WO2021115118A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2021115118A1
WO2021115118A1 PCT/CN2020/131229 CN2020131229W WO2021115118A1 WO 2021115118 A1 WO2021115118 A1 WO 2021115118A1 CN 2020131229 W CN2020131229 W CN 2020131229W WO 2021115118 A1 WO2021115118 A1 WO 2021115118A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
camera module
lens group
optical lens
Prior art date
Application number
PCT/CN2020/131229
Other languages
English (en)
French (fr)
Inventor
冉坤
周少攀
罗振东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021115118A1 publication Critical patent/WO2021115118A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/006Filter holders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • This application relates to the field of optics, and in particular to a camera module and electronic equipment.
  • the lens assembly of the camera will contain multiple lenses. These lenses are arranged in sequence along the optical axis to achieve high-quality imaging and correct aberrations at large apertures. The more the number of lenses, the more the image quality can be improved, so that the lens assembly has a larger maximum aperture.
  • the lens assembly includes 7 lenses, which cooperate with each other to form an optical path of the lens assembly, so that the lens assembly can have a maximum aperture of F1.4.
  • the present application provides a camera module and electronic equipment, which can utilize a simple and compact structure to achieve better optical shooting performance.
  • the present application provides a camera module, which includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on one side of the image sensor.
  • the supporting component includes a first supporting member; and the optical lens group includes The first lens and the second lens, the first lens is multiple, and the first lens can move along the axis of the camera module to change the focal length of the camera module, the second lens is used to filter infrared light; the first lens is fixed On the first support, the second lens is arranged between the first support and the image sensor, and the second lens has a lens surface, which is used to participate in the imaging of the optical lens group.
  • the camera module can have a part of the lens set on the first support, and the other part of the lens can be fixed by other structures of the camera module. Since the number of fixed lenses on a single structure is small, the lenses are easy to assemble, so a larger number of lenses can be set in the camera module. Compared with the existing camera module, the total number of lenses can be increased, but the camera The size of the module itself has not increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and compact size, while also having high optical shooting performance.
  • the second lens has a first surface facing the object side and a second surface facing the image side, and at least one of the first surface and the second surface is a lens surface. Since the second lens has a lens surface through which light can pass, the second lens will also work with other lenses in the optical lens group to jointly participate in optical imaging and correct aberrations caused by other lenses in the optical lens group.
  • At least one of the first surface and the second surface is an aspheric surface.
  • aspheric lenses Compared with spherical lenses, aspheric lenses have a thinner thickness and lower quality, and can correct aberrations in the edge area of the lens. Therefore, the second lens adopts an aspheric structure with a smaller lens volume and mass, and an imaging effect. better.
  • the second lens includes a filter part and a lens part stacked along the axis of the optical lens group.
  • the filter part is used to filter out infrared light.
  • the filter part is perpendicular to the circumference of the optical lens group.
  • the second lens is covered in the direction toward the direction; the lens portion has a lens surface.
  • the second lens can use different functional layers to realize different functions such as blocking infrared rays or optical imaging.
  • the second lens is composed of a simple laminated structure, which is beneficial to reduce the size of the second lens in the axial direction of the optical lens group, and the camera The size of the module itself has not increased.
  • the filter part in the second lens has a layered structure, and the filter part has a uniform thickness in the radial direction of the second lens. In this way, the filter part has a relatively flat surface, which is convenient for coating or molding, and can filter out part of the light according to specific requirements.
  • the filter part may be used to filter out one or more light in different wavelength ranges.
  • the filter part can filter out infrared light.
  • the filter part can filter out light in the ultraviolet band, or filter out some wavelengths in the visible light band, such as red light.
  • the filter unit can simultaneously filter out light in multiple wavelength ranges, for example, simultaneously filter out infrared light and red light in the visible light band.
  • the coverage area of the filter portion in the radial direction of the second lens is larger than the coverage area of the lens portion in the radial direction of the second lens. This can prevent the light passing through the filter portion from being refracted at the edge of the lens portion, and prevent the filter portion from interfering with the normal imaging of the optical lens assembly.
  • the second lens is a lens formed by molding the filter part and the lens part.
  • the second lens is formed by molding without additional fixing structure, and the filter part and the lens part can be better combined together.
  • the formed second lens has a relatively simple structure and can have a relatively compact structure. size.
  • the lens part is located on the image side or the object side of the filter part.
  • the second lens includes two lens parts, and the two lens parts are respectively located on the image side of the filter part and the object side of the filter part. In this way, a larger number of lenses are provided in the camera module. Compared with the existing camera module, the total number of lenses can be increased, but the size of the camera module itself has not increased. This camera module has relatively higher Optical shooting performance.
  • the first support is a lens barrel, and the first lens is arranged inside the lens barrel.
  • the lens barrel can contain the first lens and shield and protect the first lens.
  • the support assembly further includes a second support and a third support that are sequentially arranged along the axial direction of the optical lens group; the third support and the image sensor are relatively fixed, and the first support is arranged on the second support.
  • the second lens is arranged on the third supporting member.
  • the second lens and the first lens are respectively fixed with different supports, and the assembly of the second lens is less affected by the cumulative tolerance of the first lens, which can effectively improve the assembly accuracy of the lens and reduce the difficulty and cost of assembly; at the same time, Since the second lens is mounted on the third support, and the first support only needs to fix the first lens, the first support can have a relatively compact volume and size, which is beneficial to the simplification of the overall structure of the camera module And the size is compact, easy to install, easy to repair and replace the lens.
  • the camera module further includes a first drive motor, the first drive motor is arranged between the first support and the second support for driving the first lens to move relative to the second support .
  • the first drive motor is arranged between the first support and the second support for driving the first lens to move relative to the second support .
  • the first lens can be driven to move, thereby performing operations such as focusing and zooming.
  • the camera module further includes a second drive motor, which is arranged between the third support and the second lens, and is used to drive the second lens to move relative to the third support.
  • a second drive motor which is arranged between the third support and the second lens, and is used to drive the second lens to move relative to the third support.
  • At least one of the second support member and the third support member is a support frame surrounding the peripheral outer side of the optical lens group.
  • the optical lens group can be balanced in the circumferential direction, so the support of the optical lens group is relatively stable, and it also has higher structural reliability when zooming and focusing movement are performed.
  • the second lens is arranged on the image sensor.
  • the back focus length of the optical lens group can be shortened, so that the height of the entire camera module in the optical axis direction can be reduced, and the size of the camera module can be more compact.
  • the ratio of the distance dR between the second lens and the image plane to the back focus length BFL when the optical lens group is at an infinite object distance is in the range of 0 ⁇
  • one of the first surface and the second surface is an aspheric surface, and the ratio of the maximum thickness dlmax to the minimum thickness dlmax of the second lens is 1 ⁇
  • the ratio range of the central thickness dl of the second lens to the total height TTL of the optical lens group is 0.01 ⁇
  • the ratio of the focal length fl of the second lens to the focal length f of the optical lens group is 1 ⁇
  • the range of the refractive index nl of the material constituting the lens portion is 1 ⁇ nl ⁇ 1.7.
  • the range of the Abbe coefficient vl of the material constituting the lens portion is 15 ⁇ vl ⁇ 60.
  • the following steps may be mainly included:
  • the filter part can be arranged in the cavity of the mold, and the lens material used to form the lens part can be arranged on the surface of the filter part.
  • Curing step After the coating step is completed, the upper mold and the lower mold can be closed, so that the lens material inside the cavity of the mold is compression molded to form the contour of the lens portion, and the lens portion is cured and molded.
  • the mold can be separated from the second lens to complete the release step of the second lens.
  • the camera module provided by the above-mentioned first aspect utilizes an independently set second lens while providing the functions of blocking infrared light and participating in optical imaging.
  • the total number of lenses of the camera module can be increased.
  • the size of the camera module itself has not increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and compact size while also having high optical shooting performance.
  • the present application provides an electronic device including a housing and the camera module in any one of the optional implementations of the first aspect, the camera module being located inside the housing.
  • the first support such as the lens barrel of the camera module does not need to install all the lenses of the optical lens group, and the lenses are easy to assemble, so a larger number of lenses can be set in the camera module, and the camera module has higher optical shooting performance.
  • the second lens in the camera module has a first surface facing the object side and a second surface facing the image side, and at least one of the first surface and the second surface is a lens surface. Since the second lens has a lens surface through which light can pass, the second lens will also work with other lenses in the optical lens group to jointly participate in optical imaging and correct aberrations caused by other lenses in the optical lens group.
  • At least one of the first surface and the second surface of the second lens is aspherical.
  • aspheric lenses have a thinner thickness and lower quality, and can correct aberrations in the edge area of the lens. Therefore, the second lens adopts an aspheric structure with a smaller lens volume and mass, and an imaging effect. better.
  • the second lens includes a filter part and a lens part stacked along the axis of the optical lens group.
  • the filter part is used to filter out infrared light.
  • the filter part is perpendicular to the circumference of the optical lens group.
  • the second lens is covered in the direction toward the direction; the lens portion has a lens surface.
  • the second lens can use different functional layers to realize different functions such as blocking infrared rays or optical imaging.
  • the second lens is composed of a simple laminated structure, which is beneficial to reduce the size of the second lens in the axial direction of the optical lens group, and the camera The size of the module itself has not increased.
  • the filter part in the second lens has a layered structure, and the filter part has a uniform thickness in the radial direction of the second lens. In this way, the filter part has a relatively flat surface, which is convenient for coating or molding, and can filter out part of the light according to specific requirements.
  • the filter part may be used to filter out one or more light in different wavelength ranges.
  • the filter part can filter out infrared light.
  • the filter part can filter out light in the ultraviolet band, or filter out some wavelengths in the visible light band, such as red light.
  • the filter unit can simultaneously filter out light in multiple wavelength ranges, for example, simultaneously filter out infrared light and red light in the visible light band.
  • the coverage area of the filter portion in the radial direction of the second lens is larger than the coverage area of the lens portion in the radial direction of the second lens. This can prevent the light passing through the filter portion from being refracted at the edge of the lens portion, and prevent the filter portion from interfering with the normal imaging of the optical lens assembly.
  • the second lens is a lens formed by molding the filter part and the lens part.
  • the second lens is formed by molding without additional fixing structure, and the filter part and the lens part can be better combined together.
  • the formed second lens has a relatively simple structure and a relatively compact size. .
  • the lens part in the second lens is located on the image side or the object side of the filter part.
  • the second lens includes two lens parts, and the two lens parts are respectively located on the image side of the filter part and the object side of the filter part.
  • the camera module of the electronic device is equipped with a larger number of lenses. Compared with the existing camera module, the total number of lenses can be increased, but the size of the camera module itself has not increased. Higher optical shooting performance.
  • the first support is a lens barrel, and the first lens is arranged inside the lens barrel.
  • the lens barrel can contain the first lens and shield and protect the first lens.
  • the support assembly further includes a second support and a third support that are sequentially arranged along the axial direction of the optical lens group; the third support and the image sensor are relatively fixed, and the first support is arranged on the second support.
  • the second lens is arranged on the third supporting member.
  • the second lens and the first lens are respectively fixed with different supports, and the assembly of the second lens is less affected by the cumulative tolerance of the first lens, which can effectively improve the assembly accuracy of the lens and reduce the difficulty and cost of assembly; at the same time, Since the second lens is mounted on the third support, and the first support only needs to fix the first lens, the first support can have a relatively compact volume and size, which is beneficial to the simplification of the overall structure of the camera module And the size is compact, easy to install, easy to repair and replace the lens.
  • the camera module of the electronic device further includes a first drive motor, the first drive motor is arranged between the first support and the second support, and is used to drive the first lens relative to the second support.
  • the support moves.
  • the first drive motor through the first drive motor, the first lens can be driven to move, thereby performing operations such as focusing and zooming.
  • the camera module of the electronic device further includes a second drive motor, the second drive motor is arranged between the third support and the second lens for driving the second lens relative to the third support Pieces move.
  • the second lens and the first lens are both connected to the camera module through the drive motor, so the first lens and the second lens can be driven independently, thereby achieving a strong zoom or focus performance.
  • the second lens is arranged on the image sensor.
  • the back focus length of the optical lens group can be shortened, so that the height of the entire camera module in the optical axis direction can be reduced, and the size of the camera module can be more compact.
  • the ratio of the distance dR between the second lens and the image plane to the back focus length BFL when the optical lens group is at an infinite object distance is in the range of 0 ⁇
  • one of the first surface and the second surface is an aspheric surface, and the ratio of the maximum thickness dlmax to the minimum thickness dlmax of the second lens is 1 ⁇
  • the ratio range of the central thickness dl of the second lens to the total height TTL of the optical lens group is 0.01 ⁇
  • the ratio of the focal length fl of the second lens to the focal length f of the optical lens group is 1 ⁇
  • the range of the refractive index nl of the material constituting the lens portion is 1 ⁇ nl ⁇ 1.7.
  • the range of the Abbe coefficient vl of the material constituting the lens portion is 15 ⁇ vl ⁇ 60.
  • the following steps may be mainly included:
  • the filter part can be arranged in the cavity of the mold, and the lens material used to form the lens part can be arranged on the surface of the filter part.
  • Curing step After the coating step is completed, the upper mold and the lower mold can be closed, so that the lens material inside the cavity of the mold is compression molded to form the contour of the lens portion, and the lens portion is cured and molded.
  • the mold can be separated from the second lens to complete the release step of the second lens.
  • At least one of the second support and the third support is a support frame surrounding the outer side of the optical lens group.
  • the optical lens group can be balanced in the circumferential direction, so the support of the optical lens group is relatively stable, and it also has higher structural reliability when zooming and focusing movement are performed.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on one side of the image sensor.
  • the supporting component includes a first supporting member;
  • the optical lens group includes The first lens and the second lens, the first lens is multiple, and the first lens can move along the axis of the camera module to change the focal length of the camera module, the second lens is used to filter infrared light;
  • the first lens is fixed On the first support, the second lens is arranged between the first support and the image sensor, and the second lens has a lens surface, which is used to participate in the imaging of the optical lens group.
  • the total number of lenses of the camera module can be increased, but the size of the camera module itself has not increased, and the lens assembly is more convenient, so that the camera can keep the structure simple and compact. At the same time, it also has high optical shooting performance.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the A-A section of the electronic device provided by the embodiment of the present application;
  • FIG. 3 is a schematic diagram of the structure of a conventional camera module
  • FIG. 4 is a schematic diagram of the structure of the optical lens group in the existing camera module
  • FIG. 5 is a schematic diagram of an appearance of a camera module in an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the internal structure of the camera module in FIG. 5;
  • FIG. 7 is a schematic diagram of a connection structure between the second lens and the supporting component in the camera module provided by the embodiment of the present application;
  • FIG. 8a is a schematic diagram of the first position of the optical lens group during zooming of the camera module provided by the embodiment of the present application.
  • 8b is a schematic diagram of the second position of the optical lens group during zooming of the camera module provided by the embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a second lens provided by an embodiment of the present application.
  • Fig. 10 is a schematic front view of the second lens in Fig. 9;
  • Fig. 11a is a schematic diagram of a first cross-sectional structure of a second lens provided by an embodiment of the present application.
  • Fig. 11b is a schematic diagram of a second cross-sectional structure of a second lens provided by an embodiment of the present application.
  • 11c is a schematic diagram of a third cross-sectional structure of a second lens provided by an embodiment of the present application.
  • FIG. 12a is a schematic diagram of the coating step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • 12b is a schematic diagram of the curing step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • FIG. 12c is a schematic diagram of the releasing step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a process of manufacturing a second lens in batches according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another camera module provided by an embodiment of the present application.
  • 15 is a schematic diagram of the positioning mode of the second lens in the camera module of FIG. 14;
  • FIG. 16 is a schematic structural diagram of another camera module provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the positioning mode of the second lens in the camera module of FIG. 16;
  • FIG. 18 is a schematic structural diagram of another optical lens group in the camera module provided by the embodiment of the present application.
  • Fig. 19a is a graph of axial chromatic aberration of the optical lens group shown in Fig. 18 at infinite object distance;
  • Fig. 19b is a graph of axial chromatic aberration of the optical lens group shown in Fig. 18 at an object distance of 80mm;
  • Fig. 20a is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 18 at infinite object distance;
  • Fig. 20b is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 18 at an object distance of 80mm;
  • Fig. 21a is the first optical distortion curve diagram of the optical lens group shown in Fig. 18 at infinite object distance;
  • Fig. 21b is the second optical distortion curve diagram of the optical lens group shown in Fig. 18 at infinite object distance;
  • Fig. 21c is the first optical distortion curve diagram of the optical lens group shown in Fig. 18 when the object distance is 80mm;
  • Fig. 21d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 18 at an object distance of 80mm;
  • FIG. 22 is a schematic structural diagram of yet another optical lens assembly provided by an embodiment of the present application.
  • Figure 23a is an axial chromatic aberration curve diagram of the optical lens assembly shown in Figure 22 at infinite object distance;
  • Figure 23b is an axial chromatic aberration curve diagram of the optical lens assembly shown in Figure 22 at an object distance of 80mm;
  • Fig. 24a is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 22 at infinite object distance;
  • Fig. 24b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 22 at an object distance of 80mm;
  • Fig. 25a is the first optical distortion curve diagram of the optical lens group shown in Fig. 22 at infinite object distance;
  • Fig. 25b is the second optical distortion curve diagram of the optical lens group shown in Fig. 22 at infinite object distance;
  • Fig. 25c is the first optical distortion curve diagram of the optical lens group shown in Fig. 22 at an object distance of 80mm;
  • 25d is the second optical distortion curve diagram of the optical lens group shown in FIG. 22 at an object distance of 80mm;
  • FIG. 26 is a schematic structural diagram of a third optical lens group in a camera module provided by an embodiment of the present application.
  • Fig. 27a is an axial chromatic aberration curve diagram of the optical lens group shown in Fig. 26 at infinite object distance;
  • Fig. 27b is an axial chromatic aberration curve diagram of the optical lens group shown in Fig. 26 at an object distance of 80mm;
  • Fig. 28a is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 26 at infinite object distance;
  • Fig. 28b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 26 at an object distance of 80mm;
  • Fig. 29a is the first optical distortion curve diagram of the optical lens group shown in Fig. 26 at infinite object distance;
  • Fig. 29b is the second optical distortion curve diagram of the optical lens group shown in Fig. 26 at infinite object distance;
  • Fig. 29c is the first optical distortion curve diagram of the optical lens group shown in Fig. 26 at an object distance of 80mm;
  • Fig. 29d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 26 at an object distance of 80mm;
  • FIG. 30 is a schematic structural diagram of a fourth optical lens group in a camera module provided by an embodiment of the present application.
  • Fig. 31a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 30 at infinite object distance;
  • Figure 31b is an axial chromatic aberration curve diagram of the optical lens assembly shown in Figure 30 at an object distance of 80mm;
  • Fig. 32a is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 30 at infinite object distance;
  • Fig. 32b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 30 at an object distance of 80mm;
  • Fig. 33a is the first optical distortion curve diagram of the optical lens group shown in Fig. 30 at infinite object distance;
  • Fig. 33b is the second optical distortion curve diagram of the optical lens group shown in Fig. 30 at infinite object distance;
  • Fig. 33c is the first optical distortion curve diagram of the optical lens group shown in Fig. 30 at an object distance of 80mm;
  • Fig. 33d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 30 at an object distance of 80mm;
  • FIG. 34 is a schematic structural diagram of a fifth optical lens group in a camera module provided by an embodiment of the present application.
  • Fig. 35a is a graph of axial chromatic aberration of the optical lens group shown in Fig. 34 at infinite object distance;
  • Fig. 35b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 34 at an object distance of 80mm;
  • Fig. 36a is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 34 at infinite object distance;
  • Fig. 36b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 34 at an object distance of 80mm;
  • Fig. 37a is the first optical distortion curve diagram of the optical lens group shown in Fig. 34 at infinite object distance;
  • Fig. 37b is the second optical distortion curve diagram of the optical lens group shown in Fig. 34 at infinite object distance;
  • Fig. 37c is the first optical distortion curve diagram of the optical lens group shown in Fig. 34 at an object distance of 80mm;
  • Fig. 37d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 34 at an object distance of 80 mm.
  • F1-first surface F2-second surface
  • the electronic devices usually include a camera module.
  • the camera module can shoot and collect external images, so that electronic devices can realize functions such as shooting or video calls.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • 2 is a schematic cross-sectional view of the A-A section of the electronic device provided by the embodiment of the present application.
  • the camera module 100 may be arranged on the mobile phone.
  • the camera module 100 may be arranged on the side of the housing 201 of the mobile phone facing the user. , Or the side of the housing 201 of the mobile phone facing away from the user.
  • the camera module 100 can be arranged inside the housing 201, and the housing 201 is provided with a lens hole 202 at a position corresponding to the camera module 100, so that external light can normally enter the inside of the camera module 100 .
  • the electronic device 200 may also include various components such as a screen, a main board, and a middle frame structure, which will not be repeated here.
  • the electronic device involved in the embodiment of the present application may be a mobile phone, or a tablet computer, a personal digital assistant (PDA), a point of sales (POS), a vehicle-mounted computer, a smart home device, and so on.
  • the camera module 100 specifically includes different components such as an optical lens group 1 and an image sensor 2.
  • the image sensor 2 is integrated with a photosensitive array 21, which can collect and sense the image of the outside, and convert the image of the outside into a corresponding electric signal through photoelectric conversion and output it.
  • the image sensor 2 includes, but is not limited to, complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) devices, charge-coupled devices (Charge-coupled Device, CCD) and other devices and equipment.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • an optical lens group is provided on one side of the photosensitive array 21 of the image sensor 2, for example, the photosensitive side. 1.
  • the optical lens group 1 has light-transmissive lenses, so that external light can be collected on the photosensitive array 21 of the image sensor 2 through the lenses, and form an imaging picture.
  • the camera module 100 may also include, but is not limited to, components such as the circuit board 3 and the driving motor.
  • the circuit board 3 can be used as the main carrier and control component of the camera module 100.
  • the image sensor 2 can be arranged on the circuit board 3 and is electrically connected to the circuit board 3. Therefore, the image information captured by the image sensor 2 can be transmitted to the circuit board 3 so that the circuit board 3 can output to other components of the electronic device 200.
  • the circuit board 3 can also supply power to the image sensor 2 and control the image sensor 2.
  • the circuit board 3 may be a printed circuit board (Printed Circuit Board, PCB) or other circuit board forms commonly used by those skilled in the art.
  • the circuit board 3 may be provided with a Surface Mount Device (SMD) to perform various circuit functions.
  • SMD Surface Mount Device
  • the driving motor can be connected to the optical lens group 1, and drive at least part of the lenses of the optical lens group 1 to move in the axial direction of the camera module 100 (for example, the Z-axis direction), so that the optical lens group 1 can perform zooming and focusing operations; or It moves in the direction of the plane where the photosensitive array of the image sensor 2 is located (for example, the direction of the plane where the X axis and the Y axis are located, along the X axis and/or the Y axis direction), so that the optical lens group 1 performs an optical image stabilization operation.
  • the axial direction of the camera module 100 may also be referred to as the optical axis direction.
  • the specific method and principle of the focusing operation and optical anti-shake operation of the optical lens group 1 can refer to the focusing and optical anti-shake functions of the existing camera module, which will not be repeated here.
  • the driving motor includes a first driving motor 4, and the first driving motor 4 is used to drive part or all of the lenses in the optical lens group 1 to move. Perform focus and zoom operations.
  • the first driving motor 4 may be a voice coil motor (Voice Coil Moto, VCM).
  • a support assembly 5 is also included in the camera module.
  • the support assembly 5 can support part or all of the lenses of the lens assembly 1, so that the lenses are relative to the image sensor. 2 has a definite position, so as to ensure that the optical lens group 1 can image smoothly.
