WO2021114488A1 - Palier magnétique permanent - Google Patents

Palier magnétique permanent Download PDF

Info

Publication number
WO2021114488A1
WO2021114488A1 PCT/CN2020/076889 CN2020076889W WO2021114488A1 WO 2021114488 A1 WO2021114488 A1 WO 2021114488A1 CN 2020076889 W CN2020076889 W CN 2020076889W WO 2021114488 A1 WO2021114488 A1 WO 2021114488A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
permanent magnet
magnetic bearing
sheath
Prior art date
Application number
PCT/CN2020/076889
Other languages
English (en)
Chinese (zh)
Inventor
林英哲
刘淑云
吴立华
董继勇
Original Assignee
南京磁谷科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京磁谷科技股份有限公司 filed Critical 南京磁谷科技股份有限公司
Publication of WO2021114488A1 publication Critical patent/WO2021114488A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0429Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets
    • F16C32/0431Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets with bearings for axial load combined with bearings for radial load

Definitions

  • the invention belongs to the technical field of mechanical parts, and particularly relates to a permanent magnetic bearing.
  • Magnetic bearing is a new type of high-performance bearing. Compared with traditional ball bearings, sliding bearings and oil film bearings, magnetic bearings have no mechanical contact, and the rotor can reach a high operating speed, with low mechanical wear, low energy consumption and noise. It has the advantages of small size, long life, no lubrication, no oil pollution, etc. It is especially suitable for special environments such as high speed, vacuum and ultra-clean.
  • the utility model patent with the bulletin number CN204284205U discloses a mounting structure for radial magnetic bearings and radial sensors.
  • the radial magnetic bearing includes an upper pressure plate, a lower pressure plate and silicon steel sheet.
  • the inner surface of the silicon steel sheet is equipped with a coil frame ,
  • the coil bobbin is wound with a coil, the outer circular arc surface of the silicon steel sheet is surrounded to form the outer cylindrical surface of the radial magnetic bearing, and the inner end of the coil bobbin is surrounded to form the inner cylindrical surface of the radial magnetic bearing.
  • the upper pressure plate includes the upper For steps, middle steps and lower steps, a round hole is provided in the middle of the upper pressing plate, a number of through holes are evenly spaced around the round hole on the upper step, and a number of sets of perforations are formed on the lower step.
  • the two outside are pin holes.
  • Pin holes are formed on the lower platen opposite to the pin holes on the upper platen.
  • the pin holes of the lower platen and the pin holes of the upper platen are provided with cylindrical pins, which are arranged on the middle step.
  • Radial electromagnetic bearings require coils, displacement sensors, and magnetic bearing control systems, which are complex in structure, large in volume, and difficult to establish a high-precision control system.
  • the present invention discloses a permanent magnetic bearing, which replaces the radial electromagnetic bearing with a radial permanent magnetic bearing, does not require coils, displacement sensors and a magnetic bearing control system, and has a simple structure and volume. It is small, does not require power, and does not need to be controlled.
  • the present invention adopts the following technical solution: a permanent magnetic bearing, including a rotor core shaft, a rotor assembly, a stator assembly and an axial electromagnetic bearing, wherein the rotor assembly is sleeved on both ends of the rotor core shaft, and the outer circumference of the rotor assembly A stator assembly is provided, and axial electromagnetic bearings are respectively arranged on the outer circumference of the rotor core shaft located outside the rotor assembly and the stator assembly;
  • the rotor assembly includes a rotor permanent magnet and a rotor sheath, wherein the rotor core shaft outer ring is provided with a rotor permanent magnet, and the rotor permanent magnet outer ring is provided with a rotor sheath;
  • the stator assembly includes a magnetic bearing seat, a stator permanent magnet, a stator sheath and an end cover.
  • the magnetic bearing seat is provided with a stator permanent magnet on the side close to the rotor assembly, and a stator sheath is arranged on the outer side of the stator permanent magnet.
  • An end cover fixed to the magnetic bearing seat is arranged on the side, the stator permanent magnet and the rotor permanent magnet are located on the same axis, and the magnetic surface of the stator permanent magnet inner ring and the rotor permanent magnet outer ring have the same polarity.
  • the magnetic isolation sheet and pure iron are arranged in sequence outside the permanent magnet of the rotor of the present invention.
  • the rotor permanent magnet there is an interference fit between the rotor permanent magnet, the magnetic isolation sheet, the pure iron and the rotor core shaft of the present invention, and the interference fit between the rotor sheath and the rotor permanent magnet.
  • the rotor core shaft of the present invention has a structure with steps at both ends.
  • the outer diameter of the rotor sheath, the outer diameter of the magnetic isolation sheet, and the outer diameter of the pure iron of the present invention are not greater than the maximum outer diameter of the rotor core shaft.
