WO2021115189A1 - 仓储系统及相关方法 - Google Patents

仓储系统及相关方法 Download PDF

Info

Publication number
WO2021115189A1
WO2021115189A1 PCT/CN2020/133552 CN2020133552W WO2021115189A1 WO 2021115189 A1 WO2021115189 A1 WO 2021115189A1 CN 2020133552 W CN2020133552 W CN 2020133552W WO 2021115189 A1 WO2021115189 A1 WO 2021115189A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable device
server
image
storage system
image sensor
Prior art date
Application number
PCT/CN2020/133552
Other languages
English (en)
French (fr)
Inventor
边铁栋
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Publication of WO2021115189A1 publication Critical patent/WO2021115189A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • the present invention relates to a system, in detail, it relates to a storage system and related methods.
  • an existing autonomous mobile device such as an unmanned logistics vehicle
  • the sensors of autonomous mobile devices often cause electromagnetic interference with each other, causing the sensors to fail to operate normally.
  • dispatching personnel to remove obstacles is time-consuming and labor-intensive, reducing work efficiency.
  • the autonomous mobile device will lose the functions of autonomous movement, obstacle avoidance and cargo handling.
  • One of the objectives of the present invention is to provide a storage system and related methods to solve the above-mentioned problems.
  • the movable device can still be positioned under the condition that no sensors are installed on the movable device, and the movable device can smoothly move and avoid Functions such as barriers and transporting goods.
  • a storage system including: a movable device, a server, and an image sensor.
  • the movable device is used to move in the warehouse.
  • the server is electrically connected to the movable device, and is used for monitoring the movable device.
  • the image sensor is electrically connected to the server, and is used to capture an image of the movable device.
  • the server determines the position of the movable device in real time at least according to the size and position of the feature point of the movable device in the image and the shooting angle and position of the image sensor.
  • the characteristic point is an identification mark on the body of the movable device.
  • the movable device includes a transmission port for connecting an external sensing device, wherein the movable device obtains that the movable device is in the warehouse through the external sensing device. And send its location to the server.
  • the server optimizes real-time judgment based on the position transmitted by the movable device, the size and position of the feature point in the image, and the shooting angle and position of the image sensor The accuracy of the position of the movable device.
  • the external sensing device includes at least one of an optical radar, a depth camera, an ultrasonic sensor, and an infrared sensor.
  • the movable device includes an odometer for measuring the moving distance of the movable device and an inertial measurement unit for measuring the deflection angle, speed and acceleration of the movable device;
  • the movable device transmits auxiliary positioning information to the server, so that the server makes a decision based on the auxiliary positioning information, the size and position of the feature point in the image, and the shooting angle and position of the image sensor Optimize the accuracy of real-time judgment of the position of the movable device; wherein the auxiliary positioning information includes the moving distance and the deflection angle, the speed and the acceleration.
  • the movable device when the moving distance reaches a preset value, moves to a preset position in the warehouse and resets the odometer to zero.
  • the server uses the movable device to fix the relative position of the mark in the image with the warehouse, the size of the feature point of the movable device in the image, and The position and the shooting angle and position of the image sensor are used to determine the position of the movable device in real time.
  • the fixed mark is a mark line marked on the storage ground.
  • the server controls the movable device to stop moving.
  • the server determines the distance between the obstacle and the movable device based on the image captured by the image sensor, And when the distance between the obstacle and the movable device is less than the preset distance, the server controls the movable device to stop moving until the movable device receives a movement instruction.
  • the movement instruction is sent from the server to the movable device.
  • the movement instruction is transmitted to the movable device by an external electronic device.
  • the image sensor is integrated on the security camera.
  • a method applied to a storage system includes: capturing an image of a movable device through an image sensor; and at least determining the size of a feature point of the movable device in the image And the position and the shooting angle and position of the image sensor to determine the position of the movable device in real time.
  • the storage system and related methods disclosed in the present invention use image sensors to locate the movable device, so that the movable device can smoothly perform functions such as moving, avoiding obstacles, and transporting goods while reducing the number of installed sensors, and the cost can be greatly reduced. .
  • Fig. 1 is a schematic diagram of a storage system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a movable device according to an embodiment of the invention.
  • 3A and 3B are schematic diagrams of positioning a movable device according to an embodiment of the present invention.
  • FIG. 4A is a schematic diagram of a movable device according to another embodiment of the invention.
  • 4B is a schematic diagram of a mobile device connected to an external sensing device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a movable device according to another embodiment of the invention.
  • Fig. 6 is a schematic diagram of an odometer reset according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of positioning a movable device according to a fixed sign in a warehouse according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of issuing a stop-traveling instruction to a movable device according to an embodiment of the present invention.
  • 9A and 9B are schematic diagrams of issuing a stop-travel command to a movable device according to another embodiment of the present invention.
  • Fig. 10 is a system block diagram of a storage system according to an embodiment of the present invention.
  • Fig. 11 is a flowchart of a method applied to a storage system according to an embodiment of the present invention.
  • first and second features are in direct contact with each other; and may also include
  • additional components are formed between the above-mentioned first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing in the figure
  • the relationship between one component or feature relative to another component or feature is shown.
  • the original meaning of these spatially-relative vocabulary covers not only the orientation shown in the figure, but also the various orientations of the device in use or operation.
  • the device may be placed in other orientations (for example, rotated 90 degrees or in other orientations), and these spatially-relative description vocabulary should be explained accordingly.
  • autonomous mobile devices on the market are often used in warehousing for cargo transportation.
  • Autonomous mobile devices rely on their own sensors, such as distance sensors, optical radar (Light Laser Detection and Ranging, LiDAR), and depth sensors. Cameras (or RGBD cameras), etc., to achieve obstacle avoidance, movement, and cargo handling functions.
  • autonomous mobile devices can also locate themselves based on the above-mentioned sensors, and rely on communication devices to transmit location information to the server for control.