  • the camera module 100 when the camera module 100 is working, it is necessary to filter the external light entering the camera module 100, and filter out the light in the infrared wave band, so as to prevent the infrared light from irradiating the photosensitive array 21 of the image sensor 2 to interfere with
  • the camera module is provided with an infrared filtering structure that can filter and block infrared, but still allows visible light to pass through.
  • the optical lens group 1 In order to achieve zooming and focusing operations, the optical lens group 1 needs to be movable relative to the image sensor 2 and other photosensitive elements. Therefore, the optical lens group 1 can be arranged at the far end of the image sensor 2 in the camera module 100, that is, the end far away from the image sensor 2, and the infrared filtering structure for blocking infrared light can be located between the optical lens group 1 and the image sensor. In this way, the movement of the optical lens group has less influence on the infrared filtering structure.
  • an infrared filter can be used to filter and block infrared rays.
  • the infrared filter is also called an infrared cut-off filter, which is arranged between the image sensor of the camera module and the object, and can filter out infrared light and transmit visible light. Because the human eye and the image sensor respond differently to the various wavelength ranges of light, the human eye cannot perceive the light in the infrared band, but the image sensor can detect and sense infrared light. In order to prevent infrared light from interfering with the normal imaging of the image sensor, an infrared filter needs to be installed in front of the image sensor to block infrared rays.
  • FIG. 3 is a schematic diagram of the structure of a conventional camera module.
  • the image sensor 2 is arranged on the circuit board 3.
  • the photosensitive side of the image sensor 2 is sequentially provided with an optical lens group 1a and an infrared filter 6, and the optical lens group 1a passes
  • the lens barrel 51a is installed and positioned, and the infrared filter 6 is arranged on the filter holder 52a, so that the infrared light can be filtered out by the infrared filter 6.
  • the infrared filter 6 is generally a flat sheet-like structure with a small thickness, which can filter out infrared light through its own material characteristics or coating, and only allows visible light to pass through.
  • the external light will first enter the optical lens group 1a, and use the refraction of the first lens 11a in the optical lens group 1a to achieve imaging; while the light emitted by the optical lens group 1a passes through the infrared filter 6a, and its infrared light is filtered.
  • the image sensor 2 collects and shoots.
  • FIG. 4 is a schematic diagram of the structure of an optical lens group in a conventional camera module.
  • the optical lens group 1a may have a transparent first lens 11a, and use the refraction effect of the first lens 11a to change the direction of the light passing through the first lens 11a, thereby Convergence of light, and finally imaging.
  • the optical lens group 1a specifically includes a plurality of first lenses 11a spaced back and forth along the optical axis direction of the optical lens group 1a, and the orientation of each first lens 11a is kept the same, so the optical axis of the first lens 11a All facing the same direction, that is, the Z-axis direction in the figure, these first lenses 11a can constitute the optical lens group 1a for imaging.
  • the supporting assembly in order to arrange the plurality of first lenses 11a in the optical lens group 1a in a predetermined order and spacing along the optical axis, the supporting assembly includes a lens barrel 51a.
  • the lens barrel 51a is a hollow cylindrical structure with open ends, and the length direction of the lens barrel 51a is consistent with the optical axis direction of the first lens 11a.
  • the first lens 11a in the optical lens group 1a is fixed in the hollow inner cavity of the lens barrel 51a.
  • the optical lens group 1a In order for the optical lens group 1a to have good optical imaging quality, for example, to achieve a larger maximum aperture, the optical lens group 1a should have a larger number of first lenses 11a, and these first lenses 11a interact with each other through optical functions. , Can correct the aberration of the optical lens group 1a when imaging, thereby presenting a better imaging quality.
  • a certain accumulated tolerance may be generated due to manufacturing and assembly errors, and the accumulated tolerance may affect the optical imaging accuracy of the first lens 11a.
  • the number of first lenses 11a is large, a larger cumulative tolerance will be formed accordingly. Therefore, in the existing camera module 100a, it is difficult for the optical lens group to achieve a large number of lenses (the number of lenses is greater than 7), which restricts the continuous improvement of the imaging quality of the camera module.
  • this application proposes a new camera module that can have as many lenses as possible in the camera module, thereby improving the optical imaging quality of the camera module, and enabling the camera module to have better shooting capabilities.
  • the following takes specific embodiments as an example to describe the specific structure of the camera module in detail.
  • the camera module 100 of the present application may include different components such as an optical lens group 1, an image sensor 2, a circuit board 3, and a driving motor.
  • FIG. 5 is a schematic diagram of an appearance of a camera module in an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the internal structure of the camera module in FIG. 5.
  • the camera module 100 includes a second lens 12 in addition to the existing first lens 11, and the second lens 12 will serve as a part of the optical lens group 1 of the camera module 100, and Participate in the optical imaging of the camera module 100; at the same time, the second lens 12 can also block infrared rays, but still allows visible light to pass through. In this way, when the infrared rays pass through the second lens 12, they will be blocked by the second lens 12, thereby realizing the infrared filtering effect of the camera module 100.
  • the second lens 12 has a first surface F1 facing the object side and a second surface F2 facing the image side.
  • the first surface F1 and the second surface F2 is a lens surface, so it can participate in imaging and correct aberrations caused by other lenses in the optical lens group 1.
  • the lens surface is a convex or concave curved surface along the extension direction of the optical axis of the optical lens group 1.
  • the incident light can be converged or diverged correspondingly, thereby participating in imaging.
  • the lens surface of the second lens 12 and the multiple lens surfaces of the first lens 11 jointly participate in the imaging of the optical lens group 1.
  • the first surface F1 has a convex or concave curved shape along the extending direction of the optical axis, and the first surface F1 is the lens surface.
  • the convex or concave surface of the first lens 11 in the extending direction of the optical axis will also constitute the lens surface.
  • These lens surfaces have the effect of converging or diverging light. The external light can pass through the lens surfaces through these lens surfaces. The refraction and the corresponding divergence or convergence occur, thereby imaging.
  • the lens surface of the second lens 12 and other lenses in the optical lens group 1 can work together. After the incident light enters the optical lens group 1, when it encounters the lens surface, it will be on the lens. Refraction occurs on the surface and diverges or converges. Through the sequential divergence or convergence of the multiple lenses in the optical lens group 1 facing the incident light, the light can achieve optical imaging on the image sensor 2.
  • the lens surface of the second lens 12 is aspherical.
  • the first lens 11 are installed in the first support 51, and can be installed in the first support 51. Driven by 51, it moves relative to the image sensor 2 along the axial direction of the camera module 100, thereby changing the focal length of the camera module 100 to achieve zooming or focusing operations.
  • the second lens 12 is not directly connected to the first support 51, but is located between the first support 51 and the image sensor 2. Therefore, the second lens 12 is relative to the other second lenses installed in the first support 51.
  • One lens 11 is installed independently, and is less affected by the cumulative tolerance of the first lens 11 in the first support 51.
  • the first support 51 may be a lens barrel with open ends, and the first lens 11 is disposed in an internal cavity of the lens barrel.
  • the first supporting member 51 may also be a supporting member of other forms and shapes surrounding the outer side of the first lens 11 in the circumferential direction.
  • the second lens 12 since the second lens 12 can participate in optical imaging while blocking infrared rays, the second lens 12 will exist as a part of the optical lens group 1 and participate in imaging, so that the first support 51 does not need to be installed All lenses of optical lens group 1.
  • the camera module 100 in the present application has the same optical
  • the lens group 1 actually includes more lenses that participate in imaging than the prior art camera module, so it can achieve more lenses under the same difficulty of the process, and thus has better optical imaging quality and performance , Improve the shooting quality of the camera module.
  • the number of lenses that can participate in optical imaging is one more than the number of lenses of a conventional camera module of the same specification.
  • the optical lens group 1 may include 7 first lenses 11 for optical imaging, so the aberrations during imaging at a large aperture can have a better correction effect to achieve Shoot at a large aperture above F1.4.
  • the second lens 12 in addition to the seven first lenses 11 installed inside the first support 51, the second lens 12 that is not fixed by the first support 51 will also Participate in imaging.
  • the optical lens group 1 actually includes 8 optical imaging lenses, which can achieve better optical quality and a larger aperture shooting effect (for example, to achieve a maximum aperture of F1.2 or even F1.0).
  • the Modulation Transfer Fuction (MTF) of the partial field of view at infinite object distance can be increased by 8%-10%, and the MTF of the partial field of view at macro distance can be increased by 10%. %-15%.
  • MTF Modulation Transfer Fuction
  • the second lens 12 is not fixed on the first support 51 like the first lens 11, but is located outside the first support 51, so compared to the optical lens group 1.
  • the second lens 12 may have a more flexible position and fixing method. The setting method of the second lens 12 will be described in detail below.
  • the support assembly 5 also includes a support frame and other structures.
  • the support frame can support the second lens 12 and other parts of the optical lens group 1. The support is carried out so that the lenses have a certain spatial position relative to the image sensor, so as to ensure the smooth imaging of the lenses.
  • the support assembly 5 of the camera module 100 further includes a second support 52 and a third support 53, the first support 51 can be arranged on the second support 52, and the second lens 12 can be mounted on the third support 53.
  • the camera module 100 may include a circuit board 3, and components and structures such as the image sensor 2 and the supporting assembly 5 in the camera module 100 may be directly or indirectly arranged on the circuit board 3.
  • the third supporting member 53 can be installed on the circuit board 3, and the second supporting member 52 is arranged on the side of the third supporting member 53 away from the circuit board 3.
  • the second support 52 and the third support 53 can be connected to each other in a detachable or non-detachable manner.
  • the second support member 52 and the third support member 53 may be adhered using an adhesive.
  • the second support member 52 and the third support member 53 can be a structure such as a bracket, and the second support member 52 and the third support member 53 can be arranged on the circumferential outer side of the optical lens assembly 1 to make the optical Mirror group 1 can be balanced in the circumferential direction.
  • the camera module 100 has a first drive motor 4, and the first support 51 can be connected to the movable part of the first drive motor 4, and the second support The piece 52 is connected to the fixed part of the first drive motor 4.
  • the first driving motor 4 can drive the first support 51 to move relative to the second support 52, thereby completing operations such as focusing, zooming, and optical image stabilization.
  • FIG. 7 is a schematic diagram of a connection structure between the second lens and the supporting component in the camera module provided by an embodiment of the present application.
  • the third supporting member 53 is installed on the circuit board 3, and the position of the third supporting member 53 opposite to the image sensor has an avoiding structure, so that the light can pass normally through the area where the third supporting member 53 is located.
  • the second lens 12 can be arranged on the avoiding structure of the third support 53.
  • the second lens 12 is located between the other lenses of the optical lens group 1 and the image sensor 2.
  • the avoidance structure can be in different forms such as light-passing holes 531.
  • the third supporting member 53 may have a mounting surface 532 for mounting and supporting the second lens 12, and the mounting surface 532 is located at the edge of the avoiding structure, so as to make the second lens 12 at the same time. , To ensure the normal light transmission of the second lens 12.
  • the second support 52 and the third support 53 may be arranged outside the optical lens assembly 1 in the circumferential direction while achieving the supporting function.
  • the second support 52 and the third support 53 may be ring-shaped or cylindrical, etc., having a structure with a clearance area in the middle.
  • the second lens 12 When the camera module 100 is assembled as a whole, the second lens 12 can be arranged on the third support 53, and then the second support 52 and the third support 53 can be assembled on the circuit board 3. In this way, different support frames are used to respectively support and position the second lens 12 and the other first lenses 11 in the optical lens group 1, and the assembly between the second lens 12 and the other first lenses 11 in the optical lens group 1
  • the relationship is relatively independent, and no large cumulative error occurs, and the second lens 12 can still normally participate in optical imaging.
  • the first lens 11 fixed in the first support 51 can be close to the image sensor 2 along the optical axis direction. Move in the direction of or away from the image sensor 2 to realize the zooming or focusing operation of the camera module 100.
  • FIG. 8a is a schematic diagram of the first position of the optical lens group during zooming of the camera module provided by the embodiment of the present application.
  • FIG. 8b is a schematic diagram of the second position of the optical lens group during zooming of the camera module provided by the embodiment of the present application.
  • the first drive motor 4 can drive the first support 51 to move in a direction close to or away from the image sensor 2 (ie, the direction of the arrow in the figure) to zoom in or out. Scenery.
  • the first lens 11 located in the first support 51 that is, the lens on the object side of the second lens 12
  • the second lens 12 will move relative to the second lens 12 along the optical axis, and the second lens 12 itself Relative to the image sensor 2 remains static.
  • the second lens 12 can also adopt other setting methods commonly used by those skilled in the art, which is not limited here.
  • the second lens 12 may have a certain size range or position range. The following describes the possible size and position range of the second lens 12:
  • the maximum thickness of the second lens 12 can be defined as dlmax, and the second The minimum thickness of the lens 12 is dlmin.
  • the ratio of the maximum thickness to the minimum thickness of the second lens 12 may have a range: 1 ⁇
  • the aspheric surface may have a variety of different types and shapes.
  • the specific shape of the aspheric surface that is, the non-curved surface shape, can be obtained by the aspheric formula.
  • the aspheric surface may have an even-order aspheric surface shape; in other embodiments, the aspheric surface may have an extended aspheric surface shape.
  • the surface type of the even-order aspheric surface can be defined by but not limited to the following aspheric formula (1):
  • z is the vector height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric apex
  • K is the quadric constant
  • a 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 are aspheric coefficients.
  • the surface shape of the extended aspheric surface can be limited by but not limited to the following aspheric formula (2):
  • z is the vector height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the aspheric apex
  • K is the quadric constant
  • a 2 , A 3 , A 4 , A 5 , and A 6 are the aspheric surfaces coefficient.
  • the surface shape of the aspheric surface can be limited and obtained, and the corresponding aspheric surface shape can be obtained by setting different parameters.
  • the optical lens group 1 in addition to the lens surface of the second lens 12, when the lens surface of the first lens 11 is aspheric, it can also be based on the aspheric formulas (1) and ( 2) Make a restriction to obtain the specific shape of the aspheric surface.
  • the ratio of the center thickness of the second lens 12 to the total track length (TTL) of the optical lens group 1 may also have a range.
  • the central thickness of the second lens 12 can be defined as dl, and the ratio range of the central thickness of the second lens 12 to the total height of the optical lens group 1 is: 0.01 ⁇
  • the focal length of the second lens 12 can be defined as fl, and the ratio range of the focal length fl to the focal length f of the optical lens group 1 can be: 1 ⁇
  • the second lens 12 can have a smaller distance from the image sensor 2.
  • the back focus length of the optical lens group 1 refers to the distance from the center of the last optical surface (ie, the second surface F2 of the second lens 12) in the optical lens group 1 close to the image side to the focal point of the image side.
  • the second lens 12 may be composed of different parts and structures.
  • the second lens 12 may be a lens on package (LOP).
  • LOP lens on package
  • the second lens 12 may be a laminated structure formed by sequentially stacking different functional layers, and different functional layers are used to implement different functions such as blocking infrared rays or optical imaging.
  • Fig. 9 is a schematic structural diagram of a second lens provided by an embodiment of the present application.
  • Fig. 10 is a schematic front view of the second lens in Fig. 9.
  • the second lens 12 may include a filter part 121 that can block infrared rays but still allows visible light to pass through, and the filter part 121 covers the second lens.
  • the second lens 12 is in all areas perpendicular to the optical axis direction, so that the infrared rays passing through each area of the second lens 12 are blocked.
  • the filter part 121 can use a variety of different ways to achieve the infrared blocking effect.
  • an infrared cut film layer is plated on the surface of the filter portion 121, or the entire filter portion 121 is formed by using a material that can block infrared rays.
  • the filter portion 121 may specifically adopt an absorption cut-off filter method, a reflection-type cut-off filter method, or a combination of an absorption-type cut-off filter method and a reflection-type cut-off filter method to block and filter infrared rays.
  • the filter part 121 contains copper ions inside, and the copper ions can filter out the light in the infrared wave band, thereby completing the infrared blocking effect.
  • the filter part 121 may also use infrared absorbing pigments, infrared reflective films or other infrared filtering methods and materials commonly used by those skilled in the art, which will not be repeated here.
  • the second lens 12 also includes a lens portion 122.
  • the lens portion 122 and the filter portion 121 are attached and arranged along the optical axis, and the lens portion 122 is located in the second lens. At least one side of the object side or the image side of the lens 12. At this time, the lens portion 122 will constitute at least one side surface of the second lens 12, that is, at least one of the first surface F1 and the second surface F2 of the second lens 12 will be located on the lens portion 122.
  • the first surface F1 or the second surface F2 of the second lens 12 may have negative refractive power, so that the light passing through the first surface F1 or the second surface F2 is in a divergent state; or the first surface F1 Alternatively, the second surface F2 may have a positive refractive power, so that the light passing through the first surface F1 or the second surface F2 is in a convergent state.
  • the filter portion 121 In order to achieve the effect of blocking infrared rays, the filter portion 121 needs to be coated with an infrared cut film layer or formed of a material capable of blocking infrared rays. In order to facilitate coating or molding, the filter portion 121 needs to have a relatively flat surface. Therefore, in the second lens 12, the entire filter portion 121 has a relatively uniform thickness and a layered structure with a flat surface, and the lens portion 122 in the second lens 12 is mainly used to participate in the imaging of the optical lens group 1.
  • the coverage area of the filter portion 121 in the radial direction of the second lens 12 may be larger than that of the lens portion 122 to avoid the interference of the filter portion 121.
  • the light is refracted at the edge of the lens portion 122 and interferes with the normal imaging of the optical lens group 1.
  • the front shape of the lens portion 122 of the second lens 12 may be circular, so that the second lens 12 realizes normal optical imaging; and the filter portion 121 It can have a square front shape to facilitate processing and manufacturing, and to achieve positioning with other components. Wherein, the edge of the filter portion 121 will be located outside the radial coverage range of the lens portion 122 in the second lens 12.
  • Fig. 11a is a schematic diagram of a first cross-sectional structure of a second lens provided by an embodiment of the present application.
  • the lens portion 122 of the second lens 12 is located on the object side of the filter portion 121, and the filter portion 121 is located on the image side of the second lens 12.
  • the first surface F1 of the second lens 12 is an aspherical surface
  • the second surface F2 of the second lens 12 is a plane perpendicular to the optical axis.
  • the first surface F1 and the second surface F2 of the second lens 12 will have a certain concave-convex shape, which has a divergent or convergent effect on the light irradiated to the second lens 12, so that the second lens 12 can participate in imaging. , And correct the aberration of the lens assembly during imaging.
  • the filter part 121 in the second lens 12 can still maintain the effect of filtering infrared rays, so as to prevent the image sensor from detecting infrared rays and affecting imaging.
  • Fig. 11b is a schematic diagram of a second cross-sectional structure of a second lens provided by an embodiment of the present application.
  • the lens portion 122 of the second lens 12 is located on the image side of the filter portion 121, and the filter portion 121 is located on the object side of the second lens 12.
  • the first surface F1 of the second lens 12 is a plane perpendicular to the optical axis
  • the second surface F2 of the second lens 12 is an aspherical surface.
  • the imaging mode of the second lens 12 is similar to the aforementioned first lens structure, and will not be repeated here.
  • Fig. 11c is a schematic diagram of a third cross-sectional structure of a second lens provided by an embodiment of the present application.
  • the second lens 12 has two lens portions 122, which are respectively located on both sides of the filter portion 121 along the optical axis direction.
  • the lens portion 122 has a lens portion 122 on both the object side of the second lens 12 and the image side direction of the second lens 12, and thus is sandwiched between the two lens portions 122.
  • the first surface F1 and the second surface F2 of the second lens 12 are both aspherical.
  • the second lens 12 is described as a structure in which the lens portion 122 is located on the object side of the second lens 12 and the filter portion 121 is located on the image side of the second lens 12.
  • the lens portion 122 can be made of materials that are the same or similar in optical properties to other lenses in the lens assembly. Wherein, as an optional method, the lens portion 122 may be made of a transparent plastic material. In this way, the lens portion 122 can have a relatively high light transmittance and a relatively light weight, which is convenient for reducing the overall weight of the lens assembly.
  • the components of the second lens 12 can be glass, plastic, and other optical lens materials commonly used by those skilled in the art, and can be selected according to actual optical design and requirements, which is not limited here.
  • the range of refractive index nl of the material constituting the lens portion 122 may be: 1 ⁇ nl ⁇ 1.7. In other optional embodiments, the range of the Abbe coefficient vl of the material constituting the lens portion 122 may be: 15 ⁇ vl ⁇ 60.
  • the second lens 12 can be made by a variety of different methods. The method for forming the second lens 12 will be described below.
  • the second lens 12 may be formed by molding. Since the second lens 12 includes different components such as the filter part 121 and the lens part 122, and the filter part 121 and the lens part 122 are stacked along the optical axis direction of the second lens 12. At this time, the filter part 121 can be made first, and the surface of the filter part 121 can be molded by molding the lens material on the surface of the filter part 121.
  • the manufacturing process generally includes several steps such as coating-curing-releasing, etc. These steps are described in detail below:
  • FIG. 12a is a schematic diagram of the coating step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • the mold 80 for molding includes an upper mold 81 and a lower mold 82.
  • the filter portion 121 may be set in the cavity of the lower mold 82 and used to form the lens portion
  • the lens material 122 a of 122 is provided on the surface of the filter portion 121.
  • the main body of the filter portion 121 can be formed of glass and other materials, and in the process of forming the filter portion 121, it is formed by doping with copper ions or other materials, or by coating the surface of the filter portion 121 with an infrared reflective film. ⁇ 121 ⁇ Filtering section 121.
  • the lens material 122a can be transparent plastic or transparent resin. The melting point of the filter part 121 will be higher than the melting point of the lens material 122a. During the molding process of the lens material 122a, the filter part 121 will not melt or deform.
  • FIG. 12b is a schematic diagram of the curing step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • the upper mold 81 and the lower mold 82 can be closed to make the cavity of the mold 80
  • the inner lens material 122a is compression-molded to form the contour of the lens portion 122, and the lens portion 122 is cured and molded.
  • the specific curing method in the curing step can be set according to the specific materials constituting the lens portion 122. For example, when the lens material 122a constituting the lens portion 122 has the characteristics of heat curing, the lens portion 122 can be cured by heat curing. Molding; and when the lens material 122a constituting the lens portion 122 is a photosensitive material, a photo-curing means can be used to cure the lens portion 122 into molding.
  • Fig. 12c is a schematic diagram of the releasing step in the manufacturing process of the second lens provided by the embodiment of the present application.
  • the mold 80 can be separated from the second lens 12 to complete the release step of the second lens 12.
  • the filter portion 121 and the lens portion 122 in the second lens 12 are closely attached and combined in the molding process, thereby forming an integrated lens.
  • the second lens 12 is formed by molding, and no additional fixing structure is needed, so that the filter part 121 and the lens part 122 can be better combined together, and the structure of the second lens 12 formed is relatively simple.
  • FIG. 13 is a schematic diagram of a process of manufacturing second lenses in batches according to an embodiment of the present application.
  • multiple lens materials can be placed on the surface of the filter part 121 at the same time, and the multiple lens materials can be molded at the same time by a mold, thereby forming a plurality of lens parts 122 on the same filter part 121; Then, a plurality of independent second lenses 12 are made by cutting.
  • the formed lens portions 122 are arranged in an array in the plane direction where the filter portion 121 is located.
  • the cutting lines L between the lens portions 122 also have a crisscross shape.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens. Two lenses, the first lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays , But still let visible light through.
  • the first support of the camera module does not need to install all the lenses of the optical lens group, and a part of the lenses can be arranged on the first support, while the other part of the lenses is fixed by other structures of the camera module. Since the number of fixed lenses on a single structure is small, the lenses are easy to assemble, so a larger number of lenses can be set in the camera module. Compared with the existing camera module, the total number of lenses can be increased, but the camera The size of the module itself has not increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and compact size, while also having high optical shooting performance.
