WO2021114369A1 - 一种高压硬岩宽频带低幅值面扰动真三轴试验系统 - Google Patents

一种高压硬岩宽频带低幅值面扰动真三轴试验系统 Download PDF

Info

Publication number
WO2021114369A1
WO2021114369A1 PCT/CN2019/126887 CN2019126887W WO2021114369A1 WO 2021114369 A1 WO2021114369 A1 WO 2021114369A1 CN 2019126887 W CN2019126887 W CN 2019126887W WO 2021114369 A1 WO2021114369 A1 WO 2021114369A1
Authority
WO
WIPO (PCT)
Prior art keywords
principal stress
stress direction
rod
force transmission
block
Prior art date
Application number
PCT/CN2019/126887
Other languages
English (en)
French (fr)
Inventor
冯夏庭
田冕
张凤鹏
田军
杨成祥
彭建宇
赵曰茂
高继开
蒋剑青
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to CA3101296A priority Critical patent/CA3101296C/en
Priority to AU2019449031A priority patent/AU2019449031B2/en
Priority to EP19929193.1A priority patent/EP3872475A4/en
Priority to US17/059,169 priority patent/US11119018B2/en
Publication of WO2021114369A1 publication Critical patent/WO2021114369A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention belongs to the technical field of rock mechanics, and particularly relates to a true triaxial test system for high-pressure hard rock broadband low-amplitude surface disturbance.
  • the rock mass In deep rock engineering, the rock mass is in a three-dimensional high stress state, while high static stress provides a stress foundation for the incubation and occurrence of deep rock engineering disasters.
  • blasting excavation has always been one of the main methods for deep rock engineering construction and excavation due to its high efficiency and good economy. Therefore, during the construction period, the rock mass will inevitably be affected by the disturbance wave generated by blasting.
  • the disturbance wave generated by blasting When the disturbance wave generated by blasting attenuates as it propagates, it will gradually attenuate into a low-frequency blasting seismic wave.
  • the frequency of the blasting seismic wave is in the range of 0-20 Hz
  • the amplitude of the blasting seismic wave is in the range of 0.1-30 MPa.
  • the frequency and amplitude range of blasting seismic waves are relatively small, they can still trigger deep rock engineering disasters such as rock bursts, zonal rupture, disturbance-type landslides, and continuous rock mass cracking.
  • the frequency of disturbance waves generated by some large-scale rock bursts is also in the range of 0-20 Hz, and the amplitude is also in the range of 0.1-30 MPa.
  • the occurrence of fault slips, earthquakes and other disturbances can also cause disturbance-type rock bursts, and the frequency is also in the range of 0-20 Hz.
  • This method of applying point disturbance and local surface disturbance is compared with the application method of whole surface disturbance. Make the test results farther away from the actual on-site.
  • the field disturbance wave amplitude is alternately positive and negative, which means that the field stress increases or decreases on the basis of static stress, that is, there is loading and unloading on the basis of static stress.
  • the single static load cylinder plus reaction frame and dynamic small cylinder structure are adopted in the same direction. This structure can only simulate the disturbing dynamic loading process on a static load basis, but cannot simulate a static stress basis. On the uninstall process.
  • blasting excavation has the characteristics of high excavation efficiency and good economy, so it has always been one of the most important excavation methods.
  • blasting can be divided into three areas, including blasting shock wave area, blasting stress wave area and blasting elastic wave area.
  • the stress amplitude of the blasting shock wave exceeds the strength of the rock mass, which can directly break the rock mass.
  • the stress amplitude of the blasting stress wave is lower than the strength of the rock mass, but its repeated action on the rock mass will also cause continuous cracking of the rock mass, and ultimately lead to rock mass instability.
  • the blasting stress is mainly studied by on-site monitoring of the blasting vibrator. wave.
  • the blasting elastic wave has the lowest stress amplitude, and its impact on the rock mass is the smallest.
  • the dominant frequency range of the blasting stress wave is about 100Hz ⁇ 500Hz
  • the stress amplitude range of the blasting stress wave is about 0.1MPa ⁇ 30MPa.
  • the strain rate of the blasting stress wave is in the middle range between the low strain rate of static stress and the high strain rate of dynamic impact stress.
  • the blasting shock wave can be simulated by the traditional Hopkinson bar test equipment, and the blasting elastic wave can be simulated by the existing low-frequency dynamic equipment.
  • the simulation of the blasting stress wave has problems.
  • the present invention provides a high-pressure hard rock broadband low-amplitude surface disturbance true triaxial test system, which can simulate the blasting seismic wave and large rock mass under high static stress load from the perspective of indoor testing.
  • the surface disturbance loading process of the disturbance wave generated by the explosion and the fault slip in the frequency range of 0-20Hz can be realized by the low-speed launch of the bullet to realize the simulation of the low-stress amplitude characteristic, and the specific frequency characteristic can be realized by the rod splicing method.
  • Simulation, and the pole splicing method also effectively shortens the length of the equipment, effectively saves the space occupied by the equipment, reduces the difficulty of selecting the test site, and makes the installation and maintenance of the equipment easier.
  • a high-pressure hard rock broadband low-amplitude surface disturbance true triaxial test system including low-frequency disturbance true triaxial mechanism, frequency conversion slow-speed disturbance rod mechanism and fast single-sided unloading type
  • the sample box, the low-frequency perturbation true three-axis mechanism and the variable frequency slow-speed perturbation rod mechanism are distributed in a straight line, the low-frequency perturbation true three-axis mechanism is used alone or in conjunction with the variable frequency slow-speed perturbation rod mechanism, and the fast single-sided unloading
  • the type sample box is used in conjunction with a low-frequency disturbance true three-axis mechanism.
  • the low-frequency disturbance true three-axis mechanism includes a true three-axis loading assembly and a parallel oil source assembly. Both the true three-axis loading assembly and the parallel oil source assembly are installed on the base of the mechanism; the true three-axis loading assembly includes a rigid base, a horizontal Rigid frame body, vertical rigid frame body, cast iron shock absorber and dynamic servo hydraulic actuators; the number of dynamic servo hydraulic actuators is six; the cast iron shock absorber is horizontally fixed on the mechanism base, rigid The base is horizontally clamped on the cast iron shock-absorbing table, the vertical rigid frame body is vertically bolted and fixed on the upper surface of the rigid base, and the vertical rigid frame body is composed of a top plate, a bottom plate and four uprights; the horizontal rigid frame body The ring structure is adopted, the horizontal rigid frame body is sleeved on the outside of the vertical rigid frame body, and the horizontal rigid frame body is screwed and fixed on the upper surface of the rigid base; a dynamic servo hydraulic is installed on the top plate
  • Actuators, and the upper and lower two dynamic servo hydraulic actuators are symmetrically distributed; four dynamic servo hydraulic actuators are evenly installed on the horizontal rigid frame body along the circumferential direction; the dynamic servo hydraulic actuators are equipped There is a reversing valve block, a dynamic load sensor is installed at the end of the piston rod of the dynamic servo hydraulic actuator, and the piston rod of the dynamic servo hydraulic actuator is a hollow rod structure.
  • the parallel oil source assembly includes an oil tank, a pump station and a cooler; the inner cavity of the oil tank is divided into six areas by partitions, which are respectively marked as No. 1 area, No. 2 area, No. 3 area, No. 4 area, No. 5 Area and area 6; the top of the area 1, area 2, and area 3 are connected to each other, the top of the area 4 and area 5 are connected to each other, the area 5 and area 6 are connected to each other at the bottom , The tops of No. 1 area and No. 4 are connected to each other, the tops of No. 2 and No. 5 areas are connected to each other, and the tops of No. 3 and No.
  • the pump station includes five hydraulic pumps, They are respectively marked as the first high-flow hydraulic pump, the second high-flow hydraulic pump, the third high-flow hydraulic pump, the fourth high-flow hydraulic pump, and the low-flow hydraulic pump.
  • the hydraulic oil outlets of the five hydraulic pumps are all connected with flow control Valve, the hydraulic oil output port of each hydraulic pump is connected to the oil inlet end of the shunt valve seat through a pipeline, and the front and rear cavity oil ports of the dynamic servo hydraulic actuator are connected to the shunt valve seat through the reversing valve block and pipeline
  • the oil outlet; the first high-flow hydraulic pump, the second high-flow hydraulic pump, the third high-flow hydraulic pump, the fourth high-flow hydraulic pump, and the hydraulic oil suction port of the low-flow hydraulic pump pass through the pipeline and the tank
  • the bottom of the cavity is connected and used to pump hydraulic oil in area 1, area 2, and area 3; the first high-flow hydraulic pump, the second high-flow hydraulic pump, the third high-flow hydraulic pump, and the fourth An overflow valve is installed
  • the overflow port of the overflow valve is connected to the area 4, area 5 and the area through the overflow pipe.
  • Area 6 is connected; the hydraulic oil flowing out of the first high-flow hydraulic pump, the second high-flow hydraulic pump, the third high-flow hydraulic pump, and the fourth high-flow hydraulic pump during dynamic disturbance is connected to
  • the oil inlet end of the oil return valve seat and the oil outlet end of the oil return valve seat are connected to the area No. 4 through a pipeline; the bottom of the area No. 5 is connected with a hot oil output pipe and the oil outlet of the hot oil output pipe
  • the hot oil hydraulic pump is connected, and the oil outlet of the hot oil hydraulic pump is connected to the cooler through a pipeline.
  • the hot oil in area 5 is pumped to the cooler through the hot oil hydraulic pump to cool down, and the oil outlet of the cooler
  • the port is connected to the bottom of area 6 through the cold oil return line.
  • the variable frequency slow disturbance rod mechanism includes a launching platform, a cylinder, a barrel, a bullet, and an incident rod;
  • the barrel is horizontally erected on the back of the launching platform, the cylinder is installed at the rear of the barrel, and the bullet is located in the barrel, and inside the barrel
  • the bullet is covered with a polyethylene anti-friction sleeve;
  • the incident rod is horizontally erected on the front side of the launching platform through the incident rod support seat; there are two ways of matching between the bullet and the incident rod; in the first matching method, The bullet and the incident rod are separated from each other.
  • a PVDF piezoelectric film sensor is installed on the front end of the incident rod.
  • the front end of the incident rod is pressed against the rock sample by the PVDF piezoelectric film sensor.
  • the rear end surface is equipped with a shaping sheet; in the second matching mode, the front end surface of the bullet and the rear end surface of the incident rod are butted together in abutting contact, and the butt-joined bullet and the incident rod together form an elongated bullet.
  • a splicing sleeve is sleeved outside the butt joint with the incident rod.
  • the splicing sleeve has an axial sliding degree of freedom relative to the bullet and the incident rod.
  • the front end of the incident rod and the rock sample are separated from each other and installed on the front end of the incident rod.
  • the plastic film is equipped with a PVDF piezoelectric film sensor on the outer surface of the plastic film; a single-pulse mass block is sleeved outside the rod body of the incident rod, and the single-pulse mass block adopts a split combined structure.
  • An annular groove is provided on the inner wall of the entrance rod through hole, and an annular boss is provided on the rod body of the entrance rod.
  • the annular boss is located in the annular groove, and the axial thickness of the annular boss is smaller than the axial width of the annular groove , So that the axial micro-motion gap of the incident rod is formed between the annular boss and the annular groove;
  • a slide rail is installed on the launching platform under the single pulse mass block, and the slide rail adopts a parallel double-track structure, and the slide rail and the incident rod Parallel, a sliding block is arranged on the sliding rail, and the sliding block is horizontally fixed on the sliding table, the single-pulse mass is fixedly connected to the upper surface of the sliding table, and the single-pulse mass has a linear movement relative to the sliding rail Degrees of freedom.
  • An air compressor and a console are provided on the ground on the side of the launching station, a first button switch and a second button switch are provided on the console, and a gas cylinder,
  • the first air control valve and the second air control valve; the cylinder is arranged horizontally, a front chamber and a rear chamber are arranged inside the cylinder, and the piston rod seals through the partition between the front chamber and the rear chamber, and is located in the front chamber
  • a barrel sealing plug is installed at the end of the piston rod of the chamber, and a launching air outlet is opened on the axial cylinder wall of the front chamber.
  • the air inlet port at the rear of the barrel is in sealed communication with the launching air outlet.
  • a launching air inlet is opened on the radial cylinder wall of the front chamber, and the launching air inlet is in sealed communication with the air outlet of the gas cylinder through the launching air inlet pipe; the end of the piston rod in the rear chamber is equipped with a piston disc, and the piston The disc divides the rear chamber into a rod cavity and a rodless cavity.
  • the diameter of the piston disc is larger than the diameter of the barrel sealing plug;
  • the first button switch and the second button switch have the same structure, and each includes an air inlet, Normally open air outlet, normally closed air outlet and pressure relief port, the pressure relief port is directly connected to the atmosphere;
  • the air supply port of the air compressor is output in three ways, the first way is connected to the air inlet of the first button switch ,
  • the second channel is connected with the air inlet of the first air control valve, and the third channel is connected with the air inlet of the gas cylinder;
  • the normally open air outlet of the first button switch is connected to the rodless cavity of the cylinder rear chamber
  • the normally closed air outlet of the first button switch is connected with the air inlet of the second button switch, and the normally open air outlet of the second button switch is output in two ways, the first way and the closing valve of the first air control valve
  • the air control port is connected, and the second line is connected to the valve opening air control port of the second air control valve;
  • a vacuum pump is provided on the ground on the side of the launching platform, and air extraction ports are provided on the rear end of the barrel and the middle tube of the splicing sleeve.
  • the two air extraction ports are connected with the vacuum pump, and the vacuum pump is used to connect the vacuum pump.
  • the tube cavity of the barrel and the splicing casing is evacuated, the bullet in the barrel is automatically retracted to the launch position under negative pressure by vacuuming, and the bullet in the splicing casing is automatically contacted with the incident rod by vacuuming.
  • a bullet velocimeter is installed on the launch pad adjacent to the barrel exit, and an incident rod velocimeter is installed on the launch pad on the front side of the single pulse mass; set on the ground on the side of the launch pad
  • There is a charge amplifier the signal output end of the PVDF piezoelectric film sensor is connected to the charge amplifier, and the voltage signal of the charge amplifier is connected to the oscilloscope or computer;
  • the unused incident rod is placed on the platform;
  • a gantry crane is arranged above the launching platform, and the incident rod is installed and disassembled by the gantry crane.
  • the quick single-sided unloading sample box includes a frame, a frame transfer trolley, a sample limit box, a first maximum principal stress direction support force transmission component, a second maximum principal stress direction support force transmission component, and a first intermediate principal stress Directional support force transmission component, second intermediate principal stress direction support force transmission component, first minimum principal stress direction support force transmission component, second minimum principal stress direction support force transmission component, maximum principal stress direction sample deformation measurement component, middle
  • the frame adopts a square structure, the frame is placed on the frame transfer trolley, and the sample limit box is located in the inner center of the frame
  • the first maximum principal stress direction support force transmission component is set in the center of the front wall of the frame
  • the second maximum principal stress direction support force transmission component is set in the center of the rear wall of the frame
  • the support force transmission component and the second maximum principal stress direction support force transmission component are distributed along the same horizontal straight line;
  • the sample limit box adopts a rectangular structure.
  • the sample limit box is composed of two upper and lower half boxes.
  • the upper and lower half boxes are buckled together to form a complete sample limit box.
  • the bolts are fixedly connected; the six wall surfaces of the sample limit box are provided with pressure head passing holes; the first maximum principal stress direction supports the force transmission component, the second maximum principal stress direction supports the force transmission component,
  • the first intermediate principal stress direction support force transmission component and the second minimum principal stress direction support force transmission component have the same structure, and both include a disc-shaped pressure block, a cylindrical pressure block, and a square indenter; the disc-shaped
  • the pressure-bearing pad is located on the outside of the frame wall, and guide lugs are uniformly distributed on the circumferential edge of the disc-shaped pressure-bearing pad.
  • the guide lugs are provided with guide light holes, and guides are inserted in the guide light holes.
  • a stud the guide stud is fixedly connected to the frame wall, the disc-shaped pressure-bearing pad has only axial movement freedom relative to the guide stud; a circular pad is opened in the center of the frame wall Passing holes, the cylindrical pressure-bearing block is inserted in the circular block passing hole, and a block radial limit ring and a pad are sequentially arranged between the circular block passing hole and the cylindrical pressure-bearing block
