WO2021114855A1 - 一种飞机修理复合材料柔性自动打磨装置及打磨方法 - Google Patents

一种飞机修理复合材料柔性自动打磨装置及打磨方法 Download PDF

Info

Publication number
WO2021114855A1
WO2021114855A1 PCT/CN2020/120783 CN2020120783W WO2021114855A1 WO 2021114855 A1 WO2021114855 A1 WO 2021114855A1 CN 2020120783 W CN2020120783 W CN 2020120783W WO 2021114855 A1 WO2021114855 A1 WO 2021114855A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
grinding
dust suction
dust
sensitive
Prior art date
Application number
PCT/CN2020/120783
Other languages
English (en)
French (fr)
Inventor
阚艳
王纬国
季国梁
孙涛
姚旭成
Original Assignee
上海航翼高新技术发展研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海航翼高新技术发展研究院有限公司 filed Critical 上海航翼高新技术发展研究院有限公司
Priority to EP20870447.8A priority Critical patent/EP3854522A4/en
Publication of WO2021114855A1 publication Critical patent/WO2021114855A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0065Polishing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0007Movable machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0038Other grinding machines or devices with the grinding tool mounted at the end of a set of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/007Weight compensation; Temperature compensation; Vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels

Definitions

  • the invention belongs to the technical field of composite material polishing, and particularly relates to an aircraft repair composite material flexible automatic polishing device and a polishing method of an aircraft repair composite material flexible automatic polishing device.
  • the wing, fuselage, radome and other components made of composite materials are often damaged, which affects the structural strength and flight performance of the aircraft, and therefore must be repaired.
  • a repair sheet that fits the groove to be repaired is prepared by grinding, and then repaired by equipment such as a heat patch instrument and auxiliary materials.
  • the sheet is pasted into the groove to be repaired, and the repaired surface is polished after curing.
  • the grinding, digging, polishing and other operations involved in the restoration process are all manual manual operations. The grinding intensity is high, the quality is uncontrollable, and occupational health is endangered.
  • Chinese patent application number CN201711495033.8 discloses a robot grinding control system and method.
  • the system includes: a line laser sensor to scan to obtain the structural parameters of the grinding workpiece; a 3D model building module to construct a 3D model of the grinding workpiece; and grinding area generation Module, based on the CAD model to obtain the three-dimensional model of the polishing area; trajectory generation module, generating the polishing trajectory of the polishing area and the polishing force corresponding to the trajectory point; simulation module, the three-dimensional robot performs polishing simulation based on the polishing trajectory and the polishing force corresponding to the trajectory point; The optimization module optimizes the generated polishing trajectory and the polishing force of the corresponding trajectory point.
  • the robot controller controls the robot polishing based on the optimized polishing trajectory and the polishing force of the corresponding trajectory point.
  • the grinding trajectory is automatically planned based on the automatically obtained grinding area model.
  • the planning process of the grinding trajectory is based on force control to correct the end position of the robot, which can improve the grinding accuracy and is suitable for the grinding of complex workpieces.
  • the disadvantage of this system is that it is mainly aimed at the deburring field of metal parts such as die castings, and is not suitable for the grinding process of composite materials.
  • the second is that it only introduces the robot grinding control system, and does not fully describe the overall structure and implementation details of the automatic grinding device.
  • Chinese patent application number CN201910524443.3 discloses a robot flexible intelligent grinding system based on a six-dimensional force sensor.
  • the system includes a teach pendant, a robot controller, a robot body, a six-dimensional force sensor, a polishing device, etc.
  • the six-dimensional force sensor is installed at the end of the robot body, and the polishing device is connected to the other end of the six-dimensional force sensor.
  • the two-dimensional area to be polished is defined by dragging and teaching, and the three-dimensional polishing trajectory is scanned through slow simulation.
  • the relative position and polishing force of the polishing device and the polished surface are fed back in real time through the force sensor.
  • the position and posture of the polishing device is adjusted by the robot controller to complete the polishing.
  • the invention can realize the full curvature coverage of the polishing work site through real-time force control without offline programming, vision system and three-dimensional scanning system in the flexible polishing work, simple operation and convenient maintenance.
  • the disadvantage of this system is that it only uses drag teaching for path planning, and the accuracy of the path is insufficient; the second is that the polishing device is not elaborated, and the operation is complicated under the condition of large curvature. Therefore, in view of the above problems, it is of great significance to provide a flexible automatic polishing device for aircraft repairing composite materials and a polishing method for a flexible automatic polishing device for aircraft repairing composite materials.
  • the invention provides a flexible automatic polishing device and a polishing method for composite materials for aircraft repair, which realizes the semi-automatic or automatic operation of polishing, excavation, and polishing involved in composite material repair, reduces manual operation intensity, reduces occupational health hazards, and improves repair quality .
  • An aircraft repair composite material flexible automatic polishing device of the present invention includes a frame-type mobile platform with a support plate, a collaborative robot installed on the mobile platform, a floating force-sensitive polishing head mechanism installed at one end of the collaborative robot, and a mobile Dust collection device and control components on the platform;
  • the collaborative robot includes a six-axis light manipulator mounted on the top of the support plate, a six-axis force sensor mounted on the end of the six-axis light manipulator, a robot controller and a teaching pendant mounted on the bottom support plate of the mobile platform;
  • the floating force-sensitive grinding head mechanism is installed on a six-dimensional force sensor, and includes a floating constant force device, a pneumatic control spindle, an automatic tool change tool installation interface, and a tool handle installed at the bottom of the automatic tool change tool installation interface and with a grinding wheel and sandpaper. ;
