WO2021114452A1 - 一种永磁电机 - Google Patents

一种永磁电机 Download PDF

Info

Publication number
WO2021114452A1
WO2021114452A1 PCT/CN2020/071220 CN2020071220W WO2021114452A1 WO 2021114452 A1 WO2021114452 A1 WO 2021114452A1 CN 2020071220 W CN2020071220 W CN 2020071220W WO 2021114452 A1 WO2021114452 A1 WO 2021114452A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
stator
rotor
motor
end cover
Prior art date
Application number
PCT/CN2020/071220
Other languages
English (en)
French (fr)
Inventor
洪真
李朝阳
Original Assignee
深圳市中悦机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中悦机电科技有限公司 filed Critical 深圳市中悦机电科技有限公司
Publication of WO2021114452A1 publication Critical patent/WO2021114452A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates to the technical field of permanent magnet motors, in particular to a permanent magnet motor.
  • a motor is an electromagnetic mechanical device that converts electrical energy into mechanical energy.
  • the power conversion and transmission of the motor occurs in the air gap between the stator and the rotor.
  • All motors in the world are composed of a stator and a rotor. This kind of motor has only one air gap magnetic field. When the motor is running, the magnetic field of one of the stator and the rotor of the motor is always fixed, and the air gap magnetic field of the motor can only be changed through the change of the other's magnetic field to make the motor work. This greatly limits the efficiency and power density of the motor.
  • the present invention mainly provides a permanent magnet motor to solve the problem that the prior art greatly limits the efficiency and power density of the motor.
  • the present invention adopts the following technical solutions:
  • a permanent magnet motor includes a motor housing, a rotor structure, and a stator structure; the rotor structure includes a permeable magnet and a permanent magnet group; the stator structure includes an inner stator and an outer stator coaxially sleeved from the inside to the outside; The permanent magnet groups are arranged in a circumferential array on the magnetic conductors, and the permanent magnet groups separate the magnetic conductors into the inner magnetic poles of the rotor and the outer magnetic poles of the rotor; the magnetizing directions of the adjacent permanent magnet groups are opposite; The permanent magnet group includes a left permanent magnet and a right permanent magnet. The inner ends of the left permanent magnet and the right permanent magnet are provided with a gap. The outer stator and the outer magnetic poles of the rotor form the outer air gap magnetic field of the motor. The inner stator and the inner magnetic poles of the rotor form an inner air gap magnetic field of the motor.
  • the purpose of the present invention is to provide a permanent magnet motor with two air gap magnetic fields and two magnetic circuits for each magnetic pole.
  • This technology doubles the air gap area of the motor and doubles the magnetic circuit.
  • the two-way variable magnetic motor is composed of an outer stator, a rotor, and an inner stator.
  • the rotor part adopts a double-sided magnetic pole with inner and outer sides, and each magnetic pole of the rotor is composed of two sets of independent magnetic fields.
  • the outer magnetic poles of the rotor are connected to the outer stator.
  • An outer air gap magnetic field is formed therebetween, and an inner air gap magnetic field is formed between the inner magnetic poles of the rotor and the inner stator.
  • each magnetic pole of the rotor When the air gap magnetic field of the motor changes, one of the two sets of magnetic fields of each magnetic pole of the rotor will increase, and the other set of magnetic fields will decrease.
  • Each set of magnetic field of the rotor poles changes with the change of the stator magnetic field; when the stator magnetic field of the motor changes, through the control
  • the two sets of magnetic field changes on the rotor poles drive the motor rotor to rotate. Since the electromagnetic torque of the motor is proportional to the square of the air gap diameter, the double air gap formed by the double stator structure doubles the air gap of the motor.
  • the distance between the inner surface of the outer stator and the inner surface of the conductor magnet is 0.2 mm to 1 mm; the distance between the outer surface of the inner stator and the inner surface of the conductor magnet is 0.2 mm to 1 mm. 1mm.
  • the outer ends of the left permanent magnet and the right permanent magnet are provided with isolation reinforcements made of non-magnetic material.
  • the inner stator includes an inner stator iron core and an inner stator winding arranged on the inner stator iron core
  • the outer stator includes an outer stator iron core, and an outer stator arranged on the outer stator iron core Winding;
  • the inner stator core is installed on the fixed shaft of the motor rotor,
  • the outer stator core is installed on the inner wall of the motor housing,