  • a block anti-friction bearing a dustproof ring is fitted on a cylindrical pressure bearing block located on the inner side of the frame wall plate, and the dustproof ring is fixedly connected to the radial limit ring of the spacer through the dustproof ring limit ring; the cylinder One end of the cylindrical pressure pad is in contact with the disc-shaped pressure pad, and the other end of the cylindrical pressure pad is in contact with one end of the square indenter, and the square indenter is put on the
  • the second intermediate principal stress direction supporting force transmission component includes a disc-shaped pressure bearing pad and a pad supporting limit plate , T-shaped pressure pad, transition pad and square indenter; the disc-shaped pressure pad is located below the bottom wall of the frame, and a square pad through hole is opened in the center of the bottom wall of the frame.
  • the T The small head end of the T-shaped pressure block is inserted in the square block through hole, and the disc-shaped pressure block is fixedly connected to the small head of the T-shaped pressure block, and the big end of the T-shaped pressure block is The end is located above the bottom wall plate of the frame.
  • the cushion block support and limit plate is fixed on the surface of the bottom wall plate of the frame.
  • the center of the cushion block support and limit plate is also provided with a square cushion block through hole.
  • a cushion anti-friction strip is arranged between the small ends of the T-shaped pressure cushion block; the transition cushion is placed on the top of the large end of the T-shaped pressure cushion block, and the smallest main end is arranged on the top of the large end of the T-shaped pressure cushion block.
  • the stress direction transition pad guides the limit bar; the lower end of the square indenter is in contact with the upper surface of the transition pad, the square indenter is inserted in the indenter passing hole under the sample limit box, and the upper end of the square indenter is in contact with the upper surface of the transition pad.
  • the sample in the sample limit box is in abutting contact; the upper surface of the transition pad is provided with a square indenter guide limit bar in the direction of the maximum principal stress.
  • the first minimum principal stress direction supporting force transmission component includes a pressure bearing block for unloading, a square indenter, and a protective cover.
  • the frame wall plate is replaced by a protective cover, and a pressure bearing pad for unloading is provided in the middle of the protective cover
  • the pressure-bearing pad for unloading is inserted into the passing-through hole of the pressure-bearing pad for unloading; one end of the square indenter is in contact with the end of the pressure-bearing pad for unloading, and the square press
  • the head wear is installed in the indenter passing hole corresponding to the sample limit box, and the other end of the square indenter is in contact with the sample in the sample limit box;
  • the sample deformation measuring component in the direction of the maximum principal stress includes the maximum principal stress Stress direction sensor bracket, maximum principal stress direction guide rod and maximum principal stress direction tensile displacement sensor; the maximum principal stress direction sensor bracket is respectively fixed on two square indenters in the maximum principal stress direction, the maximum principal stress The direction guide rod and the
  • the pneumatic quick unloading assembly includes a double-acting cylinder, a force transmission frame, a buffer block, a buffer spring, and a buffer base; the number of the double-acting cylinders is two, and the two double-acting cylinders are symmetrically distributed on two pressure-bearing cushion blocks for unloading.
  • the double-acting cylinder is arranged vertically and the piston rod is facing upwards, the end of the piston rod of the double-acting cylinder is hinged on the force transmission frame, the force transmission frame is fixedly connected to the pressure block for unloading, the cylinder of the double-acting cylinder
  • the end of the cylinder is connected to the frame through a hinged ear seat;
  • the buffer base is located directly below the pressure bearing block for unloading, the buffer spring is installed vertically on the upper surface of the buffer base, and the buffer block is installed on the top of the buffer spring ;
  • a guide pin is vertically provided between the buffer block and the buffer base.
  • the high-pressure hard rock broadband low-amplitude surface disturbance true triaxial test system of the present invention can simulate the blasting seismic waves of rock masses under high static stress loads, the disturbance waves generated by large-scale rock blasts, and fault slip from the perspective of indoor tests.
  • the surface disturbance loading process with the frequency range of the disturbance wave in the range of 0 ⁇ 20Hz can realize the simulation of low stress amplitude characteristics through low-speed bullet launching, and realize the simulation of specific frequency characteristics through the rod splicing method, and the rod splicing method also effectively shortens
  • the length of the equipment effectively saves the space occupied by the equipment, reduces the difficulty of selecting the test site, and makes the installation and maintenance of the equipment easier.
  • Figure 1 is a schematic structural diagram of a true triaxial test system for high-pressure hard rock broadband low-amplitude surface disturbance according to the present invention
  • Figure 2 is a schematic diagram of the structure of a low-frequency disturbance true three-axis mechanism
  • Figure 3 is a schematic diagram of the structure of the parallel oil source assembly (first view);
  • Figure 4 is a schematic diagram of the structure of the parallel oil source assembly (second perspective);
  • Figure 5 is a schematic structural diagram of a variable frequency slow perturbation rod mechanism (the bullet and the incident rod are arranged separately from each other in a matching manner);
  • Figure 6 is a schematic diagram of the structure of the variable frequency slow-speed disturbance rod mechanism (the bullet and the incident rod adopt a butt-jointed cooperation method to form an elongated bullet);
  • Figure 7 is a schematic diagram of the assembly of a single-pulse mass block, incident rod, sliding rail, sliding block and sliding table;
  • Figure 8 is a schematic diagram of the air connection of the air cylinder, the first button switch, the second button switch, the gas cylinder, the first air control valve, and the second air control valve;
  • Figure 9 is a schematic diagram of the structure of a quick single-sided unloading sample box (the front wall of the frame is not shown in the first viewing angle);
  • Figure 10 is a schematic structural view of a quick single-sided unloading sample box (the front wall of the frame is not shown in the second viewing angle);
  • Figure 11 is a schematic diagram of the structure of a quick single-sided unloading sample box (the protective cover is not shown in a third angle of view);
  • Figure 12 is a structural diagram of a quick single-sided unloading sample box (the front wall of the frame is not shown in a fourth viewing angle);
  • Figure 13 is a schematic diagram of the assembly between the sample limit box, the square indenter, the maximum/middle/minimum principal stress direction sample deformation measurement component, and the pressure-bearing pad for unloading;
  • Figure 14 is a schematic diagram of the assembly of the sample limit box, the square indenter, and the maximum/middle/minimum principal stress direction sample deformation measurement components;
  • Figure 15 is an exploded view of the supporting force transmission component in the first maximum/second maximum/first middle/second minimum principal stress direction;
  • Figure 16 is an exploded view of the supporting force transmission component in the second intermediate principal stress direction
  • I-low-frequency disturbance true three-axis mechanism II-frequency conversion slow-speed disturbance rod mechanism, III-fast single-sided unloading sample box, A1-mechanism base, A2-rigid base, A3-horizontal rigid frame body, A4-Vertical rigid frame body, A5-cast iron shock absorber, A6-dynamic servo hydraulic actuator, A7-fuel tank, A8-pump station, A9-cooler, A10-1area, A11-2area, A12-3 area, A13-4 area, A14-5 area, A15-6 area, A16-the high-flow hydraulic pump, A17-the second high-flow hydraulic pump, A18-the third high-flow hydraulic pump , A19-fourth high-flow hydraulic pump, A20-low-flow hydraulic pump, A21-diversion valve seat, A22-overflow pipe, A23-oil return valve seat, A24-hot oil output pipe, A25-hot oil hydraulic pump, A26-cold oil return line, B1-launcher, B2-cylinder,
  • a high-pressure hard rock broadband low-amplitude surface disturbance true triaxial test system includes low-frequency disturbance true triaxial mechanism I, variable frequency slow disturbance rod mechanism II and fast single-sided unloading sample box III ,
  • the low-frequency perturbation true three-axis mechanism I and the variable frequency slow-speed perturbation lever mechanism II are distributed on a straight line, the low-frequency perturbation true three-axis mechanism I is used alone or in conjunction with the variable-frequency slow perturbation lever mechanism II, and the fast single-sided
  • the unloaded sample box III is used in conjunction with the low-frequency disturbance true three-axis mechanism I.
  • the low-frequency disturbance true three-axis mechanism I includes a true three-axis loading assembly and a parallel oil source assembly. Both the true three-axis loading assembly and the parallel oil source assembly are installed on the mechanism base A1; Three-axis loading components include rigid base A2, horizontal rigid frame body A3, vertical rigid frame body A4, cast iron shock absorber A5 and dynamic servo-hydraulic actuator A6; as the actuator, dynamic servo-hydraulic actuator A6 is adopted , It can play a role of static loading and dynamic loading; the number of the dynamic servo hydraulic actuator A6 is six; the cast iron shock absorbing table A5 is horizontally fixed on the mechanism base A1, and the rigid base The A2 is horizontally clamped on the cast iron shock absorbing platform A5, the vertical rigid frame body A4 is vertically bolted and fixed on the upper surface of the rigid base A2, and the vertical rigid frame body A4 is composed of a top plate, a bottom plate and four uprights; the horizontal The rigid frame body A3 adopts
  • the parallel oil source assembly includes a fuel tank A7, a pump station A8 and a cooler A9; the inner cavity of the fuel tank A7 is divided into six areas by partitions, which are respectively marked as area 1 area A10, area 2 area A11, and area 3 area A12 , No.
  • the pump station A8 includes five hydraulic pumps, which are respectively marked as the first high-flow hydraulic pump A16, the second high-flow hydraulic pump A17, and the third high-flow hydraulic pump A18, the fourth high-flow hydraulic pump A19 and the low-flow hydraulic pump A20; in this embodiment, the first high-flow hydraulic pump A16, the second high-flow hydraulic pump A17, the third high-flow hydraulic pump A18, and the fourth high-flow hydraulic pump
  • the flow rate of the pump A19 is 100L/min
  • the flow rate of the low-flow hydraulic pump A20 is 30L/min
  • the low-flow hydraulic pump A20 of 30L/min can be used for static test, when the dynamic test of 0 ⁇ 20Hz is required, Four 100L/min high-flow hydraulic pumps are connected in parallel to achieve a 400L/min flow; the first high-flow hydraulic pump A16, the second high-flow hydraulic pump A17, the third high-flow hydraulic pump A18, and the fourth high-flow hydraulic pump
  • the dynamic servo hydraulic actuator The oil ports of the front and rear chambers of A6 are connected to the oil outlet of the shunt valve seat A21 through the reversing valve block and pipeline; the first high-flow hydraulic pump A16, the second high-flow hydraulic pump A17, and the third high-flow hydraulic pump A18 , The hydraulic oil suction ports of the fourth high-flow hydraulic pump A19 and the low-flow hydraulic pump A20 are connected to the bottom of the inner cavity of the oil tank A7 through pipelines, which are used to extract the areas 1A10, 2A11 and 3A12 The hydraulic oil; the first high-flow hydraulic pump A16, the second high-flow hydraulic pump A17, the third high-flow hydraulic pump A18, the fourth high-flow hydraulic pump A19, and the hydraulic oil output ports of the low-flow hydraulic pump A20 and their respective An overflow valve is installed between the corresponding flow control valves, and the overflow port of the overflow valve is connected to the area 4A13, the area 5A14, and the area 6A15 through the overflow pipe A
  • variable frequency slow disturbance rod mechanism II includes a launch pad B1, a cylinder B2, a barrel B3, a bullet B4, and an incident rod B5; the barrel B3 is horizontally erected on the rear side of the launch pad B1, Cylinder B2 is installed at the rear of barrel B3, bullet B4 is located in barrel B3, and the bullet B4 in barrel B3 is fitted with a polyethylene anti-friction sleeve.
  • the polyethylene anti-friction sleeve is used to lower the gap between barrel B3 and bullet B4.
  • the inner surface of the barrel B3 is processed by honing to reduce the friction between the polyethylene anti-friction sleeve and the inner surface of the barrel B3; the incident rod B5 is horizontally erected on the launching platform through the incident rod support B6
  • the tube B7 and the splicing sleeve B7 have the freedom of axial sliding relative to the bullet B4 and the incident rod B5.
  • the front end of the incident rod B5 and the rock sample are separated from each other.
  • a shaping sheet is installed on the front end of the incident rod B5.
  • the PVDF piezoelectric film sensor is installed on the outer surface of the chip; a single-pulse mass block B8 is fitted on the outside of the incident rod B5, and the single-pulse mass block B8 adopts a split combined structure.
  • the inner wall of the rod penetration hole is provided with an annular groove B30, and the rod body of the incident rod B5 is provided with an annular boss B31.
  • the annular boss B31 is located in the annular groove B30.
  • the axial thickness of the annular boss B31 is smaller than that of the annular concave
  • the axial width of the groove B30 is such that an axial micro-motion gap of the incident rod is formed between the annular boss B31 and the annular groove B30; a sliding rail B9 is installed on the launching platform B1 under the single-pulse mass B8, sliding
  • the rail B9 adopts a parallel double-rail structure, the slide rail B9 is parallel to the incident rod B5, the slide rail B9 is provided with a slide block B10, and the slide block B10 is horizontally fixed to the slide table B11, and the single pulse mass B8 is fixed Connected to the upper surface of the sliding table B11, the single-pulse mass B8 has a linear movement degree of freedom relative to the sliding rail B9.
  • An air compressor B12 and a console B13 are provided on the ground on the side of the launching station B1, and a first button switch B14 and a second button switch B15 are provided on the console B13.
  • the launching below the barrel B3 A gas cylinder B16, a first gas control valve B17, and a second gas control valve B18 are arranged in the table B1; the cylinder B2 is arranged horizontally, and the front chamber B19 and the rear chamber B20 are arranged inside the cylinder B2, and the piston rod B32 is sealed Passing through the partition between the front chamber B19 and the rear chamber B20, a barrel sealing plug B21 is installed at the end of the piston rod of the front chamber B19, and a launching air outlet is opened on the axial cylinder wall of the front chamber B19 B22, the air inlet port at the rear of the barrel B3 is in sealed communication with the launch air outlet B22.
  • the radial cylinder wall of the front chamber B19 is provided with a launch air inlet B15.
  • the launch air inlet B15 enters through the launch
  • the air pipe B23 is in sealed communication with the air outlet of the gas cylinder B16;
  • a piston disk B24 is installed at the end of the piston rod in the rear chamber B20, and the piston disk B24 divides the rear chamber B20 into a rod-containing cavity and a rod-less cavity.
  • the piston disk The diameter of B24 is greater than the diameter of the barrel sealing plug B21; the first button switch B14 and the second button switch B15 have the same structure, and both include an air inlet, a normally open air outlet, a normally closed air outlet and a pressure relief port.
  • the pressure relief port is directly connected to the atmosphere; the air supply port of the air compressor B12 is output in three ways, the first way is connected to the air inlet of the first button switch B14, and the second way is connected to the first air control valve B17
  • the air inlet of the cylinder is connected, and the third channel is connected to the air inlet of the gas cylinder B16; the normally open air outlet of the first button switch B14 is connected to the rodless cavity of the rear chamber B20 of the cylinder B2, and the first button
  • the normally closed air outlet of the switch B14 is connected with the air inlet of the second button switch B15, and the normally open air outlet of the second button switch B15 is output in two ways, the first way is the closed valve air control of the first air control valve B17
  • the second way is connected with the open air control port of the second air control valve B18; the normally closed air outlet of the second button switch B15 is output in two ways, the first way is connected to the first air control valve B17
  • the valve opening air control port is connected, and
  • the models of the first air control valve B17 and the second air control valve B18 are RAT052DAF02/F05-N11, and the working pressure range is 0.3MPa ⁇ 0.8MPa; the model of the first button switch B14 is M5PL210-08, working The pressure range is 0 ⁇ 1.0MPa; the model of the second button switch B15 is 4H210-08, and the working pressure range is 0.15MPa ⁇ 0.8MPa.
  • a vacuum pump B25 is installed on the ground on the side of the launching platform B1.
  • the rear end of the barrel B3 and the middle of the splicing sleeve B7 are provided with suction ports.
  • the two suction ports are connected to the vacuum pump B25.
  • vacuum pump B25 Connected, vacuum pump B25 to the cavities of barrel B3 and splicing casing B7, the bullet B4 in barrel B3 is automatically retracted to the launch position under negative pressure by vacuuming, and the splicing casing is vacuumed
  • the bullet B4 in B7 and the incident rod B5 are automatically butted against each other in contact with each other.
  • a bullet velocimeter B26 is installed on the launch pad B1 adjacent to the exit of the barrel B3, and an incident rod velocimeter B27 is installed on the launch pad B1 on the front side of the single pulse mass B8; on the side of the launch pad B1
  • a charge amplifier B28 is provided on the ground of the square, the signal output end of the PVDF piezoelectric film sensor is connected to the charge amplifier B28, and the voltage signal of the charge amplifier B28 is connected to an oscilloscope or computer.
  • An incident rod bearing platform is installed on the side of the launching platform B1, through which the unused incident pole B5 is placed; above the launching platform B1, a gantry crane B29 is installed, and the incident pole B5 is provided by the gantry crane B29. Perform installation and removal.
  • the quick single-sided unloading sample box III includes a frame C1, a frame transfer trolley C2, a sample limit box C3, a first maximum principal stress direction support force transmission component C4, and a second maximum Principal stress direction support force transmission component C5, first intermediate principal stress direction support force transmission component C6, second intermediate principal stress direction support force transmission component C7, first minimum principal stress direction support force transmission component C8, second minimum principal stress Directional support force transmission component C9, maximum principal stress direction sample deformation measurement component C10, intermediate principal stress direction sample deformation measurement component C11, minimum principal stress direction sample deformation measurement component C12, and pneumatic quick unloading component C13;
