WO2021114970A1 - 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器 - Google Patents

一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器 Download PDF

Info

Publication number
WO2021114970A1
WO2021114970A1 PCT/CN2020/126817 CN2020126817W WO2021114970A1 WO 2021114970 A1 WO2021114970 A1 WO 2021114970A1 CN 2020126817 W CN2020126817 W CN 2020126817W WO 2021114970 A1 WO2021114970 A1 WO 2021114970A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulk acoustic
upper electrode
connection
film bulk
piezoelectric
Prior art date
Application number
PCT/CN2020/126817
Other languages
English (en)
French (fr)
Inventor
唐兆云
赖志国
杨清华
王家友
唐滨
Original Assignee
苏州汉天下电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汉天下电子有限公司 filed Critical 苏州汉天下电子有限公司
Publication of WO2021114970A1 publication Critical patent/WO2021114970A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02047Treatment of substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Definitions

  • the present invention relates to the field of semiconductor technology, in particular to a thin film bulk acoustic wave resonator structure and a manufacturing method thereof, a filter and a duplexer.
  • the resonator is the core component of the filter, and the performance of the resonator directly determines the performance of the filter.
  • the Film Bulk Acoustic Resonator (FBAR) is due to its small size, low insertion loss, large out-of-band suppression, high quality factor, high operating frequency, large power capacity, and resistance to electrostatic shock. Good ability and other characteristics, have very broad application prospects in modern wireless communication technology.
  • Typical thin film bulk acoustic wave resonators mainly include air gap type bulk acoustic wave resonators, back-etched bulk acoustic wave resonators, and Bragg reflection type bulk acoustic wave resonators.
  • an air gap type bulk acoustic wave resonator is used as an example to describe the manufacturing method of the film bulk acoustic wave resonator. Please refer to FIG. 1(a) to FIG. 1(h).
  • FIG. 1(a) to FIG. 1(h) are schematic cross-sectional views of various stages of manufacturing a thin film bulk acoustic resonator according to the prior art.
  • a substrate 10 is provided; then, as shown in Figure 1(b), a groove 11 is formed on the substrate 10 by etching; then, as shown in Figure 1(c) , A sacrificial material is deposited on the substrate 10, and the sacrificial material is planarized to form a sacrificial layer 12 in the groove 11; then, as shown in FIG. 1(d), a first metal material is deposited on the substrate 10 Layer 13; Next, as shown in FIG. 1(e), the first metal layer 13 is etched to form a lower electrode 13a on the groove 11.
  • the thin film bulk acoustic wave resonator is used to form a filter, and the thin film bulk acoustic resonator usually forms a series/parallel relationship through the connection between the upper electrode and the connection between the lower electrode, so in the manufacture of the thin film body
  • the connection between the film bulk acoustic wave resonators is usually formed at the same time, so as to meet the needs of subsequent manufacturing of filters.
  • the second metal material layer 15 is etched to form an upper electrode 15a above the groove 11, wherein
  • the connection between the upper electrode and other upper electrodes is disconnected by etching, and for the upper electrode that needs to be connected, the upper electrode will not be etched and disconnected .
  • the piezoelectric oscillation stack composed of the lower electrode, the piezoelectric layer and the upper electrode is formed.
  • the manufacturing method of the back-etched bulk acoustic wave resonator is different from the air-gap bulk acoustic resonator in that after the piezoelectric oscillator stack is formed on the substrate, it is etched from the back of the substrate until the lower electrode is exposed to form under the lower electrode. Cavity.
  • the manufacturing method of the Bragg reflective layer type bulk acoustic wave resonator is different from the air gap type bulk acoustic wave resonator in that the Bragg reflective layer is formed on the substrate, and then the piezoelectric oscillator stack is formed on the Bragg reflective layer.
  • the disadvantage of the thin film bulk acoustic resonator obtained based on the above manufacturing method is that the piezoelectric layer between adjacent thin film bulk acoustic resonators is connected, and the piezoelectric layer in this region directly contacts the substrate, so As a result, when the film bulk acoustic wave resonator is working, part of the sound waves in the piezoelectric oscillation stack will propagate into the substrate through the piezoelectric layer, which will cause the sound wave loss of the film bulk acoustic wave resonator, and then cause the performance of the film bulk acoustic wave resonator to decrease.
  • the present invention provides a method for manufacturing a thin film bulk acoustic resonator structure.
  • the manufacturing method includes:
  • connection mode Predetermining the connection mode between the thin film bulk acoustic resonators to be formed, the connection mode including the first connection mode between the lower electrodes and the second connection mode between the upper electrodes;
  • the laminated structure covering the substrate and the sacrificial layer, the laminated structure sequentially including a first metal material layer, a piezoelectric material layer, and a second metal material layer from bottom to top;
  • the laminated structure is etched, a laminated unit is formed above each of the grooves, and the laminated layer corresponding to the thin film bulk acoustic wave resonator to be formed connected by the first connection method
  • a first connecting portion formed to connect with the unit is formed between the units;
  • a first upper electrode is formed on the laminated unit, and a second upper electrode connected to it is formed between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected by the second connection method.
  • the filling structure and the sacrificial layer are removed.
  • the laminated structure is etched, the laminated unit is formed above each of the grooves, and the film to be formed connected by the first connection method
  • the step of forming a first connecting portion connected to the stacked unit corresponding to the bulk acoustic wave resonator includes: spin-coating a photoresist on the stacked structure and patterning the photoresist to form a second A photoresist pattern; etch the part of the laminated structure not covered by the first photoresist pattern until the substrate is exposed, and after the etching is completed, a laminated unit is formed above each of the grooves And forming a first connecting portion connected to the laminated unit corresponding to the thin film bulk acoustic resonator connected in the first connection manner to be formed; removing the first photoresist pattern.
  • the step of filling the area formed by etching the laminated structure to form a filling structure includes: on the structure obtained after removing the first photoresist pattern Depositing a filling material until the area formed by etching the stacked structure is filled; spin-coating a photoresist on the filling material and patterning the photoresist to form a second light over the area Resist pattern; etch the part of the filling material not covered by the second photoresist pattern until the laminated unit is exposed to form a filling structure in the space; remove the second photolithography Glue graphics.
  • the material of the filling structure and the material of the sacrificial layer are the same.
  • a first upper electrode is formed on the laminated unit, and all corresponding to the thin film bulk acoustic resonator to be formed connected by the second connection method are formed.
  • the step of forming a second connecting portion connected to the laminated units includes: forming a third metal material layer covering the laminated unit, the first connecting portion and the filling structure; The material layer is etched, and a first upper electrode is formed on the laminated unit, and between the first upper electrode corresponding to the thin film bulk acoustic resonator to be formed connected by the second connection method A second connecting portion connected to it is formed.
  • the material of the second metal material layer and the third metal material layer are the same, wherein the thickness of the second metal material layer ranges from 100 nm to 500 nm, so The thickness of the third metal material layer ranges from 5 nm to 300 nm.
  • the step of removing the filling structure and the sacrificial layer includes: forming a release channel penetrating the filling structure until the sacrificial layer is exposed, and removing through the release channel The filling structure and the sacrificial layer.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, which includes:
  • a substrate a plurality of piezoelectric oscillation stacks formed on the substrate, a first connection portion, and a second connection portion, wherein the connection mode between the plurality of piezoelectric oscillation stacks includes the first connection mode between the lower electrodes And the second connection mode between the upper electrodes;
  • a first space is formed between each of the piezoelectric oscillation stacks and the substrate;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • the present invention provides a method for manufacturing a thin film bulk acoustic wave resonator structure, which includes:
  • connection mode Predetermining the connection mode between the thin film bulk acoustic resonators to be formed, the connection mode including the first connection mode between the lower electrodes and the second connection mode between the upper electrodes;
  • the laminate structure sequentially including a first metal material layer, a piezoelectric material layer, and a second metal material layer from bottom to top;
  • the laminated structure is etched to form a plurality of laminated units, and the thin-film bulk acoustic wave resonator to be formed connected by the first connection method is formed between the corresponding laminated units.
  • a first upper electrode is formed on the laminated unit, and a second upper electrode connected to it is formed between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected by the second connection method.
  • the filling structure is removed and etching is performed from the back surface of the substrate to form a third space under the laminated unit.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, which includes:
  • a substrate a plurality of piezoelectric oscillation stacks formed on the substrate, a first connection portion, and a second connection portion, wherein the connection mode between the plurality of piezoelectric oscillation stacks includes the first connection mode between the lower electrodes And the second connection mode between the upper electrodes;
  • the substrate is located below each of the piezoelectric oscillation stacks, and a third space is formed through the substrate;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • the present invention also provides a manufacturing method of the thin film bulk acoustic wave resonator structure, the manufacturing method includes:
  • connection mode Predetermining the connection mode between the thin film bulk acoustic resonators to be formed, the connection mode including the first connection mode between the lower electrodes and the second connection mode between the upper electrodes;
  • a Bragg reflective layer on the substrate and forming a laminated structure covering the Bragg reflective layer, the laminated structure sequentially including a first metal material layer, a piezoelectric material layer, and a second metal material layer from bottom to top;
  • the laminated structure is etched to form a plurality of laminated units, and the thin-film bulk acoustic wave resonator to be formed connected by the first connection method is formed between the corresponding laminated units.
  • a first upper electrode is formed on the laminated unit, and a second upper electrode connected to it is formed between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected by the second connection method.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, which includes:
  • connection mode includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • the present invention also provides a filter including the aforementioned thin film bulk acoustic wave resonator structure.
  • the present invention also provides a duplexer, which includes a transmitting filter and a receiving filter, wherein the transmitting filter and/or the receiving filter are implemented by the aforementioned filter.
  • the method for manufacturing the thin film bulk acoustic wave resonator structure forms the thin film bulk acoustic wave resonator and its electrode connections, and at the same time forms a space surrounding the thin film bulk acoustic wave resonator piezoelectric oscillation stack.
  • the implementation of the present invention can effectively reduce the acoustic loss in the piezoelectric oscillation stack in the thin film bulk acoustic wave resonator, thereby helping to improve the film bulk acoustic wave resonance. Performance.
  • the thin film bulk acoustic wave resonator structure formed based on this manufacturing method has the characteristics of small acoustic wave loss and excellent performance.
  • filters and duplexers formed based on the thin film bulk acoustic resonator structure provided by the present invention also have the characteristics of excellent performance.
  • Figures 1(a) to 1(h) are schematic cross-sectional views of various stages of manufacturing a thin film bulk acoustic resonator according to the prior art
  • FIG. 2 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to a specific embodiment of the present invention
  • 3(a) to 3(t) are schematic top views of various stages of manufacturing the thin film bulk acoustic resonator structure according to the process shown in FIG. 2;
  • Figures 3(a') to 3(t') are respectively schematic cross-sectional views of the structure shown in Figures 3(a) to 3(t) along the line AA';
  • FIG. 4 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a thin film bulk acoustic resonator structure manufactured according to the process shown in FIG. 4;
  • FIG. 7 is a schematic cross-sectional view of the structure of the thin film bulk acoustic resonator manufactured according to the process shown in FIG. 5.
  • the invention provides a method for manufacturing a thin film bulk acoustic wave resonator structure, in particular to a method for manufacturing an air gap type bulk acoustic wave resonator structure.
  • FIG. 2 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to a specific embodiment of the present invention. As shown in the figure, the manufacturing method includes:
  • connection mode between the thin film bulk acoustic resonators to be formed is predetermined, and the connection mode includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes;
  • step S102 the substrate is etched to form a plurality of grooves and the sacrificial layer is filled in the plurality of grooves;
  • step S103 a laminated structure covering the substrate and the sacrificial layer is formed, and the laminated structure includes a first metal material layer, a piezoelectric material layer, and a second metal material layer in order from bottom to top;
  • step S104 the laminated structure is etched, a laminated unit is formed above each of the grooves, and the thin film bulk acoustic resonator to be formed connected in the first connection mode corresponds to A first connecting portion connected to the laminated unit is formed between the laminated units;