  • the second lens 12 may also have a different setting mode from the foregoing embodiment.
  • FIG. 14 is a schematic structural diagram of another camera module provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the positioning mode of the second lens in the camera module of FIG. 14.
  • the camera module 300 has an overall structure, function, and working principle similar to the foregoing embodiment, which will not be repeated here; however, in this embodiment, it is different from the foregoing embodiment.
  • the point is that the second lens 12 may not be directly fixed on the third support 53 but indirectly connected through the second drive motor 7 and the third support 53.
  • the camera module 300 also includes a second drive motor 7.
  • the second drive motor 7 is used to drive the second lens 12 to move back and forth in the direction of the optical axis to interact with the optical lens group 1.
  • the other first lenses 11 in the lens collectively implement the focusing or zooming operation of the camera module 300.
  • the second driving motor 7 has a movable part and a fixed part
  • the second lens 12 is arranged on the movable part of the second driving motor 7, and the fixed part of the second driving motor 7 is fixed to the third support 53 .
  • the second lens 12 can be driven by the second driving motor 7 to move relative to the third support 53.
  • the second drive motor 7 may have a structure and type similar to the first drive motor 4.
  • both the first drive motor 4 and the second drive motor 7 may be voice coil motors.
  • both the first drive motor 4 and the second drive motor 7 can drive the lens to move along the optical axis. Therefore, the second lens 12 and the other first lenses 11 in the optical lens group 1 can both be relative to the image sensor 2. Move to achieve stronger focusing or zooming capabilities.
  • at least one of the first drive motor 4 and the second drive motor 7 can drive the lens to move in other directions (for example, the X axis and/or the Y axis) to realize the optical image stabilization function.
  • the second lens and the first lens are both connected to the camera module through a drive motor, so the first lens and the second lens can be driven independently, thereby achieving a strong zoom or focusing performance.
  • the second lens 12 may also be arranged in other ways or arranged in other positions, for example, directly arranged on the image sensor 2.
  • FIG. 16 is a schematic structural diagram of another camera module provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the positioning mode of the second lens in the camera module of FIG. 16. As shown in FIG. 16 and FIG.
  • the camera module 400 has an overall structure, function, and working principle similar to the previous embodiments, which will not be repeated here; the difference between the camera module 400 of this embodiment and the previous embodiments is ,
  • the support frame in the support assembly 5 still includes a second support member and a third support member 53, the second support member 52 is installed on the third support member 53, and the second support member 52 is located away from the third support member 53
  • the second lens 12 is no longer made with an additional support structure, but is directly arranged on the image sensor 2.
  • the second support 52 and the third support 53 are connected to each other, the first support 51 is connected to the second support 52, and the optical lens set 1 except for the second lens 12
  • the other first lenses 11 are housed inside the first support 51.
  • the second lens 12 is no longer fixed by the support assembly 5, but is directly arranged on the image sensor 2. Specifically, the second lens 12 may be attached to the photosensitive array 21 of the image sensor 2.
  • the second lens 12 is directly arranged on the image sensor 2, the back focus length of the optical lens group 1 can be shortened, so that the height of the entire camera module 400 in the optical axis direction can be reduced, and the size of the camera module More compact.
  • the second support 52 and the third support 53 can also be an integral structure, so that the structure of the support assembly 5 is simpler and the manufacturing cost is lower.
  • the second lens of the camera module is directly arranged on the image sensor, and the height of the camera module in the optical axis direction is small, and the size is relatively compact.
  • FIG. 18 is a schematic structural diagram of another optical lens group in the camera module provided by the embodiment of the present application.
  • 8 lenses are sequentially arranged at intervals along the optical axis direction, and the 7 first lenses 11 close to the object side are all carried out by the same support (not shown in the figure).
  • Fixed, and the lens near the image side is the second lens 12a.
  • the directions from the object side to the image side are the first lens S11, the second lens S12, the third lens S13, the fourth lens S14, the fifth lens S15, the sixth lens S16, The seventh lens S17 and the second lens 12a.
  • the image side of the second lens 12a is the photosensitive surface formed by the photosensitive array 21 of the image sensor 2.
  • the first surface of the second lens 12a is aspherical, and the second surface is a flat surface.
  • Each of the above-mentioned lenses has its own different imaging focal length and lens shape, which will be described in detail below.
  • the first lens S11 has a positive refractive power, and the focal length f1 of the first lens S11 and the total focal length of the optical lens group 101, that is, the ratio of the lens focal length f:
  • 0.927;
  • the second lens S12 has a negative refractive power, and the ratio of the focal length f2 of the second lens S12 to the focal length f of the lens:
  • 2.258;
  • the third lens S13 has a negative refractive power, and the ratio of the focal length f3 of the third lens S13 to the focal length f of the lens:
  • 4.031;
  • the fourth lens S14 has a positive refractive power, and the ratio of the focal length f4 of the fourth lens S14 to the focal length f of the lens:
  • 1.806;
  • the fifth lens S15 has negative refractive power, and the ratio of the focal length f5 of the fifth lens S15 to the focal length f of the lens:
  • 14.133;
  • the sixth lens S16 has a positive refractive power, and the ratio of the focal length f6 of the sixth lens S16 to the focal length f of the lens:
  • 1.246;
  • the seventh lens S17 has a negative refractive power, and the ratio of the focal length f7 of the seventh lens S17 to the focal length f of the lens:
  • 0.786;
  • the second lens 12a has a negative refractive power, and the ratio of the focal length fl of the second lens 12a to the focal length f of the lens:
  • 5.933.
  • 0.642.
  • the ratio between the central thickness dl of the second lens 12a and the total height TTL of the optical lens group 101 is
  • 0.022.
  • the contrast value between the maximum thickness dlmax of the second lens 12a and the minimum thickness dlmin of the second lens 12a is
  • 1.941.
  • the ratio (TTL/EFL) between the total height of the optical lens group 101 and the effective focal length (EFL) is 1.204.
  • the ratio (IH/EFL) between the image height (IH) of the optical lens group 101 and the effective focal length EFL is 0.851.
  • Tables 1 to 4 show the data of the optical lens group 101 having the above-mentioned structure.
  • the optical lens group 101 having the above-mentioned structure has optical parameters as shown in Table 1.
  • Table 1 The main optical parameters of the optical lens group 101
  • Focal length F 5.641mm F value (focal length/entrance pupil diameter) 1.71 Imaging height IH 4.8mm Half field of view (Field of View, FOV) 37.8° Back focus length BFL 1.077mm Total high TTL 6.794mm Design wavelength 650nm, 610nm, 555nm, 510nm, 470nm
  • the optical parameters of each lens in the optical lens group 101 are shown in Table 2.
  • the surface numbers in Table 2 are the surface numbers of each lens shown in FIG. 18.
  • the lens thickness specifically includes two thickness parameters, namely the thickness of the optical center of the lens itself, and the thickness of the interval between the center of the lens and the center of the next lens facing the image side.
  • the optical centers of the lenses in the optical lens group 101 are all located on the optical axis L-L'.
  • the first lens S11 has a surface R1 and a surface R2, and the thickness of the optical center of the first lens S11 (the distance between the optical center o1 of the surface R1 and the optical center o2 of the surface R2) is d1, The distance between the optical center o2 of the surface R2 of the first lens S11 and the optical center o3 of the surface R3 of the second lens S12 is a1.
  • d2 represents the thickness of the optical center of the second lens S12
  • a2 represents the thickness of the interval between the optical center o4 of the surface R4 and the optical center o5 of the surface R5 of the second lens S12
  • the lens thickness d3-d9 is similar to the definitions of d1 and a1 mentioned above, and will not be repeated here.
  • the lens thickness including the above thickness parameters is taken as an example for description.
  • the diaphragm is located 0.580 mm behind the vertex of the first surface.
  • the first surface of the second lens 12a is the surface of the lens surface number R15
  • the second surface is the surface of the lens surface number R17.
  • the surfaces of the lens surfaces with serial numbers R1-R15 are all lens surfaces, and these lens surfaces can converge or diverge incident light by using their own curved shapes to achieve imaging.
  • the lens surfaces with the lens surface numbers R1-R15 are all involved in the imaging of the optical lens group 101.
  • the lens surface may be an aspheric surface.
  • the specific shape of the aspheric surface that is, the non-curved surface type, can be obtained by the aspheric formulas (1) and (2) of the foregoing embodiment.
  • the image side surface or the object side surface of the lens can be aspherical, and the specific shape of the aspherical surface, that is, the aspherical surface type, can be obtained by the aspherical surface formula.
  • the aspheric surface can have multiple types, and the types of the aspheric surface can be divided according to the characteristics of the formula used to obtain the aspheric surface type.
  • the aspheric surface may have an even-order aspheric surface shape; in other embodiments, the aspheric surface may have an extended aspheric surface shape.
  • the surface type of the even-order aspheric surface can be defined by but not limited to the following aspheric formula (1):
  • z is the vector height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the spherical curvature of the aspheric apex
  • K is the quadric constant
  • a 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 are aspheric coefficients.
  • the surface shape of the extended aspheric surface can be limited by but not limited to the following aspheric formula (2):
  • z is the vector height of the aspheric surface
  • r is the radial coordinate of the aspheric surface
  • c is the curvature of the aspheric apex
  • K is the quadric constant
  • a 2 , A 3 , A 4 , A 5 , and A 6 are the aspheric surfaces coefficient.
  • the corresponding component interval W (the optical center o6 of the lens surface closest to the image side in the optical lens group 101 and the photosensitive array 21 of the image sensor 2 The distance between them is shown in Table 4.
  • Fig. 19a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 18 at infinite object distance.
  • Fig. 19b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 18 at an object distance of 80 mm.
  • 19a and 19b specifically show the difference of the optical lens group 101 when light of different wavelengths is converged.
  • the ordinate in FIGS. 19a and 19b represents the aperture size
  • the abscissa represents the simulation results of the focal depth positions of light of different wavelengths.
  • the five curves in Figure 19a and Figure 19b correspond to color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from FIGS. 19a and 19b that the axial chromatic aberration of the optical lens group 101 is controlled within a relatively small range.
  • Fig. 20a is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 18 at infinite object distance.
  • Fig. 20b is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 18 at an object distance of 80 mm.
  • Figures 19a and 19b specifically show the coordinate positions under different wavelengths of light. Among them, the ordinate in FIG. 20a and FIG. 20b represents the image height, and the abscissa represents the XY coordinate positions of light of different wavelengths.
  • the five curves in Fig. 20a and Fig. 20b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from FIGS. 20a and 20b that the lateral chromatic aberration of the optical lens group is within the diffraction range.
  • Fig. 21a is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 18 at infinite object distance.
  • Fig. 21b is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 18 at infinite object distance.
  • Fig. 21c is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 18 at an object distance of 80 mm.
  • Fig. 21d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 18 at an object distance of 80 mm.
  • the abscissa represents the difference between the imaging deformation and the ideal imaging
  • the ordinate represents the image height. Specifically, in Figs.
  • the measurement unit of the abscissa is millimeters
  • the measurement unit of the abscissas is a percentage. It can be seen from FIG. 21a to FIG. 21d that the distortion of the imaging in the optical lens group is controlled within the recognition range of the naked eye (below 2%, that is, it cannot be recognized by the naked eye).
  • the optical lens group in this embodiment includes 7 first lenses and 1 second lens, and optical imaging is achieved through the convergence or divergence of light by each lens, and the aberration of the imaging is corrected at the same time.
  • the optical lens group Under the joint action of the lenses in the optical lens group, the optical lens group has a better control ability on imaging aberrations and has a better optical imaging quality.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens. Two lenses, the first lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays , But still let visible light through. In this way, the first support member of the camera module does not need to install all the lenses of the optical lens group, and the first support member of the camera module does not need to install all the lenses of the optical lens group.
  • a part of the lenses can be arranged on the first support member.
  • the other part of the lens is fixed by other structures of the camera module. Since the number of fixed lenses on a single structure is small and the lenses are easy to assemble, it is possible to set a larger number of lenses in the camera module. Compared with the existing camera module, the total number of lenses can be increased, but the camera module The size of the group itself has not been increased, and the lens assembly is relatively convenient, which enables the camera to maintain a simple structure and compact size while also having high optical shooting performance.
  • FIG. 22 is a schematic structural diagram of yet another optical lens assembly provided in an embodiment of the present application.
  • the optical lens group 102 7 lenses are arranged at intervals along the optical axis direction. Among them, the 6 first lenses 11 near the object side are all fixed by the lens barrel, and the lenses near the image side It is the second lens 12b.
  • the direction from the object side to the image side is the first lens S21, the second lens S22, the third lens S23, the fourth lens S24, the fifth lens S25, the sixth lens S26 and The second lens 12b.
  • the image side of the second lens 12b is the photosensitive surface formed by the photosensitive array 21 of the image sensor 2.
  • the first surface of the second lens 12b is aspherical, and the second surface is a flat surface.
  • the position of the second lens 12b relative to the image sensor 2 does not move, while the other lenses move relative to the second lens 12b and the image sensor 2 to achieve zooming and focusing.
  • the first lens S21 has a positive refractive power, and the ratio of the focal length f1 of the first lens S21 to the focal length f of the lens:
  • 0.909;
  • the second lens S22 has a negative refractive power, and the ratio of the focal length f2 of the second lens S22 to the focal length f of the lens:
  • 2.538;
  • the third lens S23 has a positive refractive power, and the ratio of the focal length f3 of the third lens S23 to the focal length f of the lens:
  • 4.190;
  • the fourth lens S24 has a negative refractive power, and the ratio of the focal length f4 of the fourth lens S24 to the focal length f of the lens:
  • 4.931;
  • the fifth lens S25 has a positive refractive power, and the ratio of the focal length f5 of the fifth lens S25 to the focal length f of the lens:
  • 0.669;
  • the sixth lens S26 has a negative refractive power, and the ratio of the focal length f6 of the sixth lens S26 to the focal length f of the lens:
  • 0.53;
  • the second lens 12b has a negative refractive power, and the ratio of the focal length fl of the second lens 12b to the focal length f of the lens:
  • 7.77.
  • the ratio between the central thickness dl of the second lens 12b and the total length TTL of the optical lens group that is
  • 0.033; the maximum thickness dlmax of the second lens 12b is compared with the maximum thickness of the second lens 12b.
  • 2.067; the ratio between the total height of the optical lens group 102 and the effective focal length (TTL/EFL) is 1.229; the ratio between the image height of the optical lens group and the effective focal length (IH/EFL) is 0.879.
  • Tables 5 to 8 show the data of the optical lens group 102 having the above-mentioned structure.
  • the optical lens group 102 having the above-mentioned structure has optical parameters as shown in Table 5.
  • F value (focal length/entrance pupil diameter) 1.853 Imaging height IH 3.238mm Half field of view (Field of View, FOV) 40.5° Back focus length BFL 0.921mm Total high TTL 4.528mm Design wavelength 650nm, 610nm, 555nm, 510nm, 470nm
  • the optical parameters of each lens in the optical lens group 102 are shown in Table 6.
  • the surface numbers in Table 6 are the surface numbers of each lens shown in FIG. 22.
  • the definition of the lens thickness in Table 6 is similar to that of the aforementioned optical lens group 101.
  • the optical centers of the lenses in the optical lens group 102 are all located on the same optical axis, and the first lens S21 has a surface R1 and a surface R2.
  • the thickness of the optical center of the first lens S21 is d1; the distance between the optical center of the surface R2 of the first lens S21 and the optical center of the surface R3 of the second lens S22 is a1.
  • the definitions of d2-d9 and a2-a9 are similar to the definitions of d1 and a1.
  • the diaphragm is located 0.419 mm behind the vertex of the first surface.
  • the first surface of the second lens 12b is the surface of the lens surface number R13, and the second surface is the surface of the lens surface number R15.
  • the surfaces with the lens surface number R1 to the lens surface number R13 are all lens surfaces, and these lens surfaces can use their own curved shapes to converge or diverge incident light to achieve imaging.
  • the lens surfaces with the lens surface numbers R1-R15 are all involved in the imaging of the optical lens group 102.
  • the lens surface of the lens may be an aspheric surface, and the specific shape of the aspheric surface, that is, the aspheric surface type, can be obtained by the aspheric formulas (1) and (2) of the foregoing embodiment.
  • the corresponding component interval (between the optical center of the lens surface closest to the image side in the optical lens group and the photosensitive array 21 of the image sensor 2 The distance is similar to that of the optical lens group 101) as shown in Table 8.
  • Fig. 23a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 22 at an infinite object distance.
  • Fig. 23b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 22 at an object distance of 80 mm.
  • Figures 23a and 23b specifically show the difference in the convergence of the optical lens group 102 under different wavelengths of light. Among them, the ordinate in FIG. 23a and FIG. 23b represents the aperture size, and the abscissa represents the simulation results of the focal depth positions of light of different wavelengths.
  • the five curves in Figure 23a and Figure 23b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from FIGS. 23a and 23b that the axial aberration of the optical lens group 102 is controlled within a relatively small range.
  • Fig. 24a is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 22 at infinite object distance.
  • Fig. 24b is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 22 at an object distance of 80 mm.
  • Figures 24a and 24b specifically show the coordinate positions under light of different wavelengths. Among them, the ordinate in FIG. 24a and FIG. 24b represents the image height, and the abscissa represents the XY coordinate positions of light of different wavelengths.
  • the five curves in Fig. 24a and Fig. 24b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from FIGS. 24a and 24b that the lateral chromatic aberration of the optical lens group 102 is within the diffraction range.
  • Fig. 25a is the first optical distortion curve diagram of the optical lens group shown in Fig. 22 at infinite object distance.
  • Fig. 25b is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 22 at infinite object distance.
  • Fig. 25c is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 22 at an object distance of 80mm.
  • Fig. 25d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 22 at an object distance of 80 mm.
  • the abscissa represents the difference between imaging deformation and ideal imaging
  • the ordinate represents the image height.
  • the measurement unit of the abscissa is millimeter, and in FIG.
  • the measurement unit of the abscissa is a percentage. It can be seen from FIGS. 25a to 25d that the distortion of the imaging in the optical lens group is controlled within the recognition range of the naked eye (below 2%, that is, it cannot be recognized by the naked eye).
  • the optical lens group of this embodiment includes 6 first lenses and 1 second lens, and realizes optical imaging through the convergence or divergence of light by each lens, and at the same time corrects the aberration of the imaging, each in the optical lens group Under the common action of the lenses, the optical lens group has a better control ability on the aberration of the image, and has a better optical imaging quality.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens. Two lenses, the first lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays , But still let visible light through.
  • the first support of the camera module does not need to install all the lenses of the optical lens group, and a part of the lenses can be arranged on the first support, while the other part of the lenses is fixed by other structures of the camera module. Since the number of fixed lenses on a single structure is small and the lenses are easy to assemble, it is possible to set a larger number of lenses in the camera module. Compared with the existing camera module, the total number of lenses can be increased, but the camera module The size of the group itself has not been increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and a compact size while having high optical shooting performance.
  • FIG. 26 is a schematic structural diagram of a third optical lens group in the camera module provided in an embodiment of the present application.
  • the optical lens group 103 7 lenses are arranged at intervals along the optical axis.
  • the 6 first lenses 11 near the object side are all fixed by the lens barrel, and the lenses near the image side It is the second lens 12c.
  • the direction from the object side to the image side is the first lens S31, the second lens S32, the third lens S33, the fourth lens S34, the fifth lens S35, the sixth lens S36, and The second lens 12c.
  • the image side of the second lens 12c is the photosensitive surface formed by the photosensitive array 21 of the image sensor 2.
  • the first surface of the second lens 12c is aspherical, and the second surface is a flat surface.
  • the position of the second lens 12c relative to the image sensor 2 does not move, while the other lenses move relative to the second lens 12c and the image sensor 2 to achieve zooming and focusing.
  • Each of the above-mentioned lenses has its own different imaging focal length and lens shape, which will be described in detail below.
  • the first lens S31 has a positive refractive power, and the ratio of the focal length f1 of the first lens S31 to the focal length f of the lens:
  • 0.916;
  • the second lens S32 has a negative refractive power, and the ratio of the focal length f2 of the second lens S32 to the focal length f of the lens:
  • 2.510;
  • the third lens S33 has a positive refractive power, and the ratio of the focal length f3 of the third lens S33 to the focal length f of the lens:
  • 10.366;
  • the fourth lens S34 has a negative refractive power, and the ratio of the focal length f4 of the fourth lens S34 to the focal length f of the lens:
  • 3.028;
  • the fifth lens S35 has a positive refractive power, and the ratio of the focal length f5 of the fifth lens S35 to the focal length f of the lens:
  • 0.618;
  • the sixth lens S36 has a negative refractive power, and the ratio of the focal length f6 of the sixth lens S36 to the focal length f of the lens:
  • 0.59;
  • the second lens 12c has a negative refractive power, and the ratio of the focal length fl of the second lens 12c to the focal length f of the lens:
  • 6.76.
  • the total focal length of the optical lens group 103 is the lens focal length f.
  • the ratio between the central thickness dl of the second lens 12c and the total height TTL of the optical lens group that is
  • 0.030; the maximum thickness dlmax of the second lens 12c is compared with that of the second lens 12c
  • 3.154; the ratio between the total height of the optical lens group 103 and the effective focal length (TTL/EFL) is 1.245; the difference between the image height of the optical lens group 103 and the effective focal length
  • the ratio (IH/EFL) is 0.802.
  • Tables 9 to 12 show the data of the optical lens group 103 having the above-mentioned structure.
  • the optical lens group 103 having the above-mentioned structure has optical parameters as shown in Table 9.
  • the optical parameters of each lens in the optical lens group 103 are shown in Table 10.
  • the surface numbers in Table 10 are the surface numbers of each lens shown in FIG. 26.
  • lens thickness in Table 10 is similar to that of the aforementioned optical lens group 101.
  • the optical centers of the lenses in the optical lens group 103 are all located on the same optical axis, and the first lens S31 has a surface R1 and a surface R2.
  • the thickness of the optical center of the first lens S31 is d1; the distance between the optical center of the surface R2 of the first lens S31 and the optical center of the surface R3 of the second lens S32 is a1.
  • the definitions of d2-d9 and a2-a9 are similar to the definitions of d1 and a1.
  • the diaphragm is located 0.585 mm behind the vertex of the first surface.
  • the first surface of the second lens 12c is the surface of the lens surface number R13, and the second surface is the surface of the lens surface number R15.
  • the surfaces of the lens surface number R1 to the lens surface number R13 are all lens surfaces, and these lens surfaces can use their own curved shapes to converge or diverge the incident light, thereby realizing the optical lens group 103 of the imaging.
  • the lens surfaces with the lens surface numbers R1-R13 are all involved in the imaging of the optical lens group 103.
  • the lens surface of the lens may be an aspheric surface, and the specific shape of the aspheric surface, that is, the aspheric surface shape, can be obtained by the aspheric formulas (1) and (2) of the foregoing embodiment.
  • the corresponding component interval (the optical center of the lens surface closest to the image side in the optical lens group 103 and the photosensitive array 21 of the image sensor 2 The distance between the two is similar to that of the optical lens group 101) as shown in Table 12.
  • Fig. 27a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 26 at infinite object distance.
  • Fig. 27b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 26 at an object distance of 80 mm.
  • Fig. 27a and Fig. 27b specifically show the difference when the optical lens group converges at different wavelengths. Among them, the ordinate in FIG. 27a and FIG. 27b represents the aperture size, and the abscissa represents the simulation result of the light focus depth position at different wavelengths.
  • FIG. 27b correspond to color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Fig. 27a and Fig. 27b that the axial aberration of the optical lens group is controlled within a small range.