  • the inner stator core and the outer stator core have the same number of winding slots
  • the winding method of the inner stator winding and the outer stator winding is the same, and the winding phase of the inner stator winding and the outer stator winding is 180 degrees out of phase.
  • the stator structure of this scheme adopts fractional slot, single and double-layer hybrid concentrated winding.
  • the beneficial effect of this winding is to reduce the cogging torque of the motor, increase the output torque of the motor, reduce the use of copper wire, and reduce
  • the resistance of the winding reduces the copper loss of the motor and reduces the temperature rise of the
  • the front end cover includes a front end cover; the front end cover is arranged at the front end of the magnetizer, and the front end cover is provided with a rotating shaft coaxial with the magnetizer and a mounting position for mounting the bearing; the front end cover and the Flanges are arranged between the magnetic conductors and the other end of the magnetic conductor, and bolts for connecting the flanges at both ends of the magnetic conductor penetrate through the gap.
  • the rear end cover on the rotor is removed, and the rotor is suspended between the inner and outer stators of the motor. It mainly relies on the bearing on the main shaft, the front end cover of the rotor, the bearing seat in the middle of the motor, the front end cover of the motor and the motor housing.
  • the rotor magnetic poles are suspended between the inner and outer stators, and at the same time, the material constituting the rotor structure is reduced.
  • the weight of the entire rotor structure is very light, so that the rotor's moment of inertia is very low, and the motor accelerates or decelerates faster, and the motor accelerates Time is more energy-efficient.
  • first end cover a second end cover and a fixed shaft; the first end cover and the second end cover are respectively arranged on the motor housing corresponding to the two ends of the outer stator; the first The middle part of the end cover is provided with a bearing hole coaxial with the outer stator and used for mounting the bearing, the fixed shaft is arranged coaxially with the inner stator, and one end of the fixed shaft is fixed on the second end cover The other end of the fixed shaft penetrates the inner stator and is installed in the installation position.
  • the thickness of the inner magnetic pole of the rotor is 5mm to 10mm
  • the thickness of the outer magnetic pole of the rotor is the same as that of the inner magnetic pole of the rotor
  • the spacing of the isolation reinforcement between the adjacent permanent magnet groups is The distance from the inner end surface of the isolation reinforcement to the inner wall of the rotor inner magnetic pole is 0.5mm to 1mm, and the distance from the outer end of the isolation reinforcement to the outer wall of the rotor outer magnetic pole is 0.5mm to 1mm, so The thickness of the isolation reinforcement member in the array direction of the permanent magnet group is 5 mm to 10 mm.
  • a recess is provided on one side of the isolation reinforcement member close to the left permanent magnet and the right permanent magnet.
  • left permanent magnet and the right permanent magnet are provided with grooves on the inner magnetic poles of the rotor, and the inner magnetic poles of the rotor are provided with protruding bars matching the grooves.
  • the magnetic conductor, the inner stator core, and the outer stator core are all made of laminated silicon steel sheets.
  • the present invention provides a dual-phase synchronous drive permanent magnet motor with two air gap magnetic fields and two magnetic circuits for each magnetic pole. This technology doubles the air gap area of the motor and doubles the magnetic circuit .
  • the two-way variable magnetic motor is composed of an outer stator, a rotor, and an inner stator.
  • the rotor part adopts a double-sided magnetic pole with inner and outer sides, and each magnetic pole of the rotor is composed of two sets of independent magnetic fields.
  • the outer magnetic poles of the rotor are connected to the outer stator.
  • An outer air gap magnetic field is formed therebetween, and an inner air gap magnetic field is formed between the inner magnetic poles of the rotor and the inner stator.
  • each magnetic pole of the rotor When the air gap magnetic field of the motor changes, one of the two sets of magnetic fields of each magnetic pole of the rotor will increase, and the other set of magnetic fields will decrease.
  • Each set of magnetic field of the rotor poles changes with the change of the stator magnetic field; when the stator magnetic field of the motor changes, through the control
  • the two sets of magnetic field changes on the rotor poles drive the motor rotor to rotate. Since the electromagnetic torque of the motor is proportional to the square of the air gap diameter, the double air gap formed by the double stator structure doubles the air gap of the motor.
