WO2021115129A1 - Module optique - Google Patents
Module optique Download PDFInfo
- Publication number
- WO2021115129A1 WO2021115129A1 PCT/CN2020/131835 CN2020131835W WO2021115129A1 WO 2021115129 A1 WO2021115129 A1 WO 2021115129A1 CN 2020131835 W CN2020131835 W CN 2020131835W WO 2021115129 A1 WO2021115129 A1 WO 2021115129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- module
- optical fiber
- path
- laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
Definitions
- the present invention belongs to the field of optical communication technology, and more specifically, relates to an optical module.
- the existing solution to this problem usually adopts WDM system, but the current WDM module either adopts a free space implementation scheme, mainly parallel light, which is reflected by multiple optical bandpass films to achieve light separation and synthesis.
- the long optical path causes the optical path.
- the stability is poor, and the process is complicated, which is not conducive to production; either the small laser component TOSA is used, the beam splitting uses the AWG coupling FA array coupling component, and the ceramic pin is used to connect with the small TOSA, which requires large size space and troublesome fiber optics. The cost is also higher.
- the present invention proposes an optical module, which has a simple structure, a higher packaging density than existing solutions, a relatively simple and stable process, and a more advantageous cost. Mass production.
- the present invention provides an optical module, including: a multi-path optical transmitting device and a multi-path optical receiving device;
- the multi-path light emitting device includes: N lasers, N coupling lenses, a multiplexing module, a first optical fiber connector, and an output port;
- the multi-path optical receiving device includes: an input port, a second optical fiber connector, a demultiplexing module, and N photoelectric detection modules; where N is a positive integer;
- the N lasers emit N laser beams, and the N laser beams are respectively coupled through the N coupling lenses corresponding to the N lasers, and then enter the multiplexing module, and the N laser beams are combined by the multiplexing module. After the coupled laser beam is converged into a combined beam, it enters the output port through the first optical fiber connector;
- the input port emits a laser beam
- the laser beam enters the demultiplexing module through the second optical fiber connector
- the demultiplexing module demultiplexes into N demultiplexed light beams and then enters the corresponding N waveguide ports
- the N split-wave beams respectively pass through the N waveguide ports and enter the photoelectric detection module corresponding to each waveguide port.
- the multiplexing module and the demultiplexing module are both implemented by a PLC chip, and the first optical fiber connector and the second optical fiber connector are both implemented by an optical fiber array FA.
- the laser wavelengths output by the N lasers are different.
- the N lasers realize the electrical connection between each of the lasers and the PCBA by welding gold wires and adopting thermosonic welding.
- the N lasers, the N coupling lenses, and the multiplexing module are all placed on the same metal carrier, and the metal carrier is bonded to the PCBA through a plane, and the PCBA includes a limiting structure. , To define the position of the metal carrier to facilitate the placement and positioning of the metal carrier.
- the multi-path optical receiving device further includes: a transimpedance amplifier;
- the N split-wave beams After passing through the N waveguide ports, the N split-wave beams enter the photodetection module corresponding to each waveguide port, and then are amplified by the transimpedance amplifier and output.
- the demultiplexing module and the N photodetection modules are directly coupled; or, the end faces of the demultiplexing module and the N photodetection modules are made into a preset angle to The N-channel demultiplexed light beams are reflected into each of the photoelectric detection modules through the end surface.
- a plurality of positioning holes are opened at the corresponding positions where the multi-path light receiving device is placed on the PCBA, corresponding to the positioning protrusions on the housing of the multi-path light receiving device.
- the first optical fiber connector is connected to the output port through a first optical fiber; the input port is connected to the second optical fiber connector through a second optical fiber.
- the optical module of the present invention includes multiple optical emitting devices and multiple optical receiving devices, and multiple optical emitting devices. Including: N lasers, N coupling lenses, multiplexing modules, first optical fiber connectors and output ports; multi-path optical receiving devices include: input ports, second optical fiber connectors, demultiplexing modules, and N photoelectric detection modules.
- the invention has simple structure and process, because it is directly integrated and packaged, it requires fewer components and lower cost; and the optical path is simple, the free optical path is shorter, and the optical path is more stable.