  • Fig. 28a is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 26 at infinite object distance.
  • Fig. 28b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 26 at an object distance of 80 mm.
  • Figures 28a and 28b specifically show the coordinate positions under different wavelengths of light. Among them, the ordinate in FIG. 28a and FIG. 28b represents the image height, and the abscissa represents the XY coordinate positions of light of different wavelengths.
  • the five curves in Fig. 28a and Fig. 28b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Figure 28a and Figure 28b that the lateral chromatic aberration of the optical lens group is within the diffraction range.
  • Fig. 29a is the first optical distortion curve diagram of the optical lens group shown in Fig. 26 at infinite object distance.
  • Fig. 29b is the second optical distortion curve diagram of the optical lens group shown in Fig. 26 at infinite object distance.
  • Fig. 29c is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 26 at an object distance of 80 mm.
  • Fig. 29d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 26 at an object distance of 80 mm.
  • the abscissa represents the difference between the imaging deformation and the ideal imaging
  • the ordinate represents the image height. Specifically, in Figs.
  • the measurement unit of the abscissa is millimeters
  • the measurement unit of the abscissas is a percentage. It can be seen from FIGS. 29a to 29d that the distortion of the imaging in the optical lens group is controlled within the recognition range of the naked eye (below 2%, that is, it cannot be recognized by the naked eye).
  • the optical lens group of this embodiment includes 6 first lenses and 1 second lens, and realizes optical imaging through the convergence or divergence of light by each lens, and at the same time corrects the aberration of the imaging, each in the optical lens group Under the common action of the lenses, the optical lens group has a better control ability on the aberration of the image, and has a better optical imaging quality.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens. Two lenses, the first lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays , But still let visible light through.
  • the first support of the camera module does not need to install all the lenses of the optical lens group, and a part of the lenses can be arranged on the first support, while the other part of the lenses is fixed by other structures of the camera module.
  • the number of fixed lenses on a single structure is small and the lenses are easy to assemble, it is possible to set a larger number of lenses in the camera module.
  • the total number of lenses can be increased, but the camera module
  • the size of the group itself has not been increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and a compact size while having high optical shooting performance.
  • FIG. 30 is a schematic structural diagram of the fourth optical lens group in the camera module provided by the embodiment of the present application.
  • the optical lens group 104 8 lenses are arranged at intervals along the optical axis. Among them, the 8 first lenses 11 near the object side are all fixed by the lens barrel, and the lenses near the image side It is the second lens 12d.
  • the direction from the object side to the image side is the first lens S41, the second lens S42, the third lens S43, the fourth lens S44, the fifth lens S45, the sixth lens S46, The seventh lens S47 and the second lens 12d.
  • the image side of the second lens 12d is the photosensitive surface formed by the photosensitive array 21 of the image sensor 2.
  • the first surface of the second lens 12d is aspherical, and the second surface is a flat surface.
  • the position of the second lens 12d relative to the image sensor 2 does not move, while other lenses move relative to the second lens 12d and the image sensor 2 to achieve zooming and focusing.
  • Each of the above-mentioned lenses has its own different imaging focal length and lens shape, which will be described in detail below.
  • the first lens S41 has a positive refractive power, and the ratio of the focal length f1 of the first lens S41 to the focal length f of the lens:
  • 0.772;
  • the second lens S42 has a negative refractive power, and the ratio of the focal length f2 of the second lens S42 to the focal length f of the lens:
  • 1.744;
  • the third lens S43 has negative refractive power, and the ratio of the focal length f3 of the third lens S43 to the focal length f of the lens:
  • 91.38;
  • the fourth lens S44 has a positive refractive power, and the ratio of the focal length f4 of the fourth lens S44 to the focal length f of the lens:
  • 148.33;
  • the fifth lens S45 has a negative refractive power, and the ratio of the focal length f5 of the fifth lens S45 to the focal length f of the lens:
  • 5.54;
  • the sixth lens S46 has a positive refractive power, and the ratio of the focal length f6 of the sixth lens S46 to the focal length f of the lens:
  • 1.049;
  • the seventh lens S47 has a negative refractive power, and the ratio of the focal length f7 of the seventh lens S47 to the focal length f of the lens:
  • 1.012;
  • the second lens 12d has a negative refractive power, and the ratio of the focal length fl of the second lens 12d to the focal length f of the lens:
  • 3.00.
  • the total focal length of the optical lens group 104 is the lens focal length f.
  • 0.
  • the ratio between the central thickness dl of the second lens 12d and the total height TTL of the optical lens group 104 that is
  • 0.022; the maximum thickness dlmax of the second lens 12d and the second lens 12d
  • 3.414; the ratio between the total height of the optical lens group 104 and the effective focal length (TTL/EFL) is 1.116; the image height of the optical lens group 104 and the effective focal length
  • the ratio (IH/EFL) is 0.788.
  • Table 13 to Table 16 show the data of the optical lens group 104 having the above-mentioned structure.
  • the optical parameters of the optical lens group 104 with the above-mentioned structure when the object distance is infinite are shown in Table 13.
  • the optical parameters of each lens in the optical lens group 104 are shown in Table 14.
  • the surface numbers in Table 14 are the surface numbers of each lens shown in FIG. 30.
  • the definition of the lens thickness in Table 14 is similar to that of the aforementioned optical lens group 101.
  • the optical centers of the lenses in the optical lens group 104 are all located on the same optical axis, and the first lens S41 has a surface R1 and a surface R2.
  • the thickness of the optical center of the first lens S41 is d1; the distance between the optical center of the surface R2 of the first lens S41 and the optical center of the surface R3 of the second lens S42 is a1.
  • the definitions of d2-d9 and a2-a9 are similar to the definitions of d1 and a1.
  • the diaphragm is located 0.580 mm behind the vertex of the first surface.
  • the first surface of the second lens 12d is the surface of the lens surface number R15
  • the second surface is the surface of the lens surface number R17.
  • the surfaces with the lens surface number R1 to the lens surface number R15 are all lens surfaces, and these lens surfaces can converge or diverge incident light by using their own curved shapes to achieve imaging.
  • the lens surfaces with the lens surface numbers R1-R15 are all involved in the imaging of the optical lens group 104.
  • the lens surface of the lens may be an aspheric surface, and the specific shape of the aspheric surface, that is, the non-curved surface type, may be obtained by the aspheric formulas (1) and (2) of the foregoing embodiment.
  • Table 15 The aspheric coefficient of each lens in the optical lens group 104
  • the corresponding component interval (between the optical center of the lens surface closest to the image side in the optical lens group and the photosensitive array 21 of the image sensor 2 The distance is similar to that of the optical lens group 101) as shown in Table 16.
  • Fig. 31a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 30 at an infinite object distance.
  • Fig. 31b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 30 at an object distance of 80 mm.
  • Figures 31a and 31b specifically show the difference when the optical lens group converges at different wavelengths. Among them, the ordinate in FIG. 31a and FIG. 31b represents the aperture size, and the abscissa represents the simulation result of the light focus depth position at different wavelengths.
  • the five curves in Fig. 31a and Fig. 31b correspond to color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Figure 31a and Figure 31b that the axial aberration of the optical lens group is controlled within a small range.
  • Fig. 32a is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 30 at an infinite object distance.
  • Fig. 32b is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 30 at an object distance of 80 mm.
  • Figures 32a and 32b specifically show the coordinate positions under different wavelengths of light. Among them, the ordinate in FIG. 32a and FIG. 32b represents the image height, and the abscissa represents the XY coordinate positions of light of different wavelengths.
  • the five curves in Fig. 32a and Fig. 32b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Figure 32a and Figure 32b that the lateral chromatic aberration of the optical lens group is within the diffraction range.
  • Fig. 33a is the first optical distortion curve diagram of the optical lens group shown in Fig. 30 at infinite object distance.
  • Fig. 33b is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 30 at infinite object distance.
  • Fig. 33c is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 30 at an object distance of 80 mm.
  • Fig. 33d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 30 at an object distance of 80 mm.
  • the abscissa represents the difference between the imaging deformation and the ideal imaging
  • the ordinate represents the image height. Specifically, in Figs.
  • the measurement unit of the abscissa is millimeters
  • the measurement unit of the abscissas is a percentage. It can be seen from FIGS. 33a to 33d that the distortion of the imaging in the optical lens group is controlled within the range of naked eye recognition (below 2%, that is, the naked eye cannot recognize it).
  • the optical lens group of this embodiment includes 7 first lenses and 1 second lens, and realizes optical imaging through the convergence or divergence of light by each lens, and at the same time corrects the aberration of the imaging, each in the optical lens group Under the common action of the lenses, the optical lens group has a better control ability on the aberration of the image, and has a better optical imaging quality.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens. Two lenses, the first lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays , But still let visible light through.
  • the first support of the camera module does not need to install all the lenses of the optical lens group, and a part of the lenses can be arranged on the first support, while the other part of the lenses is fixed by other structures of the camera module.
  • the number of fixed lenses on a single structure is small and the lenses are easy to assemble, it is possible to set a larger number of lenses in the camera module.
  • the total number of lenses can be increased, but the camera module
  • the size of the group itself has not been increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and a compact size while having high optical shooting performance.
  • FIG. 34 is a schematic structural diagram of the fifth optical lens group in the camera module provided by the embodiment of the present application.
  • the optical lens group 105 8 lenses are arranged at intervals along the optical axis. Among them, the 8 first lenses 11 near the object side are all fixed by the lens barrel, and the lenses near the image side It is the second lens 12e.
  • the direction from the object side to the image side is the first lens S51, the second lens S52, the third lens S53, the fourth lens S54, the fifth lens S55, the sixth lens S56, and the Seven lens S57 and second lens 12e.
  • the image side of the second lens 12e is the photosensitive surface formed by the photosensitive array 21 of the image sensor 2.
  • the first surface of the second lens 12e is aspherical, and the second surface is a flat surface.
  • the position of the second lens 12e relative to the image sensor 2 does not move, while the other lenses move relative to the second lens 12e and the image sensor 2 to achieve zooming and focusing.
  • Each of the above-mentioned lenses has its own different imaging focal length and lens shape, which will be described in detail below.
  • the first lens S51 has a positive refractive power, and the ratio of the focal length f1 of the first lens S51 to the focal length f of the lens:
  • 0.797;
  • the second lens S52 has a negative refractive power, and the ratio of the focal length f2 of the second lens S52 to the focal length f of the lens:
  • 1.838;
  • the third lens S53 has a positive refractive power, and the ratio of the focal length f3 of the third lens S53 to the focal length f of the lens:
  • 158.35;
  • the fourth lens S54 has a negative refractive power, and the ratio of the focal length f4 of the fourth lens S54 to the focal length f of the lens:
  • 316.97;
  • the fifth lens S55 has a positive refractive power, and the ratio of the focal length f5 of the fifth lens S55 to the focal length f of the lens:
  • 1.436;
  • the sixth lens S56 has a positive refractive power, and the ratio of the focal length f6 of the sixth lens S56 to the focal length f of the lens:
  • 1.029;
  • the seventh lens S57 has a negative refractive power, and the ratio of the focal length f7 of the seventh lens S57 to the focal length f of the lens:
  • 0.9317;
  • the second lens 12e has a negative refractive power, and the ratio of the focal length fl of the second lens 12e to the focal length f of the lens:
  • 4.33.
  • the total focal length of the optical lens group 105 is the lens focal length f.
  • the optical lens group 105 composed of the above lenses, the ratio between the distance dR between the second lens 12e and the image sensor 2 and the infinite object distance, the back focal length BFL of the optical lens group 105, namely
  • 0.05.
  • the ratio between the central thickness dl of the second lens 12e and the total height TTL of the optical lens group 105 namely
  • 0.02; the maximum thickness dlmax of the second lens 12e and the second lens
  • TTL/EFL 3.167; the ratio between the total height of the optical lens group 105 and the effective focal length (TTL/EFL) is 1.129; the difference between the image height of the optical lens group 105 and the effective focal length
  • the ratio between (IH/EFL) is 0.793.
  • Table 17 to Table 20 show the data of the optical lens group having the above-mentioned structure.
  • the optical parameters of the optical lens group 105 with the above structure when the object distance is infinite are shown in Table 17.
  • the optical parameters of each lens in the optical lens group 105 are shown in Table 18.
  • the surface number in Table 18 is the surface number of each lens shown in FIG. 34.
  • lens thickness in Table 18 is similar to that of the aforementioned optical lens group 101.
  • the optical centers of the lenses in the optical lens group 105 are all located on the same optical axis, and the first lens S51 has a surface R1 and a surface R2.
  • the thickness of the optical center of the first lens S51 is d1; the distance between the optical center of the surface R2 of the first lens S51 and the optical center of the surface R3 of the second lens S52 is a1.
  • the definitions of d2-d9 and a2-a9 are similar to the definitions of d1 and a1.
  • the diaphragm is located 0.580 mm behind the vertex of the first surface.
  • the first surface of the second lens 12e is the surface with the lens surface number R15
  • the second surface is the lens with the lens surface number R17.
  • the surfaces of the lens surface number R1 to the lens surface number R15 are all lens surfaces, and these lens surfaces can converge or diverge incident light by using their own curved shapes to achieve imaging.
  • the lens surfaces of the lens surface numbers R1-R15 are all involved in the imaging of the optical lens group 105.
  • the lens surface of the lens may be an aspheric surface, and the specific shape of the aspheric surface, that is, the aspheric surface shape, can be obtained by the aspheric formulas (1) and (2) of the foregoing embodiment.
  • the corresponding component interval (between the optical center of the lens surface closest to the image side in the optical lens group and the photosensitive array 21 of the image sensor 2 The distance is similar to that of the optical lens group 101) as shown in Table 20.
  • Fig. 35a is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 34 at infinite object distance.
  • Fig. 35b is a graph of axial chromatic aberration of the optical lens assembly shown in Fig. 34 at an object distance of 80 mm.
  • Figures 35a and 35b specifically show the difference when the optical lens group converges at different wavelengths. Among them, the ordinate in FIG. 35a and FIG. 35b represents the aperture size, and the abscissa represents the simulation result of the light focus depth position at different wavelengths.
  • the five curves in Fig. 35a and Fig. 35b correspond to color light with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Figure 35a and Figure 35b that the axial aberration of the optical lens group is controlled within a small range.
  • Fig. 36a is a graph of lateral chromatic aberration of the optical lens assembly shown in Fig. 34 at infinite object distance.
  • Fig. 36b is a graph of lateral chromatic aberration of the optical lens group shown in Fig. 34 at an object distance of 80 mm.
  • Figures 36a and 36b specifically show the coordinate positions under different wavelengths of light. Among them, the ordinate in FIGS. 36a and 36b represents the image height, and the abscissa represents the XY coordinate positions of light of different wavelengths.
  • the five curves in Fig. 36a and Fig. 36b correspond to color lights with wavelengths of 650nm, 610nm, 555nm, 510nm, and 470nm, respectively. It can be seen from Figure 36a and Figure 36b that the lateral chromatic aberration of the optical lens group is within the diffraction range.
  • Fig. 37a is the first optical distortion curve diagram of the optical lens group shown in Fig. 34 at infinite object distance.
  • Fig. 37b is the second optical distortion curve diagram of the optical lens group shown in Fig. 34 at infinite object distance.
  • Fig. 37c is the first optical distortion curve diagram of the optical lens assembly shown in Fig. 34 at an object distance of 80 mm.
  • Fig. 37d is the second optical distortion curve diagram of the optical lens assembly shown in Fig. 34 at an object distance of 80 mm.
  • the abscissa represents the difference between the imaging deformation and the ideal imaging
  • the ordinate represents the image height. Specifically, in Figs.
  • the measurement unit of the abscissa is millimeters
  • the measurement unit of the abscissas is a percentage. It can be seen from Fig. 37a to Fig. 37d that the distortion of the imaging in the optical lens group is controlled within the recognition range of the naked eye (below 2%, that is, the naked eye cannot recognize it).
  • the optical lens group of this embodiment includes 7 first lenses and 1 second lens, and realizes optical imaging through the convergence or divergence of light by each lens, and at the same time corrects the aberration of the imaging, each in the optical lens group Under the common action of the lenses, the optical lens group has a better control ability on the aberration of the image, and has a better optical imaging quality.
  • the camera module includes an optical lens group, an image sensor, and a supporting component.
  • the supporting component fixes the optical lens group on the photosensitive side of the image sensor.
  • the supporting component includes a first supporting member; the optical lens group includes a first lens and a second lens.
  • the lens is fixed on the first support, and the second lens is located outside the first support.
  • the second lens will serve as a part of the optical lens group and participate in optical imaging; at the same time, the second lens can also block infrared rays, but still let visible light Through.
  • the first support of the camera module does not need to install all the lenses of the optical lens group, and a part of the lenses can be arranged on the first support, while the other part of the lenses is fixed by other structures of the camera module.
  • the number of fixed lenses on a single structure is small and the lenses are easy to assemble, it is possible to set a larger number of lenses in the camera module.
  • the total number of lenses can be increased, but the camera module
  • the size of the group itself has not been increased, and the lens assembly is relatively convenient, so that the camera can maintain a simple structure and a compact size while having high optical shooting performance.
  • the present application also provides an electronic device, including the camera module described in the foregoing embodiment.
  • the electronic device may also include a housing, a processor, etc., the processor is housed in the housing, and the camera module may be disposed inside the housing of the electronic device.
  • Electronic equipment can realize shooting functions through camera modules and processors.
  • the camera module is used to capture still images or videos.
  • the object generates an optical image through the optical lens group and projects it to the image sensor.
  • the image sensor can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the image sensor converts the light signal into an electrical signal, and then transfers the electrical signal to the image signal processor to convert it into a digital image signal.
  • the image signal processor outputs the digital image signal to the digital signal processor for processing.
  • the digital signal processor converts the digital image signal into the required image signal.
  • the electronic device may include 1 or N camera modules, and N is a positive integer greater than 1.
  • the electronic devices of this application include but are not limited to mobile phones, tablet computers, notebook computers, personal digital assistants, vehicle-mounted terminals, smart home devices, etc.