  • step S105 filling the area formed by etching the stacked structure to form a filling structure
  • step S106 a first upper electrode is formed on the laminated unit, and between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected in the second connection mode.
  • step S107 the second metal material layer in the first connection portion is removed by etching
  • step S108 the filling structure and the sacrificial layer are removed.
  • FIGS. 3(a) to 3(t) is a schematic top view of each stage of manufacturing the thin film bulk acoustic resonator according to the process shown in Figure 2, Figure 3 (a') to Figure 3 (t') are shown in Figure 3 (a) to Figure 3 (t) Shows a schematic cross-sectional view of the structure along line AA'.
  • step S101 before the thin film bulk acoustic wave resonator is formed, it is usually necessary to pre-design the thin film bulk acoustic wave resonator to be formed.
  • the thin film bulk acoustic wave resonators are connected through the electrodes to realize the series/parallel connection between the thin film bulk acoustic wave resonators, and then form the filter, so when the thin film bulk acoustic resonator to be formed is pre-designed, in addition to the thin film
  • the design of the bulk acoustic wave resonator itself including the formation position of the piezoelectric resonator stack, the material and thickness of the upper electrode, piezoelectric layer, and lower electrode in the piezoelectric resonator stack, etc.
  • the specific structure of the film determines the specific connection mode between the film bulk acoustic wave resonators.
  • the connection mode between the thin film bulk acoustic wave resonators includes the connection mode between the lower electrodes (indicated by the first connection mode below) and the connection mode between the upper electrodes (indicated by the second connection mode below) .
  • the connection between the thin film bulk acoustic wave resonators that is, the series/parallel connection between the thin film bulk acoustic wave resonators
  • the formation of subsequent filters is facilitated.
  • a substrate 100 is provided.
  • the material of the substrate 100 is silicon (Si).
  • the material of the substrate 100 is silicon is only a preferred embodiment. In other embodiments, the material of the substrate 100 may also be semiconductor materials such as germanium and silicon germanium. For the sake of brevity, all possible materials of the substrate 100 are not listed here.
  • the thickness of the substrate 100 ranges from 750 ⁇ m to 850 ⁇ m, such as 750 ⁇ m, 800 ⁇ m, 850 ⁇ m, and so on.
  • the substrate 100 is etched to form a groove 101.
  • the groove 101 is drawn in FIG. 3(b')
  • only the opening edge of the groove 101 is drawn to illustrate the groove 101.
  • the number of grooves formed by etching the substrate corresponds to the number of thin film bulk acoustic resonators to be formed on the substrate.
  • the number, position, and shape of the grooves formed on the substrate are determined by actual design requirements.
  • FIG. 3 (b) and Figure 3 (b') 101 is merely an illustrative example given to illustrate the present invention.
  • the four grooves 101 shown in FIG. 3(b) and FIG. 3(b') are represented by groove A, groove B, groove C, and groove D from left to right, respectively.
  • thin-film bulk acoustic resonators will be formed on the substrate 100, wherein the thin-film bulk acoustic resonators formed on the groove A, groove B, groove C, and groove D are respectively referred to as Film bulk acoustic wave resonator A, film bulk acoustic wave resonator B, film bulk acoustic wave resonator C, and film bulk acoustic wave resonator D.
  • connection mode between the film bulk acoustic wave resonators is predetermined as follows: the film bulk acoustic wave resonator A and the film bulk acoustic wave resonator B are connected by the second connection mode (that is, the connection between the upper electrodes) , The film bulk acoustic wave resonator B and the film bulk acoustic wave resonator C are connected by the second connection method (that is, the connection between the upper electrodes), and the film bulk acoustic wave resonator C and the film bulk acoustic wave resonator D are connected by the first connection method.
  • the connection mode is connected (that is, the connection between the lower electrodes).
  • connection between the film bulk acoustic wave resonators is determined by the actual design requirements of the filter, and the connection between the above-mentioned film bulk acoustic resonators is only given for the purpose of explaining the present invention. Schematic example.
  • a sacrificial layer 102 is deposited on the substrate 100 to fill the groove 101.
  • the sacrificial layer 102 is silicon nitride (SiN). It should be noted that the sacrificial layer is not limited to silicon nitride, and other suitable materials can be selected according to actual design requirements.
  • any material that can ensure the sacrificial layer to have etching selectivity in the subsequent release of the sacrificial layer is applicable in the present invention, since the material selection of the sacrificial layer is related to the materials of other parts of the film bulk acoustic resonator, for the sake of brevity, all possible materials of the sacrificial layer are not listed here.
  • the sacrificial layer 102 is planarized until the upper surface of the sacrificial layer 102 in the groove 101 is flush with the upper surface of the substrate 100, and the groove 101
  • the thickness of the inner sacrificial layer 102 meets the expected range.
  • the thickness of the sacrificial layer 102 in the groove 101 after the planarization operation ranges from 1.5 ⁇ m to 4 ⁇ m, such as 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, and so on.
  • a seed layer 103 is deposited on the substrate 100 and the sacrificial layer 102, and the seed layer 103 covers the substrate 100 And the upper surface of the sacrificial layer 102.
  • the material of the seed layer 103 is aluminum nitride (AlN).
  • AlN aluminum nitride
  • the material of the seed layer is not limited to aluminum nitride. In other embodiments, it can also be other materials. For the sake of brevity, all possible materials of the seed layer are not described here. Enumerate.
  • the thickness of the seed layer 103 ranges from 5 nm to 30 nm, for example, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, and so on.
  • a first metal material layer 104 covering the seed layer 103 is formed by deposition, wherein the first metal material layer 104 is subsequently used To form the bottom electrode.
  • the first metal material layer 104 is preferably implemented with molybdenum (Mo).
  • Mo molybdenum
  • the material of the first metal material layer is not limited to molybdenum. Any material suitable for forming electrodes is applicable to the first metal material layer of the present invention. For the sake of brevity, it will not be omitted here. List all possible materials of the first metal material layer one by one.
  • the thickness of the first metal material layer 104 ranges from 100 nm to 500 nm.
  • a layer of piezoelectric material is deposited on the first metal material layer 104 to form a piezoelectric material layer 105 covering the first metal material layer 104, wherein the The piezoelectric material layer 105 is subsequently used to form a piezoelectric layer.
  • the piezoelectric material layer 105 is implemented by aluminum nitride (AlN).
  • AlN aluminum nitride
  • the material of the piezoelectric material layer is not limited to aluminum nitride. Any material suitable for forming the piezoelectric layer is suitable for the piezoelectric material layer of the present invention. For the sake of brevity, here is All possible materials for the piezoelectric material layer are no longer listed.
  • the thickness of the piezoelectric material layer 105 ranges from 300 nm to 2 ⁇ m.
  • a second metal material layer 106 covering the piezoelectric material layer 105 is formed by deposition, wherein the second metal material layer 106 is subsequently used to form the upper electrode.
  • the second metal material layer 106 is preferably implemented by molybdenum (Mo).
  • Mo molybdenum
  • the material of the second metal material layer is not limited to molybdenum. Any material suitable for forming electrodes is applicable to the second metal material layer of the present invention. For the sake of brevity, it will not be omitted here. List all possible materials of the second metal material layer one by one.
  • the thickness of the second metal material layer 106 ranges from 100 nm to 500 nm.
  • the structure composed of the seed layer 103, the first metal material layer 104, the piezoelectric material layer 105, and the second metal material layer 106 is referred to as a laminated structure. If the first metal material layer 104 is formed directly after the sacrificial layer 102 is formed (that is, the seed layer 103 is not formed), the structure will be composed of the first metal material layer 104, the piezoelectric material layer 105, and the second metal material layer 106 It is called a laminated structure.
  • a protective layer 107 covering the upper surface of the second metal material layer 106 is deposited and formed.
  • the protective layer 107 is preferably implemented by silicon dioxide (SiO2).
  • SiO2 silicon dioxide
  • the material of the protective layer 107 is not limited to silicon dioxide. Anything that can protect the second metal material layer from subsequent spin-coated photoresist on the second metal material layer
  • the affected materials are all suitable for the protective layer in the present invention. For the sake of brevity, all possible materials of the protective layer are not listed here.
  • the thickness of the protective layer 107 ranges from 10 nm to 200 nm. It should be noted that forming the protective layer 107 on the second metal material layer 106 is a preferred step. The following steps will continue to be described on the basis of the structure shown in Fig. 3(i) and Fig. 3(i').
  • the first photoresist pattern includes a first pattern 108a and a second pattern 108b.
  • the number of first patterns 108a is the same as the number of thin film bulk acoustic wave resonators to be formed (ie, the same as the number of grooves 101 on the substrate 100), wherein each groove 101 is formed with a first pattern 108a.
  • the specific shape of the first pattern 108a is determined by the thin film bulk acoustic resonator to be formed on the groove 101.
  • the second pattern 108b is formed between the first pattern 108a corresponding to the thin film bulk acoustic resonator to be formed connected by the first connection method, and forms a connection with the first pattern 108a.
  • the first pattern 108a is formed above the four grooves, and the second pattern 108b is formed on the film bulk acoustic resonator to be formed.
  • C and the first pattern 108a corresponding to the film bulk acoustic wave resonator D is formed between C and the first pattern 108a corresponding to the film bulk acoustic wave resonator D.
  • the dividing line between the first graphic 108a and the second graphic 108b in Fig. 3(j) and Fig. 3(j') is artificially drawn, just to make the reader clarify the first graphic 108a and the second graphic 108b In the actual manufacturing process, the dividing line does not exist. It should also be noted that spin-coating the photoresist and patterning it to form a photoresist pattern covering a predetermined area is a common technical method used by those skilled in the art. For the sake of brevity, it will not be repeated here.
  • the part of the laminated structure that is not covered by the first photoresist pattern is etched until The substrate 100 is exposed.
  • the part of the laminated structure below the first pattern 108a and the second pattern 108b is retained.
  • the part below the first pattern 108a will be referred to as the laminated unit
  • the part below the second pattern 108b will be The lower part is called the connecting part (hereinafter referred to as the first connecting part).
  • a laminated unit is formed under each first pattern 108a (that is, above each groove), and the film to be formed connected by the first connection method
  • a first connection part connected to the laminated unit is formed between the laminated units corresponding to the bulk acoustic wave resonator.
  • a laminated unit is formed above the groove A, groove B, groove C, and groove D, respectively, laminated unit A, laminated unit B.
  • Laminated unit C and laminated unit D are denoted.
  • the laminated unit A and the laminated unit B and other laminated units there is no connection between the laminated unit A and the laminated unit B and other laminated units, the laminated unit C and the laminated unit D (that is, the film bulk acoustic wave resonator C and the film bulk acoustic wave resonator D to be formed)
  • the laminated unit C and the laminated unit D Corresponding laminated units are connected by the first connecting portion.
  • the first photoresist pattern is removed. It should be noted that how to remove the photoresist pattern is a technical means known to those skilled in the art, and for the sake of brevity, it will not be repeated here. After the first photoresist pattern is removed, the upper surface of the laminated unit and the first connection portion is exposed.
  • step S105 the area formed by the etching of the stacked structure is filled to form a filled structure.
  • the steps of forming the filling structure are as follows:
  • the structure (that is, the structure shown in FIG. 3(l) and FIG. 3(l')) is deposited and a filling material is deposited 120, until the area 109 formed by etching the stacked structure is filled.
  • a photoresist is spin-coated on the filling material 120 and the photoresist is patterned to form a photoresist pattern 121 ( Hereinafter, it is represented by the second photoresist pattern 121). That is to say, in this embodiment, the part of the filling material 120 above the laminated structure and the first connection part is exposed, and the other part is covered by the second photoresist pattern.
  • the area not covered by the second photoresist pattern is etched until the upper surface of the laminated unit and the first connection portion is exposed to form A filling structure 120a for filling the area 109.
  • the filling material 120 and the protective layer 107 need to be etched until the upper surface of the laminated unit and the first connecting portion are exposed.
  • the protective layer 107 is not formed, it is only necessary to etch the filling material 120 until the upper surface of the laminated unit and the first connection portion is exposed.
  • the present invention does not have any limitation on the material of the filling structure 120a (that is, the filling material 120). Since the filling structure 120a will be removed after the piezoelectric oscillation stack of the film bulk acoustic wave resonator is formed, it is easy to remove and will not affect other structures of the film bulk acoustic wave resonator (piezoelectric oscillation stack, substrate) during the removal process. Etc.) can be used to realize the filling structure 120a.
  • the material of the filling structure 120a (ie, the filling material 120) and the material of the sacrificial layer 102 are the same, that is, both are silicon nitride (SiN) in this embodiment.
  • step S106 first, as shown in Figure 3 (q) and Figure 3 (q'), a layer of metal material is deposited on the structure shown in Figure 3 (p) and Figure 3 (p') to form a cover laminate
  • the cell, the first connection portion, and the third metal material layer 122 of the filling structure 120a are preferably the same material as the second metal material layer 106, and both are molybdenum (Mo) in this embodiment.
  • Mo molybdenum