  • the above-mentioned sensors are likely to fail to operate normally due to electromagnetic interference. If dispatching personnel to remove obstacles is time-consuming and labor-intensive, reducing work efficiency.
  • the present invention provides a storage system.
  • the movable device in the storage system proposed by the present invention can still perform functions such as movement, obstacle avoidance, and positioning while reducing the installation of sensors.
  • FIG. 1 is a schematic diagram of a storage system 100 according to an embodiment of the present invention.
  • the storage system 100 includes a plurality of movable devices for moving in the storage, for example, the movable device 110 in FIG. 1.
  • the movable device 110 is used to move between the shelves of the warehouse, for example, between the shelves H1 to H4 in the figure to carry goods.
  • the storage system 100 further includes a server 130 and an image sensor 140.
  • the server 130 is electrically connected to the movable device 110, wherein the movable device 110 can communicate with the server 130 through the communication device provided therein, so that the server 130 can manage and monitor the movable device 110, and control the cargo handling status , Order status, etc.
  • the image sensor 140 is integrated in the security camera, and the image sensor 140 is electrically connected to the server 130 and used to capture images in the warehouse.
  • the image sensor 140 is used to capture the image of the movable device 110, so that the server 130 can locate the movable device 110 through the image sensor 140, and control the travel of the movable device 110, so as to realize movement, obstacle avoidance, and transportation in the warehouse. The task of the cargo.
  • the above-mentioned “electrical connection” is not limited to the physical connection through a physical circuit. If the two communicate wirelessly to transmit signals, it can also belong to the category of electrical connection.
  • the image sensor 140 may transmit the captured image to the server 130 via a cable. In another example, the image sensor 140 can transmit the captured image to the server 130 through the access point, so as to realize wireless communication.
  • FIG. 2 is a schematic diagram of a movable device 110 according to an embodiment of the invention.
  • the movable device 110 is used to move in a warehouse to carry goods.
  • the movable device 110 includes a communication device 201, a processor 202, a driving component 203 and a body 204.
  • the communication device 201 is used for wireless communication with the server 130.
  • the mobile device 110 can receive various instructions from the server 130 through the communication device 201, such as a continue travel instruction, a pause travel instruction, a turn instruction, and so on. It should be noted that the type of communication between the mobile device 110 and the server 130 is not limited in the present invention.
  • the communication between the mobile device 110 and the server 130 may be wireless communication technologies such as Bluetooth, Wi-Fi, and ZIG-BEE.
  • the processor 202 is used to process various instructions sent by the server 130, and control the movable device 110 to perform corresponding operations according to the instructions.
  • the driving component 203 is used to drive the movable device 110 to move.
  • the driving assembly 203 includes a motor and a power wheel, and the motor provides kinetic energy to the power wheel to drive the movable device 110.
  • the body 204 may have a two-dimensional identification code corresponding to the movable device 110 affixed on the top surface and the side surface.
  • the body 204 may be affixed with a model identification (such as the word 110) corresponding to the movable device 110 on the top surface and the side surface.
  • the identification mark on the fuselage 204 can be used for storage personnel to identify the model of the movable device 110.
  • the movable device 110 communicates with the server 130 through the communication device 201, so that the server 130 captures the image of the movable device 110 through the security camera (more precisely, the image sensor 140) installed in the warehouse. Then, according to the size and position of the feature points of the movable device 110 in the image and the shooting angle and position of the security camera, the position of the movable device 110 is determined in real time, and an instruction is sent to the movable device 110 according to the determination result to control the movable device 110. The traveling, stopping, turning, etc. of the mobile device 110.
  • the movable device 110 can be positioned without installing sensors (such as image sensors, optical radars, depth cameras, ultrasonic sensors, infrared sensors, etc.) for movement and obstacle avoidance. It also realizes tasks such as moving and transporting goods in the warehouse, which greatly reduces the manufacturing cost of the movable device 110.
  • sensors such as image sensors, optical radars, depth cameras, ultrasonic sensors, infrared sensors, etc.
  • the characteristic point is an identification mark on the body 204 of the movable device 110.
  • the size and position of the server 130 in the image captured by the security camera (more accurately, the image sensor 140) and the security camera (more accurately, the image sensor) according to the identification mark on the body 204 140) to determine the accurate position of the movable device 110 in real time.
  • the movable device 110 may also include other components and elements to implement other functions of the movable device 110.
  • the movable device 110 further includes a storage device for storing information, a battery for providing power, and a power distribution module for distributing power to various components.
  • the movable device 110 shown in FIG. 2 is only an example for illustration, and the present invention does not limit the detailed structure of the movable device 110. Similarly, the present invention does not limit the details of other movable devices in the storage system 100. Architecture.
  • the storage system 100 further includes a plurality of security cameras arranged in the storage.
  • the security cameras 310, 320, 330, 340, and 350 are arranged in the warehouse, and the image sensor 140 is integrated in each of the security cameras 310, 320, 330, 340, and 350.
  • the security cameras 310, 320, 330, 340, and 350 are used as monitors to monitor the storage to achieve security.
  • the server 130 also uses the security cameras 310, 320, 330, 340, and 350 to locate the movable device 110.
  • the server 130 captures the image of the movable device 110 in the surveillance image of the security camera 330, and the security camera 330 is set to shoot the image between the shelf H2 and the shelf H3. Therefore, the server 130 determines The movable device 110 is located between the shelf H2 and the shelf H3.
  • the server 130 determines the accurate position of the movable device 110 based on the size and position of the feature point of the movable device 110 in the image and the shooting angle of the security camera 330.
  • FIG. 3B shows an image of the movable device 110 captured by the security camera 330.
  • the server 130 determines the actual distance between the movable device 110 and the security camera 330 according to the pixel size occupied by the identification mark on the body 204 in the image.
  • the width of the two-dimensional identification code of the fuselage 204 occupies 55 to 60 pixels in the image, it can be inferred that the two-dimensional identification code is about 6 meters away from the security camera 330; the width of the two-dimensional identification code of the fuselage 204 is The image occupies 65 to 70 pixels in size, it can be inferred that the two-dimensional identification code is about 5 meters away from the security camera 330.