Abstract

一种摄像头模组(100、300、400)及电子设备。摄像头模组(100、300、400)包括光学镜组(1、1a、101、102、103、104、105)、影像传感器(2)和支撑组件(5),支撑组件将光学镜组(1、1a、101、102、103、104、105)固定在影像传感器(2)的一侧;光学镜组(1、1a、101、102、103、104、105)包括第一镜片(11、11a)和第二镜片(12、12a、12b、12c、12d、12e);第一镜片(11、11a)固定于第一支撑件(51),第二镜片(12、12a、12b、12c、12d、12e)设置在第一支撑件(51)和影像传感器(2)之间;第二镜片(12、12a、12b、12c、12d、12e)能够滤除红外光,且第二镜片(12、12a、12b、12c、12d、12e)具有透镜面,透镜面用于参与光学镜组(1、1a、101、102、103、104、105)的成像。能够利用简单紧凑的结构而实现较好的光学拍摄性能。

Description

摄像头模组及电子设备
本申请要求于2020年01月08日提交中国专利局、申请号为202010017734.6、申请名称为“摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学领域,尤其涉及一种摄像头模组及电子设备。
背景技术
随着科技的不断进步,手机等移动终端的拍摄能力不断提高,手机的摄像头的结构也越来越复杂。
目前,为了让摄像头具有较好的成像质量,摄像头的镜头组件会包含有多个镜片。这些镜片沿光轴方向依次设置,从而实现高品质成像,并矫正大光圈时的像差。而镜片的数量越多,越能提高成像质量,让镜头组件具有较大的最大光圈。在一种现有的镜头组件结构中,镜头组件包括有7片镜片,这些镜片相互配合并形成镜头组件的光路,从而可以在镜头组件具有F1.4的最大光圈。
然而,镜头组件中的镜片数量较多时,会大大增加组装难度,降低产品良率,从而制约了镜头组件最大光圈的增大,以及光学成像品质的提高。
发明内容
本申请提供一种摄像头模组及电子设备,能够利用简单且体积紧凑的结构而实现较好的光学拍摄性能。
第一方面,本申请提供一种摄像头模组,包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的一侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片为多个,且第一镜片可沿摄像头模组的轴向移动以改变摄像头模组的焦距,第二镜片用于滤除红外光;第一镜片固定于第一支撑件,第二镜片设置于第一支撑件和影像传感器之间,且第二镜片具有透镜面,透镜面用于参与光学镜组的成像。这样摄像头模组可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,所以镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,也具有较高的光学拍摄性能。
作为一种可选的实施方式,第二镜片具有朝向物侧的第一表面和朝向像侧的第二表面,第一表面和第二表面中的至少一者为透镜面。由于第二镜片具有可供光线穿过的透镜面,所以第二镜片也会和光学镜组中的其它镜片协同工作,共同参与光学成像,以及矫正光学镜组中其它镜片所造成的像差。
作为一种可选的实施方式,第一表面和第二表面中的至少一者为非球面。相较球面镜 片而言,非球面镜片具有较薄的厚度和较小的质量,且能够矫正镜片边缘区域的像差,因而第二镜片采用非球面结构,镜片体积和质量较小,且成像效果较好。
作为一种可选的实施方式,第二镜片包括有沿光学镜组轴向层叠设置的滤光部和透镜部,滤光部用于滤除红外光,滤光部在垂直于光学镜组周向的方向上覆盖第二镜片;透镜部具有透镜面。这样第二镜片可以利用不同功能层分别实现阻绝红外线或者是光学成像等不同功能,第二镜片整体由简单的层叠结构构成,有利于缩减第二镜片在光学镜组轴向上的尺寸,且摄像头模组本身的尺寸并未增大。
作为一种可选的实施方式,第二镜片中的滤光部为层状结构,且滤光部在第二镜片的径向上具有均匀的厚度。这样滤光部具有较为平整的表面,便于镀膜或成型,且能按照具体需求滤除部分光线。
作为一种可选的实施方式,滤光部可以用于滤除一个或多个不同波长范围内的光线。例如在一种可选的方式中,滤光部可以滤除红外光。而在其它的一些可选的方式中,滤光部可以滤除紫外线波段的光线,或者是滤除可见光波段中部分波长的光线,例如红色光等。在另外一些可选的方式中,滤光部可以同时滤除多个波长范围内的光线,例如同时滤除红外线和可见光波段中的红色光等。
作为一种可选的实施方式,滤光部在第二镜片径向上的覆盖范围大于透镜部在第二镜片径向上的覆盖范围。这样能够防止通过滤光部的光线在透镜部的边缘发生折射,避免了滤光部干扰到光学镜组的正常成像。
作为一种可选的实施方式,第二镜片为滤光部和透镜部经模压而形成的镜片。这样通过模压的方式形成第二镜片,不需要额外的固定结构,即可让滤光部和透镜部之间较好的结合在一起,形成的第二镜片结构较为简单,且能够具有较为紧凑的尺寸。
作为一种可选的实施方式,透镜部位于滤光部的像侧或者物侧。
作为一种可选的实施方式,第二镜片包括两个透镜部,两个透镜部分别位于滤光部的像侧和滤光部的物侧。这样,在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,这摄像头模组相对具有更高的光学拍摄性能。
作为一种可选的方式,第一支撑件为镜筒,第一镜片设置在镜筒的内部。镜筒可以收容第一镜片,并对第一镜片进行遮蔽和保护。
作为一种可选的方式,支撑组件还包括沿光学镜组的轴向依次设置的第二支撑件和第三支撑件;第三支撑件和影像传感器相对固定,第一支撑件设置在第二支撑件上,第二镜片设置在第三支撑件上。这样第二镜片和第一镜片分别用不同支撑件进行固定,第二镜片的装配受到第一镜片的累计公差的影响较小,可以有效提升镜片的装配精度,并降低装配难度和成本;同时,由于第二镜片安装于第三支撑件上,而第一支撑件仅需要固定第一镜片即可,所以第一支撑件可以具有较为紧凑的体积和尺寸,有利于摄像头模组整体的结构简单化和尺寸紧凑化,安装方便,便于维修和更换镜片。
作为一种可选的实施方式,摄像头模组还包括第一驱动马达,第一驱动马达设置在第一支撑件和第二支撑件之间,用于带动第一镜片相对于第二支撑件移动。这样通过第一驱动马达,可以驱动第一镜片移动,从而进行对焦和变焦等操作。
作为一种可选的实施方式,摄像头模组还包括第二驱动马达,第二驱动马达设置在第 三支撑件和第二镜片之间,用于带动第二镜片相对于第三支撑件移动。这样第二镜片和第一镜片均通过驱动马达连接在摄像头模组中,因此第一镜片和第二镜片均可独立驱动,从而实现较强的变焦或者对焦性能。
作为一种可选的实施方式,第二支撑件和第三支撑件中的至少一者为围设在光学镜组的周向外侧的支撑架。这样光学镜组在周向上可以均衡受力,因而光学镜组的支撑较为稳固,在进行变焦和对焦移动时,也会具有较高的结构可靠性。
作为一种可选的实施方式,第二镜片设置在影像传感器上。这样光学镜组的后焦长度可以缩短,从而让整个摄像头模组在光轴方向上的高度得以降低,使得摄像头模组的尺寸更加紧凑。
作为一种可选的实施方式,第二镜片距像面的间距dR与光学镜组处于无穷远物距时的后焦长度BFL的比值范围为0≤|dR/BFL|≤0.9。
作为一种可选的实施方式,第一表面和第二表面中的一者为非球面,第二镜片的最大厚度dlmax与最小厚度dlmax的比值范围为1≤|dlmax/dlmin|≤5。
作为一种可选的实施方式,第二镜片的中心厚度dl与光学镜组的总高TTL的比值范围为0.01≤|dl/TTL|≤1.2。
作为一种可选的实施方式,第二镜片的焦距fl与光学镜组的焦距f的比值范围为1≤|fl/f|≤1000。
作为一种可选的实施方式,构成透镜部的材料的折射率nl的范围为1≤nl≤1.7。
作为一种可选的实施方式,构成透镜部的材料的阿贝系数vl的范围为15≤vl≤60。
作为一种可选的实施方式,采用模压工序形成第二镜片时,主要可以包括以下步骤:
涂布步骤:具体可以将滤光部设置在模具的模腔中,并将用于构成透镜部的透镜材料设置在滤光部的表面。
固化步骤:完成涂布步骤后,即可让上模具和下模具进行合模,从而使模具的模腔内部的透镜材料模压成型,形成透镜部的形状轮廓,并使透镜部固化成型。
离型步骤:透镜部固化完成后,即可让模具与第二镜片脱离,从而完成第二镜片的离型步骤。
上述第一方面所提供的摄像头模组,利用独立设置的第二镜片,同时提供了阻绝红外光和参与光学成像的功能,相较现有的摄像头模组,摄像头模组的镜片总体数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,也具有较高的光学拍摄性能。
第二方面,本申请提供一种电子设备,包括壳体和所述第一方面中的任意一种可选的实施方式中的摄像头模组,摄像头模组位于壳体内部。摄像头模组的镜筒等第一支撑件不需要安装光学镜组的全部镜片,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,摄像头模组具有较高的光学拍摄性能。
作为一种可选的实施方式,摄像头模组中的第二镜片具有朝向物侧的第一表面和朝向像侧的第二表面,第一表面和第二表面中的至少一者为透镜面。由于第二镜片具有可供光线穿过的透镜面,所以第二镜片也会和光学镜组中的其它镜片协同工作,共同参与光学成像,以及矫正光学镜组中其它镜片所造成的像差。
作为一种可选的实施方式,第二镜片的第一表面和第二表面中的至少一者为非球面。 相较球面镜片而言,非球面镜片具有较薄的厚度和较小的质量,且能够矫正镜片边缘区域的像差,因而第二镜片采用非球面结构,镜片体积和质量较小,且成像效果较好。
作为一种可选的实施方式,第二镜片包括有沿光学镜组轴向层叠设置的滤光部和透镜部,滤光部用于滤除红外光,滤光部在垂直于光学镜组周向的方向上覆盖第二镜片;透镜部具有透镜面。这样第二镜片可以利用不同功能层分别实现阻绝红外线或者是光学成像等不同功能,第二镜片整体由简单的层叠结构构成,有利于缩减第二镜片在光学镜组轴向上的尺寸,且摄像头模组本身的尺寸并未增大。
作为一种可选的实施方式,第二镜片中的滤光部为层状结构,且滤光部在第二镜片的径向上具有均匀的厚度。这样滤光部具有较为平整的表面,便于镀膜或成型,且能按照具体需求滤除部分光线。
作为一种可选的实施方式,滤光部可以用于滤除一个或多个不同波长范围内的光线。例如在一种可选的方式中,滤光部可以滤除红外光。而在其它的一些可选的方式中,滤光部可以滤除紫外线波段的光线,或者是滤除可见光波段中部分波长的光线,例如红色光等。在另外一些可选的方式中,滤光部可以同时滤除多个波长范围内的光线,例如同时滤除红外线和可见光波段中的红色光等。
作为一种可选的实施方式,滤光部在第二镜片径向上的覆盖范围大于透镜部在第二镜片径向上的覆盖范围。这样能够防止通过滤光部的光线在透镜部的边缘发生折射,避免了滤光部干扰到光学镜组的正常成像。
作为一种可选的实施方式,第二镜片为滤光部和透镜部经模压而形成的镜片。这样通过模压的方式形成第二镜片,不需要额外的固定结构,即可让滤光部和透镜部之间较好的结合在一起,形成的第二镜片结构较为简单,且具有较为紧凑的尺寸。
作为一种可选的实施方式,第二镜片中的透镜部位于滤光部的像侧或者物侧。
作为一种可选的实施方式,第二镜片包括两个透镜部,两个透镜部分别位于滤光部的像侧和滤光部的物侧。这样,电子设备的摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,该摄像头模组相对具有更高的光学拍摄性能。
作为一种可选的方式,第一支撑件为镜筒,第一镜片设置在镜筒的内部。镜筒可以收容第一镜片,并对第一镜片进行遮蔽和保护。
作为一种可选的方式,支撑组件还包括沿光学镜组的轴向依次设置的第二支撑件和第三支撑件;第三支撑件和影像传感器相对固定,第一支撑件设置在第二支撑件上,第二镜片设置在第三支撑件上。这样第二镜片和第一镜片分别用不同支撑件进行固定,第二镜片的装配受到第一镜片的累计公差的影响较小,可以有效提升镜片的装配精度,并降低装配难度和成本;同时,由于第二镜片安装于第三支撑件上,而第一支撑件仅需要固定第一镜片即可,所以第一支撑件可以具有较为紧凑的体积和尺寸,有利于摄像头模组整体的结构简单化和尺寸紧凑化,安装方便,便于维修和更换镜片。
作为一种可选的实施方式,电子设备的摄像头模组还包括第一驱动马达,第一驱动马达设置在第一支撑件和第二支撑件之间,用于带动第一镜片相对于第二支撑件移动。这样通过第一驱动马达,可以驱动第一镜片移动,从而进行对焦和变焦等操作。
作为一种可选的实施方式,电子设备的摄像头模组还包括第二驱动马达,第二驱动马 达设置在第三支撑件和第二镜片之间,用于带动第二镜片相对于第三支撑件移动。这样第二镜片和第一镜片均通过驱动马达连接在摄像头模组中,因此第一镜片和第二镜片均可独立驱动,从而实现较强的变焦或者对焦性能。
作为一种可选的实施方式,第二镜片设置在影像传感器上。这样光学镜组的后焦长度可以缩短,从而让整个摄像头模组在光轴方向上的高度得以降低,使得摄像头模组的尺寸更加紧凑。
作为一种可选的实施方式,第二镜片距像面的间距dR与光学镜组处于无穷远物距时的后焦长度BFL的比值范围为0≤|dR/BFL|≤0.9。
作为一种可选的实施方式,第一表面和第二表面中的一者为非球面,第二镜片的最大厚度dlmax与最小厚度dlmax的比值范围为1≤|dlmax/dlmin|≤5。
作为一种可选的实施方式,第二镜片的中心厚度dl与光学镜组的总高TTL的比值范围为0.01≤|dl/TTL|≤1.2。
作为一种可选的实施方式,第二镜片的焦距fl与光学镜组的焦距f的比值范围为1≤|fl/f|≤1000。
作为一种可选的实施方式,构成透镜部的材料的折射率nl的范围为1≤nl≤1.7。
作为一种可选的实施方式,构成透镜部的材料的阿贝系数vl的范围为15≤vl≤60。
作为一种可选的实施方式,采用模压工序形成第二镜片时,主要可以包括以下步骤:
涂布步骤:具体可以将滤光部设置在模具的模腔中,并将用于构成透镜部的透镜材料设置在滤光部的表面。
固化步骤:完成涂布步骤后,即可让上模具和下模具进行合模,从而使模具的模腔内部的透镜材料模压成型,形成透镜部的形状轮廓,并使透镜部固化成型。
离型步骤:透镜部固化完成后,即可让模具与第二镜片脱离,从而完成第二镜片的离型步骤。
作为一种可选的实施方式,摄像头模组的支撑组件中,第二支撑件和第三支撑件中的至少一者为围设在光学镜组的周向外侧的支撑架。这样光学镜组在周向上可以均衡受力,因而光学镜组的支撑较为稳固,在进行变焦和对焦移动时,也会具有较高的结构可靠性。
本申请的摄像头模组及电子设备,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的一侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片为多个,且第一镜片可沿摄像头模组的轴向移动以改变摄像头模组的焦距,第二镜片用于滤除红外光;第一镜片固定于第一支撑件,第二镜片设置于第一支撑件和影像传感器之间,且第二镜片具有透镜面,透镜面用于参与光学镜组的成像。这样摄像头模组相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,也具有较高的光学拍摄性能。
附图说明
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是本申请实施例提供的电子设备的A-A截面的截面示意图;
图3是现有的一种摄像头模组的结构示意图;
图4是现有摄像头模组中光学镜组的结构示意图;
图5是本申请实施例提供的电子设备中一种摄像头模组的外形示意图;
图6是图5中的摄像头模组的内部结构示意图;
图7是本申请实施例提供摄像头模组中第二镜片和支撑组件的一种连接结构示意图;
图8a是本申请实施例提供的摄像头模组在变焦时光学镜组的第一种位置示意图;
图8b是本申请实施例提供的摄像头模组在变焦时光学镜组的第二种位置示意图;
图9是本申请实施例提供的一种第二镜片的结构示意图;
图10是图9中的第二镜片的正面示意图;
图11a是本申请实施例提供的第二镜片的第一种截面结构示意图;
图11b是本申请实施例提供的第二镜片的第二种截面结构示意图;
图11c是本申请实施例提供的第二镜片的第三种截面结构示意图;
图12a是本申请实施例提供的第二镜片的制造工序中涂布步骤的示意图;
图12b是本申请实施例提供的第二镜片的制造工序中固化步骤的示意图;
图12c是本申请实施例提供的第二镜片的制造工序中离型步骤的示意图;
图13是本申请实施例提供的批量制作第二镜片的工序示意图;
图14是本申请实施例提供的另一种摄像头模组的结构示意图;
图15是图14的摄像头模组中第二镜片的定位方式示意图;
图16是本申请实施例提供的又一种摄像头模组的结构示意图;
图17是图16的摄像头模组中第二镜片的定位方式示意图;
图18是本申请实施例提供的摄像头模组中另一种光学镜组的结构示意图;
图19a是图18所示的光学镜组在无穷远物距下的轴向色差曲线图;
图19b是图18所示的光学镜组在80mm物距时的轴向色差曲线图;
图20a是图18所示的光学镜组在无穷远物距下的横向色差曲线图;
图20b是图18所示的光学镜组在80mm物距时的横向色差曲线图;
图21a是图18所示的光学镜组在无穷远物距下的光学畸变曲线图一;
图21b是图18所示的光学镜组在无穷远物距下的光学畸变曲线图二;
图21c是图18所示的光学镜组80mm物距时的光学畸变曲线图一;
图21d是图18所示的光学镜组在80mm物距时的光学畸变曲线图二;
图22是本申请实施例提供的又一种光学镜组的结构示意图;
图23a是图22所示的光学镜组在无穷远物距下的轴向色差曲线图;
图23b是图22所示的光学镜组在80mm物距时的轴向色差曲线图;
图24a是图22所示的光学镜组在无穷远物距下的横向色差曲线图;
图24b是图22所示的光学镜组在80mm物距时的横向色差曲线图;
图25a是图22所示的光学镜组在无穷远物距下的光学畸变曲线图一;
图25b是图22所示的光学镜组在无穷远物距下的光学畸变曲线图二;
图25c是图22所示的光学镜组在80mm物距时的光学畸变曲线图一;
图25d是图22所示的光学镜组在80mm物距时的光学畸变曲线图二;
图26是本申请实施例提供的摄像头模组中第三种光学镜组的结构示意图;
图27a是图26所示的光学镜组在无穷远物距下的轴向色差曲线图;
图27b是图26所示的光学镜组在80mm物距时的轴向色差曲线图;
图28a是图26所示的光学镜组在无穷远物距下的横向色差曲线图;
图28b是图26所示的光学镜组在80mm物距时的横向色差曲线图;
图29a是图26所示的光学镜组在无穷远物距下的光学畸变曲线图一;
图29b是图26所示的光学镜组在无穷远物距下的光学畸变曲线图二;
图29c是图26所示的光学镜组在80mm物距时的光学畸变曲线图一;
图29d是图26所示的光学镜组在80mm物距时的光学畸变曲线图二;
图30是本申请实施例提供的摄像头模组中第四种光学镜组的结构示意图;
图31a是图30所示的光学镜组在无穷远物距下的轴向色差曲线图;
图31b是图30所示的光学镜组在80mm物距时的轴向色差曲线图;
图32a是图30所示的光学镜组在无穷远物距下的横向色差曲线图;
图32b是图30所示的光学镜组在80mm物距时的横向色差曲线图;
图33a是图30所示的光学镜组在无穷远物距下的光学畸变曲线图一;
图33b是图30所示的光学镜组在无穷远物距下的光学畸变曲线图二;
图33c是图30所示的光学镜组在80mm物距时的光学畸变曲线图一;
图33d是图30所示的光学镜组在80mm物距时的光学畸变曲线图二;
图34是本申请实施例提供的摄像头模组中第五种光学镜组的结构示意图;
图35a是图34所示的光学镜组在无穷远物距下的轴向色差曲线图;
图35b是图34所示的光学镜组在80mm物距时的轴向色差曲线图;
图36a是图34所示的光学镜组在无穷远物距下的横向色差曲线图;
图36b是图34所示的光学镜组在80mm物距时的横向色差曲线图;
图37a是图34所示的光学镜组在无穷远物距下的光学畸变曲线图一;
图37b是图34所示的光学镜组在无穷远物距下的光学畸变曲线图二;
图37c是图34所示的光学镜组在80mm物距时的光学畸变曲线图一;
图37d是图34所示的光学镜组在80mm物距时的光学畸变曲线图二。
附图标记说明:
1、1a、101、102、103、104、105-光学镜组;2-影像传感器;3-电路板;4-第一驱动马达;5-支撑组件;6-滤光片;7-第二驱动马达;11、11a-第一镜片;12、12a、12b、12c、12d、12e-第二镜片;21-感光阵列;51-第一支撑件;51a-镜筒;52-第二支撑件;52a-滤光片架;53-第三支撑件;80-模具、81-上模具、82-下模具、121-滤光部;122-透镜部;122a-透镜材料;
100、300、400-摄像头模组;200-电子设备;
F1-第一表面;F2-第二表面;
S11、S21、S31、S41、S51-第一透镜、S12、S22、S32、S42、S52-第二透镜、S13、S23、S33、S43、S53-第三透镜;S14、S24、S34、S44、S54-第四透镜;S15、S25、S35、S45、S55-第五透镜;S16、S26、S36、S46、S56、S66-第六透镜;S17、S47、S57-第七透镜。
具体实施方式
随着电子设备的功能不断强大,电子设备中通常包括有摄像头模组。摄像头模组可以拍摄和采集外界影像,从而让电子设备实现拍摄或者视频通话等功能。
图1是本申请实施例提供的一种电子设备的结构示意图。图2是本申请实施例提供的电子设备的A-A截面的截面示意图。如图1和图2所示,以电子设备200是手机为例,摄像头模组100可以设置在手机上,示例性的,摄像头模组100可以设置在手机的壳体201的朝向用户的一侧,或者是手机的壳体201的背离用户的一侧。为了保护摄像头模组100,摄像头模组100可以设置在壳体201的内部,而壳体201对应摄像头模组100的位置开设有镜头孔202,以使外界光线可以正常射入摄像头模组100内部。此外,电子设备200也可以包括屏幕、主板、中框结构件等各个不同组成部分,此处不再赘述。其中,本申请实施例涉及的电子设备可以为手机,也可以为平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售终端(Point of Sales,POS)、车载电脑、智能家居设备等。
如图2所示,在摄像头模组100中,具体包括有光学镜组1和影像传感器2等不同组成部分。其中,影像传感器2集成有感光阵列21,可以采集并感测外界的影像,并通过光电转换作用将外界影像画面转化为相应的电信号并进行输出。本领域技术人员可以理解的是,影像传感器2包括但不限于互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)器件、电荷耦合器件(Charge-coupled Device,CCD)等器件和设备。
因为影像传感器2的感光阵列21具有较小的面积,为了将外界影像汇聚至影像传感器2的感光阵列21上,在影像传感器2的感光阵列21的一侧,例如是感光侧设置有光学镜组1。光学镜组1中具有可透光的镜片,从而可将外界光线通过镜片汇聚到影像传感器2的感光阵列21上,并形成成像画面。
此外,为了实现摄像头模组100的正常拍摄工作,摄像头模组中100还可以包括但不限于电路板3和驱动马达等部件。
其中,电路板3可以作为摄像头模组100的主要载体和控制部件。影像传感器2可以设置在电路板3上,并和电路板3具有电性连接。因而影像传感器2所拍摄到的图像信息,即可传输至电路板3,以使电路板3向电子设备200的其它部件进行输出。而电路板3也可为影像传感器2供电,并对影像传感器2进行控制。其中,电路板3可以为印制电路板(Printed Circuit Board,PCB)或者其它本领域技术人员常用的电路板形式。此外,电路板3上可以设置有表面贴装器件(Surface Mount Device,SMD),以执行各种电路功能。
而驱动马达可以和光学镜组1连接,并驱动光学镜组1的至少部分镜片在摄像头模组100的轴线方向(例如Z轴方向)移动,从而让光学镜组1执行变焦和对焦操作;或者是在影像传感器2的感光阵列所在平面方向(例如X轴和Y轴所在平面方向,沿X轴和/或Y轴方向)上移动,以使光学镜组1执行光学防抖操作等。其中,摄像头模组100的轴向方向也可称为光轴方向。光学镜组1进行对焦操作和光学防抖操作的具体方式和原理可参照现有摄像头模组的对焦及光学防抖功能,此处不再赘述。驱动马达可以为一个或一个以上,图2所示的摄像头模组中,驱动马达中包括第一驱动马达4,第一驱动马达4用于驱动光学镜组1中的部分或全部镜片移动,以进行对焦和变焦操作。示例性的,第一驱动马达4可以为音圈马达(Voice Coil Moto,VCM)。
为了对光学镜组1中的各个镜片进行固定和定位,在摄像头模组中还包括有支撑组件 5,支撑组件5能够对镜头组件1的部分或全部镜片进行支撑,以使镜片相对于影像传感器2具有确定的位置,从而保证光学镜组1能够顺利成像。
此外,摄像头模组100工作时,需要对进入摄像头模组100内部的外界光线进行过滤,将其中的红外线波段的光滤除,以避免红外光照射至影像传感器2的感光阵列21,而干扰到影像传感器的正常感光和拍摄,在摄像头模组中设置有可以过滤和阻绝红外线,但仍允许可见光透过的红外线滤除结构。
为了实现变焦和对焦操作,光学镜组1需要相对于影像传感器2等感光元件可移动的设置。因此,光学镜组1可以设置在摄像头模组100中影像传感器2的远端,即远离影像传感器2的一端,而用于阻绝红外光的红外线滤除结构可以位于光学镜组1和影像传感器之间,这样光学镜组的移动对于红外线滤除结构的影响较小。