  • Figure 1 is a half-sectional schematic diagram of the motor structure of this embodiment
  • Figure 2 is a half-sectional schematic diagram of the rotor structure of this embodiment
  • FIG. 3 is a schematic diagram of the structure of the magnetic conductor of this embodiment.
  • FIG. 5 is a schematic diagram of the stator structure installation of this embodiment
  • Figure 6 is a half-sectional schematic diagram of the stator structure of this embodiment.
  • Figure 7 is a distribution diagram of the stator windings of this embodiment.
  • a permanent magnet motor of this embodiment includes a motor housing 9, a rotor structure, and a stator structure; the rotor structure includes a permeable magnet 1 and a permanent magnet group 2, and the stator structure includes An inner stator and an outer stator are coaxially sleeved in order from the inside to the outside; a number of the permanent magnet groups 2 are arranged in a circumferential array on the conductor magnet 1, and the permanent magnet group 2 separates the magnet conductor 1 into the inner magnetic poles of the rotor 11 and the outer magnetic pole 12 of the rotor; the magnetizing directions of the adjacent permanent magnet groups are opposite; the permanent magnet group 2 includes a left permanent magnet 21 and a right permanent magnet 22, the left permanent magnet 21 and the right permanent magnet 22 The inner end is provided with a gap 3, the outer stator and the rotor outer magnetic pole 12 form an outer air gap magnetic field of the motor, and the inner stator and the rotor inner magnetic pole 11 form an inner air gap magnetic field of the motor.
  • the distance between the inner side of the outer stator and the inner side of the magnet 1 is 0.2 mm to 1 mm; the distance between the outer side of the inner stator and the inner side of the magnet 1 is 0.2 mm to 1mm.
  • the distance between the inner side of the outer stator and the inner side of the magnet 1 is 0.2 mm to 1 mm; the distance between the outer side of the inner stator and the inner side of the magnet 1 is 0.2 mm to 1mm.
  • the inner stator includes an inner stator iron core 6 and an inner stator winding arranged on the inner stator iron core 6, and the outer stator includes an outer stator iron core 7 and an inner stator winding arranged on the outer stator iron core 7.
  • the inner stator core 6 is installed on the fixed shaft 8 of the motor rotor
  • the outer stator core 7 is installed on the inner wall of the motor housing 9, the inner stator core 6 and the outer stator core 7
  • the number of winding slots 10 is the same, the winding modes of the inner stator winding and the outer stator winding are the same, and the winding phases of the inner stator winding and the outer stator winding are 180 degrees out of phase.
  • the front end cover 5 includes a front end cover 5; the front end cover 5 is arranged at the front end of the magnetizer 1, and the front end cover 5 is provided with a rotating shaft 52 coaxial with the magnetizer 1 and a mounting position 51 for mounting a bearing; A flange 14 is provided between the front end cover 5 and the magnet conductor 1 and at the other end of the magnet conductor 1, and bolts for connecting the flanges 14 at the two ends of the magnet conductor 1 penetrate through the gap 3 .
  • first end cover 91 It also includes a first end cover 91, a second end cover 92 and a fixed shaft 8; the first end cover 91 and the second end cover 92 are respectively disposed on the motor housing 9 corresponding to the two ends of the outer stator;
  • the middle part of the first end cover 91 is provided with a bearing hole coaxial with the outer stator and used for mounting a bearing, the fixed shaft 8 is arranged coaxially with the inner stator, and one end of the fixed shaft 8 It is fixed on the second end cover 92, and the other end of the fixed shaft 8 penetrates the inner stator and is installed in the installation position 51.
  • the thickness of the inner magnetic pole 11 of the rotor is 5 mm to 10 mm
  • the thickness of the outer magnetic pole 12 of the rotor is the same as the thickness of the inner magnetic pole 11 of the rotor
  • the isolation reinforcement 4 between the adjacent permanent magnet groups The distance is 1mm to 3mm
  • the distance from the inner end face of the isolation reinforcement 4 to the inner wall of the rotor inner magnetic pole 11 is 0.5mm to 1mm
  • the distance from the outer end face of the isolation reinforcement 4 to the outer wall of the rotor outer magnetic pole 12 0.5mm to 1mm
  • the thickness of the isolation reinforcement member 4 in the array direction of the permanent magnet group is 5mm to 10mm.
  • a recess 41 is provided on one side of the isolation reinforcement 4 close to the left permanent magnet 21 and the right permanent magnet 22.