  • the dust collection device includes a dust collection host installed on the upper part of the bottom plate of the mobile platform and a dust collection hood communicated with the dust collection host through a dust collection tube fixed on the six-axis light-duty mechanical arm, and the dust collection hood is installed on the six-axis light-duty mechanical arm.
  • the end of the lightweight robotic arm is wrapped with a floating force-sensitive grinding head mechanism;
  • the dust suction hood adopts an umbrella-shaped transparent plastic film elastic structure.
  • the outer surface is uniformly provided with unidirectional air holes from the outside to the inside.
  • the edge of the cover is equipped with a rubber suction strip, and the top is provided with a floating force-sensitive polishing with a belt mouth design.
  • the head mechanism installation hole is provided with a dust suction pipe connection end connected with the dust suction pipe through the outside;
  • the control component includes a host computer and a man-machine operation interface composed of a screen, a keyboard, a mouse and a general control panel, and the host computer realizes communication control with the robot controller, the floating force-sensitive grinding head mechanism, and the dust suction host.
  • the six-dimensional force sensor is equipped with a line laser sensor controlled by communication with the upper computer.
  • a handle is provided on the side of the mobile platform, and casters and adjustable support feet are provided on the bottom.
  • a method for polishing an aircraft repair composite material flexible automatic polishing device including the following steps:
  • Fine adjustment of the polishing position use the line laser sensor to scan the polishing workpiece to obtain the surface model of the polishing workpiece, and generate an accurate polishing path based on the surface model in the host computer;
  • Polishing control program setting Set various force control parameters of the floating force-sensitive sanding head mechanism to complete the setting of various sanding programs;
  • Test result Remove the dust hood and test the polishing effect.
  • steps S04-S10 can be repeated, or the polishing path plan of the number of repetitions can be set when the polishing control program of step S06 is set.
  • the beneficial effects of the present invention include:
  • the grinding execution mechanical structure of the present invention adopts a collaborative robot, which greatly improves the safety, collaboration and ease of use of the entire device, and efficiently realizes the semi-automatic or automatic operation of the grinding, excavation, polishing and other operations involved in composite repair. Reduce the intensity of manual operation.
  • the polishing head of the present invention combines the drag teaching function to quickly realize the coarse adjustment of the polishing area and the space attitude of the robot arm, and uses the line laser sensor to quickly obtain the curved surface model of the polishing workpiece, and generate an accurate polishing path, which satisfies the requirements of composite materials. Fast, accurate and differentiated repair and polishing needs.
  • the vacuum hood structure of the present invention adopts a side opening and closing seal, the cover body is a transparent plastic film, the cover body is covered with unidirectional air holes from the outside in, and an umbrella structure with rubber suction strips on the edge.
  • the waste debris, dust, and impurities in the grinding process are efficiently absorbed by the airflow, which effectively prevents the spillage and pollution of the grinding impurities and dust.
  • the mobile platform of the present invention adopts a convenient mobile structure with adjustable supporting feet, casters, and handles, which is easy to move and has high safety and stability during work.
  • the complete polishing device of the present invention integrates dust collection and dust removal devices and a mobile platform, which is convenient for on-site deployment and adjustment of maintenance and reduces occupational health hazards.
  • Fig. 1 is a schematic structural diagram of an aircraft repair composite material flexible automatic polishing device according to the present invention, which does not include a dust hood;
  • Figure 2 is a schematic diagram of the structure of the dust hood in an aircraft repair composite material flexible automatic polishing device of the present invention
  • Fig. 3 is a step diagram of a polishing method of a flexible automatic polishing device for aircraft repair composite materials according to the present invention
  • Adjustable support feet, 2- casters, 3- mobile platform, 4- teach pendant, 5- robot controller, 6-handle, 7- host computer, 8- mouse, 9- keyboard, 10- screen, 11 -Master control panel, 12-six-axis light mechanical arm, 13-six-axis force sensor, 14-line laser sensor, 15-floating constant force device, 16-pneumatic spindle, 17-automatic tool change tool installation interface, 18- Knife handle with grinding wheel sandpaper, 19-vacuum main unit, 20-vacuum hood, 21-floating force-sensitive grinding head mechanism mounting hole, 22-suction pipe connection end, 23-rubber suction strip, 24-single guide Stomata.
  • an aircraft repair composite material flexible automatic polishing device of the present invention includes a frame type mobile platform 3 with a support plate, a collaborative robot installed on the mobile platform 3, and one end of the collaborative robot installed
  • the collaborative robot includes a six-axis light-duty manipulator 12 mounted on the top of the support plate, and a six-dimensional light-duty manipulator mounted on the end of the six-axis light-duty manipulator 12
  • the force sensor 13, the robot controller 5 and the teaching pendant 4 installed on the bottom support plate of the mobile platform 3; the six-dimensional force sensor 13 is used to realize the drag teaching and collision detection of the end of the six-axis light manipulator 12, and improve the polishing
  • the ease of use, collaboration and safety of the device; the robot controller 5 and the teach pendant 4 are the controllers and teach pendants for the collaborative robot;
  • the floating force-sensitive grinding head mechanism is installed on the six-dimensional force sensor 13, including a floating constant force device 15, an air-controlled spindle 16, an automatic tool change tool installation interface 17, installed at the bottom of the automatic tool change tool installation interface 17 and has a grinding wheel sandpaper
  • the tool holder 18 is designed to meet the grinding requirements of different process parameters;