  • the material of the third metal material layer 122 is not limited to molybdenum. Any material suitable for forming electrodes can be applied to the third metal material layer 122 of the present invention. For the sake of brevity, here is All possible materials of the third metal material layer 122 are not listed one by one.
  • the thickness of the third metal material layer 122 ranges from 5 nm to 300 nm.
  • the third metal material layer 122 is etched to form a first upper electrode 123a on the laminated unit, and a second upper electrode 123a is formed on the laminated unit.
  • the first upper electrodes 123a corresponding to the thin film bulk acoustic wave resonators connected in a connection manner form a connecting portion 123b connected to the first upper electrode 123a (hereinafter referred to as a second connecting portion 123b).
  • the first upper electrode 123a and the second connecting portion 123b may be formed by first spin-coating a photoresist on the third metal material layer 122 and patterning the photoresist to form a photoresist pattern, and then The area not covered by the photoresist pattern is formed by etching.
  • the third metal material layer 122 is etched so that the first connection part is exposed. Specifically in this embodiment, as shown in FIG.
  • a first upper electrode 123a is formed above the stacked unit A, the stacked unit B, the stacked unit C, and the stacked unit D, wherein the stacked unit A and the first upper electrode 123a above the laminated unit B are connected by a second connection portion 123b, and the laminated unit B and the first upper electrode 123a above the laminated unit C are connected by a second connection portion 123b.
  • the layer unit C and the first upper electrode 123a above the layer unit D are disconnected.
  • a layer of passivation material may be deposited on the third metal material layer 122 to form a passivation material layer (not shown) covering the third metal material layer 122.
  • the passivation material layer can be implemented by aluminum nitride (AlN), and its thickness ranges from 100 nm to 300 nm.
  • AlN aluminum nitride
  • the passivation material layer and the third metal material layer 122 need to be etched subsequently to form the first upper electrode 123a and the second connection portion 123b.
  • step S107 as shown in FIG. 3(s) and FIG. 3(s'), the second metal material layer 106 in the first connection portion is etched and removed, so that the laminated unit connected through the first connection portion is The second metal material layers 106 are disconnected. Specifically in this embodiment, as shown in Fig. 3(s), the second metal material layer 106 in the laminated unit C and the second metal material layer 106 in the laminated unit D are disconnected.
  • the piezoelectric material layer 105 in the first connection portion can be etched continuously until the first metal material layer 104 in the first connection portion is exposed.
  • the first metal material layer 104 in the corresponding laminated unit is the lower electrode of the piezoelectric oscillatory stack
  • the piezoelectric material layer 105 is the piezoelectric oscillatory stack.
  • the second metal material layer 106 is the second upper electrode, which together with the first upper electrode 123a located above the laminated unit constitutes the upper electrode of the piezoelectric oscillation stack.
  • the connection between the thin film bulk acoustic resonators is also formed at the same time as the piezoelectric resonator stack is formed.
  • the upper electrodes of the thin film bulk acoustic wave resonator are connected through the second connecting portion 123b; for the first connection to be formed For a thin-film bulk acoustic wave resonator connected in a way, the bottom electrodes of the thin-film bulk acoustic wave resonator are connected through the first metal material layer 104 in the first connection portion.
  • step S108 as shown in FIG. 3(t) and FIG. 3(t'), the filling structure 120a and the sacrificial layer 102 are removed.
  • the filling structure 120a and the sacrificial layer 102 are made of the same material.
  • the groove 101 includes the groove body part in addition to the groove body part. And extend to the extension part (not shown) below the filling structure 120a.
  • the filling structure 120a is etched down from the position corresponding to the extension part of the groove 101 until it reaches the extension part of the groove 101.
  • a release channel (not shown) penetrating the filling structure 120a and exposing the sacrificial layer 102 is formed.
  • the filling structure 120a and the sacrificial layer 102 can be removed at one time by using an etching solution to pass through the release channel.
  • the removal of the filling structure 120a and the sacrificial layer 102 is not limited to the above-mentioned methods. For the sake of brevity, all the methods of removing the filling structure 120a and the sacrificial layer 102 are not listed here.
  • the etching solution can be selected according to the specific materials of the filling structure 120a and the sacrificial layer 102, which is not limited herein. As shown in Fig.
  • a space 125 is formed in the area where the sacrificial layer 102 is located (hereinafter referred to as the first space 125), that is, a space is formed under the piezoelectric oscillator stack.
  • a space 124 (referred to as the second space 124 below) is formed in the area where the filling structure 120a is located, that is, a space is formed in the area surrounding the piezoelectric oscillator stack. So far, the thin film bulk acoustic wave resonator structure has been manufactured.
  • the implementation of the present invention can form an air gap type bulk acoustic wave resonator and its electrode connection while forming a surrounding air gap type bulk acoustic wave resonator piezoelectric oscillation Pile of space.
  • the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the air-gap bulk acoustic wave resonator can be improved.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, specifically an air gap type bulk acoustic wave resonator structure.
  • the film bulk acoustic resonator structure provided by the present invention includes:
  • a substrate a plurality of piezoelectric oscillation stacks formed on the substrate, a first connection portion, and a second connection portion, wherein the connection mode between the plurality of piezoelectric oscillation stacks includes the first connection mode between the lower electrodes And the second connection mode between the upper electrodes;
  • a first space is formed between each of the piezoelectric oscillation stacks and the substrate;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • FIG. 3(t) is a schematic top view of a thin film bulk acoustic resonator structure according to a specific embodiment of the present invention
  • FIG. 3(t') is a schematic cross-sectional view of the structure shown in FIG. 3(t) along the line AA'.
  • the thin film bulk acoustic resonator structure provided by the present invention includes a substrate 100.
  • the material of the substrate 100 is silicon (Si).
  • the material of the substrate 100 is silicon is only a preferred embodiment. In other embodiments, the material of the substrate 100 may also be semiconductor materials such as germanium and silicon germanium. For the sake of brevity, all possible materials of the substrate 100 are not listed here.
  • the thickness of the substrate 100 ranges from 750 ⁇ m to 850 ⁇ m, such as 750 ⁇ m, 800 ⁇ m, 850 ⁇ m, and so on.
  • the thin-film bulk acoustic resonator provided by the present invention further includes a plurality of piezoelectric oscillation stacks, and the plurality of piezoelectric oscillation stacks are formed on the substrate 100.
  • the connection mode between the piezoelectric oscillation stacks includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes.
  • a first space 125 is formed between each piezoelectric oscillator stack and the substrate 100.
  • the depth of the first space 125 ranges from 1.5 ⁇ m to 4 ⁇ m, such as 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, and so on.
  • Each piezoelectric oscillating stack includes a lower electrode 104, a piezoelectric layer 105, and an upper electrode in order from bottom to top.
  • the material of the lower electrode 104 is molybdenum (Mo), and its thickness ranges from 100 nm to 300 nm.
  • the material of the piezoelectric layer 105 is aluminum nitride (AlN), and its thickness ranges from 300 nm to 2 ⁇ m.
  • the upper electrode includes the second upper electrode 106 and the first upper electrode 123a in order from bottom to top.
  • the material of the first upper electrode 123a and the second upper electrode 106 are the same, and both are molybdenum (Mo).
  • the thickness of the first upper electrode 123a ranges from 5 nm to 300 nm
  • the thickness of the second upper electrode 106 ranges from 100 nm to 500 nm.
  • the film bulk acoustic resonator structure provided by the present invention further includes a first connecting portion and a second connecting portion 123b.
  • the first connecting portion includes a lower electrode connecting portion and a piezoelectric layer connecting portion from bottom to top, wherein the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104, and the piezoelectric layer The material and thickness of the connection part are the same as those of the piezoelectric layer 105.
  • the first connection part is located between the piezoelectric oscillator stacks connected in the first connection mode.
  • the electrical layer connection part is connected to the lower electrode 104 and the piezoelectric layer 105 of the piezoelectric oscillatory stack, respectively, so as to realize the connection between the lower electrodes of the piezoelectric oscillatory stack.
  • the first connecting portion may also only include a lower electrode connecting portion that is connected to the lower electrode 106 of the piezoelectric oscillator stack, and the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104.
  • the second connecting portion 123b is provided between the first upper electrodes 123a of the piezoelectric oscillation stack connected in the second connection mode, and forms a connection with the first upper electrode 123a, so as to realize the connection between the upper electrodes of the piezoelectric oscillation stack. connection.
  • the material and thickness of the second connecting portion 123b are the same as the material and thickness of the first upper electrode 123a.
  • the piezoelectric oscillating stack forms a lower electrode connection with other piezoelectric oscillating stacks through the first connecting portion, and/or the first upper electrode 123a passes through the second connecting portion 123b. Except for forming an upper electrode connection with other piezoelectric resonating stacks, there is no other connection between the piezoelectric resonating stack and other piezoelectric resonating stacks. In other words, the area between the plurality of piezoelectric oscillation stacks on the substrate 100 excluding the first connection portion and the second connection portion 123 b appears as the second space 124.
  • the thin film bulk acoustic resonator structure provided by the present invention further includes a seed layer 103 formed between the piezoelectric oscillator stack and the substrate 100.
  • the material of the seed layer 103 is aluminum nitride (AlN), and its thickness ranges from 5 nm to 30 nm, such as 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, and so on.
  • the thin film bulk acoustic resonator provided by the present invention further includes a passivation layer (not shown) formed on the upper electrode and the second connecting portion 123b.
  • the passivation layer is implemented by aluminum nitride (AlN), and its thickness ranges from 100 nm to 300 nm.
  • the air gap type bulk acoustic wave resonator structure provided by the present invention, the area between the air gap type bulk acoustic wave resonators except for the electrode connection part is present For space. In this way, the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the air-gap bulk acoustic wave resonator can be improved.
  • the present invention also provides a method for manufacturing a thin-film bulk acoustic wave resonator structure, specifically a method for manufacturing a back-etched bulk acoustic wave resonator structure.
  • FIG. 4 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention. As shown in the figure, the manufacturing method includes:
  • connection mode between the thin film bulk acoustic resonators to be formed is predetermined, and the connection mode includes the first connection mode between the lower electrodes and the second connection mode between the upper electrodes;
  • step S202 a substrate is provided and a laminated structure covering the substrate is formed, and the laminated structure includes a first metal material layer, a piezoelectric material layer, and a second metal material layer in order from bottom to top;
  • step S203 the stacked structure is etched to form a plurality of stacked units, and the stacked layer corresponding to the thin film bulk acoustic resonator connected in the first connection mode to be formed A first connecting portion connected to the unit is formed between the units;
  • step S204 filling the area formed by etching the stacked structure to form a filling structure
  • step S205 a first upper electrode is formed on the laminated unit, and between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected in the second connection mode.
  • step S206 the second metal material layer in the first connecting portion is removed by etching
  • step S207 the filling structure is removed and the back surface of the substrate is etched to form a third space under the laminated unit.
  • step S201 is the same as step S101 in the foregoing, so the content of the corresponding part in the foregoing can be referred to.
  • step S202 the material and parameters of the substrate can refer to the related content of the substrate 100 in step S102 above.
  • step S102 For the step of forming the laminated structure covering the substrate, reference may be made to the corresponding content related to the formation of the laminated structure in the previous step S103.
  • step S203 the stacked structure is etched to form a plurality of stacked units, and a first connection is formed between the stacked units corresponding to the thin film bulk acoustic resonators connected in the first connection mode to be formed. Connecting part.
  • the method of forming the laminated unit and the first connecting portion reference may be made to the corresponding content related to the formation of the laminated unit and the first connecting portion in step S104 above.
  • Step S204 is the same as step S105 in the preceding paragraph
  • step S205 is the same as step S106 in the preceding paragraph
  • S206 is the same as step S107 in the preceding paragraph, so the content of the corresponding part in the preceding paragraph can be referred to.
  • step S207 the filling structure is removed using an etching solution and etched from the backside of the substrate to form a space under the laminated unit (hereinafter referred to as a third space).
  • a third space a space under the laminated unit
  • the step of etching from the backside of the substrate to form a third space under the laminated unit is a common technical means for those skilled in the art, and for the sake of brevity, it will not be described in detail here.
  • the implementation of the present invention can form a back-etched bulk acoustic wave resonator and its electrode connections, and at the same time form a surrounding back-etched bulk acoustic wave resonator Space for piezoelectric oscillator stack.