  • Different cameras, different hardware and on-site environment configurations may affect the actual distance judgment between the main mobile device 110 and the security camera 330. The example here only means that the server 130 can make judgments based on feature points.
  • the size of the pixels occupied is inversely proportional to the actual distance between the main mobile device 110 and the security camera 330.
  • the actual distance corresponding to the pixel size occupied by the two-dimensional identification code in the image can be input in the server 130 in advance, so that the server 130 can pass through when detecting the image captured by the security camera 330
  • the actual distance between the two-dimensional identification code and the security camera 330 is obtained by interpolation. It should be noted that the size of the pixels occupied by the two-dimensional identification code in the image and the corresponding actual distance are only examples. The actual correspondence depends on the resolution of the security camera 330 (or more accurately the image sensor 140) and other reasons.
  • the server 130 determines the relative position of the movable device 110 according to the position of the identification mark on the body 204 in the image and the shooting angle of the security camera 330.
  • the shooting angle of the security camera 330 is downward deflection ⁇
  • the server 130 determines that the movable device 110 is located in the aisle between the shelf H2 and the shelf H3, and the identification mark of the body 204 is in the image.
  • the middle and lower right corner block therefore, the server 130 can determine that the movable device 110 is located relatively close to the shelf H2.
  • the server 130 determines the accurate position of the movable device 110 according to the size and position of the identification mark of the movable device 110 in the image and the shooting angle and position of the security camera 330.
  • the server 130 After determining the precise position of the movable device 110, the server 130 sends instructions to the movable device 110 to continue traveling, stop traveling, turn, etc. according to the task currently performed by the movable device 110 and the determined position.
  • the device 110 reduces the number of sensors (such as image sensors, optical radars, depth cameras, ultrasonic sensors, infrared sensors, etc.) to realize functions such as moving in a warehouse, transporting goods, etc., and greatly reducing the manufacturing cost of the movable device 110.
  • the characteristic points in the present invention are not limited to the identification marks on the fuselage 204.
  • the characteristic point is the whole or part of the movable device 110, for example, the whole or part of the body 204 is used as the characteristic point.
  • the server 130 can infer the distance between the movable device 110 and the security camera 330 according to the pixel size occupied by the whole or part of the movable device 110 in the image. Those with ordinary knowledge in the art should be able to easily understand the details of judging the distance between the movable device 110 and the security camera 330 according to different feature points, and the detailed description is omitted here to save space.
  • FIG. 4A is a schematic diagram of a movable device 110 according to another embodiment of the invention.
  • the movable device 110 shown in FIG. 4A is substantially the same as the movable device 110 shown in FIG. 2.
  • the movable device 110 shown in FIG. 4A further includes a transmission port 410 for connecting an external sensing device.
  • the external sensing device may be a distance sensor, an optical radar, a depth camera, an ultrasonic sensor, an infrared sensor, and so on.
  • FIG. 4B shows a schematic diagram of the mobile device 110 connected to an external sensing device.
  • the mobile device 110 can sense the distance to surrounding objects through the external sensing device or Capture surrounding images and so on, and then complete their own positioning.
  • the movable device 110 can transmit the positioning information to the server 130, so that the server 130 can perform calibration according to the positioning information.
  • the server 130 first passes the feature points of the movable device 110 in the image.
  • the size and position, and the shooting angle and position of the security camera 330 are used to determine the position of the movable device 110.
  • the positioning information sent to the server 130 by the movable device 110 is compared with the determined position to correct the determination of the server 130.
  • the correction process can be simply summarized into the following formula:
  • P AMR is the positioning information sent by the mobile device 110 itself to the server 130
  • P camera is the setting position of the security camera 330
  • Angle is the shooting angle of the security camera 330
  • Depth is the server 130
  • the determined distance between the security camera 330 and the movable device 110, ⁇ , ⁇ , ⁇ , and ⁇ are constants.
  • the server 130 adjusts the constants ⁇ , ⁇ , ⁇ , and ⁇ to make the function value of f() close to the positioning information PAMR transmitted by the movable device 110 itself to the server 130, thereby achieving a correction effect. In this way, when the movable device 110 is connected to an external sensing device and moves in the warehouse, the server 130 can perform calibration through each security camera that captures the movable device 110.
  • the movable device 110 can be connected to an external sensing device to perform a calibration before actually putting it into application. It is also possible to perform a calibration within a fixed time limit to maintain the accuracy of determining the position of the movable device 110.
  • FIG. 5 is a schematic diagram of a movable device 110 according to another embodiment of the present invention.
  • the movable device 110 shown in FIG. 5 is substantially the same as the movable device 110 shown in FIG. 2, except that the movable device 110 shown in FIG. 5 also includes an odometer 510 and an inertial measurement unit (IMU) 520, wherein the odometer 510 is used to measure the moving distance of the movable device 110, and the inertial measurement unit 520 is used to measure the deflection angle, speed and acceleration of the movable device 110.
  • IMU inertial measurement unit
  • the movable device 110 generates auxiliary positioning information according to the moving distance measured by the odometer 510 and the deflection angle, speed, and acceleration measured by the inertial measurement unit 520, and transmits the auxiliary positioning information to the server 130. Then, the server 130 determines the accurate position of the movable device 110 according to the size and position of the feature point in the image captured by the security camera 330 and the shooting angle and position of the security camera 330, and at the same time, according to the information transmitted by the movable device 110 Auxiliary positioning information for calibration.
  • the formula used in the calibration process can refer to the foregoing embodiment, and the detailed description is omitted here to save space.
  • the odometer 510 is prone to errors when used for a long time. Therefore, the accuracy of the odometer 510 can be maintained by resetting the odometer 510 regularly.
  • FIG. 6 in the embodiment of FIG. 6, there are multiple preset reset areas in the warehouse, such as the reset areas R1, R2, and R3 shown in the figure.
  • the movable device 110 When the moving distance sensed by the odometer 510 reaches a preset value, the movable device 110 will move to one of the preset reset regions R1, R2, R3 and reset the odometer 510 to zero.
  • the movable device 110 After the odometer 510 is reset to zero, the movable device 110 will start from the reset area R1, R2 or R3 of the known location. As a result, the auxiliary positioning information generated based on the recalculated movement distance will have higher Accuracy.