  • the floating constant force device 15 can realize the axial or radial floating of the grinding head with constant force to ensure fine and precise grinding;
  • the pneumatic spindle 16 is pneumatically driven, which can be adjusted Air pressure adjusts the grinding power;
  • the vacuuming device includes a vacuuming host 19 installed on the upper part of the bottom plate of the mobile platform 3 and a vacuuming hood 20 that communicates with the vacuuming host 19 through a vacuum tube fixed on the six-axis light-duty robot arm 12.
  • the vacuuming hood 20 is installed on The end of the six-axis light-duty robotic arm 12 is wrapped with a floating force-sensitive grinding head mechanism. One end of the vacuum tube is connected to the dust collection host 19, and the other end is connected to the vacuum hood 20. It is fixed on the light-duty robotic arm 12 to achieve grinding dust.
  • the vacuum hood 20 adopts an umbrella-shaped transparent plastic film elastic structure, which is convenient for observing the internal grinding conditions.
  • the outer surface is uniformly provided with unidirectional air guide holes 24 from the outside to the inside to guide the external airflow to the inside of the vacuum hood 20 for easy dust collection
  • the host 19 realizes the airflow absorption of the grinding dust.
  • the edge of the cover is equipped with a rubber suction strip 23.
  • the rubber suction strip 23 is an opening and closing seal, which can be adsorbed on the surface of the grinding workpiece to form a closed space to prevent the grinding dust from dissipating, and is easy to install and disassemble.
  • the top is provided with a floating force-sensitive grinding head mechanism mounting hole 21 with a beam opening design.
  • the beam opening is the opening that can be contracted and tied, which is convenient for the dust hood 20 to be fitted with a floating force-sensitive grinding head mechanism.
  • the outside of the dust hood 20 is penetrated with The dust suction pipe connection end 22 connected to the dust suction pipe, so that the dust suction host 19 sucks the dust generated in the dust suction hood 20 through the dust suction pipe;
  • the control component includes the upper computer 7 and the man-machine operation interface composed of the screen 10, the keyboard 9, the mouse 8 and the general control panel 11, which are used to realize the integrated control of the entire polishing device by the operator.
  • the upper computer 7 and the robot controller 5 , Floating force-sensitive grinding head mechanism and dust suction host 19 realize communication control.
  • the six-dimensional force sensor 13 is equipped with a line laser sensor 14 which is communicated and controlled with the host computer 7 to scan the polished workpiece and obtain a curved surface model of the polished workpiece.
  • the mobile platform 3 is provided with a handle 6 on the side, casters 2 and an adjustable support foot 1 at the bottom, and the dust collector 19 is integrated on the mobile platform 3, which is convenient to move with the complete set of polishing devices to meet the needs of station change;
  • the adjusting support foot 1 is stowed, the caster 2 is released, and the whole set of equipment is transferred through the handle 6.
  • the adjusting support foot 1 is lifted up the mobile platform 3 to ensure the stable placement of the whole set of polishing equipment.
  • a method for polishing an aircraft repair composite material flexible automatic polishing device includes the following steps:
  • Power on and ventilation connect to the external power supply and gas supply lines, and start the collaborative robot and the host computer 7 through the man-machine operation interface;
  • Fine adjustment of the polishing position Use the line laser sensor 14 to scan the polishing workpiece to obtain the surface model of the polishing workpiece, and generate an accurate polishing path based on the surface model in the upper computer 7; that is, the upper computer 7 is based on S04
  • the space posture of the robot, the curved surface model obtained by scanning the line laser sensor 14 is converted in the robot coordinate system to form curved surface model data based on the robot coordinate system, and the robot polishing mechanism and parameter settings are performed on the curved surface to generate accurate polishing path
  • Polishing control program setting Set various force control parameters of the floating force-sensitive sanding head mechanism to complete the setting of various sanding programs;
  • Test result Remove the dust hood 20 and test the polishing effect.
  • steps S04-S10 can be repeated, or the polishing path plan of the number of repetitions can be set when the polishing control program of step S06 is set.
  • the beneficial effects of the present invention include:
  • the grinding execution mechanical structure of the present invention adopts a collaborative robot, which greatly improves the safety, collaboration and ease of use of the whole set of equipment, and efficiently realizes the semi-automatic or automatic operation of the grinding, excavation, polishing and other operations involved in composite repair. Reduce the intensity of manual operation.
  • the polishing head of the present invention combines the drag teaching function to quickly realize the coarse adjustment of the polishing area and the space attitude of the robot arm, and uses the line laser sensor to quickly obtain the curved surface model of the polishing workpiece, and generate an accurate polishing path, which satisfies the requirements of composite materials. Fast, accurate and differentiated repair and polishing needs.
  • the vacuum hood structure of the present invention adopts a side opening and closing seal, the cover body is a transparent plastic film, the cover body is covered with unidirectional air holes from the outside in, and an umbrella structure with rubber suction strips on the edge.
  • the waste debris, dust, and impurities in the grinding process are efficiently absorbed by the airflow, which effectively prevents the spillage and pollution of the grinding impurities and dust.
  • the mobile platform of the present invention adopts a convenient mobile structure with adjustable supporting feet, casters, and handles, which is easy to move and has high safety and stability during work.
  • the complete polishing device of the present invention integrates dust collection and dust removal devices and a mobile platform, which is convenient for on-site deployment and adjustment of maintenance and reduces occupational health hazards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种飞机修理复合材料柔性自动打磨装置及打磨方法,包括移动平台(3)、协作机器人、浮动力敏打磨头机构、吸尘装置以及控制组件,协作机器人包括六轴轻型机械臂(12)、六维力传感器(13)、机器人控制器(5)和示教器(4);浮动力敏打磨头机构包括浮动恒力装置(15)、气控主轴(16)、自动换刀刀具安装接口(17)、带有砂轮砂纸的刀柄(18);吸尘装置包括吸尘主机(19)以及安装于六轴轻型机械臂(12)的末端的吸尘罩(20),吸尘罩(20)采用伞状的透明塑料薄膜弹性结构,外表面均布开设有从外向内的单向导气孔(24),罩口边缘带有橡胶吸条(23)。实现了复合材料修复涉及的打磨、挖除、抛光等操作过程半自动或自动化,降低人工操作强度,减轻职业健康危害,提升修复品质。