  • the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the back-etched bulk acoustic wave resonator can be improved.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, which includes:
  • a substrate a plurality of piezoelectric oscillation stacks formed on the substrate, a first connection portion, and a second connection portion, wherein the connection mode between the plurality of piezoelectric oscillation stacks includes the first connection mode between the lower electrodes And the second connection mode between the upper electrodes;
  • the substrate is located below each piezoelectric oscillation stack and is formed with a third space penetrating the substrate;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • FIG. 6 is a schematic cross-sectional view of a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention.
  • the thin film bulk acoustic resonator structure provided by the present invention includes a substrate 100 and a plurality of piezoelectric oscillatory stacks on the substrate 100, wherein the substrate 100 is located under each piezoelectric oscillatory stack.
  • a third space 126 penetrating the substrate is formed.
  • the connection mode between the piezoelectric oscillation stacks includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes.
  • Each piezoelectric oscillating stack includes a lower electrode 104, a piezoelectric layer 105, and an upper electrode in order from bottom to top. Further, the upper electrode sequentially includes the second upper electrode 106 and the first upper electrode 123a from bottom to top.
  • the film bulk acoustic resonator structure provided by the present invention further includes a first connecting portion and a second connecting portion 123b.
  • the first connecting portion includes a lower electrode connecting portion and a piezoelectric layer connecting portion from bottom to top, wherein the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104, and the piezoelectric layer The material and thickness of the connection part are the same as those of the piezoelectric layer 105.
  • the first connection part is located between the piezoelectric oscillator stacks connected in the first connection mode.
  • the electrical layer connection part is connected to the lower electrode 104 and the piezoelectric layer 105 of the piezoelectric oscillatory stack, respectively, so as to realize the connection between the lower electrodes of the piezoelectric oscillatory stack.
  • the first connecting portion may also only include a lower electrode connecting portion that is connected to the lower electrode 106 of the piezoelectric oscillator stack, and the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104.
  • the second connecting portion 123b is provided between the first upper electrodes 123a of the piezoelectric oscillation stack connected in the second connection mode, and forms a connection with the first upper electrode 123a, so as to realize the connection between the upper electrodes of the piezoelectric oscillation stack. connection.
  • the material and thickness of the second connecting portion 123a are the same as the material and thickness of the first upper electrode 123a.
  • the piezoelectric oscillating stack forms a lower electrode connection with other piezoelectric oscillating stacks through the first connecting portion, and/or the first upper electrode 123a passes through the second connecting portion 123b. Except for forming an upper electrode connection with other piezoelectric resonating stacks, there is no other connection between the piezoelectric resonating stack and other piezoelectric resonating stacks. In other words, the area between the plurality of piezoelectric oscillation stacks on the substrate 100 excluding the first connection portion and the second connection portion 123 b appears as the second space 124.
  • the film bulk acoustic resonator structure provided by the present invention further includes a seed layer 103 formed between the piezoelectric oscillator stack and the substrate 100.
  • the thin film bulk acoustic resonator provided by the present invention further includes a passivation layer (not shown) formed on the upper electrode and the second connecting portion 123b.
  • the materials and parameters of the substrate 100, the seed layer 103, the lower electrode 104, the piezoelectric layer 105, the first upper electrode 123a, the second upper electrode, and the passivation layer can refer to the corresponding structure shown in FIG. 3(t') in the previous paragraph. Part of the description, for the sake of brevity, will not be repeated here.
  • the back-etched bulk acoustic wave resonators except for the electrode connection part The areas are presented as spaces. In this way, the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the back-etched bulk acoustic wave resonator can be improved.
  • the present invention also provides a method for manufacturing a thin film bulk acoustic wave resonator structure, specifically a method for manufacturing a Bragg reflection type bulk acoustic wave resonator structure.
  • FIG. 5 is a flowchart of a method for manufacturing a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention. As shown in the figure, the manufacturing method includes:
  • a connection mode between the thin film bulk acoustic resonators to be formed is predetermined, and the connection mode includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes;
  • a Bragg reflective layer is formed on the substrate and a laminated structure covering the Bragg reflective layer is formed, and the laminated structure includes a first metal material layer, a piezoelectric material layer, and a second metal material layer in order from bottom to top;
  • step S303 the stacked structure is etched to form a plurality of stacked units, and the stacked layer corresponding to the thin film bulk acoustic resonator connected in the first connection mode to be formed A first connecting portion connected to the unit is formed between the units;
  • step S304 filling the area formed by etching the stacked structure to form a filling structure
  • step S305 a first upper electrode is formed on the laminated unit, and between the first upper electrode corresponding to the thin film bulk acoustic wave resonator to be formed connected in the second connection mode.
  • step S306 the second metal material layer in the first connection portion is removed by etching
  • step S307 the filling structure is removed.
  • step S301 is the same as step S101 in the foregoing, so the content of the corresponding part in the foregoing can be referred to.
  • a substrate is provided and a Bragg reflection layer is formed on the substrate.
  • the material and parameters of the substrate can refer to the relevant content of the substrate 100 in step S102 above.
  • the step of forming a Bragg reflector layer on the substrate is a common technical means of those skilled in the art. For the sake of brevity, the substrate and the The materials, parameters, and forming process of the Bragg reflector are explained.
  • the step of forming the laminated structure covering the Bragg reflective layer reference may be made to the corresponding content related to the formation of the laminated structure in the previous step S103.
  • step S303 the laminated structure is etched to form a plurality of laminated units, and a first connection is formed between the laminated units corresponding to the thin film bulk acoustic wave resonators connected in the first connection manner to be formed. Connecting part.
  • the method of forming the laminated unit and the first connecting portion reference may be made to the corresponding content related to the formation of the laminated unit and the first connecting portion in step S104 above.
  • Step S304 is the same as step S105 in the preceding paragraph
  • step S305 is the same as step S106 in the preceding paragraph
  • S306 is the same as step S107 in the preceding paragraph, so the content of the corresponding part in the preceding paragraph can be referred to.
  • step S307 the filling structure can be removed by using an etching solution.
  • the implementation of the present invention can form the Bragg reflection type bulk acoustic wave resonator and its electrode connection at the same time to form the surrounding Bragg reflection type bulk acoustic wave resonator piezoelectric oscillation Pile of space.
  • the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the Bragg reflection-type bulk acoustic wave resonator can be improved.
  • the present invention also provides a thin film bulk acoustic wave resonator structure, which includes:
  • connection mode includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes;
  • Each of the piezoelectric oscillating stacks includes a lower electrode, a piezoelectric layer, and an upper electrode in order from bottom to top, and the upper electrode includes a second upper electrode and a first upper electrode in order from bottom to top;
  • the bottom electrodes of the piezoelectric oscillator stack connected in the first connection mode are connected by the first connection portion, and the piezoelectric oscillator stack connected in the second connection mode has the first upper electrode.
  • the electrodes are connected through the second connecting portion;
  • the area between the plurality of piezoelectric oscillation stacks except for the first connection portion and the second connection portion forms a second space.
  • FIG. 7 is a schematic cross-sectional view of a thin film bulk acoustic resonator structure according to another specific embodiment of the present invention.
  • the film bulk acoustic resonator provided by the present invention includes a substrate 100, a Bragg reflective layer 127 on the substrate 100 and a piezoelectric oscillator stack on the Bragg reflective layer 127.
  • the Bragg reflection layer 127 includes a high acoustic impedance layer and a low acoustic impedance layer that are alternately arranged.
  • the specific material and thickness range of the high/low acoustic impedance layer can be set according to the conventional Bragg reflective layer in the prior art.
  • the connection mode between the piezoelectric oscillation stacks includes a first connection mode between the lower electrodes and a second connection mode between the upper electrodes.
  • Each piezoelectric oscillating stack includes a lower electrode 104, a piezoelectric layer 105, and an upper electrode in order from bottom to top. Further, the upper electrode sequentially includes the second upper electrode 106 and the first upper electrode 123a from bottom to top.
  • the film bulk acoustic resonator structure provided by the present invention further includes a first connecting portion and a second connecting portion 123b.
  • the first connecting portion includes a lower electrode connecting portion and a piezoelectric layer connecting portion from bottom to top, wherein the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104, and the piezoelectric layer The material and thickness of the connection part are the same as those of the piezoelectric layer 105.
  • the first connection part is located between the piezoelectric oscillator stacks connected in the first connection mode.
  • the electrical layer connection part is connected to the lower electrode 104 and the piezoelectric layer 105 of the piezoelectric oscillatory stack, respectively, so as to realize the connection between the lower electrodes of the piezoelectric oscillatory stack.
  • the first connecting portion may also only include a lower electrode connecting portion that is connected to the lower electrode 106 of the piezoelectric oscillator stack, and the material and thickness of the lower electrode connecting portion are the same as the material and thickness of the lower electrode 104.
  • the second connecting portion 123b is provided between the first upper electrodes 123a of the piezoelectric oscillation stack connected in the second connection mode, and forms a connection with the first upper electrode 123a, so as to realize the connection between the upper electrodes of the piezoelectric oscillation stack. connection.
  • the material and thickness of the second connecting portion 123a are the same as the material and thickness of the first upper electrode 123a.
  • the piezoelectric oscillating stack forms a lower electrode connection with other piezoelectric oscillating stacks through the first connecting portion, and/or the first upper electrode 123a passes through the second connecting portion 123b. Except for forming an upper electrode connection with other piezoelectric resonating stacks, there is no other connection between the piezoelectric resonating stack and other piezoelectric resonating stacks. In other words, the area between the plurality of piezoelectric oscillation stacks on the substrate 100 excluding the first connection portion and the second connection portion 123 b appears as the second space 124.
  • the film bulk acoustic resonator structure provided by the present invention further includes a seed layer 103 formed between the piezoelectric oscillator stack and the substrate 100.
  • the thin film bulk acoustic resonator provided by the present invention further includes a passivation layer (not shown) formed on the upper electrode and the second connecting portion 123b.
  • the materials and parameters of the substrate 100, the seed layer 103, the lower electrode 104, the piezoelectric layer 105, the first upper electrode 123a, the second upper electrode, and the passivation layer can refer to the corresponding structure shown in FIG. 3(t') in the previous paragraph. Part of the description, for the sake of brevity, will not be repeated here.
  • the regions between the Bragg reflection type bulk acoustic wave resonators except for the electrode connection part all present For space. In this way, the acoustic wave loss in the piezoelectric oscillation stack can be effectively reduced, and the performance of the Bragg reflection-type bulk acoustic wave resonator can be improved.
  • the present invention also provides a filter, which includes the thin film bulk acoustic resonator structure provided by the present invention.
  • a filter which includes the thin film bulk acoustic resonator structure provided by the present invention.
  • the structure of the film bulk acoustic resonator provided by the present invention will not be repeated here, and the structure of the film bulk acoustic wave resonator can be referred to the content of the relevant part in the preceding text.
  • the thin film bulk acoustic wave resonator in the prior art because the thin film bulk acoustic wave resonator structure provided by the present invention has better device performance, it is different from the existing thin film bulk acoustic wave resonator structure based on the existing technology.
  • the performance of the filter formed based on the thin film bulk acoustic resonator structure provided by the present invention is better.
  • the present invention also provides a duplexer, which includes a transmitting filter and a receiving filter, wherein the transmitting filter and/or the receiving filter are implemented by the filter provided by the present invention.
  • a duplexer which includes a transmitting filter and a receiving filter, wherein the transmitting filter and/or the receiving filter are implemented by the filter provided by the present invention.
  • the filter provided by the present invention will not be described repeatedly here, and the structure of the filter provided in the present invention can be referred to the content of the relevant part in the preceding text. Since the filter provided by the present invention has better performance than the existing filter, compared with the existing duplexer formed based on the existing filter, the filter formed based on the present invention The performance of the duplexer is also better.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