  • the frame C1 Adopting a square structure the frame C1 is placed on the frame transfer trolley C2, the sample limit box C3 is located at the inner center of the frame C1;
  • the first maximum principal stress direction supporting force transmission component C4 is arranged on the front wall of the frame C1 Center, the second maximum principal stress direction supporting force transmission component C5 is arranged in the center of the rear wall of the frame C
  • the sample limit box C3 adopts a rectangular structure, the sample limit box C3 is composed of two upper and lower half boxes, the upper and lower half boxes are buckled together to form a complete sample limit box C3, the upper and lower half boxes The bolts are used to fix the connection; the six wall surfaces of the sample limit box C3 are provided with pressure head passing holes.
  • the first maximum principal stress direction support force transmission component C4, the second maximum principal stress direction support force transmission component C5, the first intermediate principal stress direction support force transmission component C6, and the second minimum principal stress direction support force transmission component C9 structure Same, including disc-shaped pressure-bearing pad C14, cylindrical pressure-bearing pad C15 and square indenter C16; the disc-shaped pressure-bearing pad C14 is located on the outside of the frame C1 wall plate, on the disc-shaped pressure pad A guide lug plate C17 is uniformly distributed and fixed on the circumferential edge of the block C14, and a guide light hole is opened on the guide lug plate C17.
  • a guide stud C18 is inserted in the guide light hole, and the guide stud C18 is fixed to the wall of the frame C1
  • the disc-shaped pressure bearing block C14 has only an axial degree of freedom of movement relative to the guide stud C18; a circular block passing hole is opened in the center of the frame C1 wall plate, and the cylindrical bearing
  • the pressure pad C15 is installed in the circular pad passing hole, and the pad radial limit ring C19 and the pad antifriction bearing C20 are sequentially arranged between the circular pad passing hole and the cylindrical pressure pad C15.
  • a dust-proof ring C21 is fitted on the cylindrical pressure-bearing cushion block C15 located on the inner side of the frame C1 wall plate, and the dust-proof ring C21 is fixedly connected to the radial limit ring C19 of the cushion block through the dust-proof ring limit ring C22;
  • One end of the cylindrical pressure pad C15 is in contact with the disc-shaped pressure pad C14, the other end of the cylindrical pressure pad C15 is in contact with one end of the square indenter C16, and the square indenter C16 is put on the sample.
  • the indenter passing hole corresponding to the limit box C3 the other end of the square indenter C16 is in contact with the sample in the sample limit box C3.
  • the second intermediate principal stress direction supporting force transmission component C7 includes a disc-shaped pressure-bearing cushion C14, a cushion supporting and limiting plate C23, a T-shaped pressure-bearing cushion C24, a transition cushion C25 and a square indenter C16;
  • the disc-shaped pressure bearing block C14 is located under the bottom wall plate of the frame C1, and a square block passing hole is opened in the center of the bottom wall plate of the frame C1.
  • the small head end of the T-shaped pressure bearing block C24 is installed in the square In the cushion block passage hole, the disc-shaped pressure block C14 is fixedly connected to the small end of the T-shaped pressure block C24, and the large end of the T-shaped pressure block C24 is located above the bottom wall plate of the frame C1.
  • the cushion block support and limit plate C23 is fixedly mounted on the surface of the bottom wall plate of the frame C1, and a square cushion block through hole is also opened in the center of the cushion block support and limit plate C23, and the square cushion block through hole and T-shaped pressure cushion block There is a cushion anti-friction strip C26 between the small ends of the C24; the transition cushion C25 is placed on the top of the large end of the T-shaped pressure cushion C24, and the minimum principal stress is set on the top of the large end of the T-shaped pressure cushion C24
  • the direction transition pad guides the limit bar C27; the lower end of the square indenter C16 is in contact with the upper surface of the transition pad C25, and the square indenter C16 is inserted in the indenter passage hole under the sample limit box C3, square The upper end of the indenter C16 is in contact with the sample in the sample limit box 3; the upper surface of the transition pad C25 is provided with a square indenter guide limit bar C28 in the direction of maximum principal stress.
  • the first minimum principal stress direction supporting force transmission component C8 includes a pressure bearing block C29 for unloading, a square indenter C16 and a protective cover C30.
  • the frame C1 wall plate is replaced by a protective cover C30, which is located in the middle of the protective cover C30
  • a pressure-bearing block for unloading is provided with a passing hole C31, and the pressure-bearing block for unloading C29 is inserted into the passing hole C31 of the pressure-bearing block for unloading; one end of the square indenter C16 is connected to the unloading bearing block.
  • the end of the pressure pad C29 is in contact with each other, the square indenter C16 is inserted in the corresponding indenter passing hole of the sample limit box C3, and the other end of the square indenter C16 is against the sample in the sample limit box C3. contact.
  • the maximum principal stress direction sample deformation measurement component C10 includes a maximum principal stress direction sensor bracket C32, a maximum principal stress direction guide rod C33, and a maximum principal stress direction tensile displacement sensor C34; the maximum principal stress direction sensor bracket C32 respectively Fixedly mounted on two square indenters C16 in the direction of the maximum principal stress, the maximum principal stress direction guide rod C33 and the maximum principal stress direction tensile displacement sensor C34 are installed in parallel between the two maximum principal stress direction sensor brackets C32;
  • the sample deformation measurement component C11 in the direction of the intermediate principal stress includes a sensor bracket C35 in the direction of the intermediate principal stress, a guide rod C36 in the direction of the intermediate principal stress, and a tensile displacement sensor C37 in the direction of the intermediate principal stress; the intermediate principal stress direction sensor supports C35 are respectively Fixedly mounted on two square indenters C16 in the middle principal stress direction, the middle principal stress direction guide rod C36 and the middle principal stress direction tensile displacement sensor C37 are installed in parallel between the two middle principal stress direction sensor
  • the pneumatic quick unloading assembly C13 includes a double-acting cylinder C41, a force transmission frame C42, a buffer block C43, a buffer spring C44, and a buffer base C45; the number of the double-acting cylinders C41 is two, and the two double-acting cylinders C41 are symmetrically distributed On both sides of the pressure bearing block C29 for unloading; the double-acting cylinder C41 is arranged vertically with the piston rod facing upwards, the end of the piston rod of the double-acting cylinder C41 is hinged on the force transmission frame C42, and the force transmission frame C42 is fixedly connected to On the pressure bearing block C29 for unloading, the cylinder end of the double-acting cylinder C41 is connected to the frame C1 through the hinged ear seat C46; the cushion base C45 is located directly below the pressure bearing block C29 for unloading, and the buffer spring
  • the C44 is vertically installed on the upper surface of the buffer base C45, and the buffer block C43
  • the frame transfer trolley C2 adopts a flat structure, and its main body is a frame support flat plate.
  • the four corners of the frame support flat plate are screwed with limit blocks for restricting the frame C1 in the horizontal direction.
  • the wheels include two groups.
  • the first type of wheel is a cylindrical wheel
  • the second type of wheel is a V-shaped wheel.
  • Face wheels the number of cylindrical wheels is two, two cylindrical wheels are on the same side, the number of V-shaped wheels is four, and the four V-shaped wheels are on the same side, and the cylindrical wheels are on the same side.
  • the wheels are distributed on different sides, and two of the four V-shaped wheels form a group.
  • a detachable hanger C47 is installed on the top of the frame C1.
  • the hanger C47 is composed of a hanger vertical plate and hanger hooks. There are four hanger hooks, and the four are evenly distributed. The four corner points of the hanger vertical plate are fixedly connected by bolts between the hanger vertical plate and the hanger hook.
  • the frame C1 adopts an assembled structure as a whole.
  • the frame beams and wall panels in the frame C1 can be disassembled and stored, which effectively saves storage space. When it is necessary to reuse, reassemble the disassembled frame beams and wall panels into the frame C1 overall.
  • the sample After the sample is installed in the sample box, first install the hanger C47 to the top of the frame C1, and use the hanger C47 as the hanging point when the crane is hoisted, and use the crane to hoist the sample box as a whole to the frame transfer trolley C2 After that, remove the hanger C47, push the frame transfer trolley C2 to move along the track, until the sample box enters the loading area of the true triaxial testing machine along with the frame transfer trolley C2, and finally the sample box of the frame transfer trolley C2 The height position is fine-tuned to ensure that the sample box and the three sets of actuators on the true triaxial testing machine are all aligned.
  • Example 1 To carry out the 20Hz frequency surface disturbance test, first prepare a rock sample with a size of 50mm ⁇ 50mm ⁇ 100mm in accordance with the sample standard of the International Society of Rock Mechanics. Before the test, refer to Example 1 to install the sample into the sample box. During the test, first start the 30L/min low-flow hydraulic pump A20 to provide power for static loading, complete the sample preloading, and then follow the preset stress path through a set of actuators in the direction of the smallest principal stress.
  • Apply the minimum principal stress apply the intermediate principal stress to the specimen through a set of actuators in the direction of the intermediate principal stress, apply the maximum principal stress to the specimen through a set of actuators in the direction of the maximum principal stress, and set the minimum principal stress specifically It is 5MPa and the intermediate principal stress is 20MPa; and in the process of loading the maximum principal stress, first load at a speed of 1kN/s, and wait until it is close to the plastic deformation zone to switch to low-rate deformation control until any node of the stress-strain curve. Then, input the dynamic loading force amplitude and frequency parameters into the computer, start dynamic loading, and switch the oil source to a parallel pump system of four 100L/min high-flow hydraulic pumps to output a large flow of 400L/min.
  • the rapid flow of oil in and out of the oil source realizes the dynamic movement of the piston, and the dynamic cylinder can be in any one of the three main stress directions, and the piston in the same direction loads and unloads the sample at the same time, the amplitude of the disturbance is 2MPa, The duration is 5min; if the specimen is broken, the stress-strain curve of the whole process of specimen failure can be obtained; if the specimen is not broken, stop applying the disturbing force and start to increase the maximum principal stress until the specimen is broken to obtain the specimen The stress-strain curve of the whole process of failure.
  • Apply the minimum principal stress apply the intermediate principal stress to the specimen through a set of actuators in the direction of the intermediate principal stress, apply the maximum principal stress to the specimen through a set of actuators in the direction of the maximum principal stress, and set the minimum principal stress specifically It is 5MPa and the intermediate principal stress is 20MPa; and in the process of loading the maximum principal stress, first load at a speed of 1kN/s, and wait until it is close to the plastic deformation zone to switch to low-rate deformation control until any node of the stress-strain curve.
  • the bullet B4 and the incident rod B5 are arranged separately from each other.
  • the length of the barrel B3 is 6m
  • the length of the incident rod B5 is 9m
  • the length of the incident rod B5 is 9m.
  • the incident rod B5 is hoisted to the incident rod support base B6, the PVDF piezoelectric film sensor is installed on the front end of the incident rod B5, and the front end of the incident rod B5 is contacted by the PVDF piezoelectric film sensor.
  • the compressed air directly enters the cylinder B16 and compresses The other way of air directly enters the rodless cavity of the rear chamber B20 of the cylinder B2.
  • the piston disc B24, the piston rod B32 and the barrel sealing plug B21 will move toward the barrel B3.
  • the rod cavity of the rear chamber B20 of the cylinder B2 is compressed, and the air in the rod cavity will be discharged into the atmosphere through the opened second air control valve B18, until the barrel sealing plug B21 is completely against the launch air outlet B22 And block the firing outlet B22.
  • the barrel B3 and the front chamber B19 of the cylinder B2 are sealed and isolated.
  • the compressed air output by the air compressor B12 will enter the rod in the rear chamber B20 of the cylinder B2 through the opened first air control valve B17
  • the piston disc B24 receives a greater axial thrust, so the piston disc B24 will move towards The barrel B3 moves in the opposite direction, and the air in the rodless cavity of the rear chamber B20 of the cylinder B2 will be discharged into the atmosphere through the pressure relief port of the first button switch B14.
  • the piston rod B32 will be driven.
  • the barrel sealing plug move synchronously to the opposite direction of the barrel B3 until the barrel sealing plug B21 breaks off to block the firing outlet B22, and the communication between the barrel B3 and the front chamber B19 of the cylinder B2 is restored.
  • the gas in the bottle B16 will enter the barrel B3 through the front chamber of the cylinder B2, and push the bullet B4 in the barrel B3 with the set low pressure to achieve launch.
  • the bullet B4 When the bullet B4 is launched from the barrel B3, it will directly hit the rear end surface of the incident rod B5 equipped with the shaping plate. Under the action of the single pulse mass B8, the simulated blasting stress wave with a frequency of 300 Hz will In the form of a single pulse, it is directly applied to the rock sample through the incident rod B5.
  • the piezoelectric signal obtained by the PVDF piezoelectric film sensor is connected to the oscilloscope through the charge amplifier B28, and the oscilloscope can intuitively determine the test
  • the stress wave waveform acting on the rock sample ensures that the blasting stress wave simulated in the test is accurate; at the same time, the launch speed of the bullet B4 measured by the bullet speedometer B26 is recorded to ensure that the launch speed of the bullet B4 meets the low stress Simulation of amplitude characteristics.
  • the bullet B4 and the incident rod B5 adopt a butt-matching manner to form an elongated bullet; the length of the barrel B3 is 6m, and the length of the incident rod B5 is 9m.
  • the 13m bullet B4 wants to use the method of Example 3 to test, it needs to be equipped with a 26m long incident rod B5. At this time, the total length of the bullet B4 and the incident rod B5 will reach 39m. It will be difficult to have a suitable site for the installation of test equipment. Therefore, in this embodiment, the butt joint of the bullet B4 and the incident rod B5 is adopted, and the length of the bullet B4 is taken to be 4.34m, that is, the existing bullet B4 in the third embodiment is directly used, and the two are butted. The total length of the elongated bullet formed later is only 13.34m, which effectively saves the space occupied by the test equipment and can meet the test requirements at the same time.
  • the incident rod B5 was hoisted to the incident rod support base B6, and a plastic sheet was installed on the front end of the rod body of the incident rod B5, and then the PVDF piezoelectric film sensor was installed on the plastic sheet, and the PVDF piezoelectric film sensor was not compatible with
  • the rock sample is in contact; the splicing sleeve B7 is needed at this time, first put the splicing sleeve B7 on the bullet B4, and then insert the rear end of the incident rod B5 into the splicing sleeve B7, and then start the vacuum pump B25 to match the splicing sleeve B7
  • the inner tube cavity is evacuated.
  • the bullet B4 and the incident rod B5 Under negative pressure, the bullet B4 and the incident rod B5 automatically move to the middle of the splicing sleeve B7, until the bullet B4 and the incident rod B5 automatically complete the contact butt joint in the splicing sleeve B7; finally install The single-pulse mass B8 and adjust its axial position so that a proper axial micro-movement gap of the incident rod is formed between the annular boss B31 on the incident rod B5 and the annular groove B30 in the single-pulse mass B8.
  • the piezoelectric signal obtained by the PVDF piezoelectric film sensor is connected to the oscilloscope through the charge amplifier B28, and the oscilloscope can be intuitively determined.
  • the stress wave waveform acting on the rock sample in the second test ensures that the blasting stress wave simulated in the test is accurate; at the same time, the launch speed of the elongated bullet measured by the incident rod velocimeter B27 is recorded to ensure the elongated bullet The launch speed satisfies the simulation of low stress amplitude characteristics.
  • Example 1 To carry out the rock burst test, first prepare a rock sample with a size of 50mm ⁇ 50mm ⁇ 100mm in accordance with the sample standard of the International Society of Rock Mechanics. Before the test, refer to Example 1 to install the sample into the sample box. During the test, first start the 30L/min low-flow hydraulic pump A20 to provide power for static loading, and then follow the preset stress path to apply the minimum principal stress to the specimen through a set of actuators in the direction of the minimum principal stress. A set of actuators in the direction of the intermediate principal stress apply the intermediate principal stress to the specimen, and a set of actuators in the direction of the maximum principal stress apply the maximum principal stress to the specimen. The specific minimum principal stress is 5MPa, and the intermediate principal stress is set.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种高压硬岩宽频带低幅值面扰动真三轴试验系统,包括低频扰动真三轴机构(I)、变频慢速扰动杆机构(II)及快速单面卸载型试样盒(III),低频扰动真三轴机构(I)与变频慢速扰动杆机构(II)沿直线分布,低频扰动真三轴机构(I)单独使用或者与变频慢速扰动杆机构(II)配合使用,快速单面卸载型试样盒(III)与低频扰动真三轴机构(I)配合使用。系统能够从室内试验角度模拟岩体在高静应力载荷下的爆破地震波、大型岩爆产生的扰动波以及断层滑移等扰动波频率范围在0~20Hz范围内的面扰动加载作用过程,可通过子弹低速发射实现低应力幅值特征的模拟,通过杆拼接方式实现特定频率特征的模拟,且杆拼接方式缩短了设备长度,节省了设备的占地空间,降低了选取试验场地的难度,使设备的安装维护更加容易。