Description

一种飞机修理复合材料柔性自动打磨装置及打磨方法
本申请要求于2019年12月14日提交中国专利局、申请号为201911287212.1、发明名称为“一种飞机修理复合材料柔性自动打磨装置及打磨方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于复合材料打磨技术领域,特别是涉及一种飞机修理复合材料柔性自动打磨装置以及一种飞机修理复合材料柔性自动打磨装置的打磨方法。
背景技术
由于复合材料具有热稳定性好,比强度、比刚度高等诸多优点,因此在航空、航天等领域使用率逐步上升,例如在飞机机翼、机身、雷达罩等部位已大量应用,随之带来了相应的维护保障问题。
飞机在服役使用过程中,基于复合材料制成的机翼、机身、雷达罩等部件常常会出现损伤,影响飞机结构强度和飞行性能,因此必须进行修复。对这些部件进行修复时,首先是将损伤部位打磨挖除,形成待修补凹槽,同时打磨制备出与待修补凹槽贴合的修补片,然后通过热补仪等设备装置及辅助材料将修补片粘贴到待修补凹槽中,待固化后再对修复表面进行打磨抛光。目前修复过程中涉及的打磨、挖除、抛光等操作均是人工手动操 作,打磨强度大、质量不可控,危害职业健康。
《科学技术与工程》2016年5月第16卷15期发表的《机器人打磨碳纤维复合材料工艺研究》公开了一种碳纤维复合材料自动打磨系统及相应打磨工艺参数,该系统硬件组成报告6轴KUKA工业机器人KR60-3、柔顺恒力控制器Pushcorp AFD71、英格兰索气动马达4800D及打磨头组成。该自动打磨系统工作稳定,克服了传统打磨系统质量不稳定、打磨环境差的缺点。该系统的缺点一是采用了工业机器人,需要增加额外的安全防护措施,系统的柔性和协作性不高;二是缺少除尘、吸尘等配套设施的描述。
中国专利申请号为CN201711495033.8公开了一种机器人打磨控制系统及方法,该系统包括:线激光传感器,扫描获取打磨工件的结构参数;三维模型构建模块,构建打磨工件的三维模型;打磨区域生成模块,基于CAD模型获取打磨区域的三维模型;轨迹生成模块,生成打磨区域的打磨轨迹及对应轨迹点的打磨力;仿真模块,三维机器人基于打磨轨迹及对应轨迹点的打磨力进行打磨仿真;轨迹优化模块,对生成的打磨轨迹及对应轨迹点的打磨力进行优化,机器人控制器基于优化后打磨轨迹及对应轨迹点的打磨力来控制机器人打磨。基于自动获取的打磨区域模型来自动规划打磨轨迹,打磨轨迹的规划过程是基于力控制来修正机器人末端位置,能提高打磨精度,且能适用于复杂工件的打磨。该系统的缺点一是主要针对压铸件等金属零件的去毛刺领域,不适合复合材料挖补打磨过程;二是仅介绍了机器人打磨控制系统,未完整描述自动打磨装置整体结构及实现细节。
中国专利申请号为CN201910524443.3公开了一种基于六维力传感器 的机器人柔性智能打磨系统,该系统包括示教器、机器人控制器、机器人本体、六维力传感器、抛磨装置等。其中六维力传感器安装在机器人本体末端,抛磨装置与六维力传感器另一端连接。在打磨之前,通过拖动示教的方式框定打磨的二维区域,通过慢速模拟的方式扫描三维打磨轨迹,打磨过程中通过力传感器实时反馈打磨装置和打磨曲面的相对位姿和打磨力,通过机器人控制器实现打磨装置位姿调整,从而完成打磨。本发明可实现在柔性打磨工作中,不需要离线编程、视觉系统和三维扫描系统等,通过实时力控的方式实现打磨工作现场全曲率覆盖,操作简单,维护方便。该系统的缺点一是仅利用拖动示教进行路径规划,路径的精确性存在不足;二是对于抛磨装置未详细阐述,在大曲率条件下操作复杂。因此针对以上问题,提供一种飞机修理复合材料柔性自动打磨装置以及一种飞机修理复合材料柔性自动打磨装置的打磨方法具有重要意义。
发明内容
本发明的一种飞机修理复合材料柔性自动打磨装置及打磨方法,实现了复合材料修复涉及的打磨、挖除、抛光等操作过程半自动或自动化,降低人工操作强度,减轻职业健康危害,提升修复品质。
为解决上述技术问题,本发明是通过以下技术方案实现的:
本发明的一种飞机修理复合材料柔性自动打磨装置,包括框架式带有支撑板的移动平台、安装于移动平台上的协作机器人、安装于协作机器人一端的浮动力敏打磨头机构、安装于移动平台上的吸尘装置以及控制组件;
所述协作机器人包括安装于支撑板顶部的六轴轻型机械臂、安装于六轴轻型机械臂末端的六维力传感器、安装于移动平台底部支撑板上的机器 人控制器和示教器;
所述浮动力敏打磨头机构安装于六维力传感器上,包括浮动恒力装置、气控主轴、自动换刀刀具安装接口、安装于自动换刀刀具安装接口底部且带有砂轮砂纸的刀柄;
所述吸尘装置包括安装于移动平台底板上部的吸尘主机以及通过固定于六轴轻型机械臂上的吸尘管与吸尘主机相连通的吸尘罩,所述吸尘罩安装于六轴轻型机械臂的末端,包裹着浮动力敏打磨头机构;
所述吸尘罩采用伞状的透明塑料薄膜弹性结构,外表面均布开设有从外向内的单向导气孔,罩口边缘带有橡胶吸条,顶部开设有带束口设计的浮动力敏打磨头机构安装孔,外部贯通设置有与吸尘管相连接的吸尘管路连接端;
所述控制组件包括上位机以及由屏幕、键盘、鼠标及其总控面板构成的人机操作界面,所述上位机与机器人控制器、浮动力敏打磨头机构、吸尘主机实现通讯控制。
进一步地,所述六维力传感器上安装有与上位机通讯控制的线激光传感器。
进一步地,所述移动平台侧部设置有把手、底部设置有脚轮和可调支撑脚。
一种飞机修理复合材料柔性自动打磨装置的打磨方法,包括如下步骤:
S01、将打磨装置移动至打磨工位:将调节支撑脚收起,松开脚轮,通过把手转移整套装置至待打磨工位;
S02、确保打磨装置稳定:通过调节支撑脚顶起移动平台,确保整套装 置稳定放置;
S03、通电通气:连接上外部的供电和供气线路,通过人机操作界面启动协作机器人及上位机;
S04、打磨位置粗调:利用协作机器人的拖动示教功能完成打磨区域及六轴轻型机械臂空间姿态的初步确认;
S05、打磨位置精调:利用线激光传感器对打磨工件进行扫描,获取打磨工件的曲面模型,在上位机中基于曲面模型生成准确的打磨路径;
S06、打磨控制程序设置:设置浮动力敏打磨头机构的各项力控参数,完成各项打磨程序的设置;
S07、安装吸尘罩并吸附于打磨工件表面:将吸尘罩安装在协作机器人的末端,包裹着浮动力敏打磨头,罩口边缘带有橡胶吸条吸附在打磨工件表面,形成封闭空间,防止打磨粉尘散逸;
S08、按打磨路径打磨:启动吸尘主机、浮动力敏打磨头机构及协作机器人按生成的打磨路径执行打磨工序;
S09、打磨执行完毕后关闭:打磨路径执行完毕后,关闭协作机器人、浮动力敏打磨头机构及吸尘主机;
S10、检测结果:取下吸尘罩,检测打磨效果。
进一步地,若需要连续打磨,可重复执行所述步骤S04-S10,或者在所述步骤S06的打磨控制程序设置时设置重复次数的打磨路径规划。
本发明与现有技术相比的有益效果包括:
1、本发明的打磨执行机械结构采用了协作机器人,使整套装置的安全性、协作性及易用性大大提高,高效实现复合材料修复涉及的打磨、挖除、 抛光等操作过程半自动或自动化,降低人工操作强度。
2、本发明的打磨头部结合了拖动示教功能快速实现打磨区域及机械臂空间姿态的粗调,利用线激光传感器快速获取打磨工件的曲面模型,生成精确的打磨路径,满足了复合材料快速、精确、差异的修复打磨需求。
