrical system, among which the most important and largest number of electrical components are relays.
  • the signal transmission and logic control of subway trains are mostly completed by relays.
  • a single train can use up to 200 relays, and the signals controlled by the relays are mostly related to key train signals and logic.
  • Due to the limited space of the screen cabinets of subway trains relays are generally installed in close contact, which is not conducive to heat dissipation, and is easy to deposit dust after a long time of use; some relays operate frequently, up to 200 times a day, or the coil is powered on for a long time.
  • the long energized hold time is 16 hours.
  • the above factors lead to an increase in the failure rate of the relay after about 3 years of use. In the course of use, inspection methods are limited, which directly affects the operation of the train and causes great difficulties in operation and maintenance.
  • LCU is a non-contact control circuit composed of modern power electronic technology and microcomputer technology, which can replace the original low-voltage electrical appliances such as time relays and intermediate relays on the train and a large number of circuitous lines.
  • the input and output units generally adopt non-redundant structure, no operating system, real-time switching and slow response speed, which cannot meet the requirement of timely switching redundant boards in the case of a single LCU board failure to ensure the contactor of the drive No malfunction occurs.
  • the present invention discloses a programmable logic control system applied to subway trains, which specifically includes:
  • a programmable logic control unit on which an embedded real-time operation module, a graphical programming module, and a storage and recording module run, and a communication interface circuit is connected to the periphery of the main control chip;
  • the programmable logic control unit includes at least a power supply board, a gateway board with recording functions and multiple communication interfaces, two redundant main control boards, a large bypass board with four independent CAN communications, Multiple redundant digital input and output boards, interface boards and backplanes for external wiring, the main control board is used to control the input and output of digital signals and control the redundant switching of failed boards,
  • the gateway board performs data communication with external equipment, and the digital input and output board is used for data signal collection and driving.
  • the programmable logic control unit adopts a main control board with a model number of STM32F407, and the main control board performs two-way redundant CAN data communication with the backplane.
  • FreeRTOS embedded real-time operating system is transplanted to the programmable logic control unit, the Controlbuild graphical programming software is run, and the graphical control logic is designed on the Controlbuild software.
  • the gateway board supports MVB communication protocol, RS485 communication protocol, Ethernet communication protocol, and CAN communication protocol.
  • the output channel of the digital input and output board has an overcurrent protection module.
  • the overcurrent protection module automatically cuts off the channel and sends a short-circuit signal to the main control board for processing.
  • the main control board performs redundant switching.
  • the present invention provides a programmable logic control system applied to subway trains.
  • the control system has the advantages of flexible control mode, redundant control, convenient programming, intuitive wiring, and clear maintenance.
  • the non-contact output control method solves the unreliability problem of the original train system in a strong vibration environment.
  • Figure 1 is a functional module diagram of the system
  • Figure 2 is a topological diagram of LCUs distributed on subway trains, using multiple communication interfaces to form networks with different functions;
  • Figure 3 is a schematic diagram of LCU chassis backplane communication.
  • a programmable logic control system applied to subway trains includes a programmable logic control unit, wherein the programmable logic control unit runs on an embedded real-time operation module, a graphical programming module, and a storage record module.
  • a communication interface circuit is connected to the periphery of the main control chip.
  • the programmable logic control unit adopts the ARM core chip of model STM32F407, the embedded real-time operation module runs the FreeRTOS embedded real-time operating system, the graphical programming module runs the Controlbuild graphical programming software, and the graphical control logic is designed on the Controlbuild software .
  • the STM32F407 chip realizes all the control functions of the main control board.
  • the Controlbuild graphical programming software can be run, and the graphical control logic design can be realized on the Controlbuild software.
  • the communication between the STM32F407 chip and the backplane dual CAN communication module TJA1050T is used, and the backplane CAN communication is used to realize the control of the main control board to other boards, or the redundant switching of the failed boards.
  • the STM32F407 chip realizes all the control functions of the gateway board.
  • the FreeRTOS embedded real-time operating system By transplanting the FreeRTOS embedded real-time operating system to the STM32F407 chip, it can run the file system and store it in the GLS85VM1016B-based NAND FLASH core memory chip.
  • the MVB communication data, RS485 communication data, Ethernet communication data, CAN communication data of the gateway communication are used for data recording and file generation.
  • the file uses the ground diagnostic software to analyze the status and failure of the LCU; the configuration file is generated by the host computer and downloaded to the gateway board In the file system of the card, configure the MVB communication address on the front panel of the gateway and the IP address for Ethernet communication.
  • the communication function between the STM32F407 chip and the front panel redundant MVB communication module MAX3292D, the communication function to the front panel RS485 communication module MAX485, and the front panel Ethernet communication module DP83848 communication function are realized, which can realize the LCU and the train network control system Or other sub-devices to communicate.
  • two sets of mutually redundant main control boards, digital input and output boards, and gateway boards are supplied with power through redundant power supply boards, and external data communication and data recording functions are completed through the gateway boards;