Description

一种高压硬岩宽频带低幅值面扰动真三轴试验系统 技术领域
本发明属于岩石力学技术领域,特别是涉及一种高压硬岩宽频带低幅值面扰动真三轴试验系统。
背景技术
在深部岩石工程中,岩体处于三向高应力状态,而高静应力却为深部岩石工程灾害的孕育及发生提供了应力基础。同时,爆破开挖因其具有效率高和经济性好的特点,其始终是深部岩石工程施工开挖的主要方法之一。因此,在工程施工期内,岩体不可避免会受到爆破产生的扰动波影响。当爆破产生的扰动波随着传播的衰减,会逐渐衰减成低频的爆破地震波,根据现有文献可知,爆破地震波的频率在0~20Hz范围内,爆破地震波的幅值在0.1~30MPa范围内。虽然爆破地震波的频率和幅值范围较小但其依然会触发岩爆、分区破裂、扰动型塌方、岩体持续开裂等深部岩石工程灾害。除了爆破地震波,根据现场实测数据显示,某些大型岩爆产生的扰动波的频率也在0~20Hz范围内,且幅值也在0.1~30MPa范围内。在此类大型岩爆发生的同时,经常导致距大型岩爆区域较远的地方发生次生岩爆。另外,根据文献调研,断层滑移、地震等其它扰动的发生也能造成扰动型岩爆,其频率也在0~20Hz范围内。
针对高静应力载荷下岩石受低频扰动载荷的问题,相关技术人员开发了一系列岩石扰动真三轴试验设备,这些试验设备虽然可以从扰动方式为点扰动或者局部面扰动的角度,具备对岩石高静应力载荷下受扰动载荷的作用过程进行了模拟的能力,但是仍存在局限性。由于现场岩体中每个微元受到的扰动载荷都是施加到微元的整个面上的,但现有设备普遍受到油源流量的限制以及控制性能的限制,其扰动力均采用小油缸施加扰动力的方式,扰动力并没有在静载加载到试样的基础上完全加载到试样的整个面,这种点扰动和局部面扰动的施加方法与整个面扰动的施加方式相比,会使试验结果更加远离现场实际。同时,现场的扰动波幅值是正负交替作用的,也就是意味着现场的应力是在静应力基础 上有增有减的,即在静应力基础上有加载也有卸载。但在现有的这些设备中,均采用同一方向单静载油缸加反力架及动态小油缸结构,这种结构只能模拟静载基础上的扰动力加载过程,而并不能模拟静应力基础上的卸载过程。
在深部岩石工程施工过程中,由于爆破开挖具有开挖效率高和经济性好的特点,其目前始终作为最主要的开挖方式之一。爆破根据其产生的应力特征的不同,主要可以分为三个区域,包括爆破冲击波区域、爆破应力波区域及爆破弹性波区域。爆破冲击波的应力幅值超过岩体强度,其可对岩体直接进行破碎。爆破应力波的应力幅值低于岩体强度,但其反复对岩体作用,也会造成岩体的持续开裂,最终导致岩体失稳,目前主要通过爆破振动仪的现场监测来研究爆破应力波。爆破弹性波的应力幅值最低,其对岩体的影响最小。根据现有的研究成果可知,当深部岩石进行爆破开挖时,爆破应力波的主频范围约为100Hz~500Hz,爆破应力波的应力幅值范围约为0.1MPa~30MPa。从应变率角度来看,爆破应力波的应变率处于静态应力的低应变率与动态冲击应力的中高应变率之间的中间范围。目前,在岩石室内力学试验中,爆破冲击波可以通过传统的霍普金森杆试验设备实现模拟,爆破弹性波可以通过现有的低频动态设备实现模拟。但是,爆破应力波的模拟却出现了问题,采用传统的霍普金森杆试验设备时会导致低应力幅值特征难以到达要求,采用传统的液压设备则达不到其频率特征。另外,想要模拟爆破应力波,其试验设备的长度又不能太长,因为试验设备如果过长,不但将对试验场地的选取带来难度,而且会给设备的安装维护造成不便。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术存在的问题,本发明提供一种高压硬岩宽频带低幅值面扰动真三轴试验系统,能够从室内试验的角度模拟岩体在高静应力载荷下的爆破地震波、大型岩爆产生的扰动波以及断层滑移等扰动波频率范围在0~20Hz范围内的面扰动加载作用过程,可通过子弹低速发射实现低应力幅值特征的模拟,通过杆 拼接方式实现特定频率特征的模拟,并且杆拼接方式还有效缩短了设备长度,有效节省了设备的占地空间,降低了选取试验场地的难度,使设备的安装维护更加容易。
为了实现上述目的,本发明采用如下技术方案:一种高压硬岩宽频带低幅值面扰动真三轴试验系统,包括低频扰动真三轴机构、变频慢速扰动杆机构及快速单面卸载型试样盒,所述低频扰动真三轴机构与变频慢速扰动杆机构分布在一条直线上,低频扰动真三轴机构单独使用或者与变频慢速扰动杆机构配合使用,所述快速单面卸载型试样盒与低频扰动真三轴机构配合使用。
所述低频扰动真三轴机构包括真三轴加载组件和并联油源组件,真三轴加载组件和并联油源组件均安装在机构底座上;所述真三轴加载组件包括刚性基座、水平刚性框架体、竖直刚性框架体、铸铁减震台及动态伺服液压作动器;所述动态伺服液压作动器数量为六台;所述铸铁减震台水平固装在机构底座上,刚性基座水平卡装在铸铁减震台上,竖直刚性框架体竖直螺接固定在刚性基座上表面,竖直刚性框架体由顶板、底板和四个立柱组成;所述水平刚性框架体采用环形结构,水平刚性框架体套装在竖直刚性框架体外侧,水平刚性框架体螺接固定在刚性基座上表面;在所述竖直刚性框架体的顶板和底板各自安装有一台动态伺服液压作动器,且上下两台动态伺服液压作动器对称分布;在所述水平刚性框架体上沿周向均布安装有四台动态伺服液压作动器;所述动态伺服液压作动器上配装有换向阀块,在动态伺服液压作动器的活塞杆端部配装有动态负荷传感器,动态伺服液压作动器的活塞杆为空心杆结构。
所述并联油源组件包括油箱、泵站及冷却器;所述油箱内腔由隔板分隔成六个区域,分别记为①号区域、②号区域、③号区域、④号区域、⑤号区域及⑥号区域;所述①号区域、②号区域及③号区域之间顶部彼此连通,④号区域及⑤号区域之间顶部彼此连通,⑤号区域及⑥号区域之间底部彼此连通,①号区域及④号区域之间顶部彼此连通,②号区域及⑤号区域之间顶部彼此连通,③号区域及⑥号区域之间顶部彼此连通;所述泵站内包括五台液压泵,分别记为第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵,五台液压泵的液压油输出口均连接有流量控制阀,各个液压泵的液压油输 出口通过管路汇接到分流阀座的进油端,所述动态伺服液压作动器的前后腔油口通过换向阀块及管路接入分流阀座的出油端;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵的液压油吸入口通过管路与油箱内腔的底部相连通,用于抽取①号区域、②号区域及③号区域内的液压油;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵的液压油输出口与各自对应的流量控制阀之间均安装有溢流阀,溢流阀的溢流口通过溢流管道与④号区域、⑤号区域及⑥号区域相连通;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵及第四高流量液压泵在进行动态扰动时流出的液压油通过管路汇接到回油阀座的进油端,回油阀座的出油端通过管路与④号区域相连通;在所述⑤号区域的底部连接有热油输出管道,热油输出管道的出油口连接有热油液压泵,热油液压泵的出油口通过管路与冷却器相连通,通过热油液压泵将⑤号区域内的热油泵送至冷却器内进行降温,冷却器的出油口通过冷油回流管路与⑥号区域的底部相连通。
所述变频慢速扰动杆机构包括发射台、气缸、炮管、子弹及入射杆;所述炮管水平架设在发射台后侧,气缸安装在炮管后部,子弹位于炮管内,且炮管内的子弹上套装有聚乙烯减摩套;所述入射杆通过入射杆支撑座水平架设在发射台前侧;所述子弹与入射杆之间具有两种配合方式;在第一种配合方式下,所述子弹与入射杆彼此分离设置,在入射杆的杆体前端面安装PVDF压电薄膜传感器,入射杆的杆体前端面通过PVDF压电薄膜传感器顶靠接触在岩石试样上,在入射杆的杆体后端面安装整形片;在第二种配合方式下,所述子弹的前端面与入射杆的后端面顶靠接触对接在一起,且对接在一起的子弹和入射杆共同构成加长型子弹,在子弹与入射杆的对接处外部套装有拼接套管,拼接套管相对于子弹和入射杆具有轴向滑移自由度,入射杆的前端面与岩石试样彼此分离设置,在入射杆的前端面安装整形片,在整形片外表面安装PVDF压电薄膜传感器;在所述入射杆的杆体外套装有单次脉冲质量块,单次脉冲质量块采用分体组合式结构,在单次脉冲质量块的入射杆穿装孔内孔壁开设有环形凹槽,在入射杆的杆体上设置有环形凸台,环形凸台位于环形凹槽内,环形凸台的轴向厚度小于 环形凹槽的轴向宽度,使环形凸台与环形凹槽之间形成入射杆轴向微动间隙;在所述单次脉冲质量块下方的发射台上安装有滑轨,滑轨采用平行双轨结构,滑轨与入射杆相平行,在滑轨上设置有滑块,在滑块上水平固连在滑台,所述单次脉冲质量块固连在滑台上表面,单次脉冲质量块相对于滑轨具有直线移动自由度。
在所述发射台侧方的地面上设置有空压机和控制台,在控制台上设置有第一按钮开关和第二按钮开关,在所述炮管下方的发射台内设置有气瓶、第一气控阀和第二气控阀;所述气缸水平设置,在气缸内部设有前腔室和后腔室,活塞杆密封穿过前腔室与后腔室的隔板,位于前腔室的活塞杆端部安装有炮管密封堵头,在前腔室的轴向缸壁上开设有发射出气口,所述炮管后部的进气端管口与发射出气口密封连通,在前腔室的径向缸壁上开设有发射进气口,发射进气口通过发射进气管与气瓶的出气口密封连通;位于所述后腔室的活塞杆端部安装有活塞盘,活塞盘将后腔室分隔成有杆腔和无杆腔,活塞盘的直径大于炮管密封堵头的直径;所述第一按钮开关和第二按钮开关结构相同,其上均包括进气口、常开出气口、常闭出气口及泄压口,泄压口直接与大气连通;所述空压机的供气口以三路输出,第一路与第一按钮开关的进气口相连通,第二路与第一气控阀的进气口相连通,第三路与气瓶的进气口相连通;所述第一按钮开关的常开出气口与气缸后腔室的无杆腔相连通,第一按钮开关的常闭出气口与第二按钮开关的进气口相连通,第二按钮开关的常开出气口以两路输出,第一路与第一气控阀的闭阀气控口相连通,第二路与第二气控阀的开阀气控口相连通;所述第二按钮开关的常闭出气口以两路输出,第一路与第一气控阀的开阀气控口相连通,第二路与第二气控阀的闭阀气控口相连通;所述第一气控阀的出气口以两路输出,第一路与第二气控阀的进气口相连通,第二路与气缸后腔室的有杆腔相连通;所述第二气控阀的出气口与大气相连通。
在所述发射台侧方的地面上设置有真空泵,在所述炮管后端管体上以及拼接套管中部管体上均开设有抽气口,两处抽气口均与真空泵相连,通过真空泵对炮管和拼接套管的管腔进行抽真空,通过抽真空使炮管内的子弹在负压作用下自动后退至发射位置,通过抽真空使拼接套管内的子弹与入射杆自动顶靠接触对 接在一起;与所述炮管出口相邻的发射台上安装有子弹测速仪,在单次脉冲质量块前侧的发射台上安装有入射杆测速仪;在所述发射台侧方的地面上设置有电荷放大器,所述PVDF压电薄膜传感器的信号输出端与电荷放大器相连,电荷放大器的电压信号接入示波器或计算机;在所述发射台侧方安装有入射杆承放台,通过入射杆承放台放置暂未使用的入射杆;在所述发射台上方设置有龙门吊,通过龙门吊对入射杆进行安装和拆卸。
所述快速单面卸载型试样盒包括框架、框架转运小车、试样限位盒、第一最大主应力方向支撑传力组件、第二最大主应力方向支撑传力组件、第一中间主应力方向支撑传力组件、第二中间主应力方向支撑传力组件、第一最小主应力方向支撑传力组件、第二最小主应力方向支撑传力组件、最大主应力方向试样变形测量组件、中间主应力方向试样变形测量组件、最小主应力方向试样变形测量组件及气动快速卸载组件;所述框架采用方形结构,框架放置在框架转运小车上,所述试样限位盒位于框架内部中心处;所述第一最大主应力方向支撑传力组件设置在框架前部壁板中心,所述第二最大主应力方向支撑传力组件设置在框架后部壁板中心,第一最大主应力方向支撑传力组件与第二最大主应力方向支撑传力组件沿同一条水平向直线分布;所述第一中间主应力方向支撑传力组件设置在框架顶部壁板中心,所述第二中间主应力方向支撑传力组件设置在框架底部壁板中心,第一中间主应力方向支撑传力组件与第二中间主应力方向支撑传力组件沿同一条竖向直线分布;所述第一最小主应力方向支撑传力组件设置在框架左部壁板中心,所述第二最小主应力方向支撑传力组件设置在框架右部壁板中心,第一最小主应力方向支撑传力组件与第二最小主应力方向支撑传力组件沿同一条水平向直线分布;所述最大主应力方向试样变形测量组件配装在第一最大主应力方向支撑传力组件与第二最大主应力方向支撑传力组件之间;所述中间主应力方向试样变形测量组件配装在第一中间主应力方向支撑传力组件与第二中间主应力方向支撑传力组件之间;所述最小主应力方向试样变形测量组件配装在第一最小主应力方向支撑传力组件与第二最小主应力方向支撑传力组件之间;所述气动快速卸载组件配装在第一最小主应力方向支撑传力组件与框架之间。
所述试样限位盒采用长方形结构,试样限位盒由上下两个半盒组成,上下两个半盒扣合在一起构成完整的试样限位盒,上下两个半盒之间由螺栓进行固连;在所述试样限位盒的六个壁面上均开设有压头穿行孔;所述第一最大主应力方向支撑传力组件、第二最大主应力方向支撑传力组件、第一中间主应力方向支撑传力组件及第二最小主应力方向支撑传力组件结构相同,均包括圆盘状承压垫块、圆柱状承压垫块及方形压头;所述圆盘状承压垫块位于框架壁板外侧,在圆盘状承压垫块的周向边沿均布固设有导向耳板,导向耳板上开设有导向光孔,在导向光孔内穿装有导向螺柱,导向螺柱固连在框架壁板上,所述圆盘状承压垫块相对于导向螺柱仅具有轴向移动自由度;在所述框架壁板的中心开设有圆形垫块穿行孔,所述圆柱状承压垫块穿装在圆形垫块穿行孔中,在圆形垫块穿行孔与圆柱状承压垫块之间依次设有垫块径向限位环和垫块减摩轴承,在位于框架壁板内侧的圆柱状承压垫块上套装有防尘圈,防尘圈通过防尘圈限位环固连在垫块径向限位环上;所述圆柱状承压垫块一端与圆盘状承压垫块顶靠接触,圆柱状承压垫块另一端与方形压头一端顶靠接触,方形压头穿装在试样限位盒对应的压头穿行孔中,方形压头另一端与试样限位盒内的试样顶靠接触;所述第二中间主应力方向支撑传力组件包括圆盘状承压垫块、垫块支撑限位板、T型承压垫块、过渡垫块及方形压头;所述圆盘状承压垫块位于框架底部壁板下方,在框架底部壁板的中心开设有方形垫块穿行孔,所述T型承压垫块的小头端穿装在方形垫块穿行孔中,所述圆盘状承压垫块固连在T型承压垫块的小头端,T型承压垫块的大头端位于框架底部壁板上方,所述垫块支撑限位板固装在框架底部壁板上表面,在垫块支撑限位板中心也开设有方形垫块穿行孔,在方形垫块穿行孔与T型承压垫块小头端之间设有垫块减摩条;所述过渡垫块放置在T型承压垫块大头端顶部,在T型承压垫块大头端顶部设有最小主应力方向过渡垫块导向限位条;所述方形压头下端与过渡垫块上表面顶靠接触,方形压头穿装在试样限位盒下方的压头穿行孔中,方形压头上端与试样限位盒内的试样顶靠接触;在所述过渡垫块上表面设有最大主应力方向方形压头导向限位条。
所述第一最小主应力方向支撑传力组件包括卸载用承压垫块、方形压头及防护罩,所述框架壁板采用防护罩进行替代,在防护罩的中部开设有卸载用承压垫 块穿行让位孔,所述卸载用承压垫块穿装在卸载用承压垫块穿行让位孔中;所述方形压头一端与卸载用承压垫块端部顶靠接触,方形压头穿装在试样限位盒对应的压头穿行孔中,方形压头另一端与试样限位盒内的试样顶靠接触;所述最大主应力方向试样变形测量组件包括最大主应力方向传感器支架、最大主应力方向导向杆及最大主应力方向拉伸式位移传感器;所述最大主应力方向传感器支架分别固装在最大主应力方向上的两个方形压头上,最大主应力方向导向杆及最大主应力方向拉伸式位移传感器平行安装在两个最大主应力方向传感器支架之间;所述中间主应力方向试样变形测量组件包括中间主应力方向传感器支架、中间主应力方向导向杆及中间主应力方向拉伸式位移传感器;所述中间主应力方向传感器支架分别固装在中间主应力方向上的两个方形压头上,中间主应力方向导向杆及中间主应力方向拉伸式位移传感器平行安装在两个中间主应力方向传感器支架之间;所述最小主应力方向试样变形测量组件包括最小主应力方向传感器支架及最小主应力方向拉伸式位移传感器;所述最小主应力方向传感器支架固装在最小主应力方向上的两个方形压头上。
所述气动快速卸载组件包括双作用气缸、传力架、缓冲块、缓冲弹簧及缓冲基座;所述双作用气缸数量为两个,两个双作用气缸对称分布在卸载用承压垫块两侧;所述双作用气缸竖直设置且活塞杆朝上,双作用气缸的活塞杆端部铰接在传力架上,传力架固连在卸载用承压垫块上,双作用气缸的缸筒端部通过铰接耳座连接在框架上;所述缓冲基座位于卸载用承压垫块正下方,所述缓冲弹簧竖直安装在缓冲基座上表面,所述缓冲块安装在缓冲弹簧顶部;在所述缓冲块与缓冲基座之间竖直设有导向销。
发明的有益效果
有益效果
本发明的有益效果:
本发明的高压硬岩宽频带低幅值面扰动真三轴试验系统,能够从室内试验的角度模拟岩体在高静应力载荷下的爆破地震波、大型岩爆产生的扰动波以及断层滑移等扰动波频率范围在0~20Hz范围内的面扰动加载作用过程,可通过子弹低速发射实现低应力幅值特征的模拟,通过杆拼接方式实现特定频率特征的模拟 ,并且杆拼接方式还有效缩短了设备长度,有效节省了设备的占地空间,降低了选取试验场地的难度,使设备的安装维护更加容易。
对附图的简要说明
附图说明
图1为本发明的一种高压硬岩宽频带低幅值面扰动真三轴试验系统的结构示意图;
图2为低频扰动真三轴机构的结构示意图;
图3为并联油源组件(第一视角)的结构示意图;
图4为并联油源组件(第二视角)的结构示意图;
图5为变频慢速扰动杆机构(子弹与入射杆采用彼此分离设置的配合方式)的结构示意图;
图6为变频慢速扰动杆机构(子弹和入射杆采用相互对接的配合方式共同构成加长型子弹)的结构示意图;
图7为单次脉冲质量块、入射杆、滑轨、滑块及滑台的配装示意图;
图8为气缸、第一按钮开关、第二按钮开关、气瓶、第一气控阀及第二气控阀的气路连接原理图;