  • the left permanent magnet 21 and the right permanent magnet 22 are provided with a groove 23 on one side of the rotor inner magnetic pole 11, and the rotor inner magnetic pole 11 is provided with a protruding strip 13 matching the groove 23 .
  • the magnetic conductor 1, the inner stator iron core 6 and the outer stator iron core 7 are all made of laminated silicon steel sheets.
  • the thickness of the inner magnetic pole 11 of the rotor is the same as that of the outer magnetic pole 12 of the rotor, and the thickness of the inner magnetic pole 11 of the rotor is set to a; the thickness of the left permanent magnet 21 and the right permanent magnet 22 are the same, and the thickness of the left permanent magnet 21 Set as b; set the thickness of the isolation reinforcement 4 as c; set the distance between adjacent isolation reinforcements 4 as d; set the distance between the inner end face of the isolation reinforcement 4 and the inner wall of the rotor inner magnetic pole 11 as e; The distance between the outer end surface of the reinforcing member 4 and the inner wall of the outer magnetic pole 12 of the rotor is set as f; in this embodiment, a is 6mm, b is 5mm, c is 7mm, d is 2mm, e is 0.8mm, and f is 0.8mm. .
  • the permanent magnet group 2 is used to separate the permeable magnet 1 into the rotor inner magnetic pole 11 and the rotor outer magnetic pole 12, which serve as the inner and outer magnetic poles of the rotor, and the permanent magnet group 22 is used as the constant magnetic source of the rotor.
  • the outer magnetic pole provides magnetic force.
  • the rotor structure has internal and external double-sided magnetic poles, and each magnetic pole of the rotor consists of two sets of independent magnetic fields to form two magnetic circuits. When the stator magnetic field changes, one magnetic field of the rotor magnetic pole of this structure will increase, and the other magnetic field will increase. Decrease. While the stator magnetic field drives the rotor to rotate, it also controls the change in the size of the two magnetic fields of the rotor poles. The change in the size of the two magnetic circuits of the rotor improves the efficiency of the motor.
  • the stator structure of this scheme adopts fractional slot, single and double-layer hybrid concentrated winding.
  • the beneficial effect of this winding is to reduce the cogging torque of the motor, increase the output torque of the motor, reduce the use of copper wire, and reduce The resistance of the winding reduces the copper loss of the motor and reduces the temperature rise of the motor.
  • the rotor is suspended between the inner and outer stators of the motor, mainly relying on the bearing on the main shaft, the front end cover 5 of the rotor, the bearing seat 93 in the middle of the motor, the front end cover 5 of the motor and the motor housing 9
  • the rotor magnetic poles are suspended between the inner and outer stators, and at the same time, the material that constitutes the rotor structure is reduced.
  • the weight of the entire rotor structure is very light, so that the moment of inertia of the rotor is very low, and the acceleration or deceleration of the motor is faster. More energy saving when accelerating.
  • the purpose of the present invention is to provide a permanent magnet motor with two air gap magnetic fields and two magnetic circuits for each magnetic pole.
  • This technology doubles the air gap area of the motor and doubles the magnetic circuit.
  • the two-way variable magnetic motor consists of an outer stator, a rotor, and an inner stator.
  • the rotor part adopts a double-sided magnetic pole with inner and outer sides.
  • Each magnetic pole of the rotor is composed of two independent magnetic fields.
  • the outer magnetic pole 12 of the rotor is connected to the outer magnetic pole.
  • An outer air gap magnetic field is formed between the stators, and an inner air gap magnetic field is formed between the inner magnetic poles 11 of the rotor and the inner stator.
  • each magnetic pole of the rotor When the air gap magnetic field of the motor changes, one of the two sets of magnetic fields of each magnetic pole of the rotor will increase, and the other set of magnetic fields will decrease.
  • Each set of magnetic field of the rotor poles changes with the change of the stator magnetic field; when the stator magnetic field of the motor changes, through the control
  • the two sets of magnetic field changes on the rotor poles drive the motor rotor to rotate. Since the electromagnetic torque of the motor is proportional to the square of the air gap diameter, the double air gap formed by the double stator structure doubles the air gap of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本发明涉及永磁电机技术领域,且公开了一种永磁电机,包括电机外壳、转子结构和定子结构;所述转子结构包括导磁体和永磁体组,所述定子结构包括由内向外依次同轴套设的内定子和外定子;若干所述永磁体组呈圆周阵列于所述导磁体上,所述永磁体组将所述导磁体分隔成转子内层磁极和转子外层磁极;相邻所述永磁铁组的充磁方向相反;所述永磁体组包括左永磁体和右永磁体,所述左永磁体与右永磁体的内端设置有空隙,所述外定子与所述转子外层磁极形成电机的外气隙磁场,所述内定子与所述转子内层磁极形成电机的内气隙磁场。提供两个气隙磁场,实现使用双定子结构构成的双气隙,给电机增加了一倍的气隙。