  • the control board completes the input/output control of the digital input/output board and the redundant switching of the failed board.
  • M is a motor car without a driver's cab
  • Tcp is a trailer with a driver's cab.
  • the lead car is equipped with two cascaded 3U LCU cases
  • the middle car is equipped with an independent LCU case
  • the whole vehicle has a total of 6 3U LCU cases.
  • the functions of each LCU are independent of each other and realize their own logic control functions.
  • Each LCU can communicate with the train network control system through the train network bus MVB interface, and report LCU status data and fault information, and the LCUs can communicate through CAN.
  • LCU is adjusted according to different projects and different forms of train marshalling to adapt to all trains of marshalling form.
  • the LCU chassis is equipped with a set of redundant power boards (A/B) to supply power to the A or B functional boards in the chassis, and the A and B external power input buses of the power boards Completely independent of each other, set up an independent control switch at the remote end (such as the phenomenon of an air switch).
  • the power board has output under-voltage detection and short-circuit protection functions.
  • Figure 2 and Figure 3 illustrate the implementation forms of power supply and communication for each functional board.
  • a redundant dual-channel CAN bus design is adopted between each board of the LCU, which is realized through the backplane connection.
  • Each group of LCU systems has a CAN bus redundancy control mechanism to ensure that when a communication bus fails, it can start and work normally. When a CAN bus cannot send and receive data, the LCU group switching is not performed, and the single CAN operation is maintained.
  • the CAN drive output terminals of all boards are equipped with anti-interference circuits to ensure EMC performance.
  • 1 LCU chassis includes 2 redundant power supply boards, 1 gateway board with recording function and multiple communication interfaces, 2 redundant main control boards, 1 with four channels Independent CAN communication large bypass board, several redundant digital input and output boards, 3 interface boards and 1 backplane for external wiring.
  • the gateway board supports MVB communication protocol, RS485 communication protocol, Ethernet communication protocol, CAN communication protocol, as the preferred method: the communication function of MVB communication module MAX3292D, the communication function of the front panel RS485 communication module MAX485, the front panel Ethernet
  • the communication function of the communication module DP83848 can realize the communication between the LCU and the train network control system or other sub-equipment; the data exchange is carried out with the main control board through the backplane dual CAN communication module TJA1050T, and the DIP switch on the front panel defines this
  • the LCU unit is in the first few carriages of the subway train, so that the IP address and MVB communication address of the gateway board and the main control board are automatically assigned.
  • the said digital input board card due to various conditions that may occur in the operation of the train, the input channel has a high voltage serial connection occasionally.
  • the high voltage is serially connected to the channel, it often causes the input channel components to burn, which causes the input channel to fail and cause malfunctions.
  • a diagnostic circuit is also used to perform self-checking on the board.
  • the self-check circuit adopts two working modes: periodic self-check and trigger self-check. Two redundant digital input boards collect the same input channel at the same time, and the main control board judges the input status according to the channel collection results and the self-check results.
  • each input channel adopts photoelectric isolation, and has anti-interference ability, and can accurately and quickly receive input electrical signal instructions.
  • the input signal voltage 0-30V is defined as "0"; the input signal voltage 77-137.5V is defined as "1".
  • Each switch input has a corresponding indicator light, and the indicator lights up green when there is an input.
  • the said digital output board the drive circuit based on the MOSFET chip IRFP4332PbF as the core, constitutes a non-contact control circuit, realizes the switching function of the circuit, and fundamentally avoids the aging and poor contact of traditional relay mechanical contacts. problem.
  • Each channel can drive a load of 2A, with a peak conduction current of 15A. It has the advantages of low power consumption, fast switching speed, simple circuit and low cost.
  • the output channel adopts 2500VAC/1min electrical isolation and has a short-circuit protection function.
  • Each switch output has a corresponding indicator light, which lights green when there is an output.
  • the LCU automatically disconnects the output and prompts.
  • the short circuit disappears, the output can be restored.
  • the control module or plug-in can detect its own working status, and it can pass the indicator when there is an abnormality. Flashing and bus report to prompt.
  • each input board and output board form a stacked form to form an input and output module that only occupies 4TE board space.
  • Each input and output module integrates 14 input channels and 10 output channels.
  • the digital input and output channels are all connected to the outside through the interface board, and the backplane is divided into lines, and the lines are respectively divided into redundant digital input boards for digital quantity acquisition and digital output driving. It solves the complicated wiring method of the outer part of the chassis.
  • the present invention discloses a programmable logic control system applied to subway trains, that is, the LCU has self-diagnosis capability, and the chassis has a status indicator, which can intuitively display the operating status and channel status of the LCU, such as input/output, power supply, fault, Operation, communication, switching, etc. instructions.
  • the LCU running status and channel status are transmitted to the TCMS system in real time through the MVB network, and can be displayed on the TCMS HMI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Programmable Controllers (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种应用于地铁列车的可编程逻辑控制系统,包括可编程逻辑控制单元,可编程逻辑控制单元包含嵌入式实时操作模块、图形化编程模块和存储记录模块;可编程逻辑控制单元至少包括电源板卡、带有记录功能及多种通信接口的网关板卡、两个冗余的主控板卡、具有四路独立CAN通信的大旁路板卡、多组冗余的数字量输入输出板卡、用于对外接线的接口板卡和背板,主控板卡用于控制数字量信号的输入和输出以及控制故障板卡的冗余切换,网关板卡与外界设备进行数据通讯,数字量输入输出板卡用于数据信号的采集和驱动。