  • the auxiliary positioning information of the server 130 may also be provided in other ways, thereby optimizing the accuracy of determining the position of the movable device 110.
  • fixed signs in the warehouse can be used as auxiliary positioning information.
  • multiple marking lines are drawn on the floor of the warehouse, such as marking lines A1-A3 and marking lines B1-B6.
  • the marking lines are fixed markings in the warehouse and can be used as servers. 130 determines the auxiliary positioning information of the movable device 110.
  • the server 130 determines the position of the movable device 110 in real time based on the relative position of the movable device 110 in the image to the marked line, the size and position of the feature point in the image, and the shooting angle and position of the image sensor 140.
  • the marking lines A1-A3 and the marking lines B1-B6 may have different characteristics, in other words, the dotted lines of the marking lines A1, A2, and A3.
  • the interval, style, and line color can be different; similarly, the dotted line interval, style, and line color of the marking lines B1, B2, B3, B4, B5, and B6 can also be different.
  • the server 130 can also determine the location of the movable device 110 from the intersection of the marked lines in the image, thereby improving the accuracy of the determination.
  • the style of the marking line in FIG. 7 is only an example and not a limitation of the present invention.
  • the number of marking lines in the storage can be changed according to actual needs, which is also not a limitation of the present invention.
  • the server 130 can determine the location of the movable device 110 completely based on the intersection of the marking lines in the image. Detailed description It is omitted here to save space.
  • the server 130 uses the image captured by the image sensor 140 to locate the movable device 110, when the image sensor 140 is blocked so that the image of the movable device 110 cannot be captured smoothly, the server 130 may not be able to smoothly determine whether it is possible.
  • the location of the mobile device 110 Referring to FIG. 8, in the embodiment of FIG. 8, the image sensor 140 captures the image of the movable device 110 and there is an obstacle (such as a worker) that blocks the line of sight of the image sensor 140, so that part of the movable device 110 is blocked, thereby causing the servo
  • the device 130 cannot determine the exact position of the movable device 110 based on the size and position of the feature point in the image.
  • the server 130 when the image sensor 140 captures the image of the movable device 110, an obstacle blocks the line of sight of the image sensor 140, causing the movable device 110 of a preset ratio to be blocked, the server 130 An instruction to stop traveling will be issued to the movable device 110 to avoid a collision. For example, if in the image captured by the image sensor 140 of the movable device 110, an obstacle obstructs the view of the image sensor 140, causing 50% of the movable device 110 to be blocked, the server 130 sends an instruction to stop moving to the movable device. Device 110 to avoid collisions. It should be noted that the present invention does not limit the actual value of the preset ratio.
  • the server 130 can estimate the moving speed and path of the person or other movable device based on the images captured by the image sensor 140 at two points in time. Referring to FIGS. 9A and 9B at the same time, FIG. 9A is an image captured by the image sensor 140 at a first time point, and FIG. 9B is an image captured by the image sensor 140 at a second time point. If the server 130 determines in the images captured at two points in time that the worker and the movable device 110 may collide, the server 130 can issue a stop when the distance between the worker and the movable device 110 is less than the preset distance To the movable device 110 to avoid collisions. Taking FIG.
  • the server 130 determines that it may collide with the movable device 110 according to the speed and path of the worker, when the movable device 110 is 1 meter away from the worker, the server 130 sends a stop motion Command to the movable device 110 to avoid collision. It should be noted that the present invention does not limit the actual value of the preset distance.
  • the server 130 when the server 130 sends an instruction to stop traveling to the movable device 110, the movable device will stop traveling until receiving a movement instruction.
  • the movement instruction is issued by the server 130.
  • the server 130 determines that the line of sight of the image sensor 140 is no longer blocked by an obstacle, or when the server 130 determines that an obstacle (a worker or other movable device) is far away from the movable device 110, the servo The device 130 issues a movement instruction to the movable device 110 and controls the movable device 110 to continue moving.
  • the movement instruction is issued by an external electronic device.
  • the server 130 judges that it may collide with the movable device 110 according to the speed and path of the worker. Therefore, the server 130 sends an instruction to stop traveling to the movable device 110. Then, the staff can send a movement instruction to the movable device 110 through the electronic device (such as a mobile phone) worn by themselves, and control the movable device 110 to continue traveling.
  • the electronic device such as a mobile phone
  • FIG. 10 is a system block diagram of a storage system according to an embodiment of the present invention.
  • the storage system 100 includes a plurality of movable devices, such as the movable device 110, that move in the storage.
  • the movable device includes a communication device 201, a processor 202, and a driving component 203.
  • the processor 202 is used to process the instructions received by the communication device 201; the driving component 203 is used to drive the autonomous mobile device to move.
  • the storage system 100 further includes a server 130 and an image sensor 140.
  • the server 130 is electrically connected to the plurality of movable devices, and the plurality of movable devices can communicate with the server 130 through the communication device (such as the communication device 201) provided therein, and receive the information from the server 130 Various instructions, such as instructions to continue traveling, stop traveling, turn, etc.
  • the image sensor 140 is integrated in the security camera and is electrically connected to the server 130.
  • the image sensor 140 is used to capture images in the warehouse, in particular, is used to capture images of the movable device 110 so that the server 130 can be positioned
  • the movable device 110 controls the travel of the movable device 110, thereby realizing the task of moving and transporting goods in the warehouse.
  • FIG. 11 is a flowchart of a method 600 applied to a storage system according to an embodiment of the present invention. Provided that substantially the same result can be obtained, the present invention is not limited to be implemented completely in accordance with the process steps shown in FIG. 11.
  • the method 600 can be summarized as follows:
  • Step 610 Capture the image of the movable device through the image sensor.
  • Step 620 Determine the position of the movable device in real time at least according to the size and position of the feature point of the movable device in the image and the shooting angle and position of the image sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种仓储系统(100)及相关方法,该仓储系统(100)包括:可移动装置(110),用于在仓储内移动;伺服器(130),电性连接至可移动装置(110),用于监控可移动装置(110);影像传感器(140),电性连接至伺服器(130),用于捕捉可移动装置(110)的影像;伺服器(130)至少通过可移动装置(110)的特征点在影像中的尺寸与位置以及影像传感器(140)的拍摄角度与位置来实时判断可移动装置(110)的位置。通过影像传感器(140)来定位可移动装置(110),使得可移动装置(110)在减少安装传感器的情况下仍能顺利进行移动、避障等功能,有利于降低成本。