图9为快速单面卸载型试样盒(第一视角下框架前部壁板未示出)的结构示意图;
图10为快速单面卸载型试样盒(第二视角下框架前部壁板未示出)的结构示意图;
图11为快速单面卸载型试样盒(第三视角下防护罩未示出)的结构示意图;
图12为快速单面卸载型试样盒(第四视角下框架前部壁板未示出)的结构示意图;
图13为试样限位盒、方形压头、最大/中间/最小主应力方向试样变形测量组件、卸载用承压垫块之间的装配示意图;
图14为试样限位盒、方形压头、最大/中间/最小主应力方向试样变形测量组件之间的装配示意图;
图15为第一最大/第二最大/第一中间/第二最小主应力方向支撑传力组件的爆炸 图;
图16为第二中间主应力方向支撑传力组件的爆炸图;
图中,I-低频扰动真三轴机构,II-变频慢速扰动杆机构,III-快速单面卸载型试样盒,A1-机构底座,A2-刚性基座,A3-水平刚性框架体,A4-竖直刚性框架体,A5-铸铁减震台,A6-动态伺服液压作动器,A7-油箱,A8-泵站,A9-冷却器,A10-①号区域,A11-②号区域,A12-③号区域,A13-④号区域,A14-⑤号区域,A15-⑥号区域,A16-第-高流量液压泵,A17-第二高流量液压泵,A18-第三高流量液压泵,A19-第四高流量液压泵,A20-低流量液压泵,A21-分流阀座,A22-溢流管道,A23-回油阀座,A24-热油输出管道,A25-热油液压泵,A26-冷油回流管路,B1-发射台,B2-气缸,B3-炮管,B4-子弹,B5-入射杆,B6-入射杆支撑座,B7-拼接套管,B8-单次脉冲质量块,B9-滑轨,B10-滑块,B11-滑台,B12-空压机,B13-控制台,B14-第一按钮开关,B15-第二按钮开关,B16-气瓶,B17-第-气控阀,B18-第二气控阀,B19-前腔室,B20-后腔室,B21-炮管密封堵头,B22-发射出气口,B23-发射进气管,B24-活塞盘,B25-真空泵,B26-子弹测速仪,B27-入射杆测速仪,B28-电荷放大器,B29-龙门吊,B30-环形凹槽,B31-环形凸台,B32-活塞杆,B33-入射杆承放台,C1-框架,C2-框架转运小车,C3-试样限位盒,C4-第一最大主应力方向支撑传力组件,C5-第二最大主应力方向支撑传力组件,C6-第一中间主应力方向支撑传力组件,C7-第二中间主应力方向支撑传力组件,C8-第一最小主应力方向支撑传力组件,C9-第二最小主应力方向支撑传力组件,C10-最大主应力方向试样变形测量组件,C11-中间主应力方向试样变形测量组件,C12-最小主应力方向试样变形测量组件,C13-气动快速卸载组件,C14-圆盘状承压垫块,C15-圆柱状承压垫块,C16-方形压头,C17-导向耳板,C18-导向螺柱,C19-垫块径向限位环,C20-垫块减摩轴承,C21-防尘圈,C22-防尘圈限位环,C23-垫块支撑限位板,C24-T型承压垫块,C25-过渡垫块,C26-垫块减摩条,C27-最小主应力方向过渡垫块导向限位条,C28-最大主应力方向方形压头导向限位条,C29-卸载用承压垫块,C30-防护罩,C31-卸载用承压垫块穿行让位孔 ,C32-最大主应力方向传感器支架,C33-最大主应力方向导向杆,C34-最大主应力方向拉伸式位移传感器,C35-中间主应力方向传感器支架,C36-中间主应力方向导向杆,C37-中间主应力方向拉伸式位移传感器,C38-最小主应力方向传感器支架,C39-最小主应力方向拉伸式位移传感器,C40-导向销,C41-双作用气缸,C42-传力架,C43-缓冲块,C44-缓冲弹簧,C45-缓冲基座,C46-铰接耳座,C47-吊架。
发明实施例
本发明的实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
如图1所示,一种高压硬岩宽频带低幅值面扰动真三轴试验系统,包括低频扰动真三轴机构I、变频慢速扰动杆机构II及快速单面卸载型试样盒III,所述低频扰动真三轴机构I与变频慢速扰动杆机构II分布在一条直线上,低频扰动真三轴机构I单独使用或者与变频慢速扰动杆机构II配合使用,所述快速单面卸载型试样盒III与低频扰动真三轴机构I配合使用。
如图2~4所示,所述低频扰动真三轴机构I包括真三轴加载组件和并联油源组件,真三轴加载组件和并联油源组件均安装在机构底座A1上;所述真三轴加载组件包括刚性基座A2、水平刚性框架体A3、竖直刚性框架体A4、铸铁减震台A5及动态伺服液压作动器A6;当作动器采用动态伺服液压作动器A6后,既可以起到静态加载作用,又能起到动态加载作用;所述动态伺服液压作动器A6数量为六台;所述铸铁减震台A5水平固装在机构底座A1上,刚性基座A2水平卡装在铸铁减震台A5上,竖直刚性框架体A4竖直螺接固定在刚性基座A2上表面,竖直刚性框架体A4由顶板、底板和四个立柱组成;所述水平刚性框架体A3采用环形结构,水平刚性框架体A3套装在竖直刚性框架体A4外侧,水平刚性框架体A3螺接固定在刚性基座A2上表面;在所述竖直刚性框架体A4的顶板和底板各自安装有一台动态伺服液压作动器A6,且上下两台动态伺服液压作动器A6对称分布;在所述水平刚性框架体A3上沿周向均布安装有四台动态伺服液压作动器A6;所述动态伺服液压作动器A6上配装有换向阀块,在动态伺服液压作动器A6的活塞杆端部配装有动态负荷传感器,动态伺服液压作动器A6的活塞杆为空心杆结构, 空心杆结构不但可以降低活塞杆的惯性,还可以提高作动器的动态相应特性,同时在变频慢速扰动试验时作为入射杆的入射通道。
所述并联油源组件包括油箱A7、泵站A8及冷却器A9;所述油箱A7内腔由隔板分隔成六个区域,分别记为①号区域A10、②号区域A11、③号区域A12、④号区域A13、⑤号区域A14及⑥号区域A15;所述①号区域A10、②号区域A11及③号区域A12之间顶部彼此连通,④号区域A13及⑤号区域A14之间顶部彼此连通,⑤号区域A14及⑥号区域A15之间底部彼此连通,①号区域A10及④号区域A13之间顶部彼此连通,②号区域A11及⑤号区域A14之间顶部彼此连通,③号区域A12及⑥号区域A15之间顶部彼此连通;所述泵站A8内包括五台液压泵,分别记为第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18、第四高流量液压泵A19及低流量液压泵A20;本实施例中,第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18及第四高流量液压泵A19的流量均为100L/min,低流量液压泵A20的流量为30L/min;30L/min的低流量液压泵A20可供静态试验时使用,当需要进行0~20Hz的动态试验时,可由四个100L/min的高流量液压泵并联实现400L/min的流量;所述第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18、第四高流量液压泵A19及低流量液压泵A20的液压油输出口均连接有流量控制阀,各个液压泵的液压油输出口通过管路汇接到分流阀座A21的进油端,所述动态伺服液压作动器A6的前后腔油口通过换向阀块及管路接入分流阀座A21的出油端;所述第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18、第四高流量液压泵A19及低流量液压泵A20的液压油吸入口通过管路与油箱A7内腔的底部相连通,用于抽取①号区域A10、②号区域A11及③号区域A12内的液压油;所述第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18、第四高流量液压泵A19及低流量液压泵A20的液压油输出口与各自对应的流量控制阀之间均安装有溢流阀,溢流阀的溢流口通过溢流管道A22与④号区域A13、⑤号区域A14及⑥号区域A15相连通;所述第一高流量液压泵A16、第二高流量液压泵A17、第三高流量液压泵A18及第四高流量液压泵A19在进行动态扰动时流出的液压油通过管路汇接到回油阀座A23的进油端,回油阀座A23的出油端通过管路与④号区域A13相连通;在所述⑤号 区域A14的底部连接有热油输出管道A24,热油输出管道A24的出油口连接有热油液压泵A25,热油液压泵A25的出油口通过管路与冷却器A9相连通,通过热油液压泵A25将⑤号区域A14内的热油泵送至冷却器A9内进行降温,冷却器A9的出油口通过冷油回流管路A26与⑥号区域A15的底部相连通;而回流至⑥号区域A15的冷却液压油会再次通过顶部流入与之连通的③号区域A12内,进而依次流入②号区域A11和①号区域A10,最终实现了液压油的冷却循环流动,为0~20Hz的动态扰动提供持续不断的动力。
如图5~8所示,所述变频慢速扰动杆机构II包括发射台B1、气缸B2、炮管B3、子弹B4及入射杆B5;所述炮管B3水平架设在发射台B1后侧,气缸B2安装在炮管B3后部,子弹B4位于炮管B3内,且炮管B3内的子弹B4上套装有聚乙烯减摩套,通过聚乙烯减摩套降低炮管B3与子弹B4之间的摩擦力,炮管B3内表面采用珩磨方式加工,用以降低聚乙烯减摩套与炮管B3内表面之间的摩擦力;所述入射杆B5通过入射杆支撑座B6水平架设在发射台B1前侧;所述子弹B4与入射杆B5之间具有两种配合方式;在第一种配合方式下,所述子弹B4与入射杆B5彼此分离设置,在入射杆B5的杆体前端面安装PVDF压电薄膜传感器,入射杆B5的杆体前端面通过PVDF压电薄膜传感器顶靠接触在岩石试样上,在入射杆B5的杆体后端面安装整形片;在第二种配合方式下,所述子弹B4的前端面与入射杆B5的后端面顶靠接触对接在一起,且对接在一起的子弹B4和入射杆B5共同构成加长型子弹,在子弹B4与入射杆B5的对接处外部套装有拼接套管B7,拼接套管B7相对于子弹B4和入射杆B5具有轴向滑移自由度,入射杆B5的前端面与岩石试样彼此分离设置,在入射杆B5的前端面安装整形片,在整形片外表面安装PVDF压电薄膜传感器;在所述入射杆B5的杆体外套装有单次脉冲质量块B8,单次脉冲质量块B8采用分体组合式结构,在单次脉冲质量块B8的入射杆穿装孔内孔壁开设有环形凹槽B30,在入射杆B5的杆体上设置有环形凸台B31,环形凸台B31位于环形凹槽B30内,环形凸台B31的轴向厚度小于环形凹槽B30的轴向宽度,使环形凸台B31与环形凹槽B30之间形成入射杆轴向微动间隙;在所述单次脉冲质量块B8下方的发射台B1上安装有滑轨B9,滑轨B9采用平行双轨结构,滑轨B9与入射杆B5相平行,在滑轨B9上设置有滑块B10,在滑块B10上水平固连在滑台B11,所述单 次脉冲质量块B8固连在滑台B11上表面,单次脉冲质量块B8相对于滑轨B9具有直线移动自由度。
在所述发射台B1侧方的地面上设置有空压机B12和控制台B13,在控制台B13上设置有第一按钮开关B14和第二按钮开关B15,在所述炮管B3下方的发射台B1内设置有气瓶B16、第一气控阀B17和第二气控阀B18;所述气缸B2水平设置,在气缸B2内部设有前腔室B19和后腔室B20,活塞杆B32密封穿过前腔室B19与后腔室B20的隔板,位于前腔室B19的活塞杆端部安装有炮管密封堵头B21,在前腔室B19的轴向缸壁上开设有发射出气口B22,所述炮管B3后部的进气端管口与发射出气口B22密封连通,在前腔室B19的径向缸壁上开设有发射进气口B15,发射进气口B15通过发射进气管B23与气瓶B16的出气口密封连通;位于所述后腔室B20的活塞杆端部安装有活塞盘B24,活塞盘B24将后腔室B20分隔成有杆腔和无杆腔,活塞盘B24的直径大于炮管密封堵头B21的直径;所述第一按钮开关B14和第二按钮开关B15结构相同,其上均包括进气口、常开出气口、常闭出气口及泄压口,泄压口直接与大气连通;所述空压机B12的供气口以三路输出,第一路与第一按钮开关B14的进气口相连通,第二路与第一气控阀B17的进气口相连通,第三路与气瓶B16的进气口相连通;所述第一按钮开关B14的常开出气口与气缸B2后腔室B20的无杆腔相连通,第一按钮开关B14的常闭出气口与第二按钮开关B15的进气口相连通,第二按钮开关B15的常开出气口以两路输出,第一路与第一气控阀B17的闭阀气控口相连通,第二路与第二气控阀B18的开阀气控口相连通;所述第二按钮开关B15的常闭出气口以两路输出,第一路与第一气控阀B17的开阀气控口相连通,第二路与第二气控阀B18的闭阀气控口相连通;所述第一气控阀B17的出气口以两路输出,第一路与第二气控阀B18的进气口相连通,第二路与气缸B2后腔室B20的有杆腔相连通;所述第二气控阀B18的出气口与大气相连通。本实施例中,第一气控阀B17和第二气控阀B18的型号为RAT052DAF02/F05-N11,工作压力范围为0.3MPa~0.8MPa;第一按钮开关B14的型号为M5PL210-08,工作压力范围为0~1.0MPa;第二按钮开关B15的型号为4H210-08,工作压力范围为0.15MPa~0.8MPa。
在所述发射台B1侧方的地面上设置有真空泵B25,在所述炮管B3后端管体上以及拼接套管B7中部管体上均开设有抽气口,两处抽气口均与真空泵B25相连,通过真空泵B25对炮管B3和拼接套管B7的管腔进行抽真空,通过抽真空使炮管B3内的子弹B4在负压作用下自动后退至发射位置,通过抽真空使拼接套管B7内的子弹B4与入射杆B5自动顶靠接触对接在一起。
与所述炮管B3出口相邻的发射台B1上安装有子弹测速仪B26,在单次脉冲质量块B8前侧的发射台B1上安装有入射杆测速仪B27;在所述发射台B1侧方的地面上设置有电荷放大器B28,所述PVDF压电薄膜传感器的信号输出端与电荷放大器B28相连,电荷放大器B28的电压信号接入示波器或计算机。
在所述发射台B1侧方安装有入射杆承放台,通过入射杆承放台放置暂未使用的入射杆B5;在所述发射台B1上方设置有龙门吊B29,通过龙门吊B29对入射杆B5进行安装和拆卸。
如图9~16所示,所述快速单面卸载型试样盒III包括框架C1、框架转运小车C2、试样限位盒C3、第一最大主应力方向支撑传力组件C4、第二最大主应力方向支撑传力组件C5、第一中间主应力方向支撑传力组件C6、第二中间主应力方向支撑传力组件C7、第一最小主应力方向支撑传力组件C8、第二最小主应力方向支撑传力组件C9、最大主应力方向试样变形测量组件C10、中间主应力方向试样变形测量组件C11、最小主应力方向试样变形测量组件C12及气动快速卸载组件C13;所述框架C1采用方形结构,框架C1放置在框架转运小车C2上,所述试样限位盒C3位于框架C1内部中心处;所述第一最大主应力方向支撑传力组件C4设置在框架C1前部壁板中心,所述第二最大主应力方向支撑传力组件C5设置在框架C1后部壁板中心,第一最大主应力方向支撑传力组件C4与第二最大主应力方向支撑传力组件C5沿同一条水平向直线分布;所述第一中间主应力方向支撑传力组件C6设置在框架C1顶部壁板中心,所述第二中间主应力方向支撑传力组件C7设置在框架C1底部壁板中心,第一中间主应力方向支撑传力组件C6与第二中间主应力方向支撑传力组件C7沿同一条竖向直线分布;所述第一最小主应力方向支撑传力组件C8设置在框架C1左部壁板中心,所述第二最小主应力方向支撑传力组件C9设置在框架C1右部壁板中心,第一最小主应力方向支撑传力组件C8 与第二最小主应力方向支撑传力组件C9沿同一条水平向直线分布;所述最大主应力方向试样变形测量组件C10配装在第一最大主应力方向支撑传力组件C4与第二最大主应力方向支撑传力组件C5之间;所述中间主应力方向试样变形测量组件C11配装在第一中间主应力方向支撑传力组件C6与第二中间主应力方向支撑传力组件C7之间;所述最小主应力方向试样变形测量组件C12配装在第一最小主应力方向支撑传力组件C8与第二最小主应力方向支撑传力组件C9之间;所述气动快速卸载组件C13配装在第一最小主应力方向支撑传力组件C8与框架C1之间。
所述试样限位盒C3采用长方形结构,试样限位盒C3由上下两个半盒组成,上下两个半盒扣合在一起构成完整的试样限位盒C3,上下两个半盒之间由螺栓进行固连;在所述试样限位盒C3的六个壁面上均开设有压头穿行孔。
所述第一最大主应力方向支撑传力组件C4、第二最大主应力方向支撑传力组件C5、第一中间主应力方向支撑传力组件C6及第二最小主应力方向支撑传力组件C9结构相同,均包括圆盘状承压垫块C14、圆柱状承压垫块C15及方形压头C16;所述圆盘状承压垫块C14位于框架C1壁板外侧,在圆盘状承压垫块C14的周向边沿均布固设有导向耳板C17,导向耳板C17上开设有导向光孔,在导向光孔内穿装有导向螺柱C18,导向螺柱C18固连在框架C1壁板上,所述圆盘状承压垫块C14相对于导向螺柱C18仅具有轴向移动自由度;在所述框架C1壁板的中心开设有圆形垫块穿行孔,所述圆柱状承压垫块C15穿装在圆形垫块穿行孔中,在圆形垫块穿行孔与圆柱状承压垫块C15之间依次设有垫块径向限位环C19和垫块减摩轴承C20,在位于框架C1壁板内侧的圆柱状承压垫块C15上套装有防尘圈C21,防尘圈C21通过防尘圈限位环C22固连在垫块径向限位环C19上;所述圆柱状承压垫块C15一端与圆盘状承压垫块C14顶靠接触,圆柱状承压垫块C15另一端与方形压头C16一端顶靠接触,方形压头C16穿装在试样限位盒C3对应的压头穿行孔中,方形压头C16另一端与试样限位盒C3内的试样顶靠接触。