Description

一种应用于地铁列车的可编程逻辑控制系统 技术领域
本发明涉及轨道交通车辆低压控制电路领域,尤其涉及一种应用于地铁列车的可编程逻辑控制系统。
背景技术
地铁列车低压控制回路是整个列车电气系统中一个复杂且重要的子系统,其中最重要且数量最多的电器件是继电器。地铁列车的信号传递、逻辑控制多由继电器完成,单列车使用继电器可达200个左右,并且继电器控制的信号大多关联到列车关键信号和逻辑。由于地铁列车的屏柜空间有限,继电器一般密贴安装,不利于散热,且使用时间一长,容易沉积灰尘;部分继电器动作频繁,最高可达每日200次,或者线圈得电时间长,最长得电保持时间为16小时,以上因素导致继电器使用约3年便开始故障率升高。在使用过程中检查手段有限,直接影响列车发生运行故障,给运营和维护造成很大困难。
LCU是利用现代电力电子技术和微计算机技术构成的无触点控制电路,可取代列车上原有的时间继电器、中间继电器等低压电器和大量的迂回线路。现有技术中,输入输出单元普遍采用非冗余结构、无操作系统、实时切换及响应速度较慢,无法满足在单个LCU板卡故障情况下及时切换冗余板卡,以保障驱动的接触器不发生误动作。
发明内容
根据现有技术存在的问题,本发明公开了一种应用于地铁列车的可编程逻辑控制系统,具体包括:
可编程逻辑控制单元,所述可编程逻辑控制单元上运行有嵌入式实时操作模块、图形化编程模块和存储记录模块,所述主控芯片的外围连接有通信接口电路;
所述可编程逻辑控制单元至少包括电源板卡、带有记录功能及多种通信接口的网关板卡、两个冗余的主控板卡、具有四路独立CAN通信的大旁路板卡、多个冗余的数字量输入输出板卡、用于对外接线的接口板卡和背板,所述主控板卡用于控制数字量信号的输入和输出以及控制故障板卡的冗余切换,所述网关板卡与外界设备进行数据通讯,所述数字量输入输出板卡用于数据信号的采 集和驱动。
进一步的,所述可编程逻辑控制单元采用型号为STM32F407的主控板,该主控板与背板进行两路冗余的CAN数据通信。
进一步的,所述可编程逻辑控制单元上移植FreeRTOS嵌入式实时操作系统,运行Controlbuild图形化编程软件,在Controlbuild软件上进行图形化控制逻辑的设计。
进一步的,所述网关板卡支持MVB通信协议、RS485通信协议、以太网通信协议、CAN通信协议。
进一步的,所述数字量输入输出板卡的输出通道具有过流保护模块,当单个通道过流时所述过流保护模块自动切断该通道,发送短路信号至主控板卡进行处理,所述主控板卡进行冗余切换。
由于采用了上述技术方案,本发明提供的一种应用于地铁列车的可编程逻辑控制系统,该控制系统具有控制方式灵活、冗余控制、编程方便、布线直观、检修条理清晰的优点,同时采用无触点输出控制方式解决列车原有系统在强振动环境下的不可靠问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本系统的功能模块图;
图2为LCU分布在地铁列车上的拓扑图,利用多种通信接口组成不同功能的网络;
图3为LCU机箱背板通信示意图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1所示的一种应用于地铁列车的可编程逻辑控制系统,包括可编程逻辑控制单元,其中可编程逻辑控制单元上运行有嵌入式实时操作模块、图形化编程模块和存储记录模块,所述主控芯片的外围连接有通信接口电路。其中可编程逻辑控制单元采用型号为STM32F407的ARM内核芯片,嵌入式实时操作 模块运行FreeRTOS嵌入式实时操作系统,图形化编程模块运行Controlbuild图形化编程软件,在Controlbuild软件上进行图形化控制逻辑的设计。
进一步的,STM32F407芯片实现了主控板卡全部的控制功能,通过在STM32F407芯片移植了FreeRTOS嵌入式实时操作系统,可运行Controlbuild图形化编程软件,在Controlbuild软件上进行图形化控制逻辑的设计,实现了STM32F407芯片与背板双路CAN通信模块TJA1050T的通信,利用背板CAN通讯实现了主控板对其他板卡的控制,或者发生故障板卡的冗余切换。