Description

仓储系统及相关方法 技术领域
本发明是有关于一种系统,详细来说,是有关于一种仓储系统以及相关方法。
背景技术
现有的自主移动装置(如无人物流车)在仓储中移动时,通常依靠自主移动装置本身的传感器进行定位,并将定位结果回传伺服器。但自主移动装置的传感器彼此经常会发生电磁干扰,导致传感器无法正常运作。如此一来,若派遣人员前往排除障碍耗时且费工,降低工作效率。然而,若移除所有传感器将会导致自主移动装置失去自主移动、避障及搬运货物的功能。
发明内容
本发明的目的之一在于提供一种仓储系统及相关方法来解决上述问题,例如,在可移动装置减少安装传感器的状况下,仍能定位可移动装置,并使可移动装置顺利实现移动、避障及搬运货物等功能。
依据本发明的一实施例,揭露一种仓储系统,包括:可移动装置、伺服器以及影像传感器。所述可移动装置用于在仓储内移动。所述伺服器电性连接至所述可移动装置,其用于监控所述可移动装置。所述影像传感器电性连接至所述伺服器,其用于捕捉所述可移动装置的影像。所述伺服器至少通过可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
依据本发明的一实施例,所述特征点是所述可移动装置的机身上的识别标示。
依据本发明的一实施例,所述可移动装置包括传输端口,用于连接外接式感测装置,其中所述可移动装置通过所述外接式感测装置获取所述可移动装置 在所述仓储内的位置,并将其位置传送至所述伺服器。
依据本发明的一实施例,所述伺服器依据所述可移动装置所传送的位置、所述特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来优化实时判断所述可移动装置的位置的精准度。
依据本发明的一实施例,所述外接式感测装置包括光学雷达、深度相机、超声传感器及红外传感器的至少其中之一。
依据本发明的一实施例,所述可移动装置包括用于测量所述可移动装置的移动距离的里程计以及用于测量所述可移动装置的偏向角度、速度与加速度的惯性测量单元;所述可移动装置传送辅助定位资讯至所述伺服器,使得所述伺服器依据所述辅助定位资讯、所述特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来优化实时判断所述可移动装置的位置的精准度;其中所述辅助定位资讯包括所述移动距离以及所述偏向角度、所述速度与所述加速度。
依据本发明的一实施例,当所述移动距离达到预设值时,所述可移动装置移动至所述仓储内的预设位置并将所述里程计归零。
依据本发明的一实施例,所述伺服器通过所述可移动装置在所述影像中与所述仓储内固定标示的相对位置、所述可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
依据本发明的一实施例,所述固定标示是标示在所述仓储地上的标示线。
依据本发明的一实施例,当所述可移动装置在所述影像中有预设比例部分被遮挡时,所述伺服器控制所述可移动装置停止移动。
依据本发明的一实施例,当障碍物出现在所述影像传感器的感测范围时,所述伺服器通过所述影像传感器所捕捉的影像判断所述障碍物与所述可移动装置的距离,并且当所述障碍物与所述可移动装置的距离小于预设距离时,所述伺服器控制所述可移动装置停止移动直到所述可移动装置接收移动指示。
依据本发明的一实施例,所述移动指示是由所述伺服器传送至所述可移动装置。
依据本发明的一实施例,所述移动指示是由外部电子装置传送至所述可移动装置。
依据本发明的一实施例,所述影像传感器整合于安防摄像头之上。
依据本发明的一实施例揭露一种应用于仓储系统的方法,所述方法包括:通过影像传感器捕捉可移动装置的影像;以及至少通过所述可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
本发明所公开的仓储系统及相关方法通过影像传感器来定位可移动装置,使得可移动装置在减少安装的传感器的情况下仍能顺利进行移动、避障、搬运货物等功能,成本可因此大幅减少。
附图说明
图1是依据本发明一实施例之仓储系统的示意图。
图2是依据本发明一实施例之可移动装置的示意图。
图3A与图3B是依据本发明一实施例之定位可移动装置的示意图。
图4A是依据本发明另一实施例之可移动装置的示意图。
图4B是依据本发明一实施例之可移动装置连接外接式感测装置的示意图。
图5是依据本发明另一实施例之可移动装置的示意图。
图6是依据本发明一实施例之重设里程计的示意图。
图7是依据本发明一实施例之根据仓储之中固定标示定位可移动装置的示意图。
图8是依据本发明一实施例之发出停止行进指令至可移动装置的示意图。
图9A与图9B是依据本发明另一实施例之发出停止行进指令至可移动装置的示意图。
图10是依据本发明一实施例之仓储系统的系统方块图。
图11是依据本发明一实施例之应用于仓储系统的方法流程图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长 短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
目前市面上的自主移动装置(如无人物流车)常应用于仓储之中来进行货物运输,自主移动装置依靠本身的传感器,如距离传感器、光学雷达(Light Laser Detection and Ranging,LiDAR)、深度相机(或称为RGBD相机)等,来实现避障、移动、搬运货物等功能。另外,自主移动装置还可依据上述传感器来进行自身定位,并依靠通讯装置将定位信息传送至伺服器来进行控管。然而,上述的传感器彼此容易因为电磁干扰造成传感器无法正常运作,若派遣人员前往排除障碍耗时且费工,降低工作效率。但若将所有传感器移除将造成自主移动装置不仅失去了移动、避障的功能,同时也失去了定位的功能。因此,本发明提供一种仓储系统,在本发明所提出的仓储系统中的可移动装置可在减少安装传感器之下仍进行移动、避障、定位等功能。
图1是依据本发明一实施例之仓储系统100的示意图。仓储系统100包括多个用于在仓储中移动的可移动装置,例如,图1中的可移动装置110。在本实施例中,可移动装置110用于在仓储的货架间,例如,图示中的货架H1至H4间移动来进行货物的搬运。
仓储系统100还包括伺服器130以及影像传感器140。伺服器130与可移动装置110电性连接,其中可移动装置110可通过设置于其中的通讯装置来与伺服器130进行通讯,使伺服器130能够管理、监控可移动装置110、管控货物搬运状况、订单情形等等。在本实施例中,影像传感器140整合于安防摄像头中,其中影像传感器140与伺服器130电性连接,并用于捕捉仓储内的画面。特别地,影像传感器140用于捕捉可移动装置110的影像,使得伺服器130可通过影像传 感器140定位可移动装置110,并控制可移动装置110的行进,进而实现在仓储中移动、避障、搬运货物的任务。
需说明的是,上述“电性连接”并不限定于通过实体线路实现物理连接,若两者以无线的方式进行通讯来传递信号同样可隶属于电性连接的范畴。举例来说,影像传感器140可以通过线缆将捕捉到的影像传送至伺服器130。以另一例子而言,影像传感器140可以通过访问接入点将捕捉到的影像传送至伺服器130,进而实现无线通讯。
图2是依据本发明一实施例之可移动装置110的示意图。如同图1实施例所述,可移动装置110用于在仓储中移动以搬运货物。可移动装置110包括通讯装置201、处理器202、驱动组件203以及机身204。通讯装置201用于与伺服器130进行无线通讯。详细来说,可移动装置110可通过通讯装置201接收伺服器130发出的各种指令,例如,继续行进指令、暂停行进指令、转弯指令等等。需注意的是,在本发明中并不限定可移动装置110与伺服器130所进行的通讯的种类。举例来说,可移动装置110与伺服器130所进行的通讯可以是蓝牙、无线保真、紫蜂(ZIG-BEE)等无线通讯技术。处理器202用于处理伺服器130所传送的各种指令,并依据指令控制可移动装置110进行相应地操作。驱动组件203用于驱动可移动装置110以进行移动。在本实施例中,驱动组件203包括马达以及动力轮,所述马达提供动能至动力轮来驱动可移动装置110。机身204之上具有多个识别标识。举例来说,机身204可在顶面以及侧面贴有对应于可移动装置110的二维识别码。除此之外,机身204可在顶面以及侧面贴有对应于可移动装置110的型号标识(如字样110)。机身204之上的识别标识可用于供仓储人员识别可移动装置110的型号。