- Figure 1 is a top view of an embodiment of the present invention after opening the outer cover
- Figure 2 is a top view of an optical module provided by an embodiment of the present invention.
- Figure 3 is a side view of an embodiment of the present invention.
- Figure 4 is a base structure provided by an embodiment of the present invention.
- Figure 5 is a PCBA structure provided by an embodiment of the present invention.
- FIG. 6 is an effect diagram after assembly of a base and PCBA according to an embodiment of the present invention.
- FIG. 7 is an electrical connection structure between a laser and a PCBA provided by an embodiment of the present invention.
- Figure 8 is a receiving end outer protective cover provided by an embodiment of the present invention.
- 1 is the output end of the multiple light emitting device
- 2 is the FA of the multiple light emitting device
- 3 is the metal carrier
- 3-1 is the right positioning surface of the metal carrier
- 3-2 is the left positioning surface of the metal carrier.
- 3-3 is the bonding surface between metal carrier and PCBA
- 4 is PLC MUX
- 5 is coupling lens
- 6 is laser
- 7 is PCBA
- 8 is PCBA electrical output interface
- 9 is the housing positioning hole of multi-path optical receiving device
- 10 It TIA
- 11 is PD
- 12 is PLC Demux
- 13 is FA avoiding hole on PCBA to receive PLC
- 14 is FA at the end of multi-channel optical receiving device
- 15 is input of multi-channel optical receiving device
- 16 is multi-channel optical receiving
- 16-1 is the outer cover positioning post of the multi-path optical receiving device
- 17 is the housing of the multi-path optical transmitting device
- 18 is the gold wire for electrical connection between the laser and the PCBA.
- the present invention adopts optical waveguide PLC chip technology.
- the multi-channel optical transmitting device at the transmitting end multiplexes and couples multiple lasers through the PLC chip into an optical fiber for transmission, and the multi-channel optical receiving device at the receiving end uses PLC to receive multiple channels.
- the optical signal is decomposed and transmitted to the corresponding photodiode PD for reception.
- the embodiment of the present invention provides an optical module, including: a multi-path optical transmitting device and a multi-path optical receiving device;
- the multi-path optical transmitting device includes: N lasers, N coupling lenses, multiplexing module, first optical fiber connector and output port;
- the multi-path optical receiving device includes: an input port, a second optical fiber connector, a demultiplexing module, and N photoelectric detection modules; where N is a positive integer;
- N lasers emit N laser beams, and the N laser beams are respectively coupled through the N coupling lenses corresponding to the N lasers, and then enter the multiplexing module.
- the multiplexing module converges the N coupled laser beams into a multiplexed beam. , Enter the output port through the first optical fiber connector;
- the input port emits a laser beam, and the laser beam enters the demultiplexing module through the second optical fiber connector.
- the demultiplexing module demultiplexes into N demultiplexed beams and then enters the corresponding N waveguide ports.
- the N demultiplexed beams respectively pass through N waveguides. After the port, enter the photodetection module corresponding to each waveguide port.
- FIG. 1 is a top view of an optical module provided by an embodiment of the present invention with the outer cover opened
- FIG. 2 is a top view of an optical module provided by an embodiment of the present invention
- Fig. 3 is a side view provided by an embodiment of the present invention. It should be noted that the optical module illustrated in Fig. 1, Fig. 2 and Fig. 3 is only an optional implementation, as shown in Fig. 1.
- the optical module provided by the embodiment of the present invention includes: a multi-channel optical transmitting device and a multi-channel optical receiving device;
- PCBA 7 inputs 4 drive signals to 4 lasers 6 through PCBA electrical output interface 8, so that each laser emits laser signals, thereby converting the electrical signals into optical signals, which pass through the interface between the laser 6 and the PLC chip 4.
- the corresponding coupling lens 5 is coupled into the input port corresponding to the PLC chip 6 one-to-one, the light entering the PLC chip 6 is combined with the light by the PLC chip and then coupled to the FA 2 and enters the optical fiber to be output through the receiving end 1.
- the lasers usually have different wavelengths, for example, they can be 1270 nm, 1290 nm, 1311 nm, and 1331 nm respectively.