  • the end cover of the present invention and the magnetic bearing seat are fixed by screws.
  • the inner diameter of the stator sheath and the inner diameter of the end cover of the present invention are not less than the minimum inner diameter of the magnetic bearing seat.
  • the rotor sheath of the present invention is a high-temperature alloy
  • the stator sheath is a carbon fiber sheath.
  • the axial electromagnetic bearing of the present invention controls the axial position of the rotor core shaft, and the stator assembly and the rotor assembly use the mutual thrust between the stator permanent magnets and the rotor permanent magnets to float the rotor core at the central position of the inner hole of the magnetic bearing , Control the radial position of the rotor core shaft.
  • the present invention has the following beneficial effects:
  • the present invention uses radial permanent magnetic bearings instead of radial electromagnetic bearings, and uses the mutual thrust between the permanent magnetic poles to float the rotor at the center of the inner hole of the magnetic bearing. No coils, displacement sensors and magnetic bearing control systems are needed. Need electric energy, no need to establish a high-precision control system;
  • the present invention is simple in structure, small in size, low in cost, easy to manufacture and install, and is mainly used in places where the load is small and the work is stable;
  • the interference fit between the parts of the present invention has good centering performance, high load-bearing capacity, can bear impact load, and weaken the shaft strength;
  • a magnetic isolation sheet is used to isolate the contact between the metal object and the electromagnetic signal to prevent the attenuation of the electromagnetic signal. At the same time, it can gather the magnetic flux of the induced magnetic field, enhance the magnetic induction intensity of the receiving end, prevent heat generation, save electric energy and improve conversion efficiency.
  • Figure 1 is a schematic diagram of the structure of a permanent magnetic bearing of the present invention
  • FIG. 2 is a schematic diagram of the structure of the stator assembly of the present invention.
  • Figure 3 is a schematic diagram of the structure of the rotor assembly of the present invention.
  • rotor core shaft 1 magnetic bearing seat 2
  • rotor permanent magnet 3 stator permanent magnet 4
  • rotor sheath 5 stator sheath 6
  • magnetic isolation sheet 7 pure iron 8
  • screw 10 axial Magnetic bearing 11.
  • the invention discloses a permanent magnetic bearing, as shown in Fig. 1, comprising a rotor core shaft 1, a rotor assembly, a stator assembly and an axial electromagnetic bearing 11.
  • the two ends of the rotor core shaft 1 are respectively sleeved with the rotor assembly, and the rotor A stator assembly is arranged on the outer periphery of the assembly, and axial electromagnetic bearings 11 are arranged on the outer periphery of the rotor core shaft 1 located outside the rotor assembly and the stator assembly, respectively.
  • the rotor core shaft 1 may have a structure with steps at both ends.
  • the rotor assembly includes a rotor permanent magnet 3 and a rotor sheath 5.
  • the outer ring of the rotor core shaft 1 is provided with a rotor permanent magnet 3, and the outer ring of the rotor permanent magnet 3 is provided with a rotor sheath 5.
  • 5 is a high-temperature alloy sheath.
  • Magnetic isolation sheets 7 and pure iron 8 are arranged on the outer side of the rotor permanent magnet 3 in sequence.
  • the rotor permanent magnet 3, the magnetic isolation sheet 7, the pure iron 8 and the rotor core shaft 1 have an interference fit.
  • the rotor sheath The interference fit between 5 and the rotor permanent magnet 3, the outer diameter of the rotor sheath 5, the outer diameter of the magnetic isolation sheet 7, and the outer diameter of the pure iron 8 shall not be greater than the maximum outer diameter of the rotor core shaft 1.
  • the stator assembly includes a magnetic bearing housing 2, a stator permanent magnet 4, a stator sheath 6, an end cover 9 and a screw 10.
  • the magnetic bearing housing 2 is provided with a stator permanent magnet 4 on the side close to the rotor assembly.
  • a stator sheath 6 is arranged on the outside of the stator permanent magnet 4.
  • the stator sheath 6 is a carbon fiber sheath.
  • One side of the stator permanent magnet 4 is provided with an end cover 9 fixed to the magnetic bearing housing 2, between the end cover 9 and the magnetic bearing housing 2. Fixed by screws 10, the inner diameter of the stator sheath 6 and the inner diameter of the end cover 9 are not less than the minimum inner diameter of the magnetic bearing housing 2.
  • the stator permanent magnet 4 and the rotor permanent magnet 3 are located on the same axis. The polarity of the magnetic surface of the outer ring of the magnet 3 is the same.
  • the axial electromagnetic bearing 11 controls the axial position of the rotor core shaft 1.
  • the stator assembly and the rotor assembly use the mutual thrust between the stator permanent magnet 4 and the rotor permanent magnet 3 to float the rotor core shaft 1 on the center of the magnetic bearing inner hole. Position, which controls the radial position of the rotor core shaft 1.