详细来说,可移动装置110通过通讯装置201与伺服器130进行通讯,使得伺服器130在通过设置在仓储内的安防摄像头(更准确来说,是影像传感器140)捕捉可移动装置110的影像后,根据可移动装置110的特征点在影像中的尺寸与 位置以及安防摄像头的拍摄角度与位置来实时判断可移动装置110的位置,并且,依据判断结果传送指令至可移动装置110来控制可移动装置110的行进、停止、转弯等等。如此一来,可移动装置110即可在减少安装感测器(如影像传感器、光学雷达、深度相机、超声传感器及红外传感器等等用于移动、避障的感测器)之下进行定位,并实现在仓储中移动、搬运货物等任务,大幅减少了可移动装置110的制造成本。
在本发明的一实施例中,特征点是可移动装置110的机身204上的识别标识。换句话说,伺服器130根据机身204上的识别标识在安防摄像头(更准确来说,是影像传感器140)所捕捉的影像中的尺寸与位置以及安防摄像头(更准确来说,是影像传感器140)的拍摄角度与位置来实时判断可移动装置110的准确位置。
需说明的是,可移动装置110还可包括其他组件、元件来实现可移动装置110的其他功能。举例来说,可移动装置110还包括用于储存信息的储存装置、用于提供功率的电池以及将功率分配至各个部件的功率分配模组。需注意的是,图2所示的可移动装置110仅为范例说明,本发明并不限定可移动装置110的详细架构,同样地,本发明并不限定仓储系统100中其他可移动装置的详细架构。
图3A与图3B是依据本发明一实施例之定位可移动装置110的示意图。在图3A的实施例中,仓储系统100还包括设置在仓储之中的多个安防摄像头。例如,设置于仓储之中的安防摄像头310、320、330、340与350,且影像传感器140整合在安防摄像头310、320、330、340、350中的每一个。安防摄像头310、320、330、340与350作为监视器来监控仓储之中以达到安防的作用,同时,伺服器130还通过安防摄像头310、320、330、340、350来定位可移动装置110。举例来说,伺服器130在安防摄像头330的监视画面中捕捉到可移动装置110的影像,并且安防摄像头330的设置是用于拍摄货架H2与货架H3之间的画面,因此,伺服器130判断可移动装置110位于货架H2与货架H3之间。
接着,伺服器130通过可移动装置110的特征点在影像中的尺寸与位置以及 安防摄像头330的拍摄角度来判断可移动装置110的准确位置。参考图3B,图3B显示安防摄像头330所捕捉可移动装置110的影像。伺服器130根据机身204上的识别标识在影像中所占的像素大小来判断可移动装置110与安防摄像头330的实际距离。例如,机身204的二维识别码的宽度在影像中占有55至60个像素大小,则可推断二维识别码距离安防摄像头330大约6公尺;机身204的二维识别码的宽度在影像中占有65至70个像素大小,则可推断二维识别码距离安防摄像头330大约5公尺。不同摄像头、不同硬件及现场环境配置皆可能影响主移动装置110与安防摄像头330的实际距离判断,本处示例仅为表示伺服器130可根据特征点来进行判断,且在判断时,影像中所占的像素大小与主移动装置110与安防摄像头330的实际距离成反比。在本实施例中,二维识别码在影像中占有的像素大小所对应到的实际距离可预先输入在伺服器130中,使得伺服器130在侦测安防摄像头330所捕捉的影像时,可通过内插法的方式得到二维识别码距离安防摄像头330的实际距离。需注意的是,上述二维识别码在影像中占有的像素大小与对应的实际距离仅为范例说明。实际的对应关系取决于安防摄像头330(或者更准确的说是影像传感器140)的解析度等等原因。
接着,伺服器130根据机身204上的识别标识在影像中的位置以及安防摄像头330的拍摄角度来判断可移动装置110的相对位置。例如,安防摄像头330的拍摄角度是往下偏转θ,伺服器130据此判断可移动装置110是位在货架H2与货架H3之间的走道间,并且此时机身204的识别标识位在影像中右下角区块,因此,伺服器130可据此判断可移动装置110位在相对靠近货架H2的位置。
综上所述,伺服器130根据可移动装置110的识别标识在影像中的尺寸与位置以及安防摄像头330的拍摄角度与位置判断可移动装置110的准确位置。
在判断可移动装置110的准确位置后,伺服器130依据可移动装置110目前进行的任务以及判断出的位置对可移动装置110发出继续行进、停止行进、转弯等等的指令,进而在可移动装置110减少感测器(如影像传感器、光学雷达、 深度相机、超声传感器及红外传感器等等)之下实现在仓储中移动、搬运货物等功能,大幅减少可移动装置110的制造成本。
需注意的是,在本发明中特征点并不限于机身204上的识别标识。在本发明的另一实施例中,特征点是可移动装置110的整体或一部分,例如,机身204的整体或一部分作为特征点。伺服器130可根据可移动装置110的整体或一部分在影像中占有的像素大小来推断可移动装置110与安防摄像头330之间的距离。本领域具有通常知识者应能轻易理解根据不同特征点来判断可移动装置110与安防摄像头330的距离的细节,详细说明在此省略以省篇幅。
为了优化判断可移动装置110的位置的精准度,可以通过外接式感测装置来进行校准。图4A是依据本发明另一实施例之可移动装置110的示意图。图4A所示的可移动装置110与图2所示的可移动装置110大致相同,差异仅在于图4A所示的可移动装置110还包括传输端口410,其用于连接外接式感测装置。举例来说,外接式感测装置可以是距离传感器、光学雷达、深度相机、超声传感器及红外传感器等。参考图4B,图4B显示可移动装置110连接外接式感测装置的示意图,当连接外接式感测装置后,可移动装置110即可通过外接式感测装置来感测与周遭物体的距离或者捕捉周遭影像等等,进而完成自身的定位。并且可移动装置110可以将定位信息传送至伺服器130,使得伺服器130可依据定位信息来进行校准。
举例来说,当安防摄像头330捕捉到连接外接式感应装置的可移动装置110的影像时,依据上述实施例所提及的方式,伺服器130首先通过可移动装置110的特征点在影像中的尺寸与位置以及安防摄像头330的拍摄角度与位置来判断可移动装置110的位置。同时,依据可移动装置110传送至伺服器130的定位信息与判断出的位置进行比较,进而校正伺服器130的判断。校正的过程可简单归纳成下方公式:
P AMR(x,y)=f(α·P camera,β·Angle,γ·Depth,κ)
其中f()是某种函数,P AMR是可移动装置110自身传送至伺服器130的定位信息、P camera是安防摄像头330的设置位置、Angle是安防摄像头330的拍摄角度、Depth是伺服器130所判断的安防摄像头330与可移动装置110之间的距离,α、β、γ、κ是常数。伺服器130通过调整常数α、β、γ、κ来使得f()的函数值接近可移动装置110自身传送至伺服器130的定位信息P AMR,借此达到校正的作用。如此一来,当可移动装置110连接外接式感测装置并在仓储中移动时,伺服器130可以通过每一个捕捉到可移动装置110的安防摄像头来进行校正。
在本发明中,可以在实际投入应用前将可移动装置110连接外接式感测装置来进行一次校准。也可以在固定的时间期限内即进行一次校正来维持判断可移动装置110的位置的精准度。
需注意的是,本发明并不限定通过上述的外接式感测装置来优化判断可移动装置110的位置的精准度。参考图5,图5是依据本发明另一实施例之可移动装置110的示意图。图5所示的可移动装置110与图2所示的可移动装置110大致相同,差异仅在于图5所示的可移动装置110还包括里程计510以及惯性测量单元(inertial measurement unit,IMU)520,其中里程计510用于测量可移动装置110的移动距离,惯性测量单元520用于测量可移动装置110的偏向角度、速度与加速度的惯性测量单元。