Description

一种永磁电机 技术领域
本发明涉及永磁电机技术领域,具体为一种永磁电机。
背景技术
电动机是一种将电能转换成机械能的电磁机械装置,而电动机的功率转换和传递发生在定子与转子之间的气隙之中,现在世界上所有的电机都是由一个定子和一个转子组成,这种电机只有一个气隙磁场。在电机运行时,电机的定子与转子中总有一个的磁场是固定不变的,只能通过另一个的磁场变化来改变电机的气隙磁场以使电机工作。这就大幅度地限制了电机的效率以及功率密度。
发明内容
本发明主要是提供一种永磁电机,解决现有技术大幅度地限制了电机的效率以及功率密度的问题。
为了解决上述技术问题,本发明采用如下技术方案:
一种永磁电机,包括电机外壳、转子结构和定子结构;所述转子结构包括导磁体和永磁体组,所述定子结构包括由内向外依次同轴套设的内定子和外定子;若干所述永磁体组呈圆周阵列于所述导磁体上,所述永磁体组将所述导磁体分隔成转子内层磁极和转子外层磁极;相邻所述永磁铁组的充磁方向相反;所述永磁体组包括左永磁体和右永磁体,所述左永磁体与右永磁体的内端设置有空隙,所述外定子与所述转子外层磁极形成电机的外气隙磁场,所述内定子与所述转子内层磁极形成电机的内气隙磁场。
本发明的目的在于,提供一种具有两个气隙磁场,并且每个磁极具有两个磁路的永磁电机,该技术增加电机一倍的气隙面积,增加一倍的磁路。该 双向变磁电机由外定子、转子、内定子构成,其转子部分采用一种具有内、外双面磁极,且转子的每个磁极由两组独立磁场构成,其转子外层磁极与外定子之间形成外气隙磁场,其转子内层磁极与内定子之间形成内气隙磁场。电机气隙磁场变化时,转子每个磁极的两组磁场一组会增强,另一组磁场会减小,转子磁极每组磁场跟随定子磁场的变化而变化;当电机定子磁场变化时,通过控制转子磁极上的两组磁场变化来驱动电机转子旋转。由于电机的电磁转矩与气隙直径的二次方成正比关系,使用双定子结构构成的双气隙,给电机增加了一倍的气隙。
进一步,所述外定子的内侧面与所述导磁体的内侧面之间的间距为0.2mm至1mm;所述内定子的外侧面与所述导磁体的内侧面之间的间距为0.2mm至1mm。
进一步,所述左永磁体与右永磁体的外端设置有非导磁材料制成的隔离加强件。
进一步,所述内定子包括内定子铁芯,以及设置于所述内定子铁芯上的内定子绕组,所述外定子包括外定子铁芯,以及设置于所述外定子铁芯上的外定子绕组;所述内定子铁芯安装于电机转子的固定轴上,所述外定子铁芯安装于电机外壳的内壁上,所述内定子铁芯与外定子铁芯上的绕线齿槽数相同,所述内定子绕组与外定子绕组的绕线方式相同,所述内定子绕组与外定子绕组的绕线相位相差180度。本方案的定子结构,采用的是分数槽,单双层混合式集中绕组,这种绕组的有益效果是降低电机的齿槽转矩,提高电机的输出转矩,减少铜线的使用量,降低绕组的电阻,降低电机的铜损,降低电机的温升。
进一步,包括前端盖;所述前端盖设置于所述导磁体前端,所述前端盖上设置有与所述导磁体同轴心的转轴及用于安装轴承的安装位;所述前端盖 与所述导磁体之间和导磁体的另一端均设置有法兰,所述空隙内贯穿设置有用于连接所述导磁体两端所述法兰的螺栓。本方案,去除转子上的后端盖,转子以悬浮的方式处于电机内、外定子之间,主要是依靠主轴上面的轴承、转子前端盖,电机中置轴承座,电机前端盖及电机外壳将转子磁极悬置在内、外定子之间的,同时,减少了构成转子结构的材料,是整个转子结构重量很轻,从而使转子的转动惯量非常低,电机的加速或减速更快,电机加速时更节能。
进一步,还包括第一端盖、第二端盖和固定轴;所述第一端盖与所述第二端盖分别设置于对应所述外定子两端的所述电机外壳上;所述第一端盖的中部设有与所述外定子同轴且用于安装轴承的轴承孔,所述所述固定轴与所述内定子同轴设置,所述固定轴的一端固定在第二端盖上,所述固定轴的另一端贯穿所述内定子安装于所述安装位内。
进一步,所述转子内层磁极的厚度为5mm至10mm,所述转子外层磁极的厚度与所述转子内层磁极相同,所述相邻永磁铁组之间的所述隔离加强件的间距为1mm至3mm,所述隔离加强件内端面到所述转子内层磁极的内壁距离为0.5mm至1mm,所述隔离加强件外端面到所述转子外层磁极的外壁距离0.5mm至1mm,所述隔离加强件在所述永磁铁组阵列方向上的厚度为5mm至10mm。
进一步,所述隔离加强件靠近所述左永磁体和右永磁体的一侧面上设置有凹陷。
进一步,所述左永磁体与右永磁体上位于所述转子内层磁极的一面设置有凹槽,所述转子内层磁极上设置有与所述凹槽相配合的凸条。
进一步,所述导磁体、所述内定子铁芯和所述外定子铁芯均由硅钢片叠装而成。
有益效果:本发明提供一种具有两个气隙磁场,并且每个磁极具有两个 磁路的双项同步驱动永磁电机,该技术增加电机一倍的气隙面积,增加一倍的磁路。该双向变磁电机由外定子、转子、内定子构成,其转子部分采用一种具有内、外双面磁极,且转子的每个磁极由两组独立磁场构成,其转子外层磁极与外定子之间形成外气隙磁场,其转子内层磁极与内定子之间形成内气隙磁场。电机气隙磁场变化时,转子每个磁极的两组磁场一组会增强,另一组磁场会减小,转子磁极每组磁场跟随定子磁场的变化而变化;当电机定子磁场变化时,通过控制转子磁极上的两组磁场变化来驱动电机转子旋转。由于电机的电磁转矩与气隙直径的二次方成正比关系,使用双定子结构构成的双气隙,给电机增加了一倍的气隙。