Abstract

La présente invention concerne un palier magnétique permanent comprenant un arbre de noyau de rotor (1), des ensembles rotors, des ensembles stators et des paliers électromagnétiques axiaux (11). Les ensembles rotors sont respectivement emmanchés sur les deux extrémités de l'arbre de noyau de rotor (1). Les ensembles stators sont disposés au niveau des périphéries des ensembles rotors. Les paliers électromagnétiques axiaux (11) sont agencés séparément à la périphérie de l'arbre de noyau de rotor (1) situé au niveau des côtés externes des ensembles rotors et des ensembles stator. Chaque ensemble rotor comprend un aimant permanent de rotor (3) et une gaine de rotor (5). L'aimant permanent de rotor (3) est disposé au niveau de la bague extérieure de l'arbre de noyau de rotor (1). La gaine de rotor (5) est disposée au niveau de la bague extérieure de l'aimant permanent de rotor (3). Chaque ensemble stator comprend un siège de palier magnétique (2), un aimant permanent de stator (4), une gaine de stator (6) et un couvercle d'extrémité (9). La surface magnétique de la bague intérieure de l'aimant permanent de stator (4) présente la même polarité que celle de la surface magnétique de la bague extérieure de l'aimant permanent de rotor (3). Le palier magnétique permanent présente une structure simple, une petite taille, un faible coût, et est facile à fabriquer et à monter, et est appliqué à un emplacement avec une faible charge et un fonctionnement stable.
PCT/CN2020/076889 2019-12-12 2020-02-27 Palier magnétique permanent WO2021114488A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911275426.7 2019-12-12
CN201911275426.7A CN110848255A (zh) 2019-12-12 2019-12-12 一种永磁轴承

Publications (1)

Publication Number Publication Date
WO2021114488A1 true WO2021114488A1 (fr) 2021-06-17

Family

ID=69608938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076889 WO2021114488A1 (fr) 2019-12-12 2020-02-27 Palier magnétique permanent

Country Status (2)

Country Link
CN (1) CN110848255A (fr)
WO (1) WO2021114488A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452199B (zh) * 2021-06-10 2022-05-20 华中科技大学 一种立式安装电机用机械永磁混合轴承系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662180A (zh) * 2008-08-27 2010-03-03 何君 准磁浮混合轴承支承式转子及该高速感应电动旋转机械
EP2431614A2 (fr) * 2010-09-16 2012-03-21 Pfeiffer Vacuum GmbH Pompe à vide
CN202713053U (zh) * 2012-06-18 2013-01-30 江苏大学 分体式磁悬浮开关磁阻电机支承与传动的飞轮电池
CN203722518U (zh) * 2012-12-26 2014-07-16 Skf磁性机械技术公司 转子的混合磁悬浮装置
CN105591492A (zh) * 2014-10-31 2016-05-18 张瑞彬 一种立式磁悬浮飞轮储能系统
CN106321633A (zh) * 2016-11-07 2017-01-11 湘潭大学 一种新型混合磁悬浮轴承