提供了一种薄膜体声波谐振器结构的制造方法,包括:确定待形成的薄膜体声波谐振器之间的连接方式;刻蚀基底(100)形成凹槽(101)并在凹槽(101)内填充牺牲层(102);形成覆盖基底(100)的叠层结构并对叠层结构进行刻蚀,在每一凹槽(101)上方形成叠层单元以及在待形成的以第一连接方式进行连接的薄膜体声波谐振器所对应的叠层单元之间形成第一连接部;对刻蚀叠层结构所形成的区域进行填充以形成填充结构(120a);在叠层单元上形成第一上电极(123a)以及在待形成的以第二连接方式进行连接的薄膜体声波谐振器所对应的第一上电极(123a)之间形成第二连接部(123b);刻蚀第一连接部;去除填充结构(120a)以及牺牲层(102),还提供了一种薄膜体声波谐振器结构、滤波器和双工器,从而有效降低了器件的声波损失。

Description

一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器 技术领域
本发明涉及半导体技术领域,尤其涉及一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器。
背景技术
谐振器是滤波器的核心组成部件,谐振器性能的优劣直接决定了滤波器性能的好坏。在现有的谐振器中,薄膜体声波谐振器(Film Bulk Acoustic Resonator,FBAR)因其体积小、插入损耗低、带外抑制大、品质因数高、工作频率高、功率容量大以及抗静电冲击能力良好等特点,在现代无线通讯技术中具有非常广阔的应用前景。
典型的薄膜体声波谐振器主要包括空气隙型体声波谐振器、反面刻蚀型体声波谐振器以及布拉格反射型体声波谐振器。下面以空气隙型体声波谐振器为例对薄膜体声波谐振器的制造方法进行说明。请参考图1(a)至图1(h),图1(a)至图1(h)是按照现有技术制造薄膜体声波谐振器的各个阶段的剖面示意图。首先,如图1(a)所示,提供基底10;接着,如图1(b)所示,利用刻蚀的方式在基底10上形成凹槽11;然后,如图1(c)所示,在基底10上沉积牺牲材料,并对该牺牲材料进行平坦化操作,以在凹槽11内形成牺牲层12;接着,如图1(d)所示,在基底10上沉积第一金属材料层13;接着如图1(e)所示,对第一金属层13进行刻蚀以在凹槽11上形成下电极13a。需要说明的是,考虑到薄膜体声波谐振器用于形成滤波器、以及薄膜体声波谐振器通常通过上电极之间的连接以及下电极之间的连接来形成串/并联关系,所以在制造薄膜体声波谐振器时,除了形成薄膜体声波谐振器之外通常还会同时形成薄膜体声波谐振器之间的连接关系,以满足后续制造滤波器的需要。因此,在刻蚀第一金属层13以形成下电极13a时,对于无需形成连接的下电极来说,通过刻蚀断开该下电极与其他下电极之间的连接,对于需要形成连接的下电极来说,下电极之间则不会被刻蚀断开。接着,如图1(f)所示,在图1(e)所示结构上沉积一层压电材料以形成覆盖基底10和下电极13a的压电层14;接着,如图1(g) 所示,在压电层14上沉积第二金属材料层15;最后,如图1(h)所示,对第二金属材料层15进行刻蚀以在凹槽11上方形成上电极15a,其中,对于无需形成连接的上电极来说,通过刻蚀断开该上电极与其他上电极之间的连接,对于需要形成连接的上电极来说,上电极之间则不会被刻蚀断开。至此,由下电极、压电层以及上电极所构成的压电振荡堆形成。反面刻蚀型体声波谐振器的制造方法与空气隙型体声波谐振器不同的地方在于:在基底上形成上述压电振荡堆后,从基底背面刻蚀直至暴露出下电极从而在下电极下方形成空腔。布拉格反射层型体声波谐振器的制造方法与空气隙型体声波谐振器不同的地方在于:在基底上形成布拉格反射层,然后在该布拉格反射层上形成上述压电振荡堆。
基于上述制造方法所得到的薄膜体声波谐振器其不足之处在于:由于相邻薄膜体声波谐振器之间的压电层是连通的、且该区域内的压电层直接与基底接触,所以导致在薄膜体声波谐振器工作时,压电振荡堆内的部分声波会通过压电层传播进入基底中,从而造成薄膜体声波谐振器的声波损失,进而导致薄膜体声波谐振器的性能下降。
发明内容
为了克服现有技术中的上述缺陷,本发明提供了一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
刻蚀基底形成多个凹槽并在该多个凹槽内填充牺牲层;
形成覆盖所述基底和所述牺牲层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
对所述叠层结构进行刻蚀,在每一所述凹槽上方形成叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其形成连接的第一连接部;
对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接 方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
刻蚀去除所述第一连接部中的所述第二金属材料层;
去除所述填充结构以及所述牺牲层。
根据本发明的一个方面,该制造方法中,对所述叠层结构进行刻蚀、在每一所述凹槽上方形成叠层单元以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部的步骤包括:在所述叠层结构上旋涂光刻胶并对该光刻胶进行图形化以形成第一光刻胶图形;对所述叠层结构未被所述第一光刻胶图形覆盖的部分进行刻蚀直至暴露所述基底,刻蚀结束后在每一所述凹槽上方形成叠层单元以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;去除所述第一光刻胶图形。
根据本发明的另一个方面,该制造方法中,对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构的步骤包括:在去除所述第一光刻胶图形后得到的结构上沉积填充材料,直至刻蚀所述叠层结构所形成的区域被填充;在所述填充材料上旋涂光刻胶并对该光刻胶进行图形化以在所述区域的上方形成第二光刻胶图形;对所述填充材料未被所述第二光刻胶图形覆盖的部分进行刻蚀直至暴露所述叠层单元,以在所述空间内形成填充结构;去除所述第二光刻胶图形。
根据本发明的又一个方面,该制造方法中,所述填充结构的材料和所述牺牲层的材料相同。
根据本发明的又一个方面,该制造方法中,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第二连接部的步骤包括:形成覆盖所述叠层单元、所述第一连接部以及所述填充结构的第三金属材料层;对所述第三金属材料层进行刻蚀,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部。
根据本发明的又一个方面,该制造方法中,所述第二金属材料层和所述第三金属材料层的材料相同,其中,所述第二金属材料层的厚度范围是100nm至500nm,所述第三金属材料层的厚度范围是5nm至300nm。
根据本发明的又一个方面,该制造方法中,去除所述填充结构以及所述牺牲层的步骤包括:形成贯穿所述填充结构直至暴露所述牺牲层的释放通道,并通过所述释放通道去除所述填充结构以及所述牺牲层。
本发明还提供了一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
每一所述压电振荡堆与所述基底之间均形成有第一空间;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
本发明提供了一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
提供基底并形成覆盖所述基底的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
刻蚀去除所述第一连接部中的所述第二金属材料层;
去除所述填充结构以及从所述基底的背面刻蚀以在所述叠层单元下方形成第三空间。
本发明还提供了一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
所述基底位于每一所述压电振荡堆的下方均形成有贯穿该基底的第三空间;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
本发明还提供了一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
在基底上形成布拉格反射层以及形成覆盖该布拉格反射层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之 间形成与其连接的第一连接部;
对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
刻蚀去除所述第一连接部中的所述第二金属材料层;
去除所述填充结构。
本发明还提供了一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
基底、形成于该基底上的布拉格反射层、形成于该布拉格反射层上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
本发明还提供了一种滤波器,该滤波器包括前述薄膜体声波谐振器结构。
本发明还提供了一种双工器,该双工器包括发射滤波器和接收滤波器,其中,所述发射滤波器和/或所述接收滤波器采用前述滤波器实现。
本发明所提供的薄膜体声波谐振器结构的制造方法在形成薄膜体声波谐振器及其电极连接的同时,还形成环绕薄膜体声波谐振器压电振荡堆的空间。如此一来,与现有的薄膜体声波谐振器的制造方法相比,实施本发明可以有效地减少薄膜体声波谐振器中压电振荡堆内声波的损失,进而有助于提高薄膜体声波谐振器的性能。基于该制造方法所形成的薄膜体声波谐振器 结构具有声波损失小、性能优的特点。
相应地,基于本发明所提供的薄膜体声波谐振器结构所形成的滤波器和双工器也具有性能优的特点。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1(a)至图1(h)是按照现有技术制造薄膜体声波谐振器的各个阶段的剖面示意图;
图2是根据本发明的一个具体实施例的薄膜体声波谐振器结构的制造方法流程图;
图3(a)至图3(t)是按照图2所示流程制造薄膜体声波谐振器结构的各个阶段的俯视示意图;
图3(a’)至图3(t’)分别是图3(a)至图3(t)所示结构沿AA’线的剖面示意图;
图4是根据本发明的另一个具体实施例的薄膜体声波谐振器结构的制造方法流程图;
图5是根据本发明的又一个具体实施例的薄膜体声波谐振器结构的制造方法流程图;
图6是根据图4所示流程制造的薄膜体声波谐振器结构的剖面示意图;
图7是根据图5所示流程制造的薄膜体声波谐振器结构的剖面示意图。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
为了更好地理解和阐释本发明,下面将结合附图对本发明作进一步的详细描述。
本发明提供了一种薄膜体声波谐振器结构的制造方法,具体为空气隙型体声波谐振器结构的制造方法。请参考图2,图2是根据本发明的一个具体实施例的薄膜体声波谐振器结构的制造方法流程图。如图所示,该制造方法 包括:
在步骤S101中,预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
在步骤S102中,刻蚀基底形成多个凹槽并在该多个凹槽内填充牺牲层;
在步骤S103中,形成覆盖所述基底和所述牺牲层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
在步骤S104中,对所述叠层结构进行刻蚀,在每一所述凹槽上方形成叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
在步骤S105中,对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在步骤S106中,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
在步骤S107中,刻蚀去除所述第一连接部中的所述第二金属材料层;
在步骤S108中,去除所述填充结构以及所述牺牲层。
下面,结合图3(a)至图3(t)、以及图3(a’)至图3(t’)对上述步骤S101至步骤S108进行详细说明,其中,图3(a)至图3(s)是按照图2所示流程制造薄膜体声波谐振器的各个阶段的俯视示意图,图3(a’)至图3(t’)分别是图3(a)至图3(t)所示结构沿AA’线的剖面示意图。
具体地,在步骤S101中,在形成薄膜体声波谐振器之前,通常需要对待形成的薄膜体声波谐振器进行预先设计。考虑到薄膜体声波谐振器之间通过电极的连接来实现薄膜体声波谐振器之间的串/并联、进而形成滤波器,因此在对待形成的薄膜体声波谐振器进行预先设计时,除了对薄膜体声波谐振器的自身进行设计(包括压电振荡堆的形成位置,压电振荡堆中上电极、压电层、下电极的材料和厚度,等等)之外,还会根据待形成滤波器的具体结构确定薄膜体声波谐振器之间的具体连接方式。在本实施例中,薄膜体声波 谐振器之间的连接方式包括下电极之间的连接方式(下文以第一连接方式表示)以及上电极之间的连接方式(下文以第二连接方式表示)。在根据上述预先设计进行生产时,不但可以形成薄膜体声波谐振器自身,与此同时还可以形成薄膜体声波谐振器之间的连接(即形成薄膜体声波谐振器之间的串/并联),如此一来,便于后续滤波器的形成。
在步骤S102中,首先,如图3(a)和图3(a’)所示,提供基底100。在本实施例中,该基底100的材料为硅(Si)。本领域技术人员可以理解的是,基底100的材料为硅仅为优选实施例方式,在其他实施例中,基底100的材料还可以是锗、锗硅等半导体材料。为了简明起见,在此不再对基底100所有可能的材料进行一一列举。典型地,基底100的厚度范围是750μm至850μm,例如750μm、800μm、850μm等。
接着,如图3(b)和图3(b’)所示,对基底100进行刻蚀以形成凹槽101。其中,在图3(b’)中绘制凹槽101时,仅绘制了凹槽101的开口边缘,用以示意凹槽101。需要说明的是,通常情况下基底上往往会形成多个薄膜体声波谐振器,因此对基底刻蚀所形成的凹槽的数量与基底上待形成的薄膜体声波谐振器的数量相对应。本领域技术人员可以理解的是,基底上所形成凹槽的数量、位置以及形状等均由实际设计需求所决定,图3(b)和图3(b’)中所示的4个凹槽101仅仅是为了对本发明进行说明所给出的示意性举例。下文中,图3(b)和图3(b’)所示的4个凹槽101从左到右分别以凹槽A、凹槽B、凹槽C以及凹槽D表示。相应地,将会在基底100上形成4个薄膜体声波谐振器,其中,下文中将形成在凹槽A、凹槽B、凹槽C以及凹槽D上的薄膜体声波谐振器分别称为薄膜体声波谐振器A、薄膜体声波谐振器B、薄膜体声波谐振器C以及薄膜体声波谐振器D。在本实施例中,预先确定薄膜体声波谐振器之间的连接方式如下:薄膜体声波谐振器A和薄膜体声波谐振器B之间采用第二连接方式进行连接(即上电极之间连接),薄膜体声波谐振器B和薄膜体声波谐振器C之间采用第二连接方式进行连接(即上电极之间连接),薄膜体声波谐振器C和薄膜体声波谐振器D之间采用第一连接方式进行连接(即下电极之间连接)。本领域技术人员可以理解的是,薄膜体声波谐振器之间的连接方式由滤波器的实际设计需求所决定,上述薄膜体声波谐振器之间的连接方式仅 仅是为了对本发明进行说明所给出的示意性举例。