详细来说,可移动装置110依据里程计510所测量的移动距离以及惯性测量单元520所测量的偏向角度、速度与加速度产生辅助定位资讯,并且将辅助定位资讯传送至伺服器130。接着,伺服器130通过特征点在安防摄像头330所捕捉的影像中的尺寸与位置以及安防摄像头330的拍摄角度与位置来判断可移动装置110的准确位置,同时,依据可移动装置110所传送的辅助定位资讯来进行校准。校准过程中所采用的公式可参考前述实施例,详细说明在此省略以省篇幅。
本领域具有通常知识者应能理解,里程计510在长时间使用下容易产生误差,因此,定期地重设里程计510可以维持里程计510的精准度。参考图6,在图6的实施例中,仓储之中具有多个预设的重设区域,如图示的重设区域R1、R2、R3。当里程计510所感测的移动距离达到预设值时,可移动装置110将移动至预设的重设区域R1、R2、R3的其中之一并将里程计510归零重设。在里程计510归零重设后,可移动装置110将从已知位置的重设区域R1、R2或R3出发,如此一来,依据重新计算的移动距离所产生的辅助定位资讯将具有较高的精准度。
在本发明中,还可以通过其他方式来提供伺服器130辅助定位资讯,借此优化判断可移动装置110的位置的精准度。举例来说,可以通过仓储之中的固定标示作为辅助定位资讯。参考图7,在图7的实施例中,仓储的地面绘有多条标示线,例如标示线A1-A3以及标示线B1-B6,标示线在仓储之中属于固定标示,并且可作为伺服器130判断可移动装置110的辅助定位资讯。详细来说,伺服器130通过可移动装置110在影像中与标示线的相对位置、特征点在影像中的尺寸与位置以及影像传感器140的拍摄角度与位置来实时判断可移动装置110的位置。为了使伺服器130清楚判断可移动装置110是位在哪条标示线上,标示线A1-A3以及标示线B1-B6可以分别具有不同特征,换句话说,标示线A1、A2、A3的虚线间隔、样式、线条颜色可以各有不同;同样地,标示线B1、B2、B3、B4、B5、B6的虚线间隔、样式、线条颜色也可以各有不同。如此一来,伺服器130还可以从影像中的标示线交会处判断可移动装置110的所在位置,借此提高判断的精准度。需注意的是,图7中的标示线的样式仅为范例说明,并非本发明的一限制。另外,仓储中的标示线的数量可以依实际需要有所改变,此同样并非本发明的一限制。
本领域具有通常知识者应能轻易理解,若标示线的样式与数量具有足够高的辨识度,伺服器130可以完全根据影像中的标示线交会处来判断可移动装置 110的所在位置,详细说明在此省略以省篇幅。
由于伺服器130是通过影像传感器140所捕捉到的影像来进行可移动装置110的定位,当影像传感器140被遮挡使得无法顺利捕捉可移动装置110的影像时,将造成伺服器130无法顺利判断可移动装置110的位置。参考图8,在图8的实施例中,影像传感器140捕捉可移动装置110的影像中有障碍物(如工作人员)遮挡影像传感器140的视线,使得部分可移动装置110被遮挡,进而导致伺服器130无法通过特征点在影像中的尺寸与位置来判断可移动装置110的准确位置。在此情况下,若让可移动装置110持续行进,可能会造成可移动装置110与其他装置、障碍物或人员的碰撞。因此,在本发明的一实施例中,当在影像传感器140捕捉可移动装置110的影像中,有障碍物遮挡影像传感器140的视线导致预设比例的可移动装置110被遮挡时,伺服器130将发出停止行进的指令至可移动装置110,以避免碰撞。举例来说,若在影像传感器140捕捉可移动装置110的影像中,有障碍物遮挡影像传感器140的视线导致50%的可移动装置110被遮挡时,伺服器130发出停止行进的指令至可移动装置110,以避免碰撞。需注意的是,本发明并不限定预设比例的实际数值。
另外,若障碍物是会移动的人员或其他可移动装置,伺服器130可以根据影像传感器140在两个时间点捕捉的影像来估算人员或其他可移动装置的移动速度与行径路径。同时参考图9A与图9B,其中图9A是影像传感器140在第一时间点所捕捉的影像,图9B是影像传感器140在第二时间点所捕捉的影像。若伺服器130在两个时间点捕捉的影像中判断工作人员与可移动装置110将可能产生碰撞,则伺服器130可以在工作人员与可移动装置110的距离小于预设距离时,发出停止行进的指令至可移动装置110,以避免碰撞。以图9B为例,若伺服器130根据工作人员的速度以及行径路径判断其与可移动装置110可能会产生碰撞,则当可移动装置110距离工作人员1米时,伺服器130发出停止行进的指令至可移动装置110,以避免碰撞。需注意的是,本发明并不限定预设距离的实际数值。
在上述实施例中,当伺服器130发出停止行进的指令至可移动装置110后,所述可移动装置将停止行进直到接收移动指示。在本发明的一实施例中,移动指示是由伺服器130发出。详细来说,当伺服器130判断影像传感器140的视线不再被障碍物所遮挡时,或者,当伺服器130判断障碍物(工作人员或其他可移动装置)远离可移动装置110时,则伺服器130发出移动指示至可移动装置110,控制可移动装置110继续行进。
在本发明的另一实施例中,移动指示是由外部电子装置所发出。举例来说,伺服器130根据工作人员的速度以及行径路径判断其与可移动装置110可能会产生碰撞,因此,伺服器130发出停止行进的指令至可移动装置110。接着,工作人员可以通过自身佩戴的电子装置(如手机)发出移动指示至可移动装置110,控制可移动装置110继续行进。
归纳本发明的仓储系统于图10,以方便理解本发明。图10是依据本发明实施例的仓储系统的系统方块图,以仓储系统100为例说明,仓储系统100包括多个在仓储中移动的可移动装置,如可移动装置110。所述可移动装置包括通讯装置201、处理器202及驱动组件203。处理器202用于处理通讯装置201所接收到的指示;驱动组件203用于驱动自主移动装置移动。仓储系统100还包括伺服器130以及影像传感器140。伺服器130与所述多个可移动装置电性连接,所述多个可移动装置可通过设置于其中的通讯装置(如通讯装置201)来与伺服器130进行通讯,接收来自伺服器130的各种指示,例如继续行进、停止行进、转弯等指示。影像传感器140整合于安防摄像头中,并且与伺服器130电性连接,影像传感器140用于捕捉仓储内的画面,特别地,是用于捕捉可移动装置110的影像,使得伺服器130可借以定位可移动装置110,并控制可移动装置110的行进,进而实现在仓储中移动、搬运货物的任务。
图11是依据本发明一实施例中应用于仓储系统的方法600的流程图。倘若大致上可得到相同的结果,本发明并不限定完全依照图11所示的流程步骤来实 施。方法600可归纳如下:
步骤610:通过影像传感器捕捉可移动装置的影像。
步骤620:至少通过所述可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
本领域具有通常知识者在阅读完上述实施例后应能轻易理解方法600的操作流程,详细说明在此省略以省篇幅。
上文概述若干实施例的特征,使得所属领域的技术人员可较佳理解本申请的方面。所属领域的技术人员应了解,其可容易使用本申请作为用于设计或修改用于实行相同目的及/或实现本文中介绍的实施例的相同优点的其它工艺及结构的基础。所属领域的技术人员还应意识到,这些等效构造不脱离本揭露的精神及范围且其可在本文中做出各种改变、替代及更改而不脱离本揭露的精神及范围。
再者,本申请的范围不旨在限于本说明书中描述的工艺、机器、制造、物质组成、构件、方法及步骤的特定实施例。所属领域的一般技术人员将根据本揭露的揭示内容容易了解,可根据本揭露利用大体上执行与本文中描述的对应实施例相同的功能或大体上实现与其相同的结果的目前存在或后续发展的工艺、机器、制造、物质组成、构件、方法或步骤。因此,随附权利要求书旨在将这些工艺、机器、制造、物质组成、构件、方法或步骤包含于其范围内。