进一步的,STM32F407芯片实现了网关板卡全部的控制功能,通过在STM32F407芯片移植了FreeRTOS嵌入式实时操作系统,可运行文件系统并存储于基于GLS85VM1016B的NAND FLASH核心存储芯片,通过C语言编程,将网关通信的MVB通信数据、RS485通信数据、以太网通信数据、CAN通信数据进行数据记录并生成文件,该文件利用地面诊断软件进行LCU的状态及故障分析;通过上位机生成配置文件下载到网关板卡的文件系统中,配置网关前面板MVB通信的地址、以太网通信的IP地址。因此实现了STM32F407芯片与前面板冗余MVB通信模块MAX3292D的通信功能、对前面板RS485通信模块MAX485的通信功能、对前面板以太网通信模块DP83848的通信功能,可实现本LCU与列车网络控制系统或其他子设备进行通信。
进一步的,通过冗余的电源板卡为两组互为冗余的主控板、数字量输入输出板卡,和网关板卡供电,通过网关板卡完成对外数据通信及数据记录功能;通过主控板卡完成数字量输入输出板卡的输入输出控制、以及故障板卡的冗余切换。通过数字量输入输出板卡和接口板卡完成数字量的采集与驱动;通过背板两路冗余的CAN通信,网关板卡、主控板卡、数字量输入输出板卡完成数据通信和控制功能。
实施例:
假设列车采用4节编组形式,2动2拖编组方式。其中M为无司机室的动车,Tcp为有司机室的拖车。头车安装2个级联的3U LCU机箱,中间车安装1个独立的LCU机箱,整车共6个3U LCU机箱。各个LCU之间功能相互独立,实现各自逻辑控制功能。每个LCU可通过列车网络总线MVB接口与列车网络控制系统通讯,上报LCU状态数据和故障信息,LCU之间可通过CAN进行通讯。LCU根据项目的不同、列车编组的形式不同进行调整,适应所有编组形式的列车。
作为优选的方式:如图2所示,LCU机箱配置一组冗余电源板(A/B),分别 给机箱内A组或B组功能板供电,电源板的A、B组外部电源输入母线相互完全独立,在远端设置独立的控制开关(如空开的现象)。电源板具有输出欠压检测、短路保护功能。
作为优选的方式:如图2和图3示意各功能板卡供电、通信的实现形式。LCU各板卡之间采用冗余的双通道CAN总线设计,通过背板连接实现。每组LCU系统具备CAN总线冗余控制机制,确保当某一路通信总线发生故障时,可以正常启动和工作。当某一路CAN总线不能收发数据时,不进行LCU组切换,维持单CAN运行。所有板卡的CAN驱动输出端均设有抗干扰电路,以保障EMC性能。
作为优选的方式:1个LCU机箱包括2个冗余的电源板卡、1个带有记录功能及多种通信接口的网关板卡、2个冗余的主控板卡、1个具有四路独立CAN通信的大旁路板卡,若干个冗余的数字量输入输出板卡、用于对外接线的3个接口板卡和1个背板。
网关板卡支持MVB通信协议、RS485通信协议、以太网通信协议、CAN通信协议,作为优选的方式:MVB通信模块MAX3292D的通信功能、对前面板RS485通信模块MAX485的通信功能、对前面板以太网通信模块DP83848的通信功能,可实现本LCU与列车网络控制系统或其他子设备进行通信;通过背板双路CAN通信模块TJA1050T与主控板卡进行数据交互,通过前面板的拨码开关定义本LCU单元处于地铁列车的第几节车厢,从而自动分配网关板卡与主控板卡的IP地址及MVB通信地址。
作为优选的方式,所述的数字量输入板卡,由于列车在运用中可能会出现的各种状况,输入通道有高压串入的情况也偶有发生。当高压串入通道后,往往造成输入通道元件烧损,从而引发输入通道失效造成故障。为避免由于上述情况造成的故障,除了在输入通道采取加强抗高压措施外,还采用诊断电路对板卡进行自检。自检电路采用周期式自检和触发式自检两种工作模式。冗余的两个数字量输入板卡同时采集同一输入通道,主控板卡根据通道采集结果和自检结果判断输入状态。