接着,如图3(c)和图3(c’)所示,在基底100上沉积牺牲层102以对凹槽101进行填充。此处需要说明的是,由于俯视角度是无法直接看到凹槽101的,所以在图3(c’)中凹槽101的开口边缘通过虚线表示。此外还需要说明的是,下文中对于俯视角度无法看到的结构,其边缘均通过虚线表示。在本实施例中,牺牲层102是氮化硅(SiN)。需要说明的是,牺牲层并不仅仅限定于氮化硅,还可以根据实际设计需求选择其他合适的材料,凡是在后续释放牺牲层的步骤中可以保证牺牲层具有刻蚀选择性的材料均适用于本发明,由于牺牲层的材料选择和薄膜体声波谐振器其他部分的材料有关,因此为了简明起见,在此不再对牺牲层所有可能的材料进行一一列举。
最后,如图3(d)和3(d’)所示,对牺牲层102进行平坦化操作直至凹槽101内的牺牲层102的上表面与基底100的上表面齐平、且凹槽101内的牺牲层102的厚度符合预期范围。在本实施例中,平坦化操作后凹槽101内的牺牲层102其厚度范围是1.5μm至4μm,例如1.5μm、2μm、2.5μm、3μm、3.5μm、4μm等。
优选地,如图3(e)和3(e’)所示,在凹槽101内填充牺牲层102后,在基底100和牺牲层102上沉积形成种子层103,该种子层103覆盖基底100和牺牲层102的上表面。在本实施例中,种子层103的材料是氮化铝(AlN)。本领域技术人员可以理解的是,种子层的材料并不仅仅限于氮化铝,在其他实施例中还可以是其他材料,为了简明起见,在此不再对种子层所有可能的材料进行一一列举。此外,在本实施例中,种子层103的厚度范围是5nm至30nm,例如5nm、10nm、15nm、20nm、25nm、30nm等。
下面在图3(e)和3(e’)所示结构的基础上继续对后续步骤进行说明。
在步骤S103中,首先,如图3(f)和3(f’)所示,通过沉积的方式形成覆盖种子层103的第一金属材料层104,其中,该第一金属材料层104后续用于形成下电极。此处需要说明的是,针对于没有形成种子层103的情况,直接通过沉积的方式形成覆盖基底100和牺牲层102的第一金属材料层104即可。在本实施例中,第一金属材料层104优选采用钼(Mo)实现。本领域技术人员可以理解的是,第一金属材料层的材料并不仅仅限于钼,凡是适用于形成 电极的材料均适用于本发明中的第一金属材料层,为了简明起见,在此不再对第一金属材料层所有可能的材料进行一一列举。此外,在本实施例中,第一金属材料层104的厚度范围是100nm至500nm。
接着,如图3(g)和3(g’)所示,在第一金属材料层104上沉积一层压电材料以形成覆盖第一金属材料层104的压电材料层105,其中,该压电材料层105后续用于形成压电层。在本实施例中,压电材料层105采用氮化铝(AlN)实现。本领域技术人员可以理解的是,压电材料层的材料并不仅仅限于氮化铝,凡是适用于形成压电层的材料均适用于本发明中的压电材料层,为了简明起见,在此不再对压电材料层所有可能的材料进行一一列举。此外,在本实施例中,压电材料层105的厚度范围是300nm至2μm。
接着,如图3(h)和3(h’)所示,通过沉积的方式形成覆盖压电材料层105的第二金属材料层106,其中,该第二金属材料层106后续用于形成上电极。在本实施例中,第二金属材料层106优选采用钼(Mo)实现。本领域技术人员可以理解的是,第二金属材料层的材料并不仅仅限于钼,凡是适用于形成电极的材料均适用于本发明中的第二金属材料层,为了简明起见,在此不再对第二金属材料层所有可能的材料进行一一列举。此外,在本实施例中,第二金属材料层106的厚度范围是100nm至500nm。
下文中,将由种子层103、第一金属材料层104、压电材料层105以及第二金属材料层106所构成的结构称为叠层结构。若形成牺牲层102之后直接形成第一金属材料层104(即未形成种子层103的情况),则将由第一金属材料层104、压电材料层105以及第二金属材料层106所构成的结构称为叠层结构。
在步骤S104中,首先,如图3(i)和图3(i’)所示,在第二金属材料层106上沉积形成覆盖其上表面的保护层107。在本实施例中,保护层107优选采用二氧化硅(SiO2)实现。本领域技术人员可以理解的是,保护层107的材料并不仅仅限于二氧化硅,凡是可以对第二金属材料层形成保护以防止受到后续旋涂在第二金属材料层之上的光刻胶影响的材料均适用于本发明中的保护层,为了简明起见,在此不再对保护层所有可能的材料进行一一列举。此外,在本实施例,保护层107的厚度范围是10nm至200nm。需要说明的是, 在第二金属材料层106上形成保护层107为优选步骤。下面在图3(i)和图3(i’)所示结构的基础上继续对后续步骤进行说明。
接着,如图3(j)和图3(j’)所示,在保护层107上旋涂光刻胶,并对该光刻胶进行图形化以形成光刻胶图形(下文以第一光刻胶图形表示)。第一光刻胶图形包括第一图形108a以及第二图形108b。第一图形108a的数量与待形成的薄膜体声波谐振器的数量相同(即与基底100上凹槽101的数量相同),其中,每一凹槽101上方均形成有一个第一图形108a。此外,针对于每一凹槽101上方的第一图形108a来说,该第一图形108a的具体形状由在该凹槽101上待形成的薄膜体声波谐振器来决定。第二图形108b形成在与待形成的通过第一连接方式进行连接的薄膜体声波谐振器所对应的第一图形108a之间,并与该第一图形108a形成连接。具体到本实施例,如图3(j)和图3(j’)所示,第一图形108a形成在四个凹槽的上方,第二图形108b形成在与待形成的薄膜体声波谐振器C和薄膜体声波谐振器D相对应的第一图形108a之间。需要说明的是,图3(j)和图3(j’)中第一图形108a和第二图形108b之间的分界线是人为绘制,仅为使读者明确第一图形108a和第二图形108b的具体区域,在实际制造过程中该分界线并不存在。还需要说明的是,旋涂光刻胶并对其图形化以形成覆盖预定区域的光刻胶图形是本领域技术人员的惯用技术手段,为了简明起见,在此不再赘述。
接着,如图3(k)和图3(k’)所示,以第一光刻胶图形为掩膜,对叠层结构中未被第一光刻胶图形所覆盖的部分进行刻蚀直至暴露出基底100。刻蚀结束后,叠层结构中位于第一图形108a和第二图形108b下方的部分得以保留,其中,下文将位于第一图形108a下方的部分称为叠层单元、以及将位于第二图形108b下方的部分称为连接部(下文以第一连接部表示)。也就是说,刻蚀结束后,在每个第一图形108a的下方(亦即在每一凹槽的上方)均形成一个叠层单元,以及在待形成的以第一连接方式进行连接的薄膜体声波谐振器所对应的叠层单元之间形成与该叠层单元连接的第一连接部。具体到本实施例,如图3(k’)所示,在凹槽A、凹槽B、凹槽C和凹槽D上方均形成有叠层单元,分别以叠层单元A、叠层单元B、叠层单元C和叠层单元D表示。其中,叠层单元A以及叠层单元B与其他叠层单元之间没有任何连接,叠层单元C和 叠层单元D(即与待形成的薄膜体声波谐振器C和薄膜体声波谐振器D所对应的叠层单元)之间通过第一连接部形成连接。
最后,如图3(l)和图3(l’)所示,去除第一光刻胶图形。需要说明的是,如何去除光刻胶图形是本领域技术人员所悉知的技术手段,为了简明起见,在此不再赘述。去除第一光刻胶图形之后,叠层单元和第一连接部的上表面被暴露。
在步骤S105中,对刻蚀叠层结构所形成的区域进行填充以形成填充结构。在本实施例中,填充结构的形成步骤如下:
首先,如图3(m)和3(m’)所示,在去除第一光刻胶图形后得到结构(即图3(l)和图3(l’)所示结构)上沉积填充材料120,直至刻蚀叠层结构所形成的区域109被填充。
接着,如图3(n)和图3(n’)所示,在填充材料120上旋涂光刻胶并对该光刻胶进行图形化以在区域109的上方形成光刻胶图形121(下文以第二光刻胶图形121表示)。也就是说,在本实施例中,填充材料120中位于叠层结构和第一连接部上方的部分被暴露、而其他部分则被第二光刻胶图形所覆盖。
接着,如图3(o)和图3(o’)所示,对未被第二光刻胶图形所覆盖的区域进行刻蚀直至暴露叠层单元以及第一连接部的上表面,以形成对区域109进行填充的填充结构120a。在本实施例中,需要刻蚀填充材料120以及保护层107直至暴露叠层单元以及第一连接部的上表面。针对于未形成保护层107的情况,则只需要刻蚀填充材料120直至暴露叠层单元以及第一连接部的上表面即可。
最后,如图3(p)和图3(p’)所示,去除第二光刻胶图形。
需要说明的是,本发明对填充结构120a的材料(即填充材料120)并没有任何限定。由于在形成薄膜体声波谐振器的压电振荡堆之后填充结构120a将被移除,所以凡是易于移除且在移除过程中不会影响薄膜体声波谐振器其他结构(压电振荡堆、基底等)的材料都可以用于填充结构120a的实现。优选地,填充结构120a的材料(即填充材料120)和牺牲层102的材料相同,即在本实施例中均为氮化硅(SiN)。
在步骤S106中,首先,如图3(q)和图3(q’)所示,在图3(p)和图3(p’)所 示结构上沉积一层金属材料以形成覆盖叠层单元、第一连接部以及填充结构120a的第三金属材料层122。其中,第三金属材料层122优选与第二金属材料层106的材料相同,在本实施例中均为钼(Mo)。本领域技术人员可以理解的是,第三金属材料层122的材料并不仅仅限于钼,凡是适用于形成电极的材料均适用于本发明中的第三金属材料层122,为了简明起见,在此不再对第三金属材料层122所有可能的材料进行一一列举。此外,在本实施例中,第三金属材料层122的厚度范围是5nm至300nm。
接着,如图3(r)和图3(r’)所示,对第三金属材料层122进行刻蚀,以在叠层单元上形成第一上电极123a、以及在待形成的以第二连接方式进行连接的薄膜体声波谐振器所对应的第一上电极123a之间形成与该第一上电极123a连接的连接部123b(下文以第二连接部123b表示)。在本实施例中,第一上电极123a和第二连接部123b可以通过首先在第三金属材料层122上旋涂光刻胶并对该光刻胶进行图形化形成光刻胶图形、然后对未被该光刻胶图形所覆盖的区域进行刻蚀来形成。针对于待形成的以第一连接方式进行连接的薄膜体声波谐振器来说,刻蚀第三金属材料层122使得第一连接部被暴露。具体到本实施例,如图3(r)所示,叠层单元A、叠层单元B、叠层单元C以及叠层单元D的上方均形成有第一上电极123a,其中,叠层单元A和叠层单元B上方的第一上电极123a之间通过第二连接部123b连接,叠层单元B和叠层单元C上方的第一上电极123a之间通过第二连接部123b连接,叠层单元C和叠层单元D上方的第一上电极123a之间断开。
优选地,在形成第三金属材料层122之后,还可以在第三金属材料层122上沉积一层钝化材料以形成覆盖第三金属材料层122的钝化材料层(未示出)。钝化材料层可以采用氮化铝(AlN)实现,其厚度范围是100nm至300nm。相应地,针对于形成钝化材料层的情况,后续则需要刻蚀该钝化材料层以及第三金属材料层122来形成第一上电极123a以及第二连接部123b。
在步骤S107中,如图3(s)和图3(s’)所示,刻蚀去除第一连接部中的第二金属材料层106,使得通过第一连接部所连接的叠层单元其第二金属材料层106之间断开。具体到本实施例,如图3(s)所示,叠层单元C中的第 二金属材料层106和叠层单元D中的第二金属材料层106断开连接。优选地,还可以继续刻蚀第一连接部中的压电材料层105,直至暴露第一连接部中的第一金属材料层104。
至此,薄膜体声波谐振器的压电振荡堆全部形成。针对于每一待形成的薄膜体声波谐振器来说,与其对应的叠层单元中的第一金属材料层104即为压电振荡堆的下电极,压电材料层105即为压电振荡堆的压电层,第二金属材料层106为第二上电极,与位于叠层单元上方的第一上电极123a共同构成压电振荡堆的上电极。此外,在形成压电振荡堆的同时还形成了薄膜体声波谐振器之间的连接。针对于待形成的以第二连接方式进行连接的薄膜体声波谐振器来说,该薄膜体声波谐振器的上电极之间通过第二连接部123b形成连接;针对于待形成的以第一连接方式进行连接的薄膜体声波谐振器来说,该薄膜体声波谐振器的下电极之间通过第一连接部中的第一金属材料层104形成连接。
在步骤S108中,如图3(t)和图3(t’)所示,去除填充结构120a以及牺牲层102。在本实施例中,填充结构120a和牺牲层102的材料相同,基于此,通过对凹槽101的合理设计,使得凹槽101除了包括凹槽的本体部分之外还包括与凹槽本体部分连通且延伸至填充结构120a下方的延伸部(未示出),如此一来,从填充结构120a与凹槽101延伸部相对应的位置向下进行刻蚀直至达到凹槽101的延伸部,即可形成贯穿填充结构120a以及暴露牺牲层102的释放通道(未示出)。利用腐蚀溶液通过该释放通道即可一次性地将填充结构120a和牺牲层102去除。去除填充结构120a以及牺牲层102不仅仅限于上述方式,为了简明起见,在此不再对所有去除填充结构120a和牺牲层102的方式进行一一列举。此外,腐蚀溶液可以根据填充结构120a和牺牲层102的具体材料进行相应选择,本文对此不做任何限定。如图3(t’)所示,牺牲层102去除后,在牺牲层102所在区域形成空间125(下文以第一空间125表示),即在压电振荡堆的下方形成空间。填充结构120a去除后,在填充结构120a所在区域形成空间124(下文以第二空间124表示),即在环绕压电振荡堆的区域内形成空间。至此薄膜体声波谐振器结构制造完成。
与现有的空气隙型体声波谐振器结构的制造方法相比,实施本 发明可以在形成空气隙型体声波谐振器及其电极连接的同时,形成环绕空气隙型体声波谐振器压电振荡堆的空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高空气隙型体声波谐振器的性能。
相应地,本发明还提供了一种薄膜体声波谐振器结构,具体为空气隙型体声波谐振器结构。本发明所提供的薄膜体声波谐振器结构包括:
基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
每一所述压电振荡堆与所述基底之间均形成有第一空间;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
下面,将结合图3(t)和图3(t’)对上述薄膜体声波谐振器结构的各个构成部分进行详细说明。其中,图3(t)是根据本发明的一个具体实施例的薄膜体声波谐振器结构的俯视示意图,图3(t’)是图3(t)所示结构沿AA’线的剖面示意图。
具体地,如图3(t)和图3(t’)所示,本发明所提供的薄膜体声波谐振器结构包括基底100。在本实施例中,该基底100的材料为硅(Si)。本领域技术人员可以理解的是,基底100的材料为硅仅为优选实施例方式,在其他实施例中,基底100的材料还可以是锗、锗硅等半导体材料。为了简明起见,在此不再对基底100所有可能的材料进行一一列举。典型地,基底100的厚度范围是750μm至850μm,例如750μm、800μm、850μm等。
本发明所提供的薄膜体声波谐振器还包括多个压电振荡堆,该多个压电振荡堆形成在基底100上。压电振荡堆之间的连接方式包括下电极之间的第一连接方式和上电极之间的第二连接方式。每一压电振荡堆与基底 100之间均形成有第一空间125。在本实施例中,该第一空间125的深度范围是1.5μm至4μm,例如1.5μm、2μm、2.5μm、3μm、3.5μm、4μm等。
每一压电振荡堆从下至上依次包括下电极104、压电层105以及上电极。其中,在本实施例中,下电极104的材料是钼(Mo),其厚度范围是100nm至300nm。压电层105的材料是氮化铝(AlN),其厚度范围是300nm至2μm。在本实施例中,上电极从下至上依次包括第二上电极106和第一上电极123a。优选地,第一上电极123a和第二上电极106的材料相同,均为钼(Mo)。第一上电极123a的厚度范围是5nm至300nm,第二上电极106的厚度范围是100nm至500nm。