3、本发明的吸尘罩结构采用带侧边开合封条、罩体为透明塑料薄膜、罩体布满从外而内的单向导气孔、边缘带有橡胶吸条的伞状结构,对加工打磨过程中的废屑、粉尘、杂质气流高效吸收,有效防止打磨杂质粉尘的散溢和污染。
4、本发明的移动平台采用带有可调支撑脚、脚轮、把手的便捷移动结构,便于移动且在工作时,安全稳定性高。
5、本发明的整套打磨装置集成了吸尘、除尘装置及移动平台,既便于维修现场部署调整,又降低了职业健康危害。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种飞机修理复合材料柔性自动打磨装置不包括吸尘罩的结构示意图;
图2为本发明的一种飞机修理复合材料柔性自动打磨装置中吸尘罩的 结构示意图;
图3为本发明的一种飞机修理复合材料柔性自动打磨装置的打磨方法的步骤图;
附图中,各标号所代表的部件列表如下:
1-可调支撑脚,2-脚轮,3-移动平台,4-示教器,5-机器人控制器,6-把手,7-上位机,8-鼠标,9-键盘,10-屏幕,11-总控面板,12-六轴轻型机械臂,13-六维力传感器,14-线激光传感器,15-浮动恒力装置,16-气控主轴,17-自动换刀刀具安装接口,18-带有砂轮砂纸的刀柄,19-吸尘主机,20-吸尘罩,21-浮动力敏打磨头机构安装孔,22-吸尘管路连接端,23-橡胶吸条,24-单向导气孔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“一端”、“顶部”、“底部”、“末端”、“从外向内”、“外表面”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参阅图1-2所示,本发明的一种飞机修理复合材料柔性自动打磨装 置,包括框架式带有支撑板的移动平台3、安装于移动平台3上的协作机器人、安装于协作机器人一端的浮动力敏打磨头机构、安装于移动平台3上的吸尘装置以及控制组件,协作机器人包括安装于支撑板顶部的六轴轻型机械臂12、安装于六轴轻型机械臂12末端的六维力传感器13、安装于移动平台3底部支撑板上的机器人控制器5和示教器4;六维力传感器13用于实现六轴轻型机械臂12末端的拖动示教及碰撞检测,提升打磨装置的易用性、协作性和安全性;机器人控制器5及示教器4为协作机器人所配套的控制器及示教器;
浮动力敏打磨头机构安装于六维力传感器13上,包括浮动恒力装置15、气控主轴16、自动换刀刀具安装接口17、安装于自动换刀刀具安装接口17底部且带有砂轮砂纸的刀柄18,以适应不同工艺参数的打磨需求;浮动恒力装置15可实现打磨头的轴向或径向顺随恒力浮动,确保打磨精细精确;气动主轴16采用气动驱动,可通过调节气压调节打磨功率;
吸尘装置包括安装于移动平台3底板上部的吸尘主机19以及通过固定于六轴轻型机械臂12上的吸尘管与吸尘主机19相连通的吸尘罩20,吸尘罩20安装于六轴轻型机械臂12的末端,包裹着浮动力敏打磨头机构,吸尘管一端连接吸尘主机19,另一端连接吸尘罩20,本身固定在轻型机械臂12上,用于实现打磨粉尘的输送和归集;
吸尘罩20采用伞状的透明塑料薄膜弹性结构,便于观察内部打磨工况,外表面均布开设有从外向内的单向导气孔24,将外部气流导向吸尘罩20的内部,便于吸尘主机19实现对打磨粉尘的气流吸收,罩口边缘带有橡胶吸条23,橡胶吸条23为开合封条,可吸附在打磨工件表面,形成封 闭空间,防止打磨粉尘散逸,便于安装于拆卸,顶部开设有带束口设计的浮动力敏打磨头机构安装孔21,束口即开口可以收缩和绑扎,便于吸尘罩20套装浮动力敏打磨头机构,吸尘罩20的外部贯通设置有与吸尘管相连接的吸尘管路连接端22,以便吸尘主机19通过吸尘管路抽吸吸尘罩20内打磨产生的粉尘;
控制组件包括上位机7以及由屏幕10、键盘9、鼠标8及其总控面板11构成的人机操作界面,用于实现操作人员对整套打磨装置的集成控制,上位机7与机器人控制器5、浮动力敏打磨头机构、吸尘主机19实现通讯控制。
其中,六维力传感器13上安装有与上位机7通讯控制的线激光传感器14,用于对打磨工件进行扫描,获取打磨工件的曲面模型。
其中,移动平台3侧部设置有把手6、底部设置有脚轮2和可调支撑脚1,吸尘主机19集成在移动平台3上,便于与整套打磨装置一起移动,满足工位变换的需求;在工位变换时,调节支撑脚1收起,松开脚轮2,通过把手6转移整套装置;实施作业时,调节支撑脚1顶起移动平台3,确保整套打磨装置的稳定放置。
如图3所示,一种飞机修理复合材料柔性自动打磨装置的打磨方法,包括如下步骤:
S01、将打磨装置移动至打磨工位:将调节支撑脚1收起,松开脚轮2,通过把手6转移整套装置至待打磨工位;
S02、确保打磨装置稳定:通过调节支撑脚1顶起移动平台3,确保整套装置稳定放置;
S03、通电通气:连接上外部的供电和供气线路,通过人机操作界面启动协作机器人及上位机7;
S04、打磨位置粗调:利用协作机器人的拖动示教功能完成打磨区域及六轴轻型机械臂12空间姿态的初步确认;
S05、打磨位置精调:利用线激光传感器14对打磨工件进行扫描,获取打磨工件的曲面模型,在上位机7中基于曲面模型生成准确的打磨路径;即,在上位机7中基于S04获得的机器人的空间姿态,将线激光传感器14扫描而获得的曲面模型在机器人坐标系中进行转换,形成基于机器人坐标系的曲面模型数据,对该曲面进行机器人打磨机构和参数设置,继而生成准确的打磨路径
S06、打磨控制程序设置:设置浮动力敏打磨头机构的各项力控参数,完成各项打磨程序的设置;
S07、安装吸尘罩并吸附于打磨工件表面:将吸尘罩20安装在协作机器人的末端,包裹着浮动力敏打磨头,罩口边缘带有橡胶吸条23吸附在打磨工件表面,形成封闭空间,防止打磨粉尘散逸;
S08、按打磨路径打磨:启动吸尘主机19、浮动力敏打磨头机构及协作机器人按生成的打磨路径执行打磨工序;
S09、打磨执行完毕后关闭:打磨路径执行完毕后,关闭协作机器人、浮动力敏打磨头机构及吸尘主机19;
S10、检测结果:取下吸尘罩20,检测打磨效果。
其中,若需要连续打磨,可重复执行所述步骤S04-S10,或者在步骤S06的打磨控制程序设置时设置重复次数的打磨路径规划。
本发明与现有技术相比的有益效果包括:
1、本发明的打磨执行机械结构采用了协作机器人,使整套装置的安全性、协作性及易用性大大提高,高效实现复合材料修复涉及的打磨、挖除、抛光等操作过程半自动或自动化,降低人工操作强度。
2、本发明的打磨头部结合了拖动示教功能快速实现打磨区域及机械臂空间姿态的粗调,利用线激光传感器快速获取打磨工件的曲面模型,生成精确的打磨路径,满足了复合材料快速、精确、差异的修复打磨需求。
3、本发明的吸尘罩结构采用带侧边开合封条、罩体为透明塑料薄膜、罩体布满从外而内的单向导气孔、边缘带有橡胶吸条的伞状结构,对加工打磨过程中的废屑、粉尘、杂质气流高效吸收,有效防止打磨杂质粉尘的散溢和污染。
4、本发明的移动平台采用带有可调支撑脚、脚轮、把手的便捷移动结构,便于移动且在工作时,安全稳定性高。
5、本发明的整套打磨装置集成了吸尘、除尘装置及移动平台,既便于维修现场部署调整,又降低了职业健康危害。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (5)