- the corresponding channels of the laser 6, the coupling lens 5, and the PLC chip 4 correspond one-to-one.
- the 4-channel laser may be a separate laser or an array of 4-channels together.
- the coupling lens may be a single discrete lens or an array of 4 lenses.
- the coupling between the laser and the PLC chip is shaped and converged by the lens to couple the light emitted by the laser into the PLC chip.
- the optical coupling efficiency can be adjusted by selecting the lens and adjusting the distance between the PLC and the laser. Control the final output optical power within the required range.
- the packaging density can be increased, the components used in the packaging can be reduced, the volume is reduced, and the cost is reduced.
- the 4 lasers are electrically connected between the laser and the PCBA by welding the gold wire 18 and using thermosonic welding, so that the PCBA transmits the electrical signal to the laser and converts it into light. signal.
- the lasers, PLCs, and lenses in the multi-path light emitting device are all placed on the same metal carrier 3.
- the metal carrier 3 is pasted on the PCBA 7 through the metal carrier plane 3-3.
- the 3-1 and 3-2 structures on the PCBA board can play the role of limiting the metal carrier and facilitate the placement and positioning of the metal carrier.
- there are two symmetrical raised structures on the PCBA board, each raised The structure includes a groove 3-1 and a boss 3-2, and the groove 3-1 and the boss 3-2 are adjacent, as shown in the examples shown in Figure 4, Figure 5 and Figure 6, the PCBA and When the metal carriers are mounted together, the position of the PCBA is limited.
- the 3-1 and 3-2 structures can use the front and side positioning surfaces to limit the position of the outer cover 17, and the outer cover on the side of the multiple light emitting device It is clamped on the metal carrier to facilitate the positioning and installation of the outer cover.
- the metal carrier can adopt a direct mounting structure design, which can be automatically mounted in batches, which can improve production efficiency.
- the multi-channel optical receiving device couples the multi-channel laser signal through the receiving end 15 into the demodulation receiving end PLC chip 12 through the optical fiber and the FA 14.
- the FA 14 is located on the PCBA to receive the FA of the PLC.
- the receiving end PLC chip 12 separates the received multiple laser signals, and inputs them into the corresponding waveguide ports.
- Each output port corresponds to a photodiode PD 11, which receives the corresponding optical signal and will receive the corresponding optical signal.
- the optical signal is converted into an electrical signal, and then amplified by a trans-impedance amplifier (TIA) 10 and output.
- TIA trans-impedance amplifier
- a direct coupling form is usually adopted between the demodulated PLC chip 12 and the received photodiode 11, and the emitted signal light is directly irradiated or by connecting the PLC chip 12 and the photodiode 11 corresponding to each other.
- the end surface is ground to a certain angle, and the PD is irradiated into the PD through the reflection of the end surface.
- the angle can be determined according to actual needs. Usually, the angle is about 41°.
- the specific angle used is not uniquely limited in the embodiment of the present invention.
- two positioning holes 9 are opened in the area where the multi-path light receiving device is placed on the PCBA, corresponding to the positioning protrusions 16-1 on the housing 16 of the multi-path light receiving device. Used to locate the housing of the multi-path optical receiving device, which is convenient for positioning and installation.
- the housings of the multi-path light emitting device and the multi-path light receiving device can also be mounted by automatic placement equipment to improve production efficiency.
- the FA adopted by the multi-path light emitting device and the multi-path light receiving device adopts the form of straight-out fiber, which avoids the complicated fiber coiling process and can also achieve high production efficiency.