本发明所提供的薄膜体声波谐振器结构还包括第一连接部以及第二连接部123b。
在本实施例中,第一连接部从下至上依次包括下电极连接部和压电层连接部,其中,下电极连接部的材料和厚度与下电极104的材料和厚度均相同,压电层连接部的材料和厚度与压电层105的材料和厚度均相同,第一连接部位于以第一连接方式进行连接的压电振荡堆之间,第一连接部中的下电极连接部和压电层连接部与该压电振荡堆的下电极104和压电层105分别形成连接,从而实现压电振荡堆下电极之间的连接。在其他实施例中,第一连接部还可以仅仅包括与压电振荡堆下电极106形成连接的下电极连接部,该下电极连接部的材料和厚度与下电极104的材料和厚度均相同。
第二连接部123b设置在以第二连接方式进行连接的压电振荡堆的第一上电极123a之间、并与该第一上电极123a形成连接,以实现压电振荡堆上电极之间的连接。在本实施例中,第二连接部123b的材料和厚度与第一上电极123a的材料和厚度均相同。
针对于每一压电振荡堆来说,该压电振荡堆除了下电极104通过第一连接部与其他压电振荡堆形成下电极连接、和/或第一上电极123a通过第二连接部123b与其他压电振荡堆形成上电极连接之外,该压电振荡堆与其他压电振荡堆之间不存在其他连接。也就是说,基底100上的多个压电振荡堆之间除了第一连接部和第二连接部123b之外的区域呈现为第二空间124。
优选地,本发明所提供的薄膜体声波谐振器结构还包括种子层 103,该种子层103形成在压电振荡堆和基底100之间。在本实施例中,种子层103的材料是氮化铝(AlN),其厚度范围是5nm至30nm,例如5nm、10nm、15nm、20nm、25nm、30nm等。
优选地,本发明所提供的薄膜体声波谐振器还包括钝化层(未示出),该钝化层形成在上电极以及第二连接部123b上。在本实施例中,钝化层采用氮化铝(AlN)实现,其厚度范围是100nm至300nm。
与现有的空气隙型体声波谐振器结构相比,在本发明所提供的空气隙型体声波谐振器结构中,空气隙型体声波谐振器之间除了电极连接部分之外的区域均呈现为空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高空气隙型体声波谐振器的性能。
本发明还提供了一种薄膜体声波谐振器结构的制造方法,具体为反面刻蚀型体声波谐振器结构的制造方法。请参考图4,图4是根据本发明的另一个具体实施例的薄膜体声波谐振器结构的制造方法流程图。如图所示,该制造方法包括:
在步骤S201中,预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
在步骤S202中,提供基底并形成覆盖所述基底的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
在步骤S203中,对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
在步骤S204中,对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在步骤S205中,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
在步骤S206中,刻蚀去除所述第一连接部中的所述第二金属材 料层;
在步骤S207中,去除所述填充结构以及从所述基底的背面刻蚀以在所述叠层单元下方形成第三空间。
下面,对上述步骤S201至步骤S207的内容进行详细说明。
具体地,步骤S201与前文中步骤S101相同,因此可以参考前文中相应部分的内容。
在步骤S202中,基底的材料以及参数可以参考前文步骤S102中有关基底100的相关内容。形成覆盖基底的叠层结构的步骤可以参考前文步骤S103中有关叠层结构形成的相应内容。
在步骤S203中,刻蚀叠层结构以形成多个叠层单元、以及在待形成的以第一连接方式进行连接的薄膜体声波谐振器所对应的叠层单元之间形成与其连接的第一连接部。其中形成叠层单元和第一连接部的方法可以参考前文步骤S104中有关叠层单元和第一连接部形成的相应内容。
步骤S204与前文中步骤S105相同、步骤S205与前文中步骤S106相同、S206与前文中步骤S107相同,因此可以参考前文中相应部分的内容。
在步骤S207中,利用腐蚀溶液将填充结构去除以及从基底的背面刻蚀以在叠层单元下方形成空间(下文以第三空间表示)。从基底的背面刻蚀以在叠层单元下方形成第三空间的步骤对于本领域技术人员来说是惯用技术手段,为了简明起见,在此不再详细说明。
与现有的反面刻蚀型体声波谐振器结构的制造方法相比,实施本发明可以在形成反面刻蚀型体声波谐振器及其电极连接的同时,形成环绕反面刻蚀型体声波谐振器压电振荡堆的空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高反面刻蚀型体声波谐振器的性能。
相应地,本发明还提供了一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
所述基底位于每一所述压电振荡堆的下方均形成有贯穿该基 底的第三空间;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
下面,将结合图6对上述薄膜体声波谐振器结构的各个构成部分进行详细说明。其中,图6是根据本发明的另一个具体实施例的薄膜体声波谐振器结构的剖视示意图。
具体地,如图6所示,本发明所提供的薄膜体声波谐振器结构包括基底100以及位于该基底100上的多个压电振荡堆,其中,基底100位于每一压电振荡堆下方均形成有贯穿该基底的第三空间126。压电振荡堆之间的连接方式包括下电极之间的第一连接方式和上电极之间的第二连接方式。
每一压电振荡堆从下至上依次包括下电极104、压电层105以及上电极。进一步地,上电极从下至上依次包括第二上电极106和第一上电极123a。
本发明所提供的薄膜体声波谐振器结构还包括第一连接部以及第二连接部123b。
在本实施例中,第一连接部从下至上依次包括下电极连接部和压电层连接部,其中,下电极连接部的材料和厚度与下电极104的材料和厚度均相同,压电层连接部的材料和厚度与压电层105的材料和厚度均相同,第一连接部位于以第一连接方式进行连接的压电振荡堆之间,第一连接部中的下电极连接部和压电层连接部与该压电振荡堆的下电极104和压电层105分别形成连接,从而实现压电振荡堆下电极之间的连接。在其他实施例中,第一连接部还可以仅仅包括与压电振荡堆下电极106形成连接的下电极连接部,该下电极连接部的材料和厚度与下电极104的材料和厚度均相同。
第二连接部123b设置在以第二连接方式进行连接的压电振荡 堆的第一上电极123a之间、并与该第一上电极123a形成连接,以实现压电振荡堆上电极之间的连接。在本实施例中,第二连接部123a的材料和厚度与第一上电极123a的材料和厚度均相同。
针对于每一压电振荡堆来说,该压电振荡堆除了下电极104通过第一连接部与其他压电振荡堆形成下电极连接、和/或第一上电极123a通过第二连接部123b与其他压电振荡堆形成上电极连接之外,该压电振荡堆与其他压电振荡堆之间不存在其他连接。也就是说,基底100上的多个压电振荡堆之间除了第一连接部和第二连接部123b之外的区域呈现为第二空间124。
优选地,本发明所提供的薄膜体声波谐振器结构还包括种子层103,该种子层103形成在压电振荡堆和基底100之间。
优选地,本发明所提供的薄膜体声波谐振器还包括钝化层(未示出),该钝化层形成在上电极以及第二连接部123b上。
基底100、种子层103、下电极104、压电层105、第一上电极123a、第二上电极以及钝化层的材料以及参数可以参考前文中对图3(t’)所示结构中相应部分的描述,为了简明起见,在此不再赘述。
与现有的反面刻蚀型体声波谐振器结构相比,在本发明所提供的反面刻蚀型体声波谐振器结构中,反面刻蚀型体声波谐振器之间除了电极连接部分之外的区域均呈现为空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高反面刻蚀型体声波谐振器的性能。
本发明还提供了一种薄膜体声波谐振器结构的制造方法,具体为布拉格反射型体声波谐振器结构的制造方法。请参考图5,图5是根据本发明的又一个具体实施例的薄膜体声波谐振器结构的制造方法流程图。如图所示,该制造方法包括:
在步骤S301中,预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
在步骤S302中,在基底上形成布拉格反射层以及形成覆盖该布拉格反射层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
在步骤S303中,对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
在步骤S304中,对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
在步骤S305中,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
在步骤S306中,刻蚀去除所述第一连接部中的所述第二金属材料层;
在步骤S307中,去除所述填充结构。
下面,对上述步骤S301至步骤S307的内容进行详细说明。
具体地,步骤S301与前文中步骤S101相同,因此可以参考前文中相应部分的内容。
在步骤S302中,提供基底并在该基底上形成布拉格反射层。其中,基底的材料以及参数可以参考前文步骤S102中有关基底100的相关内容,在基底上形成布拉格反射层的步骤为本领域技术人员的惯用技术手段,为了简明起见,在此不再对基底以及布拉格反射层的材料、参数以及形成工艺等进行说明。形成覆盖布拉格反射层的叠层结构的步骤可以参考前文步骤S103中有关叠层结构形成的相应内容。
在步骤S303中,刻蚀叠层结构以形成多个叠层单元、以及在待形成的以第一连接方式进行连接的薄膜体声波谐振器所对应的叠层单元之间形成与其连接的第一连接部。其中形成叠层单元和第一连接部的方法可以参考前文步骤S104中有关叠层单元和第一连接部形成的相应内容。
步骤S304与前文中步骤S105相同、步骤S305与前文中步骤S106相同、S306与前文中步骤S107相同,因此可以参考前文中相应部分的内容。
在步骤S307中,利用腐蚀溶液将填充结构去除即可。
与现有的布拉格反射型体声波谐振器结构的制造方法相比,实施本发明可以在形成布拉格反射型体声波谐振器及其电极连接的同时,形成 环绕布拉格反射型体声波谐振器压电振荡堆的空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高布拉格反射型体声波谐振器的性能。
相应地,本发明还提供了一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
基底、形成于该基底上的布拉格反射层、形成于该布拉格反射层上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
下面,将结合图7对上述薄膜体声波谐振器结构的各个构成部分进行详细说明。其中,图7是根据本发明的又一个具体实施例的薄膜体声波谐振器结构的剖视示意图。
具体地,如图7所示,本发明所提供的薄膜体声波谐振器包括基底100、位于该基底100上的布拉格反射层127以及位于该布拉格反射层127上的压电振荡堆。布拉格反射层127包括交替设置的高声学阻抗层和低声学阻抗层。高/低声学阻抗层的具体材料以及厚度范围可以按照现有技术中常规的布拉格反射层进行设置。压电振荡堆之间的连接方式包括下电极之间的第一连接方式和上电极之间的第二连接方式。
每一压电振荡堆从下至上依次包括下电极104、压电层105以及上电极。进一步地,上电极从下至上依次包括第二上电极106和第一上电极123a。
本发明所提供的薄膜体声波谐振器结构还包括第一连接部以 及第二连接部123b。
在本实施例中,第一连接部从下至上依次包括下电极连接部和压电层连接部,其中,下电极连接部的材料和厚度与下电极104的材料和厚度均相同,压电层连接部的材料和厚度与压电层105的材料和厚度均相同,第一连接部位于以第一连接方式进行连接的压电振荡堆之间,第一连接部中的下电极连接部和压电层连接部与该压电振荡堆的下电极104和压电层105分别形成连接,从而实现压电振荡堆下电极之间的连接。在其他实施例中,第一连接部还可以仅仅包括与压电振荡堆下电极106形成连接的下电极连接部,该下电极连接部的材料和厚度与下电极104的材料和厚度均相同。
第二连接部123b设置在以第二连接方式进行连接的压电振荡堆的第一上电极123a之间、并与该第一上电极123a形成连接,以实现压电振荡堆上电极之间的连接。在本实施例中,第二连接部123a的材料和厚度与第一上电极123a的材料和厚度均相同。
针对于每一压电振荡堆来说,该压电振荡堆除了下电极104通过第一连接部与其他压电振荡堆形成下电极连接、和/或第一上电极123a通过第二连接部123b与其他压电振荡堆形成上电极连接之外,该压电振荡堆与其他压电振荡堆之间不存在其他连接。也就是说,基底100上的多个压电振荡堆之间除了第一连接部和第二连接部123b之外的区域呈现为第二空间124。
优选地,本发明所提供的薄膜体声波谐振器结构还包括种子层103,该种子层103形成在压电振荡堆和基底100之间。
优选地,本发明所提供的薄膜体声波谐振器还包括钝化层(未示出),该钝化层形成在上电极以及第二连接部123b上。
基底100、种子层103、下电极104、压电层105、第一上电极123a、第二上电极以及钝化层的材料以及参数可以参考前文中对图3(t’)所示结构中相应部分的描述,为了简明起见,在此不再赘述。
与现有的布拉格反射型体声波谐振器结构相比,在本发明所提供的布拉格反射型体声波谐振器结构中,布拉格反射型体声波谐振器之间除了电极连接部分之外的区域均呈现为空间。如此一来,可以有效地减少压电振荡堆内声波的损失,有助于提高布拉格反射型体声波谐振器的性能。
本发明还提供了一种滤波器,该滤波器包括前述本发明所提供的薄膜体声波谐振器结构。为了简明起见,在此不再对本发明所提供的薄膜体声波谐振器结构进行重复描述,其结构可以参考前文中相关部分的内容。相较于现有技术中的薄膜体声波谐振器来说,由于本发明所提供的薄膜体声波谐振器结构具有更优的器件性能,因此与基于现有薄膜体声波谐振器结构所形成的现有滤波器相比,基于本发明所提供的薄膜体声波谐振器结构所形成的滤波器性能更优。
本发明还提供了一种双工器,该双工器包括发射滤波器和接收滤波器,其中,发射滤波器和/或接收滤波器采用本发明所提供的滤波器实现。为了简明起见,在此不再对本发明所提供的滤波器进行重复描述,其结构可以参考前文中相关部分的内容。由于本发明所提供的滤波器相较于现有滤波器来说性能更优,因此与基于现有滤波器所形成的现有双工器相比,基于本发明所提供的滤波器所形成的双工器其性能也更优。
本发明的应用范围不局限于说明书中描述的特定实施例的工艺、机构、制造、物质组成及手段。从本发明的公开内容,作为本领域的普通技术人员将容易地理解,对于目前已存在或者以后即将开发出的工艺、机构、制造、物质组成及手段,其中它们执行与本发明描述的对应实施例大体相同的功能或者获得大体相同的结果,依照本发明可以对它们进行应用。因此,本发明所附权利要求旨在将这些工艺、机构、制造、物质组成或手段包含在其保护范围内。