现有的摄像头模组中,可以利用红外滤光片(IR filter)对红外线进行滤除和阻绝。红外滤光片也称为红外截止滤光片,设置在摄像头模组的影像传感器与被摄物体之间,并能够滤除红外光而透过可见光。由于人眼和影像传感器对光线各个波长范围的响应不同,人眼无法感受到处于红外波段的光线,而影像传感器却能探测并感应到红外光。为了避免红外光干扰到影像传感器的正常成像,需要在影像传感器的感光面前方设置红外滤光片,以阻绝红外线。
图3是现有的一种摄像头模组的结构示意图。如图3所示,现有的摄像头模组100a中,影像传感器2设置在电路板3上,影像传感器2的感光侧依次设置有光学镜组1a和红外滤光片6,光学镜组1a通过镜筒51a实现安装和定位,而红外滤光片6则设置在滤光片架52a上,这样可以通过红外滤光片6对红外光进行滤除。红外滤光片6一般为厚度较小的平板片状结构,能够通过自身的材质特性或者镀膜而滤除红外光,仅允许可见光通过。这样外界光线会先进入光学镜组1a,并利用光学镜组1a中第一镜片11a的折射而实现成像;而由光学镜组1a出射的光线经过红外滤光片6a,其红外光部分被滤除,然后由影像传感器2进行采集和拍摄。
图4是现有摄像头模组中光学镜组的结构示意图。如图4所示,为了实现光学成像,光学镜组1a可以有可透光的第一镜片11a,并利用第一镜片11a的折射作用,让透过第一镜片11a的光线产生变向,从而进行光线的汇聚,并最终成像。具体的,光学镜组1a中,具体包括有多个沿光学镜组1a光轴方向前后间隔设置的第一镜片11a,各个第一镜片11a的朝向均保持一致,因而第一镜片11a的光轴均朝向同一方向,即图中的Z轴方向,这些第一镜片11a即可构成用于成像的光学镜组1a。
现有的摄像头模组100a中,为了让光学镜组1a中的多个第一镜片11a沿着光轴按照预定的次序和间距排列,支撑组件中包括有镜筒51a。镜筒51a为两端开口的中空筒状结构,且镜筒51a的长度方向和第一镜片11a的光轴方向保持一致。此时,光学镜组1a中的第一镜片11a均固定在镜筒51a的中空内腔之中。
为了让光学镜组1a具有良好的光学成像品质,例如是实现较大的最大光圈,光学镜组1a中应具有较多数量的第一镜片11a,这些第一镜片11a通过相互之间的光学作用,能够对光学镜组1a成像时的像差进行矫正,从而呈现较好的成像品质。然而,这些第一镜片11a在镜筒51a内装配时,可能会由于制造和装配误差,而产生一定的累计公差,而累计公差会影响到第一镜片11a的光学成像精度。当第一镜片11a数量较多时,相应也会形成 较大的累计公差。因此,现有摄像头模组100a中,光学镜组难以实现较多的镜片数量(镜片数量大于7片),制约了摄像头模组成像品质的继续提高。
因此,本申请提出一种新的摄像头模组,能够让摄像头模组中具有尽可能多的镜片数量,从而提高摄像头模组光学成像品质,使摄像头模组具有较好的拍摄能力。以下以具体实施例为例,对摄像头模组的具体结构进行详细说明。
本申请的摄像头模组100中,可以包括光学镜组1、影像传感器2、电路板3和驱动马达等不同组成部分。图5是本申请实施例提供的电子设备中一种摄像头模组的外形示意图。图6是图5中的摄像头模组的内部结构示意图。如图5和图6所示,摄像头模组100除了现有的第一镜片11外,还包括第二镜片12,第二镜片12会作为摄像头模组100的光学镜组1中的一部分,并参与摄像头模组100的光学成像;同时,第二镜片12也能够阻隔红外线,但仍让可见光透过。这样红外线经过第二镜片12时,即会被第二镜片12所阻隔,从而实现了摄像头模组100的红外滤光效果。
此时,和光学镜组1中的其它第一镜片11类似,第二镜片12具有朝向物侧的第一表面F1和朝向像侧的第二表面F2。其中,第一表面F1和第二表面F2中的至少一者为透镜面,因而可以参与成像,以及矫正光学镜组1中其它镜片所造成的像差。其中,透镜面为沿着光学镜组1的光轴延伸方向凸出或凹进的曲面,进入第二镜片12的光线,会在透镜面上产生折射时,并因透镜面所具有的曲面形状而改变光路。这样通过透镜面改变入射光线的光路,即可让入射光线相应产生汇聚或发散现象,从而参与成像。其中,第二镜片12的透镜面和第一镜片11的多个透镜面共同参与所述光学镜组1的成像。
如图6所示,第二镜片12中,第一表面F1为沿光轴延伸方向凸出或凹进的曲面形状,该第一表面F1即为透镜面。类似的,第一镜片11在光轴延伸方向上凸出或凹进的表面也会构成透镜面,这些透镜面具有汇聚光线或发散光线的效果,外界光线通过这些透镜面,即可通过透镜面的折射而发生相应的发散或汇聚,从而进行成像。
由于第二镜片12具有透镜面,所以第二镜片12的透镜面和光学镜组1中的其它镜片能够协同工作,入射光线进入光学镜组1后,在遇到透镜面时,即会在透镜面上产生折射,并实现发散或汇聚。通过光学镜组1中多个透镜面对入射光线的依次发散或汇聚作用,即可让光线在影像传感器2上实现光学成像。在一些实施例中,第二镜片12的透镜面为非球面。
由图6可知,本实施例中的摄像头模组100中,光学镜组1中的大部分镜片,例如是第一镜片11均安装于第一支撑件51之中,并可以在第一支撑件51的带动下沿着摄像头模组100的轴向相对于影像传感器2移动,从而改变摄像头模组100的焦距,实现变焦或对焦操作。而第二镜片12未和第一支撑件51直接连接,而是位于第一支撑件51和影像传感器2之间,因此,第二镜片12相对于安装于第一支撑件51之中的其它第一镜片11是独立安装的,受到第一支撑件51中第一镜片11的累计公差的影响也较小。其中,可选的,第一支撑件51可以为两端开口的镜筒,且第一镜片11设置在镜筒的内部空腔之中。此外,第一支撑件51也可以为围设在第一镜片11周向外侧的其它形式和形状的支撑件。
本申请中,由于第二镜片12能够在阻隔红外线的同时,参与光学成像,因而第二镜片12会作为光学镜组1中的一部分存在并参与成像,从而让第一支撑件51中不需要安装光学镜组1的全部镜片。和图3所示的现有摄像头模组相比,在摄像头模组整体长度尺寸、 镜筒结构以及镜筒所能容纳的镜片数量相同的情况下,本申请中的摄像头模组100,其光学镜组1中实际包括的参与成像的镜片数量要多于现有技术的摄像头模组,因而能够在工序难度相同的前提下,实现更多的镜片数量,进而具有更好的光学成像品质和性能,改善了摄像头模组的拍摄画质。
具体的,本申请的摄像头模组100,其可参与光学成像的镜片数量会比同等规格的常规摄像头模组的镜片数量多一个。示例性的,现有的摄像头模组中,光学镜组1中可以包括7个用于光学成像的第一镜片11,因而在大光圈成像时的像差能够具有较好的矫正效果,以实现F1.4以上的大光圈拍摄。而相较而言,本申请中的摄像头模组100,除了第一支撑件51内部所安装的7个第一镜片11之外,未由第一支撑件51所固定的第二镜片12也会参与成像,这样,光学镜组1中实际包括8个光学成像镜片,从而能够实现更好的光学品质和更大光圈拍摄效果(例如是实现F1.2甚至F1.0的最大光圈)。
具体的,本申请的摄像头模组,在无穷远物距下部分视场的调制传递函数(Modulation Transfer Fuction,MTF)可以提高8%-10%,而微距下部分视场的MTF可以提高10%-15%左右。
在光学镜组1的各镜片中,第二镜片12并未和第一镜片11一样被固定在第一支撑件51上,而是位于第一支撑件51之外,因而相较光学镜组1中的其它第一镜片11而言,第二镜片12可以具有较为灵活的位置和固定方式,以下对第二镜片12的设置方式进行具体说明。
为了对第二镜片12进行固定和定位,除了第一支撑件51之外,在支撑组件5中还包括有支撑架等结构,支撑架能够对第二镜片12以及光学镜组1中的其它部分进行支撑,以使这些镜片相对于影像传感器具有确定的空间位置,从而保证镜片能够顺利成像。
可选的,如图6所示,为了分别对第二镜片12和光学镜组1中的第一镜片11进行定位,摄像头模组100的支撑组件5还包括第二支撑件52和第三支撑件53,第一支撑件51可以设置在第二支撑件52上,而第二镜片12可以安装在第三支撑件53上。
其中,摄像头模组100中可以包括电路板3,摄像头模组100中的影像传感器2和支撑组件5等部件和结构均可以直接或间接的设置在电路板3上。此时,可以将第三支撑件53安装于电路板3上,而第二支撑件52设置在第三支撑件53的背离电路板3的一侧。其中,第二支撑件52和第三支撑件53可以通过拆卸或者不可拆卸的方式相互连接在一起。示例性的,第二支撑件52和第三支撑件53可以利用粘接剂进行粘接。可以理解的是,第二支撑件52和第三支撑件53可以为支架等结构,且第二支撑件52和第三支撑件53可以围设在光学镜组1的周向外侧,以使光学镜组1在周向上得以均衡受力。
具体的,为了实现摄像头模组100的对焦操作,在摄像头模组100中具有第一驱动马达4,而第一支撑件51即可和第一驱动马达4的可动部分连接,而第二支撑件52与第一驱动马达4的固定部分连接。这样,第一驱动马达4即可带动第一支撑件51相对于第二支撑件52移动,从而完成对焦、变焦和光学防抖等操作。
图7是本申请实施例提供摄像头模组中第二镜片和支撑组件的一种连接结构示意图。如图7所示,第三支撑件53安装于电路板3上,且第三支撑件53的与影像传感器相对的位置具有避让结构,以使光线由第三支撑件53所处的区域正常通过,而第二镜片12即可设置于第三支撑件53的避让结构上。此时,第二镜片12位于光学镜组1的其它镜片与影 像传感器2之间。其中,避让结构可以为通光孔531等不同的形式。
而作为一种可选的实施方式,第三支撑件53可以具有用于安装并支撑第二镜片12的安装面532,安装面532位于避让结构的边缘,以在制成第二镜片12的同时,保证第二镜片12的正常通光。
可以理解的是,为了避免影响到光学镜组1的正常通光,在实现支撑功能的同时,第二支撑件52和第三支撑件53可以围设在光学镜组1的周向外侧。此时,第二支撑件52和第三支撑件53可以为环状或者筒状等具有中部具有避空区域的结构。
其中,摄像头模组100在进行整体组装时,可以将第二镜片12设置在第三支撑件53上,再实现第二支撑件52和第三支撑件53在电路板3上的组装。这样利用不同的支撑架,分别对第二镜片12和光学镜组1中的其它第一镜片11进行支撑和定位,第二镜片12和光学镜组1中的其它第一镜片11之间的装配关系较为独立,不会产生较大的累计误差,且第二镜片12仍能正常参与光学成像。
此时,由于第一支撑件51通过第一驱动马达4而安装于第二支撑件52上,因此第一支撑件51中所固定的第一镜片11,可以沿光轴方向沿靠近影像传感器2的方向或者远离影像传感器2的方向移动,以实现摄像头模组100的变焦或者是对焦操作。
具体的,图8a是本申请实施例提供的摄像头模组在变焦时光学镜组的第一种位置示意图。图8b是本申请实施例提供的摄像头模组在变焦时光学镜组的第二种位置示意图。如图8a和图8b所示,第一驱动马达4可以带动第一支撑件51沿靠近影像传感器2或者是远离影像传感器2的方向(即图中箭头方向)移动,以放大或缩小所要变焦的景物。
此时,整个光学镜组1中,位于第一支撑件51内的第一镜片11,即第二镜片12的物侧的镜片会沿光轴相对第二镜片12移动,而第二镜片12本身相对于影像传感器2则保持静止状态。
此外,第二镜片12也可以采用其它本领域技术人员常用的设置方式,此处不加以限制。
为了保证光学镜组1的正常成像,第二镜片12可以具有一定的尺寸范围或者是位置范围。以下对于第二镜片12的可能的尺寸和位置范围进行说明:
在一些实施例中,当第二镜片12的第一表面F1和第二表面F2中的一者为非球面,另一者为平面时,可以定义第二镜片12的最大厚度为dlmax,第二镜片12最小厚度为dlmin。而第二镜片12的最大厚度和最小厚度的比值可以具有一个范围:1≤|dlmax/dlmin|≤5。
可选的,第二镜片12的第一表面F1或第二表面F2为非球面时,非球面可以具有多种不同的类型和形状。非球面的具体形状,即非曲面面型可以通过非球面公式获得。在其中一些实施例中,非球面可以具有偶次非球面的面型;而在其它一些实施例中,非球面可以具有扩展非球面的面型。
示例性的,偶次非球面的面型可利用但不限于以下非球面公式(1)进行限定:
Figure PCTCN2020131229-appb-000001
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A 2,A 3,A 4,A 5,A 6,A 7,A 8均为非球面系数。
而扩展非球面的面型可利用但不限于以下非球面公式(2)进行限定:
Figure PCTCN2020131229-appb-000002
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A 2,A 3,A 4,A 5,A 6为非球面系数。
这样通过不同的非球面公式,即可对非球面的面型进行限定和求取,通过设置不同的参数,而得到对应的非球面形状。
需要说明的是,在光学镜组1中,除了第二镜片12所具有的透镜面之外,第一镜片11中的透镜面为非球面时,也可以根据上述非球面公式(1)和(2)进行限定,从而得到非球面的具体形状。
在一些实施例中,第二镜片12的中心厚度与光学镜组1的总高(Total Track Length,TTL)的比值也可以具有一个范围。具体的,可以定义第二镜片12的中心厚度为dl,第二镜片12的中心厚度与光学镜组1的总高的比值范围为:0.01≤|dl/TTL|≤1.2。
在一些实施例中,第二镜片12的焦距可以定义为fl,该焦距fl与光学镜组1的焦距f的比值范围可以为:1≤|fl/f|≤1000。
相较于第一镜片11,第二镜片12可以和影像传感器2之间具有更小的距离。在其中一些实施例中,第二镜片11和感光阵列21所在的面,也就是像面之间可以存在一间距dR,该间距dR与光学镜组1处于无穷远物距时的后焦长度(Back Focal Length,BFL)之间的比值范围可以为:0≤|dR/BFL|≤0.9。其中,光学镜组1的后焦长度指光学镜组1中靠近像侧的最后一个光学表面(即第二镜片12的第二表面F2)的中心至像侧焦点的距离。
为了让第二镜片12实现同时阻隔红外线以及参与光学成像的功能,第二镜片12可以由不同部分和结构组合而成,示例性的,第二镜片12可以为封装镜片(lens on package,LOP)。具体的,第二镜片12可以为不同功能层依次层叠形成的层叠结构,并利用不同功能层分别实现阻绝红外线或者是光学成像等不同功能。
图9是本申请实施例提供的一种第二镜片的结构示意图。图10是图9中的第二镜片的正面示意图。如图9和图10所示,作为其中一种可选的实施方式,第二镜片12中可以包括有能够阻隔红外线,但仍让可见光透过的滤光部121,滤光部121会覆盖第二镜片12在垂直于光轴方向的所有区域,从而将通过第二镜片12各区域的红外线均阻隔在外。
其中,滤光部121可以利用多种不同的方式实现红外线的阻绝效果。例如是在滤光部121的表层镀覆一层红外截止膜层,或者是利用能够阻绝红外线的材料而形成整个滤光部121等。滤光部121具体可以采用吸收型截止滤光方式、反射型截止滤光方式,或者是吸收型截止滤光方式和反射型截止滤光方式结合的方式实现红外线的阻绝和滤除。以滤光部121采用吸收型截止滤光方式为例,滤光部121的内部包含有铜离子,铜离子能够滤除位于红外线波段的光线,从而完成对红外线的阻绝效果。此外,滤光部121还可以采用红外线吸收色素,红外线反射膜或者是其它本领域技术人员常用的红外滤光方式和材料,此处不再赘述。
而为了让第二镜片12参与镜头组件的光学成像,第二镜片12中还包括有透镜部122,透镜部122和滤光部121沿光轴方向贴合设置,且透镜部122会位于第二镜片12的物侧或像侧的至少一侧。此时,透镜部122会构成第二镜片12的至少一侧表面,也就是说, 第二镜片12的第一表面F1和第二表面F2中的至少一个会位于透镜部122上。
具体的,第二镜片12的第一表面F1或者是第二表面F2可以具有负光焦度,从而令透过第一表面F1或第二表面F2的光线呈发散状态;或者是第一表面F1或者是第二表面F2可以具有正光焦度,从而令透过第一表面F1或第二表面F2的光线呈汇聚状态。
为了实现对红外线的阻绝效果,滤光部121需要镀覆红外截止膜层或者是利用能够阻绝红外线的材料而形成,而为了便于镀膜或者成型,滤光部121需要具有较为平整的表面。因此,第二镜片12中,滤光部121整体会形成厚度较为均匀,且具有平整表面的层状结构,而用于参与光学镜组1成像的主要为第二镜片12中的透镜部122。
为了让滤光部121的结构不干涉到透镜部122的正常成像,滤光部121在第二镜片12的径向上的覆盖范围可以大于透镜部122的覆盖范围,以避免通过滤光部121的光线在透镜部122的边缘发生折射,而干扰光学镜组1的正常成像。
可以理解的是,如图10所示,在一些实施例中,第二镜片12的透镜部122的正面形状可以呈圆形,以使第二镜片12实现正常的光学成像;而滤光部121可以具有呈方形的正面形状,以便于加工制造,以及和其它部件实现定位。其中,滤光部121的边缘会位于透镜部122在第二镜片12的径向的覆盖范围之外。
图11a是本申请实施例提供的第二镜片的第一种截面结构示意图。如图11a所示,在一种可选的镜片结构中,第二镜片12的透镜部122会位于滤光部121的物侧,而滤光部121则位于第二镜片12的像侧。此时,第二镜片12的第一表面F1为非球面,而第二镜片12的第二表面F2为与光轴垂直的平面。
这样,第二镜片12的第一表面F1和第二表面F2之间会呈一定的凹凸形状,从而对照射至第二镜片12的光线具有发散或汇聚效果,从而可以让第二镜片12参与成像,并矫正镜头组件在成像时的像差。而第二镜片12中的滤光部121,仍可以保持对红外线的滤除效果,避免影像传感器探测到红外线而影响成像。
图11b是本申请实施例提供的第二镜片的第二种截面结构示意图。如图11b所示,在另一种可选的镜片结构中,第二镜片12的透镜部122会位于滤光部121的像侧,而滤光部121位于第二镜片12的物侧。此时,第二镜片12的第一表面F1为与光轴垂直的平面,而第二镜片12的第二表面F2为非球面。这时,第二镜片12的成像方式和前述第一种镜片结构类似,此处不再赘述。
图11c是本申请实施例提供的第二镜片的第三种截面结构示意图。如图11c所示,在又一种可选的镜片结构中,第二镜片12的透镜部122具有两个,且分别位于滤光部121的沿光轴方向的两侧。这样透镜部122在第二镜片12物侧和第二镜片12的像侧方向上均具有透镜部122,因而会被夹设在两个透镜部122之间。此时,第二镜片12的第一表面F1和第二表面F2均为非球面。
具体的,本实施例中,为便于叙述,均以第二镜片12为透镜部122位于第二镜片12的物侧,而滤光部121位于第二镜片12的像侧的结构进行说明。
为了让第二镜片12具有较好的光学品质,透镜部122可以采用和镜头组件中的其它镜片相同或光学性质相近的材料制成。其中,作为一种可选的方式,透镜部122可以由透明的塑胶材质制成。这样透镜部122可以在具有较高的透光率的同时,具有较轻的质量,便于减小镜头组件的整体重量。
可以理解的是,构成第二镜片12各部分的可以为玻璃、塑胶等本领域技术人员常用的光学镜片材料,并可以根据实际的光学设计和需求来选择,此处并不加以限制。
在一些可选的实施例中,构成透镜部122的材料的折射率nl范围可以为:1≤nl≤1.7。而在另一些可选的实施例中,构成透镜部122的材料的阿贝系数vl的范围可以为:15≤vl≤60。
在形成第二镜片12时,第二镜片12可以采用多种不同方法制成,以下对第二镜片12的形成方法进行介绍。
在一种可选的制造方式中,可以采用模压的方式形成第二镜片12。由于第二镜片12中包括有滤光部121和透镜部122等不同组成部分,且滤光部121和透镜部122沿第二镜片12的光轴方向层叠设置。此时,即可先制成滤光部121,并在滤光部121的表面采用模压方式让透镜材料在滤光部121的表面模压成型。
具体的,在利用模压方式来形成第二镜片12时,其制作工序大致可以包括涂布—固化—离型等几个步骤,以下对于这几个步骤进行详细介绍:
在模压和固化之前,首先需要进行涂布步骤。图12a是本申请实施例提供的第二镜片的制造工序中涂布步骤的示意图。如图12a所示,用于进行模压的模具80包括上模具81和下模具82,在涂布步骤中,可以将滤光部121设置在下模具82的模腔中,并将用于构成透镜部122的透镜材料122a设置在滤光部121的表面。
其中,滤光部121的主体可以采用玻璃等材质形成,并在形成滤光部121的过程中,通过内掺铜离子等材料,或者是在滤光部121的表面镀红外反射膜的方式形成滤光部121。而透镜材料122a则可以为透明塑胶或者是透明树脂等材料。滤光部121的熔点会高于透镜材料122a的熔点,在对透镜材料122a的模压过程中,滤光部121不会发生熔融或者是变形。
图12b是本申请实施例提供的第二镜片的制造工序中固化步骤的示意图。如图12b所示,在将透镜材料122a设置在滤光部121表面,从而完成图12a的涂布步骤后,即可让上模具81和下模具82进行合模,从而使模具80的模腔内部的透镜材料122a模压成型,让其形成透镜部122的形状轮廓,并使透镜部122固化成型。固化步骤中的具体固化方式可以根据构成透镜部122的具体材料的不同而相应设置,例如构成透镜部122的透镜材料122a具有加热硬化的特性时,可以通过热固化的方式来使透镜部122凝固成型;而当构成透镜部122的透镜材料122a为光敏材料时,可以采用光固化手段来使透镜部122固化成型。
图12c是本申请实施例提供的第二镜片的制造工序中离型步骤的示意图。如图12c所示,透镜部122固化完成后,即可让模具80与第二镜片12脱离,从而完成第二镜片12的离型步骤。此时,第二镜片12中的滤光部121和透镜部122在模压工序中紧密贴附并结合在一起,从而形成了一体化的镜片。
这样通过模压的方式形成第二镜片12,不需要额外的固定结构,即可让滤光部121和透镜部122之间较好的结合在一起,形成的第二镜片12结构较为简单。
需要说明的是,在制作第二镜片12时,为了提高生产效率,可以利用同一片滤光部121同时批量制作多个第二镜片12。图13是本申请实施例提供的批量制作第二镜片的工序示意图。如图13所示,在滤光部121的表面可以同时设置多处透镜材料,并利用模具同时对这多处透镜材料进行模压,从而在同一片滤光部121上形成多个透镜部122;然后 通过切割,制成多个独立的第二镜片12。此时,为了便于切割,所形成的透镜部122在滤光部121所在的平面方向上呈阵列排布,相应的,透镜部122之间的切割线L也会呈纵横交错的形状。
本实施例中,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。这样摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,所以镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,也具有较高的光学拍摄性能。
可选的,本申请的摄像头模组中,第二镜片12也可以具有和前述实施例不同的设置方式。图14是本申请实施例提供的另一种摄像头模组的结构示意图。图15是图14的摄像头模组中第二镜片的定位方式示意图。如图14和图15所示,本实施例中,摄像头模组300具有和前述实施方式相似的整体结构、功能和工作原理,此处不再赘述;而本实施例中,与前述实施方式不同之处在于,第二镜片12也可以不直接固定在第三支撑件53上,而是通过第二驱动马达7和第三支撑件53间接连接。
此时,除了第一驱动马达4外,摄像头模组300中还包括有第二驱动马达7,第二驱动马达7用于驱动第二镜片12沿光轴方向前后移动,以和光学镜组1中的其它第一镜片11共同实现摄像头模组300的对焦或者变焦操作。
具体的,第二驱动马达7具有可动部分和固定部分,第二镜片12设置在第二驱动马达7的可动部分上,而第二驱动马达7的固定部分则固定于第三支撑件53。在执行对焦或变焦操作时,第二镜片12可以在第二驱动马达7的驱动下,相对于第三支撑件53移动。其中,第二驱动马达7可以具有和第一驱动马达4相似的结构和类型。示例性的,第一驱动马达4和第二驱动马达7都可以为音圈马达。
可以理解的是,第一驱动马达4和第二驱动马达7均可以带动镜片沿光轴移动,因此第二镜片12和光学镜组1中的其它第一镜片11,均可以相对于影像传感器2移动,从而实现更强的对焦或者变焦能力。此外,可选的,第一驱动马达4和第二驱动马达7的至少一者可以带动镜片在其它方向上移动(例如X轴和/或Y轴),以实现光学防抖功能。
本实施例中,第二镜片和第一镜片均通过驱动马达连接在摄像头模组中,因此第一镜片和第二镜片均可独立驱动,从而实现较强的变焦或者对焦性能。
可选的,除了设置在专门的支撑结构上外,第二镜片12还可以通过其它方式设置或者设置在其它位置,例如是直接设置于影像传感器2上。图16是本申请实施例提供的又一种摄像头模组的结构示意图。图17是图16的摄像头模组中第二镜片的定位方式示意图。如图16和图17所示,摄像头模组400具有和前述实施方式相似的整体结构、功能和工作原理,此处不再赘述;本实施例的摄像头模组400和前述实施方式不同之处在于,支撑组件5中的支撑架依旧包括第二支撑件和第三支撑件53,第二支撑件52安装于第三支撑件 53上,且第二支撑件52位于第三支撑件53的背离影像传感器2的一侧,而第二镜片12则不再利用额外的支撑结构制成,而是直接设置在影像传感器2上。
此时,和前一种方式类似,第二支撑件52和第三支撑件53相互连接,第一支撑件51连接至第二支撑件52,而光学镜组1中除第二镜片12外的其它第一镜片11收容在第一支撑件51内部。而第二镜片12不再依靠支撑组件5进行固定,而是直接设置在影像传感器2之上。具体的,第二镜片12可以贴附在影像传感器2的感光阵列21上。
这样将第二镜片12直接设置在影像传感器2上的方式,光学镜组1的后焦长度可以缩短,从而让整个摄像头模组400在光轴方向上的高度得以降低,使得摄像头模组的尺寸更加紧凑。