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB946701A (en) * 1960-04-12 1964-01-15 Philips Electrical Ind Ltd Improvements in magnetic bearings
JP2002070857A (ja) * 2000-08-28 2002-03-08 Ebara Corp 磁気軸受装置
CN101771308B (zh) * 2009-04-26 2015-12-16 张玉宝 一种磁悬浮转子支撑系统与磁悬浮轴承及偏磁减重装置
CN102042302A (zh) * 2009-10-09 2011-05-04 卓向东 高速混合磁悬浮轴承
GB201518430D0 (en) * 2015-10-19 2015-12-02 Giamag Technologies As Magnet apparatus for generating high gradient magnetic field
CN106438691A (zh) * 2016-10-13 2017-02-22 中国人民解放军海军工程大学 永磁偏置混合轴向磁轴承
CN212055515U (zh) * 2019-12-12 2020-12-01 南京磁谷科技有限公司 一种永磁轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662180A (zh) * 2008-08-27 2010-03-03 何君 准磁浮混合轴承支承式转子及该高速感应电动旋转机械
EP2431614A2 (fr) * 2010-09-16 2012-03-21 Pfeiffer Vacuum GmbH Pompe à vide
CN202713053U (zh) * 2012-06-18 2013-01-30 江苏大学 分体式磁悬浮开关磁阻电机支承与传动的飞轮电池
CN203722518U (zh) * 2012-12-26 2014-07-16 Skf磁性机械技术公司 转子的混合磁悬浮装置
CN105591492A (zh) * 2014-10-31 2016-05-18 张瑞彬 一种立式磁悬浮飞轮储能系统
CN106321633A (zh) * 2016-11-07 2017-01-11 湘潭大学 一种新型混合磁悬浮轴承

Also Published As

Publication number Publication date
CN110848255A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2018228261A1 (fr) Unité de suspension magnétique polarisée par aimant permanent multicouche, moteur de suspension magnétique et climatiseur domestique
WO2020103520A1 (fr) Structure de palier de suspension magnétique et structure de compresseur à suspension magnétique
CN101893038A (zh) 永磁偏置轴向磁轴承
CN112117861B (zh) 一种飞轮储能电机
CN108518347A (zh) 一种一体化轴向悬浮永磁同步屏蔽泵
CN201112030Y (zh) 一种旋转有限角度的电磁铁
WO2021114488A1 (fr) Palier magnétique permanent
CN101526107B (zh) 永磁体位于转子上的混合型轴向磁轴承
CN101608669B (zh) 一种水平线圈径向均匀磁极低损耗外转子混合磁轴承
CN107093938B (zh) 磁悬浮电机及家用空调
CN212297270U (zh) 一种由斥力型磁浮轴承提供支撑的飞轮装置
CN112671158A (zh) 混合式磁悬浮轴承、电机、空调器
CN212055515U (zh) 一种永磁轴承
CN208380885U (zh) 一种一体化轴向悬浮永磁同步屏蔽泵
CN101608670B (zh) 一种垂直线圈径向均匀磁极低损耗外转子混合磁轴承
CN108547868B (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN204371940U (zh) 一种环状磁极结构以及具有环状磁极结构的轴向磁轴承
CN115149669A (zh) 一种高速非晶合金电机
CN108869545A (zh) 一种逆变器驱动式轴向-径向六极混合磁轴承
CN109194021A (zh) 一种五自由度交流六极主动磁轴承支承的电主轴
CN111628608A (zh) 磁轴承支撑的永磁同步电机及其磁轴承
CN209671523U (zh) 一种飞轮储能装置的永磁体安装结构
CN208858775U (zh) 一种逆变器驱动式轴向-径向六极混合磁轴承
CN108953376B (zh) 一种永磁体在转子上的半自由度混合型轴向磁轴承
CN207111711U (zh) 一种推力磁轴承同轴电磁铁结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899352

Country of ref document: EP

Kind code of ref document: A1