Claims (15)

  1. 一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
    预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    刻蚀基底形成多个凹槽并在该多个凹槽内填充牺牲层;
    形成覆盖所述基底和所述牺牲层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
    对所述叠层结构进行刻蚀,在每一所述凹槽上方形成叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
    对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
    在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
    刻蚀去除所述第一连接部中的所述第二金属材料层;
    去除所述填充结构以及所述牺牲层。
  2. 根据权利要求1所述的制造方法,其中,对所述叠层结构进行刻蚀、在每一所述凹槽上方形成叠层单元以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部的步骤包括:
    在所述叠层结构上旋涂光刻胶并对该光刻胶进行图形化以形成第一光刻胶图形;
    对所述叠层结构未被所述第一光刻胶图形覆盖的部分进行刻蚀直至暴露所述基底,刻蚀结束后在每一所述凹槽上方形成叠层单元以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
    去除所述第一光刻胶图形。
  3. 根据权利要求2所述的制造方法,其中,对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构的步骤包括:
    在去除所述第一光刻胶图形后得到的结构上沉积填充材料,直至刻蚀所述叠层结构所形成的区域被填充;
    在所述填充材料上旋涂光刻胶并对该光刻胶进行图形化以在所述区域的上方形成第二光刻胶图形;
    对所述填充材料未被所述第二光刻胶图形覆盖的部分进行刻蚀直至暴露所述叠层单元,以在所述区域内形成填充结构;
    去除所述第二光刻胶图形。
  4. 根据权利要求3所述的制造方法,其中,所述填充结构的材料和所述牺牲层的材料相同。
  5. 根据权利要求1所述的制造方法,其中,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第二连接部的步骤包括:
    形成覆盖所述叠层单元、所述第一连接部以及所述填充结构的第三金属材料层;
    对所述第三金属材料层进行刻蚀,在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部。
  6. 根据权利要求1所述的制造方法,其中:
    所述第二金属材料层和所述第三金属材料层的材料相同,其中,所述第二金属材料层的厚度范围是100nm至500nm,所述第三金属材料层的厚度范围是5nm至300nm。
  7. 根据权利要求1所述的制造方法,其中,去除所述填充结构以及所述 牺牲层的步骤包括:
    形成贯穿所述填充结构直至暴露所述牺牲层的释放通道,并通过所述释放通道去除所述填充结构以及所述牺牲层。
  8. 一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
    基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    每一所述压电振荡堆与所述基底之间均形成有第一空间;
    每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
    以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
    所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
  9. 根据权利要求8所述的薄膜体声波谐振器,其中:
    所述第一上电极和所述第二上电极的材料相同,其中,所述第一上电极的厚度范围是5nm至300nm,所述第二上电极的厚度范围是100nm至500nm。
  10. 一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
    预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    提供基底并形成覆盖所述基底的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
    对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
    对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
    在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
    刻蚀去除所述第一连接部中的所述第二金属材料层;
    去除所述填充结构以及从所述基底的背面刻蚀以在所述叠层单元下方形成第三空间。
  11. 一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
    基底、形成于该基底上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    所述基底位于每一所述压电振荡堆的下方均形成有贯穿该基底的第三空间;
    每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
    以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
    所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
  12. 一种薄膜体声波谐振器结构的制造方法,该制造方法包括:
    预先确定待形成的薄膜体声波谐振器之间的连接方式,该连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    在基底上形成布拉格反射层以及形成覆盖该布拉格反射层的叠层结构,该叠层结构从下至上依次包括第一金属材料层、压电材料层以及第二金属材料层;
    对所述叠层结构进行刻蚀,以形成多个叠层单元、以及在待形成的以所 述第一连接方式进行连接的薄膜体声波谐振器所对应的所述叠层单元之间形成与其连接的第一连接部;
    对刻蚀所述叠层结构所形成的区域进行填充以形成填充结构;
    在所述叠层单元上形成第一上电极、以及在待形成的以所述第二连接方式进行连接的薄膜体声波谐振器所对应的所述第一上电极之间形成与其连接的第二连接部;
    刻蚀去除所述第一连接部中的所述第二金属材料层;
    去除所述填充结构。
  13. 一种薄膜体声波谐振器结构,该薄膜体声波谐振器结构包括:
    基底、形成于该基底上的布拉格反射层、形成于该布拉格反射层上的多个压电振荡堆、第一连接部以及第二连接部,其中,所述多个压电振荡堆之间的连接方式包括下电极之间的第一连接方式以及上电极之间的第二连接方式;
    每一所述压电振荡堆从下至上依次包括下电极、压电层以及上电极,该上电极从下至上依次包括第二上电极和第一上电极;
    以所述第一连接方式进行连接的所述压电振荡堆其下电极之间通过所述第一连接部连接,以所述第二连接方式进行连接的所述压电振荡堆其第一上电极之间通过所述第二连接部连接;
    所述多个压电振荡堆之间除了所述第一连接部和所述第二连接部之外的区域呈第二空间。
  14. 一种滤波器,该滤波器包括如权利要求8、11、13中任一项所述的薄膜体声波谐振器结构。
  15. 一种双工器,该双工器包括发射滤波器和接收滤波器,其中,所述发射滤波器和/或所述接收滤波器采用权利要求14所述的滤波器实现。
PCT/CN2020/126817 2019-12-11 2020-11-05 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器 WO2021114970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911265618.XA CN111130486A (zh) 2019-12-11 2019-12-11 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器
CN201911265618.X 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021114970A1 true WO2021114970A1 (zh) 2021-06-17

Family

ID=70498471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126817 WO2021114970A1 (zh) 2019-12-11 2020-11-05 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器

Country Status (2)

Country Link
CN (1) CN111130486A (zh)
WO (1) WO2021114970A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130486A (zh) * 2019-12-11 2020-05-08 北京汉天下微电子有限公司 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器
TWI714516B (zh) * 2020-07-02 2020-12-21 友達光電股份有限公司 電容式換能裝置及其製造方法
CN114257194A (zh) * 2020-09-21 2022-03-29 中芯集成电路(宁波)有限公司上海分公司 薄膜体声波谐振器、其制造方法及滤波器
CN113659954B (zh) * 2021-08-19 2023-10-27 苏州汉天下电子有限公司 一种体声波谐振器及其封装方法和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050168102A1 (en) * 2004-02-04 2005-08-04 Hitachi Media Electronics Co., Ltd. Film bulk acoustic wave resonator, film bulk acoustic wave resonator filter and method of manufacturing film bulk acoustic wave resonator
CN101674062A (zh) * 2008-09-09 2010-03-17 富士通株式会社 滤波器、双工器和通信装置
JP2015189140A (ja) * 2014-03-28 2015-11-02 セイコーエプソン株式会社 圧電アクチュエーター、液体噴射ヘッド及び液体噴射装置
CN109889174A (zh) * 2019-02-20 2019-06-14 中国科学院微电子研究所 一种谐振器及其制作方法
CN110445474A (zh) * 2018-05-04 2019-11-12 贵州中科汉天下微电子有限公司 薄膜体声波谐振器及其制造方法以及薄膜体声波滤波器
CN111130486A (zh) * 2019-12-11 2020-05-08 北京汉天下微电子有限公司 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289824A (zh) * 2019-05-22 2019-09-27 杭州左蓝微电子技术有限公司 薄膜体声波谐振器及其制备方法
CN110289825B (zh) * 2019-07-29 2024-03-12 苏州汉天下电子有限公司 一种薄膜体声波谐振器及其制造方法、滤波器以及双工器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050168102A1 (en) * 2004-02-04 2005-08-04 Hitachi Media Electronics Co., Ltd. Film bulk acoustic wave resonator, film bulk acoustic wave resonator filter and method of manufacturing film bulk acoustic wave resonator
CN101674062A (zh) * 2008-09-09 2010-03-17 富士通株式会社 滤波器、双工器和通信装置
JP2015189140A (ja) * 2014-03-28 2015-11-02 セイコーエプソン株式会社 圧電アクチュエーター、液体噴射ヘッド及び液体噴射装置
CN110445474A (zh) * 2018-05-04 2019-11-12 贵州中科汉天下微电子有限公司 薄膜体声波谐振器及其制造方法以及薄膜体声波滤波器
CN109889174A (zh) * 2019-02-20 2019-06-14 中国科学院微电子研究所 一种谐振器及其制作方法
CN111130486A (zh) * 2019-12-11 2020-05-08 北京汉天下微电子有限公司 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器

Also Published As

Publication number Publication date
CN111130486A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021114970A1 (zh) 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器
US7649304B2 (en) Piezoelectric resonator and piezoelectric filter
US8756777B2 (en) Method of manufacturing a ladder filter
US7439824B2 (en) Bulk acoustic wave filter and method for eliminating unwanted side passbands
JP4426748B2 (ja) 単一の基板上で異なった中心周波数を有するバルク音響波フィルタ、およびそれを提供する方法
JP2005286945A (ja) 共振子、フィルタおよび共振子の製造
CN111211757B (zh) 一种体声波谐振器的顶电极结构及制作工艺
JP2002198758A (ja) FBAR(FilmBulkAcousticResonator)素子及びその製造方法
JP2006345170A (ja) 薄膜圧電共振器
JP2008301453A (ja) 薄膜圧電共振器及びこれを用いたフィルタ回路
US20180226939A1 (en) Method for manufacturing piezoelectric thin-film element
JP2008182543A (ja) 薄膜圧電共振器とそれを用いた薄膜圧電フィルタ
US7119638B2 (en) Film bulk acoustic resonator having an air gap and a method for manufacturing the same
JP2006254295A (ja) 圧電共振素子の製造方法および圧電共振素子
US11411548B2 (en) Bulk acoustic wave resonator and bulk acoustic wave filter
JP5040172B2 (ja) 薄膜圧電共振器と薄膜圧電フィルタ
JP2008211392A (ja) 共振器及びその製造方法
US7109637B2 (en) Thin-film bulk acoustic oscillator and method of manufacturing same
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
JP2009207075A (ja) 共振子フィルタの製造方法
JP2009290591A (ja) Bawフィルタ
JP2009290367A (ja) Baw共振装置およびその製造方法
JP2021534612A (ja) 薄膜バルク音響波共振器およびその製造方法
CN111030631B (zh) 声波器件的制作方法及声波器件
JP2008005186A (ja) 薄膜圧電共振器と薄膜圧電フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20898162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20898162

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22-03-2023)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/03/2023)