- each step/component described in this application can be split into more steps/components, or two or more steps/components or partial operations of steps/components can be combined into new ones. Steps/components to achieve the purpose of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
La présente invention se rapporte au domaine des communications optiques. Un module optique est divulgué, comprenant un dispositif de transmission optique à trajets multiples et un dispositif de réception optique à trajets multiples. Un composant d'émetteur à trajets multiples comprend un élément métallique collé à une carte de circuit imprimé. Une partie supérieure du composant émetteur à trajets multiples est utilisée pour placer des éléments tels qu'un laser à trajets multiples, une puce PLC, et une lentille. Le laser est électriquement connecté à la carte de circuit imprimé au moyen d'un soudage par fil d'or. Le laser fait passer une lumière optique à travers la lentille située entre la puce PLC et le laser. Une lumière laser émise par un laser correspondant est couplée dans un port de puce PLC correspondant, est multiplexée, puis entre dans un composant de fibre optique, et est délivrée à une fibre optique externe au moyen d'une interface optique. Le dispositif de réception optique à trajets multiples place directement une photodiode et un amplificateur d'adaptation d'impédance sur la carte de circuit imprimé. Un signal optique externe entre dans le composant de fibre optique au moyen de l'interface optique, est divisé par un diviseur de faisceau optique, puis réfléchi en une photodiode correspondante pour une réception optique, ce qui permet la conversion du signal optique en un signal électrique. L'élément utilisé pour l'emballage peut être réduit, et le volume est réduit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911259686.5A CN111313969B (zh) | 2019-12-10 | 2019-12-10 | 一种光模块 |
CN201911259686.5 | 2019-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115129A1 true WO2021115129A1 (fr) | 2021-06-17 |
Family
ID=71157975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131835 WO2021115129A1 (fr) | 2019-12-10 | 2020-11-26 | Module optique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111313969B (fr) |
WO (1) | WO2021115129A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115728879A (zh) * | 2021-08-31 | 2023-03-03 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111313969B (zh) * | 2019-12-10 | 2022-01-11 | 长飞光纤光缆股份有限公司 | 一种光模块 |
CN112346181A (zh) * | 2020-11-09 | 2021-02-09 | 长飞光纤光缆股份有限公司 | 一种光模块 |
CN113296201B (zh) * | 2021-05-21 | 2022-07-22 | 福建中科光芯光电科技有限公司 | 一种光学组件及光模块及工作方法 |
CN113419316A (zh) * | 2021-07-23 | 2021-09-21 | 广东瑞谷光网通信股份有限公司 | 一种光接收器件外置的光模块 |
CN113721331B (zh) * | 2021-08-31 | 2022-07-08 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
WO2023029707A1 (fr) * | 2021-08-31 | 2023-03-09 | 青岛海信宽带多媒体技术有限公司 | Module optique |
CN114706175B (zh) * | 2022-04-08 | 2023-11-14 | 江苏铌奥光电科技有限公司 | 一种高速率光模块结构及其封装方法 |
CN115016079B (zh) * | 2022-06-21 | 2024-05-24 | 长芯盛(武汉)科技有限公司 | 一种800g光模块 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107065083A (zh) * | 2017-03-31 | 2017-08-18 | 武汉博昇光电股份有限公司 | 一种多通道光收发一体模块 |
CN107102405A (zh) * | 2016-02-19 | 2017-08-29 | 深圳新飞通光电子技术有限公司 | 一种带光束调整器的光发射组件、光接收组件及光模块 |
US9798087B1 (en) * | 2016-11-01 | 2017-10-24 | Hewlett Packard Enterprise Development Lp | Optoelectronic devices and wavelength-division multiplexing optical connectors |
CN108474911A (zh) * | 2015-12-10 | 2018-08-31 | 凯亚光电 | 具有组合式发射器及接收器组合件的光学收发器 |
CN108551372A (zh) * | 2018-03-23 | 2018-09-18 | 成都聚芯光科通信设备有限责任公司 | 一种多波长空间错位分合波模块及光学模块 |