附图说明
图1为本实施例的电机结构半剖示意图;
图2为本实施例的转子结构半剖示意图;
图3为本实施例的导磁体结构示意图;
图4为本实施例的A部放大示意图;
图5为本实施例的定子结构安装示意图;
图6为本实施例的定子结构半剖示意图;
图7为本实施例的定子绕组分布图;
附图标记:导磁体1、转子内层磁极11、转子外层磁极12、凸条13、法兰14、永磁体组2、左永磁体21、右永磁体22、凹槽23、空隙3、隔离加强件4、凹陷41、前端盖5、安装位51、转轴52、内定子铁芯6、外定子铁芯7、固定轴8、电机外壳9、第一端盖91、第二端盖92、轴承座93、绕线齿槽10。
具体实施方式
以下将结合实施例对本发明涉及的一种永磁电机技术方案进一步详细说明。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1至图7所示,本实施例的一种永磁电机,包括电机外壳9、转子结构和定子结构;所述转子结构包括导磁体1和永磁体组2,所述定子结构包括由内向外依次同轴套设的内定子和外定子;若干所述永磁体组2呈圆周阵列于所述导磁体1上,所述永磁体组2将所述导磁体1分隔成转子内层磁极11和转子外层磁极12;相邻所述永磁铁组的充磁方向相反;所述永磁体组2包括左永磁体21和右永磁体22,所述左永磁体21与右永磁体22的内端设置有空隙3,所述外定子与所述转子外层磁极12形成电机的外气隙磁场,所述内定子与所述转子内层磁极11形成电机的内气隙磁场。所述外定子的内侧面与所述导磁体1的内侧面之间的间距为0.2mm至1mm;所述内定子的外侧面与所述导磁体1的内侧面之间的间距为0.2mm至1mm。所述外定子的内侧面与所述导磁体1的内侧面之间的间距为0.2mm至1mm;所述内定子的外侧面与所述导磁体1的内侧面之间的间距为0.2mm至1mm。所述内定子包括内定子铁芯6,以及设置于所述内定子铁芯6上的内定子绕组,所述外定子包括外定子铁芯7,以及设置于所述外定子铁芯7上的外定子绕组;所述内定子铁芯6安装于电机转子的固定轴8上,所述外定子铁芯7安装于电机外壳9的内壁上,所述内定子铁芯6与外定子铁芯7上的绕线齿槽10数相同,所述内定子绕组与外定子绕组的绕线方式相同,所述内定子绕组与外定子绕组的绕线相位相差180度。包括前端盖5;所述前端盖5设置于所述导磁体1前端,所述前端盖5上 设置有与所述导磁体1同轴心的转轴52及用于安装轴承的安装位51;所述前端盖5与所述导磁体1之间和导磁体1的另一端均设置有法兰14,所述空隙3内贯穿设置有用于连接所述导磁体1两端所述法兰14的螺栓。还包括第一端盖91、第二端盖92和固定轴8;所述第一端盖91与所述第二端盖92分别设置于对应所述外定子两端的所述电机外壳9上;所述第一端盖91的中部设有与所述外定子同轴且用于安装轴承的轴承孔,所述所述固定轴8与所述内定子同轴设置,所述固定轴8的一端固定在第二端盖92上,所述固定轴8的另一端贯穿所述内定子安装于所述安装位51内。所述转子内层磁极11的厚度为5mm至10mm,所述转子外层磁极12的厚度与所述转子内层磁极11相同,所述相邻永磁铁组之间的所述隔离加强件4的间距为1mm至3mm,所述隔离加强件4内端面到所述转子内层磁极11的内壁距离为0.5mm至1mm,所述隔离加强件4外端面到所述转子外层磁极12的外壁距离0.5mm至1mm,所述隔离加强件4在所述永磁铁组阵列方向上的厚度为5mm至10mm。所述隔离加强件4靠近所述左永磁体21和右永磁体22的一侧面上设置有凹陷41。所述左永磁体21与右永磁体22上位于所述转子内层磁极11的一面设置有凹槽23,所述转子内层磁极11上设置有与所述凹槽23相配合的凸条13。所述导磁体1、所述内定子铁芯6和所述外定子铁芯7均由硅钢片叠装而成。
具体的,转子内层磁极11与转子外层磁极12的厚度相同,将转子内层磁极11的厚度设为a;左永磁体21与右永磁体22的厚度相同,将左永磁体21的厚度设为b;将隔离加强件4的厚度设为c;相邻隔离加强件4之间的距离设置为d;隔离加强件4的内端面到转子内层磁极11的内壁距离设为e;隔离加强件4的外端面到转子外层磁极12的内壁距离设为f;在本实施例中,a为6mm,b为5mm,c为7mm,d为2mm,e为0.8mm,f为0.8mm。
本方案的转子结构,利用永磁体组2将导磁体1分隔成转子内层磁极11 和转子外层磁极12,作为转子的内、外磁极,利用永磁体组22作为转子的恒磁源以为内、外磁极提供磁力。该转子结构具有内、外双面两项磁极,且转子的每个磁极由两组独立磁场构成两个磁路,当定子磁场变化时,该结构转子磁极的一路磁场会增强,另一路磁场会减小。定子磁场在驱动转子旋转的同时也控制转子磁极两路磁场的大小变化,以转子两个磁路大小的变化来提高电机的效率。