所述第二中间主应力方向支撑传力组件C7包括圆盘状承压垫块C14、垫块支撑限位板C23、T型承压垫块C24、过渡垫块C25及方形压头C16;所述圆盘状承压垫块C14位于框架C1底部壁板下方,在框架C1底部壁板的中心开设有方形垫块穿行孔,所述T型承压垫块C24的小头端穿装在方形垫块穿行孔中,所述圆盘状 承压垫块C14固连在T型承压垫块C24的小头端,T型承压垫块C24的大头端位于框架C1底部壁板上方,所述垫块支撑限位板C23固装在框架C1底部壁板上表面,在垫块支撑限位板C23中心也开设有方形垫块穿行孔,在方形垫块穿行孔与T型承压垫块C24小头端之间设有垫块减摩条C26;所述过渡垫块C25放置在T型承压垫块C24大头端顶部,在T型承压垫块C24大头端顶部设有最小主应力方向过渡垫块导向限位条C27;所述方形压头C16下端与过渡垫块C25上表面顶靠接触,方形压头C16穿装在试样限位盒C3下方的压头穿行孔中,方形压头C16上端与试样限位盒3内的试样顶靠接触;在所述过渡垫块C25上表面设有最大主应力方向方形压头导向限位条C28。
所述第一最小主应力方向支撑传力组件C8包括卸载用承压垫块C29、方形压头C16及防护罩C30,所述框架C1壁板采用防护罩C30进行替代,在防护罩C30的中部开设有卸载用承压垫块穿行让位孔C31,所述卸载用承压垫块C29穿装在卸载用承压垫块穿行让位孔C31中;所述方形压头C16一端与卸载用承压垫块C29端部顶靠接触,方形压头C16穿装在试样限位盒C3对应的压头穿行孔中,方形压头C16另一端与试样限位盒C3内的试样顶靠接触。
所述最大主应力方向试样变形测量组件C10包括最大主应力方向传感器支架C32、最大主应力方向导向杆C33及最大主应力方向拉伸式位移传感器C34;所述最大主应力方向传感器支架C32分别固装在最大主应力方向上的两个方形压头C16上,最大主应力方向导向杆C33及最大主应力方向拉伸式位移传感器C34平行安装在两个最大主应力方向传感器支架C32之间;所述中间主应力方向试样变形测量组件C11包括中间主应力方向传感器支架C35、中间主应力方向导向杆C36及中间主应力方向拉伸式位移传感器C37;所述中间主应力方向传感器支架C35分别固装在中间主应力方向上的两个方形压头C16上,中间主应力方向导向杆C36及中间主应力方向拉伸式位移传感器C37平行安装在两个中间主应力方向传感器支架C35之间;所述最小主应力方向试样变形测量组件C12包括最小主应力方向传感器支架C38及最小主应力方向拉伸式位移传感器C39;所述最小主应力方向传感器支架C39固装在最小主应力方向上的两个方形压头C16上。
所述气动快速卸载组件C13包括双作用气缸C41、传力架C42、缓冲块C43、缓 冲弹簧C44及缓冲基座C45;所述双作用气缸C41数量为两个,两个双作用气缸C41对称分布在卸载用承压垫块C29两侧;所述双作用气缸C41竖直设置且活塞杆朝上,双作用气缸C41的活塞杆端部铰接在传力架C42上,传力架C42固连在卸载用承压垫块C29上,双作用气缸C41的缸筒端部通过铰接耳座C46连接在框架C1上;所述缓冲基座C45位于卸载用承压垫块C29正下方,所述缓冲弹簧C44竖直安装在缓冲基座C45上表面,所述缓冲块C43安装在缓冲弹簧C44顶部;在所述缓冲块C43与缓冲基座C45之间竖直设有导向销C40。
本实施例中,框架转运小车C2采用平板式结构,其主体为框架支撑平板,在框架支撑平板的四个角点螺接有用于在水平方向对框架C1进行限位的限位块,以及用于调整框架C1高度的微调高垫块,在框架支撑平板的下方设置有六个车轮,车轮包括两组形式,第一种形式的车轮为圆柱形车轮,第二种形式的车轮为V型轮面车轮,圆柱形车轮数量为两个,两个圆柱形车轮位于同侧,V型轮面车轮数量为四个,四个V型轮面车位于同侧,且圆柱形车轮与V型轮面车轮异侧分布,四个V型轮面车轮中两个为一组。为了方便将框架C1吊离小车C2,在框架C1顶部配装有可拆卸的吊架C47,吊架C47由吊架立板和吊架挂钩组成,吊架挂钩共四个,四个均布在吊架立板的四个角点,吊架立板与吊架挂钩之间由螺栓进行固连。另外,框架C1整体采用了拼装式结构,框架C1中的骨架梁和壁板均可拆散后进行存放,从而有效节省了存放空间,等需要重新使用时,重新将拆散状态的架梁和壁板组装成框架C1整体。
下面结合附图说明本发明的应用过程:
实施例一
开展静态全应力应变加载试验,先按照国际岩石力学学会试样标准,制备尺寸为50mm×50mm×100mm的岩石试样。试验前,需要在真三轴试验机外部进行试样装配,首先在框架C1底部壁板处将第二中间主应力方向支撑传力组件C7装配到位,然后将制作好的试样封入试样限位盒C3中,并通过螺栓将上下两个半盒固连到一起。再将装有试样的试样限位盒C3插入第二中间主应力方向支撑传力组件C7的方形压头C16上,试样限位盒C3实现初步固定。之后分别将其他5个方形压头C16对应插入试样限位盒C3上,然后分别完成三个主应力方向上的试样变 形测量组件的安装,再进行除第一最小主应力方向支撑传力组件C8外的其他几处支撑传力组件的安装,最后完成第一最小主应力方向支撑传力组件C8和气动快速卸载组件C13的安装。当试样结束在试样盒内的安装后,先将吊架C47安装到框架C1顶部,并将吊架C47作为吊车起吊时的挂点,利用吊车将试样盒整体吊装到框架转运小车C2上,之后移除吊架C47,推动框架转运小车C2沿着轨道移动,直至试样盒随着框架转运小车C2一同进入真三轴试验机的加载区域,最后对框架转运小车C2的试样盒高度位置进行微调,保证试样盒与真三轴试验机上的三组作动器全部对正。试验时,先启动30L/min的低流量液压泵A20为静态加载提供动力,再按照预先设定好的应力路径,通过最小主应力方向的一组作动器对试样施加最小主应力,通过中间主应力方向的一组作动器对试样施加中间主应力,通过最大主应力方向的一组作动器对试样施加最大主应力,具体设定的最小主应力为5MPa,中间主应力为20MPa;最大主应力需要逐级增大,且加载最大主应力过程中,首先采用1kN/s的速度加载,等到接近塑性变形区时转为低速率的变形控制,直到试样破坏,可获取试样的应力-应变曲线。
实施例二
开展20Hz频率面扰动试验,先按照国际岩石力学学会试样标准,制备尺寸为50mm×50mm×100mm的岩石试样。试验前,参照实施例一将试样安装到试样盒内。试验时,先启动30L/min的低流量液压泵A20为静态加载提供动力,完成试样预加载,再按照预先设定好的应力路径,通过最小主应力方向的一组作动器对试样施加最小主应力,通过中间主应力方向的一组作动器对试样施加中间主应力,通过最大主应力方向的一组作动器对试样施加最大主应力,具体设定的最小主应力为5MPa,中间主应力为20MPa;且加载最大主应力过程中,首先采用1kN/s的速度加载,等到接近塑性变形区时转为低速率的变形控制,直到应力-应变曲线的任一节点。然后,在计算机中输入动态加载力的幅值及频率参数,启动动态加载,油源切换至四个100L/min的高流量液压泵的并联泵系统,以输出400L/min的大流量,通过大流量油源的快速进出油实现活塞的动态运动,而且动态油缸可以是三个主应力方向中任一的一个方向,并且同一方向的活塞同时对试样进行加卸载,扰动的幅值为2MPa,持续时间为5min;若试样破坏,则可获取 试样破坏全过程应力-应变曲线;若试样未破坏,则停止施加扰动力,开始增加最大主应力,直至试样破坏,以获取试样破坏全过程的应力-应变曲线。
实施例三
开展300Hz频率面扰动试验,用于模拟频率为300Hz的爆破应力波。先按照国际岩石力学学会试样标准,制备尺寸为50mm×50mm×100mm的岩石试样。试验前,参照实施例一将试样安装到试样盒内,并解除刚性基座A2与铸铁减震台A5之间的刚性连接,使刚性基座A2在扰动轴向上自由滑动,而在垂直于扰动轴向上不可动。试验时,先启动30L/min的低流量液压泵A20为静态加载提供动力,完成试样预加载,再按照预先设定好的应力路径,通过最小主应力方向的一组作动器对试样施加最小主应力,通过中间主应力方向的一组作动器对试样施加中间主应力,通过最大主应力方向的一组作动器对试样施加最大主应力,具体设定的最小主应力为5MPa,中间主应力为20MPa;且加载最大主应力过程中,首先采用1kN/s的速度加载,等到接近塑性变形区时转为低速率的变形控制,直到应力-应变曲线的任一节点。
由于试验中设定的模拟爆破应力波的频率为300Hz,子弹B4与入射杆B5采用彼此分离设置的配合方式,炮管B3的长度为6m,入射杆B5的长度为9m,入射杆B5的的材料为42CrMo,由于42CrMo材料的弹性模量E为212GPa,且42CrMo材料的密度
Figure PCTCN2019126887-appb-000001
为7850kg/m 3,可知波速C的计算公式为
Figure PCTCN2019126887-appb-000002
Figure PCTCN2019126887-appb-000003
,因此可以计算得到波速C为5197m/s;对于频率为300Hz的正弦波来说,其波形周期T=1/300=3.33ms,因此半正弦波的脉冲持续时间t=T/2=1.67ms,再由公式t=2L/C便可计算得到子弹B4的长度L为4.34m。
试验前,将入射杆B5吊装到入射杆支撑座B6上,在入射杆B5的杆体前端面安装上PVDF压电薄膜传感器,并使入射杆B5的杆体前端面通过PVDF压电薄膜传感器顶靠接触在岩石试样上,同时在入射杆B5的杆体后端面安装上整形片,借助整形片来原始的矩形波整形为所需的半正弦波;然后启动真空泵B25,以使炮管B3内的子弹B4在负压作用下自动后退至发射位置;最后调整单次脉冲质量块 B8的轴向位置,使入射杆B5上环形凸台B31与单次脉冲质量块B8内环形凹槽B30之间形成合适的入射杆轴向微动间隙。接下来,开始调试气缸B2;在初始状态时,第一气控阀B17处于关闭状态,第二气控阀B18处于开启状态,当空压机B12启动后,压缩空气一路直接进入气瓶B16,压缩空气另一路直接进入气缸B2后腔室B20的无杆腔,随着无杆腔内压力的升高,将推动活塞盘B24、活塞杆B32及炮管密封堵头B21向着炮管B3方向移动,同时气缸B2后腔室B20的有杆腔被压缩,而有杆腔中的空气将通过开启的第二气控阀B18排入大气,直到炮管密封堵头B21完全顶靠在发射出气口B22上,并将发射出气口B22堵死,此时炮管B3与气缸B2前腔室B19实现密封隔离。
当炮管B3与气缸B2前腔室B19完成密封隔离后,同时按下第一按钮开关B14和第二按钮开关B15的控制按钮,此时第一按钮开关B14和第二按钮开关B15的常开出气口变为闭合状态,同时第一按钮开关B14和第二按钮开关B15的常闭出气口变为开启状态,而空压机B12输出的压缩空气依次流过第一按钮开关B14和第二按钮开关B15,然后从第二按钮开关B15的开启状态的常闭出气口中流出,而流出的压缩空气分两路同时进入第一气控阀B17的开阀气控口和第二气控阀B18的闭阀气控口中,进而控制第一气控阀B17的由关闭状态变为开启状态,同时控制第二气控阀B18的由开启状态变为关闭状态。
当第一气控阀B17和第二气控阀B18的开闭状态完成转换后,空压机B12输出的压缩空气将通过开启的第一气控阀B17进入气缸B2后腔室B20的有杆腔中,由于活塞盘B24的直径大于炮管密封堵头B21的直径,在压强相同的条件下,活塞盘B24所受到的轴向推力更大,因此活塞盘B24在轴向推力作用下会向着炮管B3的反方向移动,而气缸B2后腔室B20无杆腔内的空气将通过第一按钮开关B14的泄压口排入大气,同时随着活塞盘B24的移动,将带动活塞杆B32及炮管密封堵头同步向着炮管B3的反方向移动,直到炮管密封堵头B21脱离对发射出气口B22封堵,并使炮管B3与气缸B2前腔室B19恢复连通,此时气瓶B16中的气体将经过气缸B2前腔室进入炮管B3内,并以设定好的低气压推动炮管B3内的子弹B4实现发射。
当子弹B4从炮管B3内发射出去后,将直接撞击到安装有整形片的入射杆B5的 杆体后端面上,在单次脉冲质量块B8的作用下,频率为300Hz的模拟爆破应力波将以单次脉冲的形式经入射杆B5直接作用到岩石试样上,此时通过PVDF压电薄膜传感器获取的压电信号经电荷放大器B28接入示波器,通过示波器便可直观的确定该次试验中作用在岩石试样上的应力波波形,确保试验中模拟的爆破应力波是准确无误的;同时,记录下子弹测速仪B26测得的子弹B4的发射速度,确保子弹B4的发射速度满足低应力幅值特征的模拟。
另外,通过气缸B2的调试过程可知,只有同时按下第一按钮开关B14和第二按钮开关B15的控制按钮,才能完成子弹B4的发射,如果只是因误操作而单独按下了第一按钮开关B14的控制按钮,由于初始状态是第一气控阀B17处于关闭状态且第二气控阀B18处于开启状态,即使第一按钮开关B14单独触发而导通,但第二按钮开关B15仍然处于不导通状态,因此并不会触发第一气控阀B17和第二气控阀B18发生开闭状态的转换。同理,如果只是因误操作而单独按下了第二按钮开关B15的控制按钮,由于初始状态是第一气控阀B17处于关闭状态且第二气控阀B18处于开启状态,即使第二按钮开关B15单独触发而导通,但第一按钮开关B14仍然处于不导通状态,因此也不会触发第一气控阀B17和第二气控阀B18发生开闭状态的转换。因此,无论因误操作而单独按下了第一按钮开关B14或第二按钮开关B15的控制按钮,都不会发生子弹误发射的情况,最终可提高试验的安全性。
实施例四
开展100Hz频率面扰动试验,开展100Hz频率面扰动试验,用于模拟频率为100Hz的爆破应力波。先按照国际岩石力学学会试样标准,制备尺寸为50mm×50mm×100mm的岩石试样。试验前,参照实施例一将试样安装到试样盒内,并解除刚性基座A2与铸铁减震台A5之间的刚性连接,使刚性基座A2在扰动轴向上自由滑动,而在垂直于扰动轴向上不可动。试验时,先启动30L/min的低流量液压泵A20为静态加载提供动力,完成试样预加载,再按照预先设定好的应力路径,通过最小主应力方向的一组作动器对试样施加最小主应力,通过中间主应力方向的一组作动器对试样施加中间主应力,通过最大主应力方向的一组作动器对试样施加最大主应力,具体设定的最小主应力为5MPa,中间主应力为20MPa;且加 载最大主应力过程中,首先采用1kN/s的速度加载,等到接近塑性变形区时转为低速率的变形控制,直到应力-应变曲线的任一节点。
由于试验中设定的模拟爆破应力波的频率为100Hz,子弹B4和入射杆B5采用相互对接的配合方式共同构成加长型子弹;炮管B3的长度为6m,入射杆B5的长度为9m,入射杆B5的的材料为42CrMo,由于42CrMo材料的弹性模量E为212GPa,且42CrMo材料的密度
Figure PCTCN2019126887-appb-000004
为7850kg/m 3,可知波速C的计算公式为
Figure PCTCN2019126887-appb-000005
Figure PCTCN2019126887-appb-000006
,因此可以计算得到波速C为5197m/s;对于频率为100Hz的正弦波来说,其波形周期T=1/100=10ms,因此半正弦波的脉冲持续时间t=T/2=5ms,再由公式t=2L/C便可计算得到子弹B4的长度L为13m。但是,13m的子弹B4想要利用实施例三的方式进行试验,就需要单独配备一根长度为26m的入射杆B5,此时子弹B4与入射杆B5的总长度将达到39m,这种长度下将很难有合适的场地满足试验设备的安装。因此,本实施例中采用了子弹B4和入射杆B5的对接配合方式,子弹B4的长度取4.34m,即直接采用了实施例三中已有的子弹B4,而不用另行制造了,两者对接后形成的加长型子弹的总长度仅为13.34m,有效节省了试验设备的占地空间,同时能够满足试验要求。
试验前,将入射杆B5吊装到入射杆支撑座B6上,在入射杆B5的杆体前端面先安装上整形片,然后在整形片上安装PVDF压电薄膜传感器,并且PVDF压电薄膜传感器并不与岩石试样接触;此时需要用到拼接套管B7,先将拼接套管B7套装子弹B4上,再将入射杆B5的后端插入拼接套管B7,然后启动真空泵B25,对拼接套管B7内管腔抽真空,在负压作用下,子弹B4和入射杆B5自动向拼接套管B7的中部移动,直到子弹B4和入射杆B5在拼接套管B7内自动完成顶靠接触对接;最后安装单次脉冲质量块B8并调整其轴向位置,使入射杆B5上环形凸台B31与单次脉冲质量块B8内环形凹槽B30之间形成合适的入射杆轴向微动间隙。
接下来,参照实施例三完成气缸B2调试,直到加长型子弹整体通过炮管B3在设定好的低气压下被发射出去,加长型子弹的前端将直接撞击到岩石试样上并快速回弹,从而实现频率为100Hz的模拟爆破应力波直接作用到岩石试样上的试 验,此时通过PVDF压电薄膜传感器获取的压电信号经电荷放大器B28接入示波器,通过示波器便可直观的确定该次试验中作用在岩石试样上的应力波波形,确保试验中模拟的爆破应力波是准确无误的;同时,记录下入射杆测速仪B27测得的加长型子弹的发射速度,确保加长型子弹的发射速度满足低应力幅值特征的模拟。
实施例五
开展岩爆试验,先按照国际岩石力学学会试样标准,制备尺寸为50mm×50mm×100mm的岩石试样。试验前,参照实施例一将试样安装到试样盒内。试验时,先启动30L/min的低流量液压泵A20为静态加载提供动力,再按照预先设定好的应力路径,通过最小主应力方向的一组作动器对试样施加最小主应力,通过中间主应力方向的一组作动器对试样施加中间主应力,通过最大主应力方向的一组作动器对试样施加最大主应力,具体设定的最小主应力为5MPa,中间主应力为20MPa;且加载最大主应力过程中,首先采用1kN/s的速度加载,等到接近塑性变形区时转为低速率的变形控制,直到应力-应变曲线的任一节点。当最大主应力增大到原岩最大主应力值时,控制双作用气缸C41的活塞杆快速回缩,进而使卸载用承压垫块C29从作动器和方形压头C16之间迅速脱离并掉落到缓冲块C43上,同时通过缓冲弹簧C44的压缩实现缓冲;之后,继续增加最大主应力,直到试样发生岩爆,或者增加最大主应力的同时施加不同频率的扰动,直至试样发生岩爆。
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。