所述的数字量输入板卡,每个输入通道采用光电隔离,并具备抗干扰能力,能准确、快速的接收输入电信号指令。输入信号电压0-30V定义为“0”;输入信号电压77-137.5V定义为“1”。各开关量输入均有对应指示灯,有输入时灯亮绿色。
所述的数字量输出板卡,驱动电路基于MOSFET芯片IRFP4332PbF为核心, 构成的无触点控制电路,实现电路的开关功能,从根本上避免了传统继电器机械式触点存在的老化、接触不良的问题。每路可驱动负载2A,峰值导通电流达15A。具有功耗低,开关速度快,电路简单、成本低等优点。
所述的数字量输出板卡,输出通道采用2500VAC/1min的电气隔离,且具有短路保护功能。各开关量输出均有对应指示灯,有输出时灯亮绿色。当某路负载出现短路时,LCU自动将该路输出断开并提示,当短路消失后可以重新恢复输出,同时控制模块或插件能对自身的工作状态进行检测,当出现异常时能通过指示灯闪烁和总线上报进行提示。
所述的数字量输入输出板卡,每个输入板卡和输出板卡组成叠板的形式,形成一个仅占用4TE板位的输入输出模块,每个输入输出模块都集成有14路输入通道和10路输出通道。
所述的接口板卡,数字量输入输出通道均通过接口板对外接线,在背板进行分线处理,分别分线到冗余的数字输入板卡进行数字量采集,和数字输出驱动。解决了机箱外部分线复杂的接线方式。
本发明公开的一种应用于地铁列车的可编程逻辑控制系即LCU具备自诊断能力,机箱上具有状态指示灯,可直观的显示LCU运行状态和通道状态,如输入/输出、电源、故障、运行、通信、切换等指示。LCU运行状态和通道状态通过MVB网络实时传输给TCMS系统,并可在TCMS的HMI上显示。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种应用于地铁列车的可编程逻辑控制系统,其特征在于包括:可编程逻辑控制单元,所述可编程逻辑控制单元上运行有嵌入式实时操作模块、图形化编程模块和存储记录模块,所述主控芯片的外围连接有通信接口电路;
    所述可编程逻辑控制单元至少包括电源板卡、带有记录功能及多种通信接口的网关板卡、两个冗余的主控板卡、具有四路独立CAN通信的大旁路板卡、多组冗余的数字量输入输出板卡、用于对外接线的接口板卡和背板,所述主控板卡用于控制数字量信号的输入和输出以及控制故障板卡的冗余切换,所述网关板卡与外界设备进行数据通讯,所述数字量输入输出板卡用于数据信号的采集和驱动。
  2. 根据权利要求1所述的应用于地铁列车的可编程逻辑控制系统,其特征还在于:所述可编程逻辑控制单元采用型号为STM32F407的主控板,该主控板与背板进行两路冗余的CAN数据通信。
  3. 根据权利要求2所述的应用于地铁列车的可编程逻辑控制系统,其特征还在于:所述可编程逻辑控制单元上移植FreeRTOS嵌入式实时操作系统,运行Controlbuild图形化编程软件,在Controlbuild软件上进行图形化控制逻辑的设计。
  4. 根据权利要求1所述的应用于地铁列车的可编程逻辑控制系统,其特征还在于:所述网关板卡支持MVB通信协议、RS485通信协议、以太网通信协议、CAN通信协议。
  5. 根据权利要求1所述的应用于地铁列车的可编程逻辑控制系统,其特征还在于:所述数字量输入输出板卡的输出通道具有过流保护模块,当单个通道过流时所述过流保护模块自动切断该通道,发送短路信号至主控板卡进行处理,所述主控板卡进行冗余切换。
PCT/CN2020/134445 2019-12-14 2020-12-08 一种应用于地铁列车的可编程逻辑控制系统 WO2021115243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911290786.4 2019-12-14
CN201911290786.4A CN110979393A (zh) 2019-12-14 2019-12-14 一种应用于地铁列车的可编程逻辑控制系统