本方案的定子结构,采用的是分数槽,单双层混合式集中绕组,这种绕组的有益效果是降低电机的齿槽转矩,提高电机的输出转矩,减少铜线的使用量,降低绕组的电阻,降低电机的铜损,降低电机的温升。去除转子上的后端盖,转子以悬浮的方式处于电机内、外定子之间,主要是依靠主轴上面的轴承、转子前端盖5,电机中置轴承座93,电机前端盖5及电机外壳9将转子磁极悬置在内、外定子之间的,同时,减少了构成转子结构的材料,是整个转子结构重量很轻,从而使转子的转动惯量非常低,电机的加速或减速更快,电机加速时更节能。
本发明的目的在于,提供一种具有两个气隙磁场,并且每个磁极具有两个磁路的永磁电机,该技术增加电机一倍的气隙面积,增加一倍的磁路。该双向变磁电机由外定子、转子、内定子构成,其转子部分采用一种具有内、外双面磁极,且转子的每个磁极由两组独立磁场构成,其转子外层磁极12与外定子之间形成外气隙磁场,其转子内层磁极11与内定子之间形成内气隙磁场。电机气隙磁场变化时,转子每个磁极的两组磁场一组会增强,另一组磁场会减小,转子磁极每组磁场跟随定子磁场的变化而变化;当电机定子磁场变化时,通过控制转子磁极上的两组磁场变化来驱动电机转子旋转。由于电机的电磁转矩与气隙直径的二次方成正比关系,使用双定子结构构成的双气隙,给电机增加了一倍的气隙。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种永磁电机,包括电机外壳、转子结构和定子结构;其特征在于:所述转子结构包括导磁体和永磁体组,所述定子结构包括由内向外依次同轴套设的内定子和外定子;若干所述永磁体组呈圆周阵列于所述导磁体上,所述永磁体组将所述导磁体分隔成转子内层磁极和转子外层磁极;相邻所述永磁铁组的充磁方向相反;所述永磁体组包括左永磁体和右永磁体,所述左永磁体与右永磁体的内端设置有空隙,所述外定子与所述转子外层磁极形成电机的外气隙磁场,所述内定子与所述转子内层磁极形成电机的内气隙磁场。
  2. 根据权利要求1所述的一种永磁电机,其特征在于:所述外定子的内侧面与所述导磁体的内侧面之间的间距为0.2mm至1mm;所述内定子的外侧面与所述导磁体的内侧面之间的间距为0.2mm至1mm。
  3. 根据权利要求1所述的一种永磁电机,其特征在于:所述左永磁体与右永磁体的外端设置有非导磁材料制成的隔离加强件。
  4. 根据权利要求1所述的一种永磁电机,其特征在于:所述内定子包括内定子铁芯,以及设置于所述内定子铁芯上的内定子绕组,所述外定子包括外定子铁芯,以及设置于所述外定子铁芯上的外定子绕组;所述内定子铁芯安装于电机转子的固定轴上,所述外定子铁芯安装于电机外壳的内壁上,所述内定子铁芯与外定子铁芯上的绕线齿槽数相同,所述内定子绕组与外定子绕组的绕线方式相同,所述内定子绕组与外定子绕组的绕线相位相差180度。
  5. 根据权利要求1所述的一种永磁电机,其特征在于:包括前端盖;所述前端盖设置于所述导磁体前端,所述前端盖上设置有与所述导磁体同轴心的转轴及用于安装轴承的安装位;所述前端盖与所述导磁体之间和导磁体的另一端均设置有法兰,所述空隙内贯穿设置有用于连接所述导磁体两端所述法兰的螺栓。
  6. 根据权利要求5所述的一种永磁电机,其特征在于:还包括第一端盖、第二端盖和固定轴;所述第一端盖与所述第二端盖分别设置于对应所述外定 子两端的所述电机外壳上;所述第一端盖的中部设有与所述外定子同轴且用于安装轴承的轴承孔,所述所述固定轴与所述内定子同轴设置,所述固定轴的一端固定在第二端盖上,所述固定轴的另一端贯穿所述内定子安装于所述安装位内。
  7. 根据权利要求3所述的一种永磁电机,其特征在于:所述转子内层磁极的厚度为5mm至10mm,所述转子外层磁极的厚度与所述转子内层磁极相同,所述相邻永磁铁组之间的所述隔离加强件的间距为1mm至3mm,所述隔离加强件内端面到所述转子内层磁极的内壁距离为0.5mm至1mm,所述隔离加强件外端面到所述转子外层磁极的外壁距离0.5mm至1mm,所述隔离加强件在所述永磁铁组阵列方向上的厚度为5mm至10mm。
  8. 根据权利要求3所述的一种永磁电机,其特征在于:所述隔离加强件靠近所述左永磁体和右永磁体的一侧面上设置有凹陷。
  9. 根据权利要求1所述的一种永磁电机,其特征在于:所述左永磁体与右永磁体上位于所述转子内层磁极的一面设置有凹槽,所述转子内层磁极上设置有与所述凹槽相配合的凸条。
  10. 根据权利要求4所述的一种永磁电机,其特征在于:所述导磁体、所述内定子铁芯和所述外定子铁芯均由硅钢片叠装而成。
PCT/CN2020/071220 2019-12-09 2020-01-09 一种永磁电机 WO2021114452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911254216.X 2019-12-09
CN201911254216.XA CN110829768A (zh) 2019-12-09 2019-12-09 一种永磁电机