Claims (10)

  1. 一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:包括低频扰动真三轴机构、变频慢速扰动杆机构及快速单面卸载型试样盒,所述低频扰动真三轴机构与变频慢速扰动杆机构分布在一条直线上,低频扰动真三轴机构单独使用或者与变频慢速扰动杆机构配合使用,所述快速单面卸载型试样盒与低频扰动真三轴机构配合使用。
  2. 根据权利要求1所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述低频扰动真三轴机构包括真三轴加载组件和并联油源组件,真三轴加载组件和并联油源组件均安装在机构底座上;所述真三轴加载组件包括刚性基座、水平刚性框架体、竖直刚性框架体、铸铁减震台及动态伺服液压作动器;所述动态伺服液压作动器数量为六台;所述铸铁减震台水平固装在机构底座上,刚性基座水平卡装在铸铁减震台上,竖直刚性框架体竖直螺接固定在刚性基座上表面,竖直刚性框架体由顶板、底板和四个立柱组成;所述水平刚性框架体采用环形结构,水平刚性框架体套装在竖直刚性框架体外侧,水平刚性框架体螺接固定在刚性基座上表面;在所述竖直刚性框架体的顶板和底板各自安装有一台动态伺服液压作动器,且上下两台动态伺服液压作动器对称分布;在所述水平刚性框架体上沿周向均布安装有四台动态伺服液压作动器;所述动态伺服液压作动器上配装有换向阀块,在动态伺服液压作动器的活塞杆端部配装有动态负荷传感器,动态伺服液压作动器的活塞杆为空心杆结构。
  3. 根据权利要求2所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述并联油源组件包括油箱、泵站及冷却器;所述油箱内腔由隔板分隔成六个区域,分别记为①号区域、②号区域、③号区域、④号区域、⑤号区域及⑥号区域;所述①号区域、②号区域及③号区域之间顶部彼此连通,④号区域及⑤号区域 之间顶部彼此连通,⑤号区域及⑥号区域之间底部彼此连通,①号区域及④号区域之间顶部彼此连通,②号区域及⑤号区域之间顶部彼此连通,③号区域及⑥号区域之间顶部彼此连通;所述泵站内包括五台液压泵,分别记为第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵,五台液压泵的液压油输出口均连接有流量控制阀,各个液压泵的液压油输出口通过管路汇接到分流阀座的进油端,所述动态伺服液压作动器的前后腔油口通过换向阀块及管路接入分流阀座的出油端;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵的液压油吸入口通过管路与油箱内腔的底部相连通,用于抽取①号区域、②号区域及③号区域内的液压油;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵、第四高流量液压泵及低流量液压泵的液压油输出口与各自对应的流量控制阀之间均安装有溢流阀,溢流阀的溢流口通过溢流管道与④号区域、⑤号区域及⑥号区域相连通;所述第一高流量液压泵、第二高流量液压泵、第三高流量液压泵及第四高流量液压泵在进行动态扰动时流出的液压油通过管路汇接到回油阀座的进油端,回油阀座的出油端通过管路与④号区域相连通;在所述⑤号区域的底部连接有热油输出管道,热油输出管道的出油口连接有热油液压泵,热油液压泵的出油口通过管路与冷却器相连通,通过热油液压泵将⑤号区域内的热油泵送至冷却器内进行降温,冷却器的出油口通过冷油回流管路与⑥号区域的底部相连通。
  4. 根据权利要求1所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述变频慢速扰动杆机构包括发射台、气缸、炮管、子弹及入射杆;所述炮管水平架设在发射台后侧,气缸安装在炮管后部,子弹位于炮管内,且炮管内的子弹上套装有聚乙烯减摩套;所述入射杆通过入射杆支撑座水平架设在发射台 前侧;所述子弹与入射杆之间具有两种配合方式;在第一种配合方式下,所述子弹与入射杆彼此分离设置,在入射杆的杆体前端面安装PVDF压电薄膜传感器,入射杆的杆体前端面通过PVDF压电薄膜传感器顶靠接触在岩石试样上,在入射杆的杆体后端面安装整形片;在第二种配合方式下,所述子弹的前端面与入射杆的后端面顶靠接触对接在一起,且对接在一起的子弹和入射杆共同构成加长型子弹,在子弹与入射杆的对接处外部套装有拼接套管,拼接套管相对于子弹和入射杆具有轴向滑移自由度,入射杆的前端面与岩石试样彼此分离设置,在入射杆的前端面安装整形片,在整形片外表面安装PVDF压电薄膜传感器;在所述入射杆的杆体外套装有单次脉冲质量块,单次脉冲质量块采用分体组合式结构,在单次脉冲质量块的入射杆穿装孔内孔壁开设有环形凹槽,在入射杆的杆体上设置有环形凸台,环形凸台位于环形凹槽内,环形凸台的轴向厚度小于环形凹槽的轴向宽度,使环形凸台与环形凹槽之间形成入射杆轴向微动间隙;在所述单次脉冲质量块下方的发射台上安装有滑轨,滑轨采用平行双轨结构,滑轨与入射杆相平行,在滑轨上设置有滑块,在滑块上水平固连在滑台,所述单次脉冲质量块固连在滑台上表面,单次脉冲质量块相对于滑轨具有直线移动自由度。
  5. 根据权利要求4所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:在所述发射台侧方的地面上设置有空压机和控制台,在控制台上设置有第一按钮开关和第二按钮开关,在所述炮管下方的发射台内设置有气瓶、第一气控阀和第二气控阀;所述气缸水平设置,在气缸内部设有前腔室和后腔室,活塞杆密封穿过前腔室与后腔室的隔板,位于前腔室的活塞杆端部安装有炮管密封堵头,在前腔室的轴向缸壁上开设有发射出气口,所述炮管后部的进气端管口与发射出气口密封连通,在前腔室的径向缸壁上开设有发射进气口,发射进气口通过发射进气管与气瓶 的出气口密封连通;位于所述后腔室的活塞杆端部安装有活塞盘,活塞盘将后腔室分隔成有杆腔和无杆腔,活塞盘的直径大于炮管密封堵头的直径;所述第一按钮开关和第二按钮开关结构相同,其上均包括进气口、常开出气口、常闭出气口及泄压口,泄压口直接与大气连通;所述空压机的供气口以三路输出,第一路与第一按钮开关的进气口相连通,第二路与第一气控阀的进气口相连通,第三路与气瓶的进气口相连通;所述第一按钮开关的常开出气口与气缸后腔室的无杆腔相连通,第一按钮开关的常闭出气口与第二按钮开关的进气口相连通,第二按钮开关的常开出气口以两路输出,第一路与第一气控阀的闭阀气控口相连通,第二路与第二气控阀的开阀气控口相连通;所述第二按钮开关的常闭出气口以两路输出,第一路与第一气控阀的开阀气控口相连通,第二路与第二气控阀的闭阀气控口相连通;所述第一气控阀的出气口以两路输出,第一路与第二气控阀的进气口相连通,第二路与气缸后腔室的有杆腔相连通;所述第二气控阀的出气口与大气相连通。
  6. 根据权利要求5所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:在所述发射台侧方的地面上设置有真空泵,在所述炮管后端管体上以及拼接套管中部管体上均开设有抽气口,两处抽气口均与真空泵相连,通过真空泵对炮管和拼接套管的管腔进行抽真空,通过抽真空使炮管内的子弹在负压作用下自动后退至发射位置,通过抽真空使拼接套管内的子弹与入射杆自动顶靠接触对接在一起;与所述炮管出口相邻的发射台上安装有子弹测速仪,在单次脉冲质量块前侧的发射台上安装有入射杆测速仪;在所述发射台侧方的地面上设置有电荷放大器,所述PVDF压电薄膜传感器的信号输出端与电荷放大器相连,电荷放大器的电压信号接入示波器或计算机;在所述发射台侧方安装有入射杆承放台,通过入射杆承放台放置暂未使用的入射杆;在所述发射 台上方设置有龙门吊,通过龙门吊对入射杆进行安装和拆卸。
  7. 根据权利要求1所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述快速单面卸载型试样盒包括框架、框架转运小车、试样限位盒、第一最大主应力方向支撑传力组件、第二最大主应力方向支撑传力组件、第一中间主应力方向支撑传力组件、第二中间主应力方向支撑传力组件、第一最小主应力方向支撑传力组件、第二最小主应力方向支撑传力组件、最大主应力方向试样变形测量组件、中间主应力方向试样变形测量组件、最小主应力方向试样变形测量组件及气动快速卸载组件;所述框架采用方形结构,框架放置在框架转运小车上,所述试样限位盒位于框架内部中心处;所述第一最大主应力方向支撑传力组件设置在框架前部壁板中心,所述第二最大主应力方向支撑传力组件设置在框架后部壁板中心,第一最大主应力方向支撑传力组件与第二最大主应力方向支撑传力组件沿同一条水平向直线分布;所述第一中间主应力方向支撑传力组件设置在框架顶部壁板中心,所述第二中间主应力方向支撑传力组件设置在框架底部壁板中心,第一中间主应力方向支撑传力组件与第二中间主应力方向支撑传力组件沿同一条竖向直线分布;所述第一最小主应力方向支撑传力组件设置在框架左部壁板中心,所述第二最小主应力方向支撑传力组件设置在框架右部壁板中心,第一最小主应力方向支撑传力组件与第二最小主应力方向支撑传力组件沿同一条水平向直线分布;所述最大主应力方向试样变形测量组件配装在第一最大主应力方向支撑传力组件与第二最大主应力方向支撑传力组件之间;所述中间主应力方向试样变形测量组件配装在第一中间主应力方向支撑传力组件与第二中间主应力方向支撑传力组件之间;所述最小主应力方向试样变形测量组件配装在第一最小主应力方向支撑传力组件与第二最小主应力方向支撑传力组件之间;所述气动快速卸载组件配装在第一最小主应力方向支撑传力组件与框 架之间。
  8. 根据权利要求7所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述试样限位盒采用长方形结构,试样限位盒由上下两个半盒组成,上下两个半盒扣合在一起构成完整的试样限位盒,上下两个半盒之间由螺栓进行固连;在所述试样限位盒的六个壁面上均开设有压头穿行孔;所述第一最大主应力方向支撑传力组件、第二最大主应力方向支撑传力组件、第一中间主应力方向支撑传力组件及第二最小主应力方向支撑传力组件结构相同,均包括圆盘状承压垫块、圆柱状承压垫块及方形压头;所述圆盘状承压垫块位于框架壁板外侧,在圆盘状承压垫块的周向边沿均布固设有导向耳板,导向耳板上开设有导向光孔,在导向光孔内穿装有导向螺柱,导向螺柱固连在框架壁板上,所述圆盘状承压垫块相对于导向螺柱仅具有轴向移动自由度;在所述框架壁板的中心开设有圆形垫块穿行孔,所述圆柱状承压垫块穿装在圆形垫块穿行孔中,在圆形垫块穿行孔与圆柱状承压垫块之间依次设有垫块径向限位环和垫块减摩轴承,在位于框架壁板内侧的圆柱状承压垫块上套装有防尘圈,防尘圈通过防尘圈限位环固连在垫块径向限位环上;所述圆柱状承压垫块一端与圆盘状承压垫块顶靠接触,圆柱状承压垫块另一端与方形压头一端顶靠接触,方形压头穿装在试样限位盒对应的压头穿行孔中,方形压头另一端与试样限位盒内的试样顶靠接触;所述第二中间主应力方向支撑传力组件包括圆盘状承压垫块、垫块支撑限位板、T型承压垫块、过渡垫块及方形压头;所述圆盘状承压垫块位于框架底部壁板下方,在框架底部壁板的中心开设有方形垫块穿行孔,所述T型承压垫块的小头端穿装在方形垫块穿行孔中,所述圆盘状承压垫块固连在T型承压垫块的小头端,T型承压垫块的大头端位于框架底部壁板上方,所述垫块支撑限位板固装在框架底部壁板上表面,在垫块支撑限位板中心也开设有方形垫块穿行孔,在方形垫块 穿行孔与T型承压垫块小头端之间设有垫块减摩条;所述过渡垫块放置在T型承压垫块大头端顶部,在T型承压垫块大头端顶部设有最小主应力方向过渡垫块导向限位条;所述方形压头下端与过渡垫块上表面顶靠接触,方形压头穿装在试样限位盒下方的压头穿行孔中,方形压头上端与试样限位盒内的试样顶靠接触;在所述过渡垫块上表面设有最大主应力方向方形压头导向限位条。
  9. 根据权利要求8所述的一种高压硬岩宽频带低幅值面扰动真三轴试验系统,其特征在于:所述第一最小主应力方向支撑传力组件包括卸载用承压垫块、方形压头及防护罩,所述框架壁板采用防护罩进行替代,在防护罩的中部开设有卸载用承压垫块穿行让位孔,所述卸载用承压垫块穿装在卸载用承压垫块穿行让位孔中;所述方形压头一端与卸载用承压垫块端部顶靠接触,方形压头穿装在试样限位盒对应的压头穿行孔中,方形压头另一端与试样限位盒内的试样顶靠接触;所述最大主应力方向试样变形测量组件包括最大主应力方向传感器支架、最大主应力方向导向杆及最大主应力方向拉伸式位移传感器;所述最大主应力方向传感器支架分别固装在最大主应力方向上的两个方形压头上,最大主应力方向导向杆及最大主应力方向拉伸式位移传感器平行安装在两个最大主应力方向传感器支架之间;所述中间主应力方向试样变形测量组件包括中间主应力方向传感器支架、中间主应力方向导向杆及中间主应力方向拉伸式位移传感器;所述中间主应力方向传感器支架分别固装在中间主应力方向上的两个方形压头上,中间主应力方向导向杆及中间主应力方向拉伸式位移传感器平行安装在两个中间主应力方向传感器支架之间;所述最小主应力方向试样变形测量组件包括最小主应力方向传感器支架及最小主应力方向拉伸式位移传感器;所述最小主应力方向传感器支架固装在最小主应力方向上的两个方形压头上。
  10. 根据权利要求9所述的一种高压硬岩宽频带低幅值面扰动真三轴试 验系统,其特征在于:所述气动快速卸载组件包括双作用气缸、传力架、缓冲块、缓冲弹簧及缓冲基座;所述双作用气缸数量为两个,两个双作用气缸对称分布在卸载用承压垫块两侧;所述双作用气缸竖直设置且活塞杆朝上,双作用气缸的活塞杆端部铰接在传力架上,传力架固连在卸载用承压垫块上,双作用气缸的缸筒端部通过铰接耳座连接在框架上;所述缓冲基座位于卸载用承压垫块正下方,所述缓冲弹簧竖直安装在缓冲基座上表面,所述缓冲块安装在缓冲弹簧顶部;在所述缓冲块与缓冲基座之间竖直设有导向销。
PCT/CN2019/126887 2019-12-10 2019-12-20 一种高压硬岩宽频带低幅值面扰动真三轴试验系统 WO2021114369A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3101296A CA3101296C (en) 2019-12-10 2019-12-20 True triaxial testing system for disturbance experiment with broadband and low amplitude of high pressure hard rock
AU2019449031A AU2019449031B2 (en) 2019-12-10 2019-12-20 True triaxial testing system for disturbance experiment with broadband and low amplitude of high pressure hard rock
EP19929193.1A EP3872475A4 (en) 2019-12-10 2019-12-20 REAL TRIAXIAL TEST SYSTEM FOR LOW AMPLITUDE SURFACE DISTURBANCES AT LARGE BAND OF HIGH PRESSURE HARD ROCK
US17/059,169 US11119018B2 (en) 2019-12-10 2019-12-20 True triaxial testing system for disturbance experiment with broadband and low amplitude of high pressure hard rock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911257770.3 2019-12-10
CN201911257770.3A CN111006953B (zh) 2019-12-10 2019-12-10 一种高压硬岩宽频带低幅值面扰动真三轴试验系统