Publications (1)

Publication Number Publication Date
WO2021115243A1 true WO2021115243A1 (zh) 2021-06-17

Family

ID=70093831

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/100160 WO2021114642A1 (zh) 2019-12-14 2020-07-03 一种应用于地铁列车的可编程逻辑控制系统
PCT/CN2020/134445 WO2021115243A1 (zh) 2019-12-14 2020-12-08 一种应用于地铁列车的可编程逻辑控制系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100160 WO2021114642A1 (zh) 2019-12-14 2020-07-03 一种应用于地铁列车的可编程逻辑控制系统

Country Status (2)

Country Link
CN (1) CN110979393A (zh)
WO (2) WO2021114642A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110979393A (zh) * 2019-12-14 2020-04-10 中车大连电力牵引研发中心有限公司 一种应用于地铁列车的可编程逻辑控制系统
CN111831507B (zh) * 2020-05-31 2022-08-23 中车永济电机有限公司 具有安全等级设计的tcms-riom控制单元
CN111884893B (zh) * 2020-06-12 2022-04-15 中车青岛四方机车车辆股份有限公司 输入输出信号采集系统及测试方法
CN112114547A (zh) * 2020-09-18 2020-12-22 中车大连机车车辆有限公司 机车车辆微机网络系统数字量陪试方法及模拟平台
CN112305905A (zh) * 2020-10-29 2021-02-02 株洲中车时代电气股份有限公司 列车网络控制与监控系统、列车控制方法和列车
CN115158402A (zh) * 2022-07-05 2022-10-11 河南思维自动化设备股份有限公司 地铁列车可编程逻辑控制系统及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241683A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 連動装置
CN103407463A (zh) * 2013-08-21 2013-11-27 南京泰通科技有限公司 电子化半自动闭塞机及其工作方法
CN107264572A (zh) * 2017-06-23 2017-10-20 成都运达科技股份有限公司 一种具备热冗余能力的无触点逻辑控制系统
CN109677468A (zh) * 2019-03-04 2019-04-26 中车青岛四方车辆研究所有限公司 列车用逻辑控制单元及逻辑控制方法
CN109901547A (zh) * 2017-12-11 2019-06-18 中车永济电机有限公司 一种车辆管理控制vcu柜
CN110979393A (zh) * 2019-12-14 2020-04-10 中车大连电力牵引研发中心有限公司 一种应用于地铁列车的可编程逻辑控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202141905U (zh) * 2011-06-28 2012-02-08 北京荣信慧科科技有限公司 一种基于高速串行通讯的控制系统冗余切换装置
KR101884093B1 (ko) * 2016-12-14 2018-08-01 현대로템 주식회사 고속철도차량용 공기제동장치 제어방법
CN106627668B (zh) * 2016-12-26 2019-04-05 合肥工大高科信息科技股份有限公司 基于二乘二取二架构的列车监控服务器系统及控制方法
CN109347712B (zh) * 2018-10-10 2024-06-18 重庆中车四方所智能装备技术有限公司 一种基于轨道交通的网络系统
CN109639546B (zh) * 2018-12-28 2021-07-30 浙江中控研究院有限公司 一种基于can总线的冗余系统