作为一种可选的结构形式,该定位方式中,第二支撑件52也可以和第三支撑件53为一体式结构,这样支撑组件5的结构更加简单,制作成本较低。
本实施例中,摄像头模组的第二镜片直接设置在影像传感器上,摄像头模组的在光轴方向上的高度较小,尺寸较为紧凑。
可选的,参见图18,图18是本申请实施例提供的摄像头模组中另一种光学镜组的结构示意图。如图18所示,在光学镜组101中,沿光轴方向依次间隔设置有8片镜片,其中,靠近物侧的7片第一镜片11均利用同一支撑件(图中未示出)进行固定,而靠近像侧的镜片为第二镜片12a。
具体的,该光学镜组101中,由物侧至像侧的方向依次为第一透镜S11、第二透镜S12、第三透镜S13、第四透镜S14、第五透镜S15、第六透镜S16、第七透镜S17和第二镜片12a。第二镜片12a的像侧为影像传感器2的感光阵列21所形成的的感光面。此时,各镜片所组成的光学镜组101中,第二镜片12a的第一表面为非球面,而第二表面为平面。摄像头模组在对焦时,第二镜片12a相对于影像传感器2的位置不动,而其它镜片相对于第二镜片12a和影像传感器2移动而实现变焦和对焦。
上述各个镜片均具有各自不同的成像焦距和镜片形状,以下分别进行详细介绍。
第一透镜S11具有正光焦度,且第一透镜S11的焦距f1与光学镜组101的总焦距,也就是镜头焦距f的比值:|f1/f|=0.927;
第二透镜S12具有负光焦度,第二透镜S12的焦距f2与镜头焦距f的比值:|f2/f|=2.258;
第三透镜S13具有负光焦度,第三透镜S13的焦距f3与镜头焦距f的比值:|f3/f|=4.031;
第四透镜S14具有正光焦度,第四透镜S14的焦距f4与镜头焦距f的比值:|f4/f|=1.806;
第五透镜S15具有负光焦度,第五透镜S15的焦距f5与镜头焦距f的比值:|f5/f|=14.133;
第六透镜S16具有正光焦度,第六透镜S16的焦距f6与镜头焦距f的比值:|f6/f|=1.246;
第七透镜S17具有负光焦度,第七透镜S17的焦距f7与镜头焦距f的比值:|f7/f|=0.786;
第二镜片12a具有负光焦度,第二镜片12a的焦距fl与镜头焦距f的比值:|fl/f|=5.933。
上述各镜片所组成的光学镜组101,其第二镜片12a和影像传感器2之间的距离dR和无穷远物距时,该光学镜组的后焦长度BFL之间的比值,即|dR/BFL|=0.642。
该光学镜组中,第二镜片12a的中心厚度dl与光学镜组101的总高TTL之间的比值,即|dl/TTL|=0.022。
而第二镜片12a的最大厚度dlmax与第二镜片12a的最小厚度dlmin之间对比值|dlmax/dlmin|=1.941。
光学镜组101的总高和有效焦距(effective focal length,EFL)之间的比值(TTL/EFL)为1.204。
光学镜组101的像高(Image Height,IH)与有效焦距EFL之间的比值(IH/EFL)为0.851。
表1至表4中示出了具有上述结构的光学镜组101的数据。其中,具有上述结构的光学镜组101,其光学参数如表1所示。
表1光学镜组101的主要光学参数
焦距F 5.641mm
F值(焦距/入瞳直径) 1.71
成像高度IH 4.8mm
半视场角(Field of View,FOV) 37.8°
后焦长度BFL 1.077mm
总高TTL 6.794mm
设计波长 650nm,610nm,555nm,510nm,470nm
而物距为无穷远时,光学镜组101中各镜片的光学参数如表2所示。表2中的面编号为图18所示的各镜片的面编号。
表2光学镜组101中各镜片的光学参数
Figure PCTCN2020131229-appb-000003
需要说明的是,表2中,镜片厚度具体包括两个厚度参数,即镜片自身的光心部位的厚度,以及镜片中心与朝向像侧的下一镜片中心之间的间隔厚度。如图18所示,光学镜 组101中的透镜的光心均位于光轴L-L’上。以第一透镜S11为例,其具有表面R1和表面R2,而该第一透镜S11的光心部位的厚度(表面R1的光心o1与表面R2的光心o2之间的间距)为d1,该第一透镜S11的表面R2的光心o2,和第二透镜S12的表面R3的光心o3之间的间距为a1。以此类推,d2表示第二透镜S12的光心部位的厚度,a2表示第二透镜S12的表面R4的光心o4和表面R5的光心o5之间的间隔厚度,而镜片厚度d3-d9,以及镜片厚度a3-a9的定义均与前述d1和a1的定义类似,此处不再赘述。以下如无特殊说明,均以镜片厚度包括以上厚度参数为例进行说明。
上表的光学镜组101中,光阑位于第一面顶点之后0.580mm。
可以理解的是,光学镜组101中,第二镜片12a的第一表面即为镜片表面序号为R15的面,而第二表面即为镜片表面序号为R17的面。
示例性的,光学镜组101中,镜片表面序号为R1-R15的面均为透镜面,这些透镜面可以利用自身的曲面形状对入射光线进行汇聚或发散,从而实现成像。其中,镜片表面序号为R1-R15的透镜面均参与光学镜组101的成像。
可选的,该光学镜组中,透镜面可以为非球面。非球面的具体形状,即非曲面面型可以通过前述实施例的非球面公式(1)和(2)而获得。镜片的像侧面或者是物侧面可以是非球面,非球面的具体形状,即非曲面面型可以通过非球面公式而获得。其中,非球面可以具有多种类型,可以根据用于求取非球面面型的公式特征对非球面的类型进行划分。在其中一些实施例中,非球面可以具有偶次非球面的面型;而在其它一些实施例中,非球面可以具有扩展非球面的面型。
示例性的,偶次非球面的面型可利用但不限于以下非球面公式(1)进行限定:
Figure PCTCN2020131229-appb-000004
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A 2,A 3,A 4,A 5,A 6,A 7,A 8均为非球面系数。
而扩展非球面的面型可利用但不限于以下非球面公式(2)进行限定:
Figure PCTCN2020131229-appb-000005
其中,z为非球面的矢高,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数,A 2,A 3,A 4,A 5,A 6为非球面系数。
非球面公式中的各镜片的非球面系数如表3所示:
表3光学镜组101中各镜片的非球面系数
Figure PCTCN2020131229-appb-000006
Figure PCTCN2020131229-appb-000007
因此,根据上述表3以及非球面的面型公式,即可获得上述镜片中各非球面的实际面型。
此外,上述光学镜组中,物距为无穷远时和80mm时,所对应的组元间隔W(光学镜组101中最靠近像侧的镜片表面的光心o6与影像传感器2的感光阵列21之间的距离)如表4所示。
表4光学镜组101的组元间隔
物距 80mm
组元间隔 0.268mm 0.663mm
图19a是图18所示的光学镜组在无穷远物距下的轴向色差曲线图。图19b是图18所示的光学镜组在80mm物距时的轴向色差曲线图。图19a和图19b具体示出了光学镜组101在不同波长的光汇聚时的差异。其中,图19a和图19b中的纵坐标代表孔径尺寸,而横坐标代表不同波长的光聚焦深度位置的仿真结果。图19a和图19b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图19a和图19b可知,光学镜组101的轴向色差控制在一个较小的范围内。
图20a是图18所示的光学镜组在无穷远物距下的横向色差曲线图。图20b是图18所示的光学镜组在80mm物距时的横向色差曲线图。图19a和图19b具体示出了不同波长光下坐标位置。其中,图20a和图20b中的纵坐标表示像高,而横坐标表示不同波长光的XY坐标位置。图20a和图20b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图20a和图20b可知,光学镜组的横向色差位于衍射范围之内。
图21a是图18所示的光学镜组在无穷远物距下的光学畸变曲线图一。图21b是图18所示的光学镜组在无穷远物距下的光学畸变曲线图二。图21c是图18所示的光学镜组在80mm物距时的光学畸变曲线图一。图21d是图18所示的光学镜组在80mm物距时的光学畸变曲线图二。在图21a至图21d中,横坐标表示成像变形与理想成像之间的差异,纵坐标表示像高。具体的,在图21a和图21c中,横坐标的计量单位为毫米,而在图21b和图21d中,横坐标的计量单位为百分比。由图21a至图21d可知,光学镜组中成像的畸变控制在肉眼识别范围内(2%以下即肉眼无法辨识)。
由此可见,本实施例中的光学镜组中,包括7个第一镜片和1个第二镜片,并通过各 镜片对光线的汇聚或者是发散而实现光学成像,同时矫正成像的像差,在光学镜组中各镜片的共同作用下,光学镜组对成像的像差具有较好的控制能力,具有较好的光学成像品质。
本实施例中,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。这样摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,也具有较高的光学拍摄性能。
可选的,参见图22,图22是本申请实施例提供的又一种光学镜组的结构示意图。如图22所示,在光学镜组102中,沿光轴方向依次间隔设置有7片镜片,其中,靠近物侧的6片第一镜片11均利用镜筒进行固定,而靠近像侧的镜片为第二镜片12b。
具体的,该光学镜组102中,由物侧至像侧的方向依次为第一透镜S21、第二透镜S22、第三透镜S23、第四透镜S24、第五透镜S25、第六透镜S26和第二镜片12b。第二镜片12b的像侧为影像传感器2的感光阵列21所形成的的感光面。此时,各镜片所组成的光学镜组中,第二镜片12b的第一表面为非球面,而第二表面为平面。此时,摄像头模组在对焦时,第二镜片12b相对于影像传感器2的位置不动,而其它镜片相对于第二镜片12b和影像传感器2移动而实现变焦和对焦。
上述各个镜片均具有各自不同的成像焦距和镜片形状。以下分别进行详细介绍:
第一透镜S21具有正光焦度,且第一透镜S21的焦距f1与镜头焦距f的比值:|f1/f|=0.909;
第二透镜S22具有负光焦度,第二透镜S22的焦距f2与镜头焦距f的比值:|f2/f|=2.538;
第三透镜S23具有正光焦度,第三透镜S23的焦距f3与镜头焦距f的比值:|f3/f|=4.190;
第四透镜S24具有负光焦度,第四透镜S24的焦距f4与镜头焦距f的比值:|f4/f|=4.931;
第五透镜S25具有正光焦度,第五透镜S25的焦距f5与镜头焦距f的比值:|f5/f|=0.669;
第六透镜S26具有负光焦度,第六透镜S26的焦距f6与镜头焦距f的比值:|f6/f|=0.53;
第二镜片12b具有负光焦度,第二镜片12b的焦距fl与镜头焦距f的比值:|fl/f|=7.77。
上述各镜片所组成的光学镜组102,其第二镜片12b和影像传感器2之间的距离dR和无穷远物距时,该光学镜组的后焦长度BFL之间的比值,即|dR/BFL|=0.356。
该光学镜组中,第二镜片12b的中心厚度dl与光学镜组的总长度TTL之间的比值,即|dl/TTL|=0.033;第二镜片12b的最大厚度dlmax与第二镜片12b的最小厚度dlmin之间对比值|dlmax/dlmin|=2.067;光学镜组102的总高和有效焦距之间的比值(TTL/EFL)为1.229;光学镜组的像高与有效焦距之间的比值(IH/EFL)为0.879。
表5至表8中示出了具有上述结构的光学镜组102的数据。其中,具有上述结构的光学镜组102,其光学参数如表5所示。
表5光学镜组102的主要光学参数
焦距F 3.683mm
F值(焦距/入瞳直径) 1.853
成像高度IH 3.238mm
半视场角(Field of View,FOV) 40.5°
后焦长度BFL 0.921mm
总高TTL 4.528mm
设计波长 650nm,610nm,555nm,510nm,470nm
而物距为无穷远时,光学镜组102中各镜片的光学参数如表6所示。表6中的面编号为图22所示的各镜片的面编号。
表6光学镜组102中各镜片的光学参数
Figure PCTCN2020131229-appb-000008
表6中关于镜片厚度的定义和前述光学镜组101类似,具体的,光学镜组102中的透镜的光心均位于同一光轴上,第一透镜S21具有表面R1和表面R2。该第一透镜S21的光心部位的厚度为d1;该第一透镜S21的表面R2的光心和第二透镜S22的表面R3的光心之间的间距为a1。相似的,d2-d9,以及a2-a9的定义均与d1和a1的定义类似,具体可以参照前述光学镜组101中的描述,此处不再赘述。
上表的光学镜组102中,光阑位于第一面顶点之后0.419mm。
可以理解的是,光学镜组102中,第二镜片12b的第一表面即为镜片表面序号为R13的面,而第二表面即为镜片表面序号为R15的面。
示例性的,光学镜组102中,镜片表面序号为R1至镜片表面序号为R13的面均为透镜面,这些透镜面可以利用自身的曲面形状对入射光线进行汇聚或发散,从而实现成像。其中,镜片表面序号为R1-R15的透镜面均参与光学镜组102的成像。
该光学镜组中,镜片的透镜面可以是非球面,非球面的具体形状,即非曲面面型可以通过前述实施例的非球面公式(1)和(2)而获得。
非球面公式中的各镜片的非球面系数如表7所示:
表7光学镜组102中各镜片的非球面系数
Figure PCTCN2020131229-appb-000009
因此,根据上述表7以及非球面的面型公式,即可获得上述镜片中各非球面的实际面型。
此外,上述光学镜组102中,物距为无穷远时和80mm时,所对应的组元间隔(光学镜组中最靠近像侧的镜片表面的光心与影像传感器2的感光阵列21之间的距离,和光学镜组101类似)如表8所示。
表8光学镜组102的组元间隔
物距 80mm
组元间隔 0.234mm 0.401mm
图23a是图22所示的光学镜组在无穷远物距下的轴向色差曲线图。图23b是图22所示的光学镜组在80mm物距时的轴向色差曲线图。图23a和图23b具体示出了光学镜组102在不同波长的光下汇聚的差异。其中,图23a和图23b中的纵坐标代表孔径尺寸,而横坐标代表不同波长的光的聚焦深度位置的仿真结果。图23a和图23b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图23a和图23b可知,光学镜组102的轴向像差控制在一个较小的范围内。
图24a是图22所示的光学镜组在无穷远物距下的横向色差曲线图。图24b是图22所示的光学镜组在80mm物距时的横向色差曲线图。图24a和图24b具体示出了不同波长光下坐标位置。其中,图24a和图24b中的纵坐标表示像高,而横坐标表示不同波长光的XY坐标位置。图24a和图24b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图24a和图24b可知,光学镜组102的横向色差位于衍射范围之内。
图25a是图22所示的光学镜组在无穷远物距下的光学畸变曲线图一。图25b是图22所示的光学镜组在无穷远物距下的光学畸变曲线图二。图25c是图22所示的光学镜组在 80mm物距时的光学畸变曲线图一。图25d是图22所示的光学镜组在80mm物距时的光学畸变曲线图二。在图25a至图25d中,横坐标表示成像变形与理想成像之间的差异,纵坐标表示像高。具体的,在图25a和图25c中,横坐标的计量单位为毫米,而在图25b和图25d中,横坐标的计量单位为百分比。由图25a至图25d可知,光学镜组中成像的畸变控制在肉眼识别范围内(2%以下即肉眼无法辨识)。
本实施例的光学镜组中包括6个第一镜片和1个第二镜片,并通过各镜片对光线的汇聚或者是发散而实现光学成像,同时矫正成像的像差,在光学镜组中各镜片的共同作用下,光学镜组光学镜组对成像的像差具有较好的控制能力,具有较好的光学成像品质。
本实施例中,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。这样摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,具有较高的光学拍摄性能。
可选的,参见图26,图26是本申请实施例提供的摄像头模组中第三种光学镜组的结构示意图。如图26所示,在光学镜组103中,沿光轴方向依次间隔设置有7片镜片,其中,靠近物侧的6片第一镜片11均利用镜筒进行固定,而靠近像侧的镜片为第二镜片12c。
具体的,该光学镜组103中,由物侧至像侧的方向依次为第一透镜S31、第二透镜S32、第三透镜S33、第四透镜S34、第五透镜S35、第六透镜S36和第二镜片12c。第二镜片12c的像侧为影像传感器2的的感光阵列21所形成的的感光面。此时,各镜片所组成的光学镜组中,第二镜片12c的第一表面为非球面,而第二表面为平面。此时,摄像头模组在对焦时,第二镜片12c相对于影像传感器2的位置不动,而其它镜片相对于第二镜片12c和影像传感器2移动而实现变焦和对焦。
上述各个镜片均具有各自不同的成像焦距和镜片形状,以下分别进行详细介绍。
第一透镜S31具有正光焦度,且第一透镜S31的焦距f1与镜头焦距f的比值:|f1/f|=0.916;
第二透镜S32具有负光焦度,第二透镜S32的焦距f2与镜头焦距f的比值:|f2/f|=2.510;
第三透镜S33具有正光焦度,第三透镜S33的焦距f3与镜头焦距f的比值:|f3/f|=10.366;
第四透镜S34具有负光焦度,第四透镜S34的焦距f4与镜头焦距f的比值:|f4/f|=3.028;
第五透镜S35具有正光焦度,第五透镜S35的焦距f5与镜头焦距f的比值:|f5/f|=0.618;
第六透镜S36具有负光焦度,第六透镜S36的焦距f6与镜头焦距f的比值:|f6/f|=0.59;
第二镜片12c具有负光焦度,第二镜片12c的焦距fl与镜头焦距f的比值:|fl/f|=6.76。
其中,光学镜组103的总焦距为镜头焦距f。
上述各镜片所组成的光学镜组103,其第二镜片12c和影像传感器2之间的距离dR和无穷远物距时,该光学镜组103的后焦长度BFL之间的比值,即|dR/BFL|=0.234。
该光学镜组中,第二镜片12c的中心厚度dl与光学镜组的总高TTL之间的比值,即|dl/TTL|=0.030;第二镜片12c的最大厚度dlmax与第二镜片12c的最小厚度dlmin之间对比值|dlmax/dlmin|=3.154;光学镜组103的总高和有效焦距之间的比值(TTL/EFL)为1.245;光学镜组103的像高与有效焦距之间的比值(IH/EFL)为0.802。
表9至表12中示出了具有上述结构的光学镜组103的数据。其中,具有上述结构的光学镜组103,其光学参数如表9所示。
表9光学镜组103的主要光学参数
焦距F 4.035mm
F值 1.705
像高IMH 3.238mm
半视场角FOV 38.4°
后焦长度BFL 1.062mm
总高TTL 5.025mm
设计波长 650nm,610nm,555nm,510nm,470nm
而物距为无穷远时,光学镜组103中各镜片的光学参数如表10所示。表10中的面编号为图26所示的各镜片的面编号。
表10光学镜组103中各镜片的光学参数
Figure PCTCN2020131229-appb-000010
表10中关于镜片厚度的定义和前述光学镜组101类似,具体的,光学镜组103中的透镜的光心均位于同一光轴上,第一透镜S31具有表面R1和表面R2。该第一透镜S31的光心部位的厚度为d1;该第一透镜S31的表面R2的光心,和第二透镜S32的表面R3的光心之间的间距为a1。相似的,d2-d9,以及a2-a9的定义均与d1和a1的定义类似,具体 可以参照前述光学镜组101中的描述,此处不再赘述。
上表的光学镜组103中,光阑位于第一面顶点之后0.585mm。
可以理解的是,光学镜组103中,第二镜片12c的第一表面即为镜片表面序号为R13的面,而第二表面即为镜片表面序号为R15的面。
示例性的,光学镜组103中,镜片表面序号为R1至镜片表面序号为R13的面均为透镜面,这些透镜面可以利用自身的曲面形状对入射光线进行汇聚或发散,从而实现光学镜组103的成像。其中,镜片表面序号为R1-R13的透镜面均参与光学镜组103的成像。
该光学镜组103中,镜片的透镜面可以是非球面,非球面的具体形状,即非曲面面型可以通过前述实施例的非球面公式(1)和(2)而获得。
非球面公式中的各镜片的非球面系数如表11所示:
表11光学镜组103中各镜片的非球面系数
Figure PCTCN2020131229-appb-000011
因此,根据上述表11以及非球面的面型公式,即可获得上述镜片中各非球面的实际面型。
此外,上述光学镜组103中,物距为无穷远时和80mm时,所对应的组元间隔(光学镜组103中最靠近像侧的镜片表面的光心与影像传感器2的感光阵列21之间的距离,和光学镜组101类似)如表12所示。
表12光学镜组103的组元间隔
物距 80mm
组元间隔 0.453mm 0.655mm
图27a是图26所示的光学镜组在无穷远物距下的轴向色差曲线图。图27b是图26所示的光学镜组在80mm物距时的轴向色差曲线图。图27a和图27b具体示出了光学镜组在不同波长下汇聚时的差异。其中,图27a和图27b中的纵坐标代表孔径尺寸,而横坐标代表不同波长下光聚焦深度位置的仿真结果。图27a和图27b中五条曲线分别对应650nm、 610nm、555nm、510nm、470nm波长的颜色光。由图27a和图27b可知,光学镜组的轴向像差控制在一个较小的范围内。
图28a是图26所示的光学镜组在无穷远物距下的横向色差曲线图。图28b是图26所示的光学镜组在80mm物距时的横向色差曲线图。图28a和图28b具体示出了不同波长光下坐标位置。其中,图28a和图28b中的纵坐标表示像高,而横坐标表示不同波长光的XY坐标位置。图28a和图28b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图28a和图28b可知,光学镜组的横向色差位于衍射范围之内。
图29a是图26所示的光学镜组在无穷远物距下的光学畸变曲线图一。图29b是图26所示的光学镜组在无穷远物距下的光学畸变曲线图二。图29c是图26所示的光学镜组在80mm物距时的光学畸变曲线图一。图29d是图26所示的光学镜组在80mm物距时的光学畸变曲线图二。在图29a至图29d中,横坐标表示成像变形与理想成像之间的差异,纵坐标表示像高。具体的,在图29a和图29c中,横坐标的计量单位为毫米,而在图29b和图29d中,横坐标的计量单位为百分比。由图29a至图29d可知,光学镜组中成像的畸变控制在肉眼识别范围内(2%以下即肉眼无法辨识)。
本实施例的光学镜组中包括6个第一镜片和1个第二镜片,并通过各镜片对光线的汇聚或者是发散而实现光学成像,同时矫正成像的像差,在光学镜组中各镜片的共同作用下,光学镜组光学镜组对成像的像差具有较好的控制能力,具有较好的光学成像品质。
本实施例中,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,具有较高的光学拍摄性能。
可选的,参见图30,图30是本申请实施例提供的摄像头模组中第四种光学镜组的结构示意图。如图30所示,在光学镜组104中,沿光轴方向依次间隔设置有8片镜片,其中,靠近物侧的8片第一镜片11均利用镜筒进行固定,而靠近像侧的镜片为第二镜片12d。
具体的,该光学镜组104中,由物侧至像侧的方向依次为第一透镜S41、第二透镜S42、第三透镜S43、第四透镜S44、第五透镜S45、第六透镜S46、第七透镜S47和第二镜片12d。第二镜片12d的像侧为影像传感器2的感光阵列21所形成的的感光面。此时,各镜片所组成的光学镜组中,第二镜片12d的第一表面为非球面,而第二表面为平面。此时,摄像头模组在对焦时,第二镜片12d相对于影像传感器2的位置不动,而其它镜片相对于第二镜片12d和影像传感器2移动而实现变焦和对焦。
上述各个镜片均具有各自不同的成像焦距和镜片形状,以下分别进行详细介绍。
第一透镜S41具有正光焦度,且第一透镜S41的焦距f1与镜头焦距f的比值:|f1/f|=0.772;
第二透镜S42具有负光焦度,第二透镜S42的焦距f2与镜头焦距f的比值:|f2/f|=1.744;
第三透镜S43具有负光焦度,第三透镜S43的焦距f3与镜头焦距f的比值:|f3/f|=91.38;
第四透镜S44具有正光焦度,第四透镜S44的焦距f4与镜头焦距f的比值:|f4/f|=148.33;
第五透镜S45具有负光焦度,第五透镜S45的焦距f5与镜头焦距f的比值:|f5/f|=5.54;
第六透镜S46具有正光焦度,第六透镜S46的焦距f6与镜头焦距f的比值:|f6/f|=1.049;
第七透镜S47具有负光焦度,第七透镜S47的焦距f7与镜头焦距f的比值:|f7/f|=1.012;
第二镜片12d具有负光焦度,第二镜片12d的焦距fl与镜头焦距f的比值:|fl/f|=3.00。
其中,光学镜组104的总焦距为镜头焦距f。
上述各镜片所组成的光学镜组104,其第二镜片12d和影像传感器2之间的距离dR和无穷远物距时,该光学镜组104的后焦长度BFL之间的比值,即|dR/BFL|=0。
该光学镜组中,第二镜片12d的中心厚度dl与光学镜组104的总高TTL之间的比值,即|dl/TTL|=0.022;第二镜片12d的最大厚度dlmax与第二镜片12d的最小厚度dlmin之间对比值|dlmax/dlmin|=3.414;光学镜组104的总高和有效焦距之间的比值(TTL/EFL)为1.116;光学镜组104的像高与有效焦距之间的比值(IH/EFL)为0.788。