  1. 一种飞机修理复合材料柔性自动打磨装置,其特征在于:包括框架式带有支撑板的移动平台(3)、安装于移动平台(3)上的协作机器人、安装于协作机器人一端的浮动力敏打磨头机构、安装于移动平台(3)上的吸尘装置以及控制组件,
    所述协作机器人包括安装于支撑板顶部的六轴轻型机械臂(12)、安装于六轴轻型机械臂(12)末端的六维力传感器(13)、安装于移动平台(3)底部支撑板上的机器人控制器(5)和示教器(4);
    所述浮动力敏打磨头机构安装于六维力传感器(13)上,包括浮动恒力装置(15)、气控主轴(16)、自动换刀刀具安装接口(17)、安装于自动换刀刀具安装接口(17)底部且带有砂轮砂纸的刀柄(18);
    所述吸尘装置包括安装于移动平台(3)底板上部的吸尘主机(19)以及通过固定于六轴轻型机械臂(12)上的吸尘管与吸尘主机(19)相连通的吸尘罩(20),所述吸尘罩(20)安装于六轴轻型机械臂(12)的末端,包裹着浮动力敏打磨头机构;
    所述吸尘罩(20)采用伞状的透明塑料薄膜弹性结构,外表面均布开设有从外向内的单向导气孔(24),罩口边缘带有橡胶吸条(23),顶部开设有带束口设计的浮动力敏打磨头机构安装孔(21),外部贯通设置有与吸尘管相连接的吸尘管路连接端(22);
    所述控制组件包括上位机(7)以及由屏幕(10)、键盘(9)、鼠标(8)及其总控面板(11)构成的人机操作界面,所述上位机(7)与机器人控制器(5)、浮动力敏打磨头机构、吸尘主机(19)实现通讯控制。
  2. 根据权利要求1所述的一种飞机修理复合材料柔性自动打磨装置,其特征在于,所述六维力传感器(13)上安装有与上位机(7)通讯控制的线激光传感器(14)。
  3. 根据权利要求1所述的一种飞机修理复合材料柔性自动打磨装置,其特征在于,所述移动平台(3)侧部设置有把手(6)、底部设置有脚轮(2)和可调支撑脚(1)。
  4. 如权利要求1-3任一项所述的一种飞机修理复合材料柔性自动打磨装置的打磨方法,其特征在于,包括如下步骤:
    S01、将打磨装置移动至打磨工位:将调节支撑脚(1)收起,松开脚轮(2),通过把手(6)转移整套装置至待打磨工位;
    S02、确保打磨装置稳定:通过调节支撑脚(1)顶起移动平台(3),确保整套装置稳定放置;
    S03、通电通气:连接上外部的供电和供气线路,通过人机操作界面启动协作机器人及上位机(7);
    S04、打磨位置粗调:利用协作机器人的拖动示教功能完成打磨区域及六轴轻型机械臂(12)空间姿态的初步确认;
    S05、打磨位置精调:利用线激光传感器(14)对打磨工件进行扫描,获取打磨工件的曲面模型,在上位机(7)中基于曲面模型生成准确的打磨路径;
    S06、打磨控制程序设置:设置浮动力敏打磨头机构的各项力控参数,完成各项打磨程序的设置;
    S07、安装吸尘罩并吸附于打磨工件表面:将吸尘罩(20)安装在协作机 器人的末端,包裹着浮动力敏打磨头,罩口边缘带有橡胶吸条(23)吸附在打磨工件表面,形成封闭空间,防止打磨粉尘散逸;
    S08、按打磨路径打磨:启动吸尘主机(19)、浮动力敏打磨头机构及协作机器人按生成的打磨路径执行打磨工序;
    S09、打磨执行完毕后关闭:打磨路径执行完毕后,关闭协作机器人、浮动力敏打磨头机构及吸尘主机(19);
    S10、检测结果:取下吸尘罩(20),检测打磨效果。
  5. 根据权利要求4所述的一种飞机修理复合材料柔性自动打磨装置的打磨方法,其特征在于,若需要连续打磨,可重复执行所述步骤S04-S10,或者在所述步骤S06的打磨控制程序设置时设置重复次数的打磨路径规划。
PCT/CN2020/120783 2019-12-14 2020-10-14 一种飞机修理复合材料柔性自动打磨装置及打磨方法 WO2021114855A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20870447.8A EP3854522A4 (en) 2019-12-14 2020-10-14 FLEXIBLE AUTOMATIC SHREDDING DEVICE AND SHREDDING METHOD FOR AIRCRAFT REPAIR COMPOSITE MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911287212.1 2019-12-14
CN201911287212.1A CN111037415A (zh) 2019-12-14 2019-12-14 一种飞机修理复合材料柔性自动打磨装置及打磨方法