CN109725392A (zh) * | 2019-02-19 | 2019-05-07 | 武汉电信器件有限公司 | 一种光发射组件和光接收组件 |
CN111313969A (zh) * | 2019-12-10 | 2020-06-19 | 长飞光纤光缆股份有限公司 | 一种光模块 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203773102U (zh) * | 2014-03-26 | 2014-08-13 | 深圳新飞通光电子技术有限公司 | 一种qsfp光模块 |
US9866329B2 (en) * | 2016-06-08 | 2018-01-09 | Applied Orthoelectronics, Inc. | Optical transmitter or transceiver including transmitter optical subassembly (TOSA) modules directly aligned to optical multiplexer inputs |
US10771160B2 (en) * | 2016-07-14 | 2020-09-08 | Ayar Labs, Inc. | Laser module for optical data communication system |
US10054739B2 (en) * | 2016-09-16 | 2018-08-21 | Kaiam Corp. | QSFP double density module |
CN108761666A (zh) * | 2018-03-30 | 2018-11-06 | 武汉联特科技有限公司 | 一种光模块 |
-
2019
- 2019-12-10 CN CN201911259686.5A patent/CN111313969B/zh active Active
-
2020
- 2020-11-26 WO PCT/CN2020/131835 patent/WO2021115129A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108474911A (zh) * | 2015-12-10 | 2018-08-31 | 凯亚光电 | 具有组合式发射器及接收器组合件的光学收发器 |
CN107102405A (zh) * | 2016-02-19 | 2017-08-29 | 深圳新飞通光电子技术有限公司 | 一种带光束调整器的光发射组件、光接收组件及光模块 |
US9798087B1 (en) * | 2016-11-01 | 2017-10-24 | Hewlett Packard Enterprise Development Lp | Optoelectronic devices and wavelength-division multiplexing optical connectors |
CN107065083A (zh) * | 2017-03-31 | 2017-08-18 | 武汉博昇光电股份有限公司 | 一种多通道光收发一体模块 |
CN108551372A (zh) * | 2018-03-23 | 2018-09-18 | 成都聚芯光科通信设备有限责任公司 | 一种多波长空间错位分合波模块及光学模块 |
CN109725392A (zh) * | 2019-02-19 | 2019-05-07 | 武汉电信器件有限公司 | 一种光发射组件和光接收组件 |
CN111313969A (zh) * | 2019-12-10 | 2020-06-19 | 长飞光纤光缆股份有限公司 | 一种光模块 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115728879A (zh) * | 2021-08-31 | 2023-03-03 | 青岛海信宽带多媒体技术有限公司 | 一种光模块 |
Also Published As
Publication number | Publication date |
---|---|
CN111313969B (zh) | 2022-01-11 |
CN111313969A (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021115129A1 (fr) | Module optique | |
KR102340261B1 (ko) | 광학 수신 컴포넌트, 조합형 송수신기 컴포넌트, 조합형 광학 모듈, olt, 및 pon 시스템 | |
CN110954999B (zh) | 一种光收发器件 | |
CN107065083B (zh) | 一种多通道光收发一体模块 | |
WO2021004387A1 (fr) | Tosa, bosa module optique et dispositif de réseau optique | |
CN206920661U (zh) | 高速光收发模块 | |
CN201387500Y (zh) | Gpon单纤双向光收发组件 | |
WO2019105113A1 (fr) | Émetteur-récepteur optique | |
CN112180520A (zh) | 光收发器 | |
CN210864119U (zh) | 多通道并行光模块 | |
KR101885080B1 (ko) | 파장 다중화 광수신 모듈 | |
WO2020041953A1 (fr) | Composants d'émission-réception et de réception de lumière combinés, module optique combiné, dispositif de communication et système de réseau optique passif | |
CN112965183A (zh) | 一种硅光模块 | |
WO2020191844A1 (fr) | Module optique de transmission bidirectionnelle parallèle à grande vitesse | |
KR20140029564A (ko) | 다채널 광수신 모듈 | |
WO2019173998A1 (fr) | Ensemble de réception optique, ensemble émetteur-récepteur combiné, module optique combiné, olt, et système pon | |
CN112346181A (zh) | 一种光模块 | |
CN104049323A (zh) | 光模块 | |
KR101968292B1 (ko) | 적층구조를 적용한 파장 다중화 어레이 광수신 모듈의 패키지 구조 | |
CN113296199A (zh) | 一种单纤双向光组件和光模块 | |
WO2022267829A1 (fr) | Module optique | |
TW201608293A (zh) | 雙向光傳輸次組件 | |
WO2018014220A1 (fr) | Ensemble bosa bidirectionnel, module optique et système pon | |
WO2023115921A1 (fr) | Sous-ensemble optique bidirectionnel (bosa) intégré d'émission et de réception et module optique | |
KR100618428B1 (ko) | 집적화된 자유공간 무선 광통신용 송신기와 수신기 및이의 응용장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900405 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900405 Country of ref document: EP Kind code of ref document: A1 |