表13至表16中示出了具有上述结构的光学镜组104的数据。其中,具有上述结构的光学镜组104,其物距为无穷远时的光学参数如表13所示。
表13光学镜组104的主要光学参数
焦距F 6.062mm
F值 1.838
像高IMH 4.8mm
半视场角FOV 38.2°
后焦长度BFL 1.219mm
总高TTL 6.8mm
设计波长 650nm,610nm,555nm,510nm,470nm
而物距为无穷远时,光学镜组104中各镜片的光学参数如表14所示。表14中的面编号为图30所示的各镜片的面编号。
表14光学镜组104中各镜片的光学参数
Figure PCTCN2020131229-appb-000012
Figure PCTCN2020131229-appb-000013
表14中关于镜片厚度的定义和前述光学镜组101类似,具体的,光学镜组104中的透镜的光心均位于同一光轴上,第一透镜S41具有表面R1和表面R2。该第一透镜S41的光心部位的厚度为d1;该第一透镜S41的表面R2的光心,和第二透镜S42的表面R3的光心之间的间距为a1。相似的,d2-d9,以及a2-a9的定义均与d1和a1的定义类似,具体可以参照前述光学镜组101中的描述,此处不再赘述。
上表的光学镜组104中,光阑位于第一面顶点之后0.580mm。
可以理解的是,光学镜组104中,第二镜片12d的第一表面即为镜片表面序号为R15的面,而第二表面即为镜片表面序号为R17的面。
示例性的,光学镜组104中,镜片表面序号为R1至镜片表面序号为R15的面均为透镜面,这些透镜面可以利用自身的曲面形状对入射光线进行汇聚或发散,从而实现成像。其中,镜片表面序号为R1-R15的透镜面均参与光学镜组104的成像。
该光学镜组104中,镜片的透镜面可以是非球面,非球面的具体形状,即非曲面面型可以通过前述实施例的非球面公式(1)和(2)而获得。
非球面公式中的各镜片的非球面系数如表15所示:
表15光学镜组104中各镜片的非球面系数
Figure PCTCN2020131229-appb-000014
Figure PCTCN2020131229-appb-000015
因此,根据上述表15以及非球面的面型公式,即可获得上述镜片中各非球面的实际面型。
此外,上述光学镜组104中,物距为无穷远时和80mm时,所对应的组元间隔(光学镜组中最靠近像侧的镜片表面的光心与影像传感器2的感光阵列21之间的距离,和光学镜组101类似)如表16所示。
表16光学镜组104的组元间隔
物距 80mm
组元间隔 0.859mm 1.236mm
图31a是图30所示的光学镜组在无穷远物距下的轴向色差曲线图。图31b是图30所示的光学镜组在80mm物距时的轴向色差曲线图。图31a和图31b具体示出了光学镜组在不同波长下汇聚时的差异。其中,图31a和图31b中的纵坐标代表孔径尺寸,而横坐标代表不同波长下光聚焦深度位置的仿真结果。图31a和图31b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图31a和图31b可知,光学镜组的轴向像差控制在一个较小的范围内。
图32a是图30所示的光学镜组在无穷远物距下的横向色差曲线图。图32b是图30所示的光学镜组在80mm物距时的横向色差曲线图。图32a和图32b具体示出了不同波长光下坐标位置。其中,图32a和图32b中的纵坐标表示像高,而横坐标表示不同波长光的XY坐标位置。图32a和图32b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图32a和图32b可知,光学镜组的横向色差位于衍射范围之内。
图33a是图30所示的光学镜组在无穷远物距下的光学畸变曲线图一。图33b是图30所示的光学镜组在无穷远物距下的光学畸变曲线图二。图33c是图30所示的光学镜组在80mm物距时的光学畸变曲线图一。图33d是图30所示的光学镜组在80mm物距时的光学畸变曲线图二。在图33a至图33d中,横坐标表示成像变形与理想成像之间的差异,纵坐标表示像高。具体的,在图33a和图33c中,横坐标的计量单位为毫米,而在图33b和图33d中,横坐标的计量单位为百分比。由图33a至图33d可知,光学镜组中成像的畸变控制在肉眼识别范围内(2%以下即肉眼无法辨识)。
本实施例的光学镜组中包括7个第一镜片和1个第二镜片,并通过各镜片对光线的汇聚或者是发散而实现光学成像,同时矫正成像的像差,在光学镜组中各镜片的共同作用下,光学镜组光学镜组对成像的像差具有较好的控制能力,具有较好的光学成像品质。
本实施例中,摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片 组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,具有较高的光学拍摄性能。
可选的,参见图34,图34是本申请实施例提供的摄像头模组中第五种光学镜组的结构示意图。如图34所示,在光学镜组105中,沿光轴方向依次间隔设置有8片镜片,其中,靠近物侧的8片第一镜片11均利用镜筒进行固定,而靠近像侧的镜片为第二镜片12e。
具体的,该光学镜组中,由物侧至像侧的方向依次为第一透镜S51、第二透镜S52、第三透镜S53、第四透镜S54、第五透镜S55、第六透镜S56、第七透镜S57和第二镜片12e。第二镜片12e的像侧为影像传感器2的感光阵列21所形成的的感光面。此时,各镜片所组成的光学镜组105中,第二镜片12e的第一表面为非球面,而第二表面为平面。此时,摄像头模组在对焦时,第二镜片12e相对于影像传感器2的位置不动,而其它镜片相对于第二镜片12e和影像传感器2移动而实现变焦和对焦。
上述各个镜片均具有各自不同的成像焦距和镜片形状,以下分别进行详细介绍。
第一透镜S51具有正光焦度,且第一透镜S51的焦距f1与镜头焦距f的比值:|f1/f|=0.797;
第二透镜S52具有负光焦度,第二透镜S52的焦距f2与镜头焦距f的比值:|f2/f|=1.838;
第三透镜S53具有正光焦度,第三透镜S53的焦距f3与镜头焦距f的比值:|f3/f|=158.35;
第四透镜S54具有负光焦度,第四透镜S54的焦距f4与镜头焦距f的比值:|f4/f|=316.97;
第五透镜S55具有正光焦度,第五透镜S55的焦距f5与镜头焦距f的比值:|f5/f|=1.436;
第六透镜S56具有正光焦度,第六透镜S56的焦距f6与镜头焦距f的比值:|f6/f|=1.029;
第七透镜S57具有负光焦度,第七透镜S57的焦距f7与镜头焦距f的比值:|f7/f|=0.9317;
第二镜片12e具有负光焦度,第二镜片12e的焦距fl与镜头焦距f的比值:|fl/f|=4.33。
其中,光学镜组105的总焦距为镜头焦距f。
上述各镜片所组成的光学镜组105,其第二镜片12e和影像传感器2之间的距离dR和无穷远物距时,该光学镜组105的后焦长度BFL之间的比值,即|dR/BFL|=0.05。
该光学镜组105中,第二镜片12e的中心厚度dl与光学镜组105的总高TTL之间的比值,即|dl/TTL|=0.02;第二镜片12e的最大厚度dlmax与第二镜片12e的最小厚度dlmin之间对比值|dlmax/dlmin|=3.167;光学镜组105的总高和有效焦距之间的比值(TTL/EFL)为1.129;光学镜组105的像高与有效焦距之间的比值(IH/EFL)为0.793。
表17至表20中示出了具有上述结构的光学镜组的数据。其中,具有上述结构的光学镜组105,其物距为无穷远时的光学参数如表17所示。
表17光学镜组105的主要光学参数
焦距F 6.092mm
F值 1.847
像高IMH 4.8mm
半视场角FOV 38.3°
后焦长度BFL 1.194mm
总高TTL 6.834mm
设计波长 650nm,610nm,555nm,510nm,470nm
而物距为无穷远时,光学镜组105中各镜片的光学参数如表18所示。表18中的面编号为图34所示的各镜片的面编号。
表18光学镜组105中各镜片的光学参数
Figure PCTCN2020131229-appb-000016
表18中关于镜片厚度的定义和前述光学镜组101类似,具体的,光学镜组105中的透镜的光心均位于同一光轴上,第一透镜S51具有表面R1和表面R2。该第一透镜S51的光心部位的厚度为d1;该第一透镜S51的表面R2的光心和第二透镜S52的表面R3的光心之间的间距为a1。相似的,d2-d9,以及a2-a9的定义均与d1和a1的定义类似,具体可以参照前述光学镜组101中的描述,此处不再赘述。
上表的光学镜组105中,光阑位于第一面顶点之后0.580mm。
可以理解的是,光学镜组105中,第二镜片12e的第一表面即为镜片表面序号为R15的面,而第二表面即为镜片表面序号为R17的面。
示例性的,光学镜组105中,镜片表面序号为R1至镜片表面序号为R15的面均为透镜面,这些透镜面可以利用自身的曲面形状对入射光线进行汇聚或发散,从而实现成像。其中,镜片表面序号为R1-R15的透镜面均参与光学镜组105的成像。
该光学镜组105中,镜片的透镜面可以是非球面,非球面的具体形状,即非曲面面型可以通过前述实施例的非球面公式(1)和(2)而获得。
非球面公式中的各镜片的非球面系数如表19所示:
表19光学镜组105中各镜片的非球面系数
Figure PCTCN2020131229-appb-000017
Figure PCTCN2020131229-appb-000018
因此,根据上述表15以及非球面的面型公式,即可获得上述镜片中各非球面的实际面型。
此外,上述光学镜组105中,物距为无穷远时和80mm时,所对应的组元间隔(光学镜组中最靠近像侧的镜片表面的光心与影像传感器2的感光阵列21之间的距离,和光学镜组101类似)如表20所示。
表20光学镜组105的组元间隔
物距 80mm
组元间隔 0.308mm 0.770mm
图35a是图34所示的光学镜组在无穷远物距下的轴向色差曲线图。图35b是图34所示的光学镜组在80mm物距时的轴向色差曲线图。图35a和图35b具体示出了光学镜组在不同波长下汇聚时的差异。其中,图35a和图35b中的纵坐标代表孔径尺寸,而横坐标代表在不同波长下光聚焦深度位置的仿真结果。图35a和图35b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图35a和图35b可知,光学镜组的轴向像差控制在一个较小的范围内。
图36a是图34所示的光学镜组在无穷远物距下的横向色差曲线图。图36b是图34所示的光学镜组在80mm物距时的横向色差曲线图。图36a和图36b具体示出了不同波长光下坐标位置。其中,图36a和图36b中的纵坐标表示像高,而横坐标表示不同波长光的XY坐标位置。图36a和图36b中五条曲线分别对应650nm、610nm、555nm、510nm、470nm波长的颜色光。由图36a和图36b可知,光学镜组的横向色差位于衍射范围之内。
图37a是图34所示的光学镜组在无穷远物距下的光学畸变曲线图一。图37b是图34所示的光学镜组在无穷远物距下的光学畸变曲线图二。图37c是图34所示的光学镜组在80mm物距时的光学畸变曲线图一。图37d是图34所示的光学镜组在80mm物距时的光学畸变曲线图二。在图37a至图37d中,横坐标表示成像变形与理想成像之间的差异,纵坐标表示像高。具体的,在图37a和图37c中,横坐标的计量单位为毫米,而在图37b和图37d中,横坐标的计量单位为百分比。由图37a至图37d可知,光学镜组中成像的畸变控 制在肉眼识别范围内(2%以下即肉眼无法辨识)。
本实施例的光学镜组中包括7个第一镜片和1个第二镜片,并通过各镜片对光线的汇聚或者是发散而实现光学成像,同时矫正成像的像差,在光学镜组中各镜片的共同作用下,光学镜组光学镜组对成像的像差具有较好的控制能力,具有较好的光学成像品质。
摄像头模组包括光学镜组、影像传感器和支撑组件,支撑组件将光学镜组固定在影像传感器的感光侧,支撑组件包括第一支撑件;光学镜组包括第一镜片和第二镜片,第一镜片固定在第一支撑件上,第二镜片位于第一支撑件外,第二镜片会作为光学镜组中的一部分,并参与光学成像;同时,第二镜片也能够阻隔红外线,但仍让可见光透过。这样摄像头模组的第一支撑件不需要安装光学镜组的全部镜片,可以将一部分镜片设置在第一支撑件上,而另一部分镜片利用摄像头模组的其它结构固定。由于单一结构上所固定的镜片数量较少,镜片便于组装,因而能够在摄像头模组中设置较多的镜片数量,相较现有的摄像头模组,其总的镜片数量得以增加,但摄像头模组本身的尺寸并未增大,且镜片组装较为便捷,因而能够让摄像头在保持结构简单、体积紧凑的同时,具有较高的光学拍摄性能。
本申请还提供一种电子设备,包括上述实施例中所述的摄像头模组。具体的,电子设备还可以包括有壳体和处理器等,处理器收容于壳体内,而摄像头模组可以设置在电子设备的壳体内部。电子设备可以通过摄像头模组和处理器等实现拍摄功能。
其中,摄像头模组用于捕获静态图像或视频。物体通过光学镜组生成光学图像投射到影像传感器。影像传感器可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。影像传感器把光信号转换成电信号,之后将电信号传递给图像信号处理器转换成数字图像信号。图像信号处理器将数字图像信号输出到数字信号处理器加工处理。数字信号处理器将数字图像信号转换成所需的图像信号。在一些实施例中,电子设备可以包括1个或N个摄像头模组,N为大于1的正整数。摄像头模组的具体结构、功能和工作原理均已在前述实施例中进行了详细说明,此处不再赘述。其中,本申请的电子设备包括但不限于手机、平板电脑、笔记本电脑、个人数字助理、车载终端、智能家居设备等。

Claims (20)

  1. 一种摄像头模组,其特征在于,包括光学镜组、影像传感器和支撑组件,所述支撑组件将所述光学镜组固定在所述影像传感器的一侧,所述支撑组件包括第一支撑件;所述光学镜组包括第一镜片和第二镜片,所述第一镜片为多个,且所述第一镜片可沿所述摄像头模组的轴向移动以改变所述摄像头模组的焦距,所述第二镜片用于滤除红外光;
    所述第一镜片固定于所述第一支撑件,所述第二镜片设置于所述第一支撑件和所述影像传感器之间,且所述第二镜片具有透镜面,所述透镜面用于参与所述光学镜组的成像。
  2. 根据权利要求1所述的摄像头模组,其特征在于,所述第二镜片具有朝向物侧的第一表面和朝向像侧的第二表面,所述第一表面和所述第二表面中的至少一者为所述透镜面。
  3. 根据权利要求2所述的摄像头模组,其特征在于,所述第一表面和所述第二表面中的至少一者为非球面。
  4. 根据权利要求1-3任一项所述的摄像头模组,其特征在于,所述第二镜片包括有沿所述光学镜组轴向层叠设置的滤光部和透镜部,所述滤光部用于滤除红外光,所述滤光部在垂直于所述光学镜组周向的方向上覆盖所述透镜部;所述透镜部具有所述透镜面。
  5. 根据权利要求4所述的摄像头模组,其特征在于,所述滤光部为层状结构,或/和所述滤光部在所述第二镜片的径向上具有均匀的厚度。
  6. 根据权利要求4或5所述的摄像头模组,其特征在于,所述第二镜片为所述滤光部和所述透镜部经模压而形成的镜片。
  7. 根据权利要求4-6任一项所述的摄像头模组,其特征在于,所述透镜部位于所述滤光部的像侧或者物侧。
  8. 根据权利要求4-6任一项所述的摄像头模组,其特征在于,所述第二镜片包括两个所述透镜部,两个所述透镜部分别位于所述滤光部的像侧和所述滤光部的物侧。
  9. 根据权利要求1-8任一项所述的摄像头模组,其特征在于,所述第一支撑件为镜筒,所述第一镜片设置在所述镜筒的内部。
  10. 根据权利要求9所述的摄像头模组,其特征在于,所述支撑组件还包括沿所述光学镜组的轴向依次设置的第二支撑件和第三支撑件;所述第三支撑件和所述影像传感器相对固定,所述第一支撑件设置在所述第二支撑件上,所述第二镜片设置在所述第三支撑件上。
  11. 根据权利要求10所述的摄像头模组,其特征在于,还包括第一驱动马达,所述第一驱动马达设置在所述第一支撑件和所述第二支撑件之间,用于带动所述第一镜片相对于所述第二支撑件移动。
  12. 根据权利要求1-9任一项所述的摄像头模组,其特征在于,所述第二镜片设置在所述影像传感器上。
  13. 一种电子设备,其特征在于,包括壳体和权利要求1所述的摄像头模组,所述摄像头模组设置在所述壳体的内部。
  14. 根据权利要求13所述的电子设备,其特征在于,所述第二镜片具有朝向物侧的第一表面和朝向像侧的第二表面,所述第一表面和所述第二表面中的至少一者为所述透镜面。
  15. 根据权利要求14所述的电子设备,其特征在于,所述第一表面和所述第二表面中的至少一者为非球面。
  16. 根据权利要求13-15任一项所述的电子设备,其特征在于,所述第二镜片包括有沿所述光学镜组轴向层叠设置的滤光部和透镜部,所述滤光部用于滤除红外光,所述滤光部在垂直于所述光学镜组周向的方向上覆盖所述透镜部;所述透镜部具有所述透镜面。
  17. 根据权利要求16所述的电子设备,其特征在于,所述第二镜片为所述滤光部和所述透镜部经模压而形成的镜片。
  18. 根据权利要求16或17所述的电子设备,其特征在于,所述透镜部位于所述滤光部的像侧或者物侧。
  19. 根据权利要求16或17所述的电子设备,其特征在于,所述第二镜片包括两个所述透镜部,两个所述透镜部分别位于所述滤光部的像侧和所述滤光部的物侧。
  20. 根据权利要求13-19任一项所述的电子设备,其特征在于,所述支撑组件还包括沿所述光学镜组的轴向依次设置的第二支撑件和第三支撑件;所述第三支撑件和所述影像传感器相对固定,所述第一支撑件设置在所述第二支撑件上,所述第二镜片设置在所述第三支撑件上。
PCT/CN2020/131229 2019-12-10 2020-11-24 摄像头模组及电子设备 WO2021115118A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911260006.1 2019-12-10
CN201911260006 2019-12-10
CN202010017734.6A CN112946853A (zh) 2019-12-10 2020-01-08 摄像头模组及电子设备
CN202010017734.6 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021115118A1 true WO2021115118A1 (zh) 2021-06-17

Family

ID=76234434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131229 WO2021115118A1 (zh) 2019-12-10 2020-11-24 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN112946853A (zh)
WO (1) WO2021115118A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250600A1 (en) * 2021-05-26 2022-12-01 Acuvi Ab Control system for optical zoom and focus for miniature camera modules
CN116437183A (zh) * 2021-12-31 2023-07-14 荣耀终端有限公司 摄像模组及电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704949A (zh) * 2021-08-16 2023-02-17 华为技术有限公司 光学镜头、摄像模组及电子设备
CN114167571B (zh) * 2021-12-03 2023-04-28 福建师范大学 快速聚焦中继镜头及快速聚焦装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839512B1 (en) * 2003-07-17 2005-01-04 Tamron Co., Ltd. Camera device having posterior filter
CN102565989A (zh) * 2010-12-10 2012-07-11 佳能企业股份有限公司 光学镜头机构
CN205594216U (zh) * 2016-03-03 2016-09-21 宁波舜宇光电信息有限公司 摄像模组及其镜头
CN107589509A (zh) * 2016-07-07 2018-01-16 格科微电子(上海)有限公司 适用于移动终端的摄像系统的装配方法
CN107995388A (zh) * 2016-10-26 2018-05-04 光宝科技股份有限公司 相机模块及其组装方法
CN109143552A (zh) * 2017-06-16 2019-01-04 宁波舜宇光电信息有限公司 镜头及包含该镜头的摄像模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839512B1 (en) * 2003-07-17 2005-01-04 Tamron Co., Ltd. Camera device having posterior filter
CN102565989A (zh) * 2010-12-10 2012-07-11 佳能企业股份有限公司 光学镜头机构
CN205594216U (zh) * 2016-03-03 2016-09-21 宁波舜宇光电信息有限公司 摄像模组及其镜头
CN107589509A (zh) * 2016-07-07 2018-01-16 格科微电子(上海)有限公司 适用于移动终端的摄像系统的装配方法
CN107995388A (zh) * 2016-10-26 2018-05-04 光宝科技股份有限公司 相机模块及其组装方法
CN109143552A (zh) * 2017-06-16 2019-01-04 宁波舜宇光电信息有限公司 镜头及包含该镜头的摄像模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250600A1 (en) * 2021-05-26 2022-12-01 Acuvi Ab Control system for optical zoom and focus for miniature camera modules
CN116437183A (zh) * 2021-12-31 2023-07-14 荣耀终端有限公司 摄像模组及电子装置

Also Published As

Publication number Publication date
CN112946853A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2021115118A1 (zh) 摄像头模组及电子设备
US10670828B2 (en) Optical image capturing system with thin mounting components
TWI507717B (zh) An optical imaging lens and an electronic device to which the optical imaging lens is applied
US10558009B2 (en) Optical image capturing system and electronic device
TW201437674A (zh) 光學成像鏡頭及應用此鏡頭之電子裝置
CN111025528A (zh) 一种成像系统、摄像模组及移动终端
TW202013043A (zh) 光學成像模組
TW202009543A (zh) 光學成像模組
US11048065B2 (en) Optical image capturing module
US11048066B2 (en) Optical image capturing module
TWI774845B (zh) 光學成像模組
US10642003B2 (en) Optical image capturing module
CN103135204A (zh) 可携式电子装置与其光学成像镜头
TW202009542A (zh) 光學成像模組
TW202009557A (zh) 光學成像模組
KR100930183B1 (ko) 초소형 촬상 광학계
US10859797B2 (en) Optical image capturing module
US10901186B2 (en) Optical image capturing module
US10948692B2 (en) Optical image capturing module
US11048058B2 (en) Optical image capturing module
KR100843466B1 (ko) 초소형 촬상 광학계
KR100965755B1 (ko) 휴대형 디스플레이용 초소형 초광각 광학모듈
CN211826685U (zh) 一种光学镜头组件
CN115704948A (zh) 光学镜头、镜头模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897790

Country of ref document: EP

Kind code of ref document: A1