Publications (1)

Publication Number Publication Date
WO2021114855A1 true WO2021114855A1 (zh) 2021-06-17

Family

ID=70236449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120783 WO2021114855A1 (zh) 2019-12-14 2020-10-14 一种飞机修理复合材料柔性自动打磨装置及打磨方法

Country Status (3)

Country Link
EP (1) EP3854522A4 (zh)
CN (1) CN111037415A (zh)
WO (1) WO2021114855A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367876A (zh) * 2021-12-30 2022-04-19 中铭谷智能机器人(广东)有限公司 一种汽车钣金修复打磨装置及修复打磨方法
CN114603401A (zh) * 2022-04-01 2022-06-10 安徽省力捷机器人技术应用有限公司 一种铣削打磨机器人
CN114800551A (zh) * 2022-04-20 2022-07-29 中南大学 一种针对复杂曲面的机器人力控磨抛装置及控制方法
CN115365956A (zh) * 2022-04-20 2022-11-22 重庆大学 一种机器人用力位调控砂带磨头装置
CN115971786A (zh) * 2022-12-19 2023-04-18 电子科技大学 一种多能场辅助一体化修复系统
CN116079559A (zh) * 2023-04-11 2023-05-09 广东中科启航技术有限公司 一种机器人加工用打磨设备
CN116652704A (zh) * 2023-07-28 2023-08-29 中国人民解放军空军工程大学 一种自适应飞机结构外形的复合修理方法
CN117283391A (zh) * 2023-10-28 2023-12-26 浙江迎日阀门制造有限公司 一种阀门生产用多角度打磨装置及其工艺

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111037415A (zh) * 2019-12-14 2020-04-21 上海航翼高新技术发展研究院有限公司 一种飞机修理复合材料柔性自动打磨装置及打磨方法
CN111890176A (zh) * 2020-08-13 2020-11-06 芜湖科翔动力机械有限公司 自动换刀式缸盖加工用打磨装置
CN112338689A (zh) * 2020-11-17 2021-02-09 安徽依迈金智能科技有限公司 一种全自动打磨机器人的控制系统
CN112720181A (zh) * 2020-11-30 2021-04-30 上海发那科机器人有限公司 一种可移动式模具抛光系统
CN112743431A (zh) * 2020-12-25 2021-05-04 广州飞机维修工程有限公司 一种飞机外表打磨机器人装置及打磨方法
CN113001332A (zh) * 2021-03-04 2021-06-22 上海权岩智能科技有限公司 一种针对汽车行业非标独立打磨设备
CN113798964A (zh) * 2021-10-11 2021-12-17 北京好运达智创科技有限公司 上模处理系统
CN113787424A (zh) * 2021-10-11 2021-12-14 北京好运达智创科技有限公司 一种上模打磨装置及打磨方法
CN114536362A (zh) * 2022-02-24 2022-05-27 中国民用航空飞行学院 一种柔性飞机除漆机器人及其使用方法
CN114918930A (zh) * 2022-03-29 2022-08-19 广东三向智能科技股份有限公司 一种基于5g的机器人打磨工作站和自动打磨控制方法
CN114536164A (zh) * 2022-04-26 2022-05-27 龙口通力汽车零部件制造有限公司 一种汽车异形件柔性磨削装置
CN114800150B (zh) * 2022-05-17 2023-09-12 安徽机电职业技术学院 一种基于智能制造的机械零件打磨设备
CN116213940B (zh) * 2023-05-04 2023-08-08 中国人民解放军空军工程大学 一种飞机复合材料大面积损伤原位去除打磨装置
CN116330075B (zh) * 2023-05-31 2023-07-21 山东远丰陶瓷有限公司 一种能够收集粉尘的地砖加工打磨设备
CN116652390B (zh) * 2023-07-28 2023-10-20 中国人民解放军空军工程大学 一种航空复合材料结构原位修理激光去除打磨方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609060U1 (de) * 1996-05-20 1996-08-14 Walter Robert Saugglocke für staubfreies Bohren
US7396193B2 (en) * 2006-05-15 2008-07-08 Douglas Kesten Dust collector for drill
CN104259516A (zh) * 2014-10-11 2015-01-07 盐城工学院 一种具有集尘功能的手电钻
CN108115705A (zh) * 2017-12-31 2018-06-05 芜湖哈特机器人产业技术研究院有限公司 一种机器人打磨控制系统及方法
CN108655850A (zh) * 2018-05-14 2018-10-16 朱雨辰 自动墙面打磨装置
CN108941693A (zh) * 2018-09-30 2018-12-07 贵州泽宇盛世机械有限公司 一种用于钻孔的防尘装置
CN109129119A (zh) * 2018-10-19 2019-01-04 常州市新创智能科技有限公司 一种移动式叶片自适应机器人打磨系统及控制方法
CN110281108A (zh) * 2019-06-18 2019-09-27 蓝点触控(北京)科技有限公司 一种基于六维力传感器的机器人柔性智能打磨系统
CN111037415A (zh) * 2019-12-14 2020-04-21 上海航翼高新技术发展研究院有限公司 一种飞机修理复合材料柔性自动打磨装置及打磨方法
CN211708912U (zh) * 2019-12-14 2020-10-20 上海航翼高新技术发展研究院有限公司 一种飞机修理复合材料柔性自动打磨装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042460A (ja) * 1990-04-16 1992-01-07 Enshu Ltd 金型磨きロボットのダイレクトティーチング法
EP2460624A1 (de) * 2010-12-06 2012-06-06 Jöst GmbH Schleifvorrichtung zum maschinellen Schleifen von Rotorblättern für Windkraftanlagen
CN107253084B (zh) * 2017-07-03 2019-09-20 上海昂恒航空自动化装备有限公司 飞机数字化装配中的高效高精机器人自动铣削系统
CN208575653U (zh) * 2018-05-22 2019-03-05 香港生产力促进局 应用于眼镜制造行业的智能打磨抛光机器人系统
CN109590815B (zh) * 2018-12-12 2020-05-29 上海卫星装备研究所 智能打磨系统、方法以及计算机可读存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29609060U1 (de) * 1996-05-20 1996-08-14 Walter Robert Saugglocke für staubfreies Bohren
US7396193B2 (en) * 2006-05-15 2008-07-08 Douglas Kesten Dust collector for drill
CN104259516A (zh) * 2014-10-11 2015-01-07 盐城工学院 一种具有集尘功能的手电钻
CN108115705A (zh) * 2017-12-31 2018-06-05 芜湖哈特机器人产业技术研究院有限公司 一种机器人打磨控制系统及方法
CN108655850A (zh) * 2018-05-14 2018-10-16 朱雨辰 自动墙面打磨装置
CN108941693A (zh) * 2018-09-30 2018-12-07 贵州泽宇盛世机械有限公司 一种用于钻孔的防尘装置
CN109129119A (zh) * 2018-10-19 2019-01-04 常州市新创智能科技有限公司 一种移动式叶片自适应机器人打磨系统及控制方法
CN110281108A (zh) * 2019-06-18 2019-09-27 蓝点触控(北京)科技有限公司 一种基于六维力传感器的机器人柔性智能打磨系统
CN111037415A (zh) * 2019-12-14 2020-04-21 上海航翼高新技术发展研究院有限公司 一种飞机修理复合材料柔性自动打磨装置及打磨方法
CN211708912U (zh) * 2019-12-14 2020-10-20 上海航翼高新技术发展研究院有限公司 一种飞机修理复合材料柔性自动打磨装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Research on Robotic Grinding Process for Carbon Fiber Composite Material", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 16, no. 15, May 2016 (2016-05-01)
See also references of EP3854522A4
ZENG GUOQIANG, CHEN QING-YING; HUANG DI-SHAN; CHEN MING-DA; LI JUN-JIE: "Process Researching of Robotic Grinding Carbon Fibre Composite Material", SCIENCE TECHNOLOGY AND ENGINEERING, ZHONGGUO JISHU JINGJI YANJIUHUI, CN, vol. 16, no. 15, 1 May 2016 (2016-05-01), CN, pages 228 - 233, XP055821078, ISSN: 1671-1815 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367876A (zh) * 2021-12-30 2022-04-19 中铭谷智能机器人(广东)有限公司 一种汽车钣金修复打磨装置及修复打磨方法
CN114603401A (zh) * 2022-04-01 2022-06-10 安徽省力捷机器人技术应用有限公司 一种铣削打磨机器人
CN115365956B (zh) * 2022-04-20 2023-10-31 重庆大学 一种机器人用力位调控砂带磨头装置
CN115365956A (zh) * 2022-04-20 2022-11-22 重庆大学 一种机器人用力位调控砂带磨头装置
CN114800551A (zh) * 2022-04-20 2022-07-29 中南大学 一种针对复杂曲面的机器人力控磨抛装置及控制方法
CN114800551B (zh) * 2022-04-20 2024-04-19 中南大学 一种针对复杂曲面的机器人力控磨抛装置及控制方法
CN115971786A (zh) * 2022-12-19 2023-04-18 电子科技大学 一种多能场辅助一体化修复系统
CN116079559A (zh) * 2023-04-11 2023-05-09 广东中科启航技术有限公司 一种机器人加工用打磨设备
CN116079559B (zh) * 2023-04-11 2023-06-30 广东中科启航技术有限公司 一种机器人加工用打磨设备
CN116652704A (zh) * 2023-07-28 2023-08-29 中国人民解放军空军工程大学 一种自适应飞机结构外形的复合修理方法
CN116652704B (zh) * 2023-07-28 2023-10-31 中国人民解放军空军工程大学 一种自适应飞机结构外形的复合修理方法
CN117283391A (zh) * 2023-10-28 2023-12-26 浙江迎日阀门制造有限公司 一种阀门生产用多角度打磨装置及其工艺
CN117283391B (zh) * 2023-10-28 2024-03-26 浙江迎日阀门制造有限公司 一种阀门生产用多角度打磨装置及其工艺