CN110213144B (zh) * 2019-05-31 2021-10-26 南京康尼电子科技有限公司 一种用于列车车门的冗余网络系统
CN110361979B (zh) * 2019-07-19 2022-08-16 北京交大思诺科技股份有限公司 一种铁路信号领域的安全计算机平台
CN110351174B (zh) * 2019-07-19 2021-11-12 北京交大思诺科技股份有限公司 一种模块冗余的安全计算机平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241683A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 連動装置
CN103407463A (zh) * 2013-08-21 2013-11-27 南京泰通科技有限公司 电子化半自动闭塞机及其工作方法
CN107264572A (zh) * 2017-06-23 2017-10-20 成都运达科技股份有限公司 一种具备热冗余能力的无触点逻辑控制系统
CN109901547A (zh) * 2017-12-11 2019-06-18 中车永济电机有限公司 一种车辆管理控制vcu柜
CN109677468A (zh) * 2019-03-04 2019-04-26 中车青岛四方车辆研究所有限公司 列车用逻辑控制单元及逻辑控制方法
CN110979393A (zh) * 2019-12-14 2020-04-10 中车大连电力牵引研发中心有限公司 一种应用于地铁列车的可编程逻辑控制系统

Also Published As

Publication number Publication date
WO2021114642A1 (zh) 2021-06-17
CN110979393A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021115243A1 (zh) 一种应用于地铁列车的可编程逻辑控制系统
CN107386868B (zh) 一种用于站台门系统的模块化控制装置
CN204231391U (zh) 一种机车车载通用数据通信网关
CN102935849B (zh) 一种车载信号设备的冗余输入输出实现系统
CN102320318B (zh) Mvb双冗余车门网络系统
CN109947579B (zh) 轨道车辆通用网络控制器平台及控制方法
CN106394538A (zh) 一种机车制动控制单元及机车
CN110758356B (zh) 一种基于车钩联挂检测的紧急制动控制电路
CN110379040A (zh) 一种汽车黑匣子系统及其数据获取方法
CN103425081A (zh) 内燃机车控制逻辑电子化方法及其系统
CN113060185B (zh) 新型全电子联锁道岔控制方法及系统
CN205353751U (zh) 列车网络系统
CN116360244A (zh) 基于集约型车辆控制器的高度冗余的控制方法及控制系统
CN112782570A (zh) 一种用于监测继电器的系统及方法
CN106487627B (zh) Riom及具有riom的列车
US12104424B2 (en) Logic intelligent control system of train door based on intelligent control units
CN102830640A (zh) 一种轨道交通车辆网络系统的输入输出模块
CN109544895A (zh) 一种用于智能无人艇监控的数据采集与分发系统
CN209823500U (zh) 一种直流输电阀控系统的机箱和机箱面板
CN202615229U (zh) 列车网络控制系统中的中央控制装置
CN112829774B (zh) 用于轨道交通车辆的电气屏柜及状态监控方法
CN112660203A (zh) 一种车载信号设备的首尾冗余系统及其执行方法
CN104361652A (zh) 一种列车网络控制及监控系统的数据记录装置
WO2024108622A1 (zh) 一种动车组控制系统
CN116461567A (zh) 一种基于ato和tcms融合的列车硬件平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898009

Country of ref document: EP

Kind code of ref document: A1