Publications (1)

Publication Number Publication Date
WO2021114452A1 true WO2021114452A1 (zh) 2021-06-17

Family

ID=69544192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071220 WO2021114452A1 (zh) 2019-12-09 2020-01-09 一种永磁电机

Country Status (2)

Country Link
CN (1) CN110829768A (zh)
WO (1) WO2021114452A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107876A (ja) * 2016-12-26 2018-07-05 東洋電機製造株式会社 デュアルステータモータ
CN110212668A (zh) * 2019-07-07 2019-09-06 东莞贰零壹捌电力科技有限公司 双向变磁电机的转子结构
CN110212723A (zh) * 2019-07-07 2019-09-06 东莞贰零壹捌电力科技有限公司 双向变磁电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204271774U (zh) * 2014-08-04 2015-04-15 北京超同步伺服股份有限公司 一种高速永磁电主轴内装电机转子冲片结构
CN211405819U (zh) * 2019-12-09 2020-09-01 深圳市中悦机电科技有限公司 一种永磁电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107876A (ja) * 2016-12-26 2018-07-05 東洋電機製造株式会社 デュアルステータモータ
CN110212668A (zh) * 2019-07-07 2019-09-06 东莞贰零壹捌电力科技有限公司 双向变磁电机的转子结构
CN110212723A (zh) * 2019-07-07 2019-09-06 东莞贰零壹捌电力科技有限公司 双向变磁电机

Also Published As

Publication number Publication date
CN110829768A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN108011484B (zh) 一种磁齿轮复合电机
CN109217597B (zh) 复合励磁非晶合金轴向磁通电机
CN103490573B (zh) 一种轴向磁场磁通切换型表贴式永磁记忆电机
CN109274234B (zh) 一种复合励磁非晶合金轴向磁阻电机
US7902700B1 (en) Low harmonic loss brushless motor
CN109995211B (zh) 一种定子同极型混合永磁记忆电机
WO2019161624A1 (zh) 一种非对称双三相弧线永磁同步电机
CN107181382B (zh) 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
CN110061603B (zh) 一种转子磁路解耦型高速混合励磁同步电机
CN106787562A (zh) 交替极混合励磁直驱游标电机
CN112467950B (zh) 一种转子永磁型双转子轴向磁场混合励磁磁通切换电机
WO2019033696A1 (zh) 一种Halbach型阵列永磁盘式无铁芯空心轴电机
CN106487178B (zh) 一种盘式双定子混合励磁电动机
CN110460175A (zh) 一种轴向磁通集中绕组型混合励磁电机
WO2022105947A2 (zh) 一种凸极式混合励磁电机
CN102522865B (zh) 一种能够减少力矩波动的多定子弧形直线电机
WO2023216635A1 (zh) 一种宽窄定子极轴向磁通开关磁阻电机及其控制方法
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
CN110518766B (zh) 不对称双定子混合励磁型轴向磁场磁通切换电机
CN207150380U (zh) 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
CN111245187B (zh) 一种环形绕组双转子磁通反向电机
CN108258820B (zh) 一种非重叠绕组齿槽型双转子永磁同步电机
WO2021114452A1 (zh) 一种永磁电机
CN111211659A (zh) 一种定子模块化环形绕组双转子永磁电机
CN211405819U (zh) 一种永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897970

Country of ref document: EP

Kind code of ref document: A1