Also Published As

Publication number Publication date
EP3854522A4 (en) 2022-08-10
CN111037415A (zh) 2020-04-21
EP3854522A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2021114855A1 (zh) 一种飞机修理复合材料柔性自动打磨装置及打磨方法
US10226944B2 (en) Adaptable surface treatment repair system
CN107253084B (zh) 飞机数字化装配中的高效高精机器人自动铣削系统
JP3670700B2 (ja) ロボット機構制御方法
CN111558870B (zh) 一种飞机机体复合材料构件机器人智能打磨系统及方法
CN210452170U (zh) 一种基于六维力传感器的机器人柔性智能打磨系统
CN104972362A (zh) 智能力控机器人磨削加工系统和方法
JP2004504164A (ja) ツール位置決めシステム
JP2010241423A5 (zh)
JP2013535366A (ja) 航空機の胴体などの弓形表面上で作業工具を移動及び固定するための電磁石及び/又は真空クローラー組立システム
CN110977962A (zh) 一种基于3d视觉的机器人打磨路径自动纠偏方法
CN116021391A (zh) 一种基于视觉及力控的柔性打磨抛光设备及方法
CN109093477A (zh) 一种多机器人协同打磨铸锻件飞边的装置及方法
CN211708912U (zh) 一种飞机修理复合材料柔性自动打磨装置
CN111571000B (zh) 用于大型设备的激光清洗装置及方法
CN106181028A (zh) 一种五轴三联动激光切管机
CN113245307A (zh) 一种空间在轨激光清洗与快速修复装备与方法
CN219444181U (zh) 一种方舱的拼舱与钻铆生产线
CN104625314A (zh) 基于爬行机构的便携式管材切割装置
CN109055930B (zh) 一种工件表面损伤的快速修复方法
CN110524432A (zh) 喷砂机构
CN114083420B (zh) 一种复杂曲面透明件机器人智能抛光系统
CN109703016A (zh) 一种四臂多功能建造机器人
Deden et al. Towards a fully automated process chain for the lay-up of large carbon dry-fibre cut pieces using cooperating robots
CN104325285B (zh) 滑鼠上盖的取放装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020870447

Country of ref document: EP

Effective date: 20210407

NENP Non-entry into the national phase

Ref country code: DE