Claims (15)

  1. 一种仓储系统,其特征在于,包括:
    可移动装置,其用于在仓储内移动;
    伺服器,电性连接至所述可移动装置,其用于监控所述可移动装置;以及
    影像传感器,电性连接至所述伺服器,其用于捕捉所述可移动装置的影像;
    其中所述伺服器至少通过可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
  2. 如权利要求1所述的仓储系统,其特征在于,所述特征点是所述可移动装置的机身上的识别标示。
  3. 如权利要求1所述的仓储系统,其特征在于,所述可移动装置包括传输端口,用于连接外接式感测装置,其中所述可移动装置通过所述外接式感测装置获取所述可移动装置在所述仓储内的位置,并将其位置传送至所述伺服器。
  4. 如权利要求3所述的仓储系统,其特征在于,所述伺服器依据所述可移动装置所传送的位置、所述特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来优化实时判断所述可移动装置的位置的精准度。
  5. 如权利要求3所述的仓储系统,其特征在于,所述外接式感测装置包括光学雷达、深度相机、超声传感器及红外传感器的至少其中之一。
  6. 如权利要求1所述的仓储系统,其特征在于,所述可移动装置包括用于测量所述可移动装置的移动距离的里程计以及用于测量所述可移动装置的偏向角度、速度与加速度的惯性测量单元;所述可移动装置传送辅助定位资讯至所述伺服器,使得所述伺服器依据所述辅助定位资讯、所述特征点在所述影像 中的尺寸与位置以及所述影像传感器的拍摄角度与位置来优化实时判断所述可移动装置的位置的精准度;其中所述辅助定位资讯包括所述移动距离以及所述偏向角度、所述速度与所述加速度。
  7. 如权利要求6所述的仓储系统,其特征在于,当所述移动距离达到预设值时,所述可移动装置移动至所述仓储内的预设位置并将所述里程计归零。
  8. 如权利要求1所述的仓储系统,其特征在于,所述伺服器通过所述可移动装置在所述影像中与所述仓储内固定标示的相对位置、所述可移动装置的所述特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
  9. 如权利要求8所述的仓储系统,其特征在于,所述固定标示是标示在所述仓储地上的标示线。
  10. 如权利要求1所述的仓储系统,其特征在于,当所述可移动装置在所述影像中有预设比例部分被遮挡时,所述伺服器控制所述可移动装置停止移动。
  11. 如权利要求1所述的仓储系统,其特征在于,当障碍物出现在所述影像传感器的感测范围时,所述伺服器通过所述影像传感器所捕捉的影像判断所述障碍物与所述可移动装置的距离,并且当所述障碍物与所述可移动装置的距离小于预设距离时,所述伺服器控制所述可移动装置停止移动直到所述可移动装置接收移动指示。
  12. 如权利要求11所述的仓储系统,其特征在于,所述移动指示是由所述伺服器传送至所述可移动装置。
  13. 如权利要求11所述的仓储系统,其特征在于,所述移动指示是由外部电子装 置传送至所述可移动装置。
  14. 如权利要求1所述的仓储系统,其特征在于,所述影像传感器整合于安防摄像头之上。
  15. 一种应用于仓储系统的方法,其特征在于,包括:
    通过影像传感器捕捉可移动装置的影像;以及
    至少通过所述可移动装置的特征点在所述影像中的尺寸与位置以及所述影像传感器的拍摄角度与位置来实时判断所述可移动装置的位置。
PCT/CN2020/133552 2019-12-13 2020-12-03 仓储系统及相关方法 WO2021115189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911284029.6 2019-12-13
CN201911284029.6A CN110980084A (zh) 2019-12-13 2019-12-13 仓储系统及相关方法

Publications (1)

Publication Number Publication Date
WO2021115189A1 true WO2021115189A1 (zh) 2021-06-17

Family

ID=70093475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133552 WO2021115189A1 (zh) 2019-12-13 2020-12-03 仓储系统及相关方法

Country Status (2)

Country Link
CN (1) CN110980084A (zh)
WO (1) WO2021115189A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111605943A (zh) * 2020-05-27 2020-09-01 新石器慧通(北京)科技有限公司 一种物流设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255404U (zh) * 2011-08-24 2012-05-30 国营红林机械厂 一种室内移动机器人双目视觉导航系统
CN105716611A (zh) * 2016-01-29 2016-06-29 西安电子科技大学 基于环境信息的室内移动机器人及其定位方法
CN107067794A (zh) * 2016-11-18 2017-08-18 安徽超清科技股份有限公司 一种基于视频图像处理的室内车辆定位导航系统及方法
CN108955683A (zh) * 2018-04-28 2018-12-07 温州大学激光与光电智能制造研究院 基于全局视觉的定位方法
US20190220020A1 (en) * 2019-03-26 2019-07-18 Intel Corporation Methods and apparatus for dynamically routing robots based on exploratory on-board mapping
CN110186451A (zh) * 2019-06-12 2019-08-30 英业达科技有限公司 适用于仓储系统的导航系统与物料输送载具的导航方法
CN110286682A (zh) * 2019-07-08 2019-09-27 国网山东省电力公司枣庄供电公司 一种电力仓储多功能安防探测机器人、方法及系统
CN110282332A (zh) * 2019-06-24 2019-09-27 灵动科技(北京)有限公司 自动运输装置、及适用于物流场景下自动运输装置的拣货信息获取及显示方法
CN111105455A (zh) * 2019-12-13 2020-05-05 灵动科技(北京)有限公司 仓储系统与相关方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355419A (ja) * 2003-05-30 2004-12-16 Hitachi Industries Co Ltd 物流システム
CN104881028A (zh) * 2015-05-11 2015-09-02 皖西学院 一种智能小车
CN104991560B (zh) * 2015-07-12 2018-08-14 仲恺农业工程学院 自主移动式智能机器人
CN107885198A (zh) * 2017-09-25 2018-04-06 湖南大学 Agv调度方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202255404U (zh) * 2011-08-24 2012-05-30 国营红林机械厂 一种室内移动机器人双目视觉导航系统
CN105716611A (zh) * 2016-01-29 2016-06-29 西安电子科技大学 基于环境信息的室内移动机器人及其定位方法
CN107067794A (zh) * 2016-11-18 2017-08-18 安徽超清科技股份有限公司 一种基于视频图像处理的室内车辆定位导航系统及方法
CN108955683A (zh) * 2018-04-28 2018-12-07 温州大学激光与光电智能制造研究院 基于全局视觉的定位方法
US20190220020A1 (en) * 2019-03-26 2019-07-18 Intel Corporation Methods and apparatus for dynamically routing robots based on exploratory on-board mapping
CN110186451A (zh) * 2019-06-12 2019-08-30 英业达科技有限公司 适用于仓储系统的导航系统与物料输送载具的导航方法
CN110282332A (zh) * 2019-06-24 2019-09-27 灵动科技(北京)有限公司 自动运输装置、及适用于物流场景下自动运输装置的拣货信息获取及显示方法
CN110286682A (zh) * 2019-07-08 2019-09-27 国网山东省电力公司枣庄供电公司 一种电力仓储多功能安防探测机器人、方法及系统
CN111105455A (zh) * 2019-12-13 2020-05-05 灵动科技(北京)有限公司 仓储系统与相关方法

Also Published As

Publication number Publication date
CN110980084A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
US10455226B2 (en) Systems and methods for image capture device calibration for a materials handling vehicle
US10458799B2 (en) Systems and methods for materials handling vehicle odometry calibration
US11681300B2 (en) Systems and methods for out of aisle localization and vehicle position calibration using rack leg identification
Kelly et al. Field and service applications-an infrastructure-free automated guided vehicle based on computer vision-an effort to make an industrial robot vehicle that can operate without supporting infrastructure
CN106227212B (zh) 基于栅格地图和动态校准的精度可控室内导航系统及方法
CN110837814B (zh) 车辆导航方法、装置及计算机可读存储介质
US20170108874A1 (en) Vision-based system for navigating a robot through an indoor space
CN110196586A (zh) 移动体、控制移动体的方法及计算机可读取记录媒体
WO2021115189A1 (zh) 仓储系统及相关方法
WO2015135015A1 (en) Train wagon 3d profiler
CN111516777A (zh) 一种机器人小车及其障碍物识别方法
WO2021115185A1 (zh) 仓储系统与相关方法
JP7243014B2 (ja) 移動体
CN111552297A (zh) 导航方法及导航装置
CN107918840A (zh) 一种移动单元、库存物品管理系统以及定位移动单元的方法
US11715229B2 (en) Moving body and system
CN113463720B (zh) 装载机铲斗接触物料的辨识系统和方法
US20230160700A1 (en) Vehicle locating system and vehicle locating device
KR20240076134A (ko) 집게 크레인 무인 자동화를 위한 3d 물체 위치 추정 장치 및 그 방법
Kim et al. Vehicle wheel edge detection using ToF sensor for low cost of vehicle specification measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898844

Country of ref document: EP

Kind code of ref document: A1