Publications (1)

Publication Number Publication Date
WO2021114369A1 true WO2021114369A1 (zh) 2021-06-17

Family

ID=70114468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126887 WO2021114369A1 (zh) 2019-12-10 2019-12-20 一种高压硬岩宽频带低幅值面扰动真三轴试验系统

Country Status (5)

Country Link
US (1) US11119018B2 (zh)
EP (1) EP3872475A4 (zh)
CN (1) CN111006953B (zh)
AU (1) AU2019449031B2 (zh)
WO (1) WO2021114369A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984535A (zh) * 2021-10-28 2022-01-28 中国矿业大学 一种深部岩体岩爆动力灾害的模拟装置及测试方法
CN114528617A (zh) * 2022-01-13 2022-05-24 中铁二院工程集团有限责任公司 一种确定高地应力硬质岩岩爆区铁路空间线位的方法
CN114535148A (zh) * 2022-01-17 2022-05-27 广东气派科技有限公司 一种适用于重力式分选机的压测装置
CN115931568A (zh) * 2023-01-04 2023-04-07 山东科技大学 基于“先卸-后锚-再扰”的岩体真三轴试验系统及方法
CN118003226A (zh) * 2024-04-09 2024-05-10 江苏德鲁尼智能家居有限公司 一种木业板材表面抛光复合装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703433B2 (en) * 2018-12-26 2023-07-18 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system and testing method
CN113125259B (zh) * 2021-04-12 2022-10-28 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种点阵结构准静态压缩试验件及试验方法
CN114002070B (zh) * 2021-09-26 2023-08-25 中国矿业大学 一种断层活化诱发岩爆和冲击地压的实验方法及装置
CN113916331A (zh) * 2021-10-20 2022-01-11 王永雪 一种适用于气体涡轮流量测试的调节监测仪器
CN114113542B (zh) * 2021-11-19 2023-11-14 湖南科技学院 一种岩土与地下工程模型试验交通动荷载模拟装置
CN114382826B (zh) * 2021-12-22 2023-03-21 徐州盛科半导体科技有限公司 一种三维封装智能检测分析仪的支撑结构
CN114646451B (zh) * 2022-03-18 2023-04-07 中国空气动力研究与发展中心高速空气动力研究所 一种双固支部件天平
CN115372152B (zh) * 2022-07-13 2024-04-16 东北大学 一种深部工程岩爆孕育全过程大型三维物理模拟试验系统
CN115541418B (zh) * 2022-10-25 2023-06-13 西南交通大学 一种用于冲击试验的岩石发射装置及应用方法
CN116660059B (zh) * 2023-07-31 2023-09-26 昆明理工大学 一种爆破荷载下分层胶结充填体试件破坏试验装置及方法
CN117287446B (zh) * 2023-11-22 2024-02-13 新乡市万和过滤技术股份公司 液压油缸测试系统
CN117723690B (zh) * 2024-02-01 2024-04-19 广州恒广复合材料有限公司 一种聚季铵盐-51检测设备及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205719826U (zh) * 2016-06-13 2016-11-23 中国科学技术大学 一种基于真三轴静载的岩石霍普金森冲击加载实验装置
CN106198264A (zh) * 2016-06-30 2016-12-07 安徽理工大学 一种真三轴岩石加卸载扰动实验装置及其使用方法
CN106289995A (zh) * 2016-10-14 2017-01-04 中南大学 一种岩石类材料真三轴试验系统
CN107014690A (zh) * 2017-03-24 2017-08-04 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
CN207730551U (zh) * 2017-12-21 2018-08-14 四川德翔科创仪器有限公司 用于真三轴试验的试件固定装置
US20190033198A1 (en) * 2017-10-02 2019-01-31 Amirkabir University of Technology Reservoir depletion/injection simulation under true triaxial stress conditions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633718B1 (fr) * 1988-06-30 1994-04-15 Institut Francais Petrole Cellule d'essais triaxiaux de contraintes sur un echantillon de roche et methode d'essais utilisant une telle cellule
US7320242B2 (en) * 2002-03-12 2008-01-22 The University Of Akron Tensile impact apparatus
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
PL2833118T3 (pl) * 2012-03-31 2017-01-31 China Univ Of Mining & Tech (Beijing) Urządzenie eksperymentalne symulowanego tąpnięcia górotworu typu uderzeniowego
CN105865907B (zh) * 2016-06-22 2018-06-05 广西大学 一种用于动力扰动型岩爆模拟的真三轴试验夹具
CN106404560A (zh) * 2016-11-07 2017-02-15 绍兴文理学院 多套机构组合式结构面抗剪强度尺寸效应试验机
CN106526131A (zh) * 2016-11-29 2017-03-22 广西大学 一种模拟岩墙轴向微扰动触发型岩爆的实验方法
US9880081B1 (en) * 2017-03-07 2018-01-30 Ramesh Chandra Gupta Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
US10324014B2 (en) * 2017-03-24 2019-06-18 Northeastern University Low-frequency disturbance and high-speed impact type high-pressure true triaxial test apparatus and method
CN106840901B (zh) * 2017-04-05 2023-10-03 辽宁工程技术大学 一种基于真三轴加载下的煤岩体多参量监测试验装置
US10697281B2 (en) * 2018-02-02 2020-06-30 Northeastern University Large-scale three-dimensional physical model test system and method for deep cavern group

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205719826U (zh) * 2016-06-13 2016-11-23 中国科学技术大学 一种基于真三轴静载的岩石霍普金森冲击加载实验装置
CN106198264A (zh) * 2016-06-30 2016-12-07 安徽理工大学 一种真三轴岩石加卸载扰动实验装置及其使用方法
CN106289995A (zh) * 2016-10-14 2017-01-04 中南大学 一种岩石类材料真三轴试验系统
CN107014690A (zh) * 2017-03-24 2017-08-04 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
US20190033198A1 (en) * 2017-10-02 2019-01-31 Amirkabir University of Technology Reservoir depletion/injection simulation under true triaxial stress conditions
CN207730551U (zh) * 2017-12-21 2018-08-14 四川德翔科创仪器有限公司 用于真三轴试验的试件固定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU KUN; LI XIBING; MA CHUNDE: "Development of Rock True Triaxial Dynamic Disturbance Test System and its Application", EXPERIMENTAL TECHNOLOGY AND MANAGEMENT, vol. 31, no. 12, 31 December 2014 (2014-12-31), pages 35 - 40, XP009524801, ISSN: 1002-4956, DOI: 10.16791/j.cnki.sjg.2014.12.010 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984535A (zh) * 2021-10-28 2022-01-28 中国矿业大学 一种深部岩体岩爆动力灾害的模拟装置及测试方法
CN113984535B (zh) * 2021-10-28 2022-05-20 中国矿业大学 一种深部岩体岩爆动力灾害的模拟装置及测试方法
JP7236187B1 (ja) 2021-10-28 2023-03-09 中国砿業大学 深部岩体山はね動的災害の模擬装置及び試験方法
JP2023066398A (ja) * 2021-10-28 2023-05-15 中国砿業大学 深部岩体山はね動的災害の模擬装置及び試験方法
CN114528617A (zh) * 2022-01-13 2022-05-24 中铁二院工程集团有限责任公司 一种确定高地应力硬质岩岩爆区铁路空间线位的方法
CN114528617B (zh) * 2022-01-13 2023-04-07 中铁二院工程集团有限责任公司 一种确定高地应力硬质岩岩爆区铁路空间线位的方法
CN114535148A (zh) * 2022-01-17 2022-05-27 广东气派科技有限公司 一种适用于重力式分选机的压测装置
CN114535148B (zh) * 2022-01-17 2024-02-09 广东气派科技有限公司 一种适用于重力式分选机的压测装置
CN115931568A (zh) * 2023-01-04 2023-04-07 山东科技大学 基于“先卸-后锚-再扰”的岩体真三轴试验系统及方法
CN115931568B (zh) * 2023-01-04 2024-05-17 山东科技大学 基于“先卸-后锚-再扰”的岩体真三轴试验系统及方法
CN118003226A (zh) * 2024-04-09 2024-05-10 江苏德鲁尼智能家居有限公司 一种木业板材表面抛光复合装置
CN118003226B (zh) * 2024-04-09 2024-06-07 江苏德鲁尼智能家居有限公司 一种木业板材表面抛光复合装置

Also Published As

Publication number Publication date
US11119018B2 (en) 2021-09-14
AU2019449031B2 (en) 2021-07-29
US20210223151A1 (en) 2021-07-22
CN111006953B (zh) 2021-04-13
AU2019449031A1 (en) 2021-06-24
EP3872475A4 (en) 2021-12-22
EP3872475A1 (en) 2021-09-01
CN111006953A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021114369A1 (zh) 一种高压硬岩宽频带低幅值面扰动真三轴试验系统
CA3101296C (en) True triaxial testing system for disturbance experiment with broadband and low amplitude of high pressure hard rock
CN110186324A (zh) 模拟爆炸冲击波与高速破片耦合载荷的轻气炮发射装置
CN111077023B (zh) 动静组合加载含瓦斯煤孔隙压力响应和损伤破坏测定装置
CN113848034B (zh) 一种模拟深海水下发射的离心机缩比试验装置及方法
CN106353180A (zh) 一种正压作用时间可调的爆炸波模拟装置
CN110763472A (zh) 一种发动机试车台及其试验方法
CN112556912A (zh) 一种参数可调的恐怖爆炸冲击波效应模拟系统
US7726124B2 (en) Blast simulator with high velocity actuator
CN116256492A (zh) 一种煤与瓦斯突出物理模拟实验装置及实验方法
CN110953213B (zh) 一种静动复合加载快速冲击液压缸
CN111006940B (zh) 一种满足爆破应力波模拟的变频慢速扰动杆机构
CN207717527U (zh) 一种航天器上产品的耐压性能试验系统
CN110987673B (zh) 一种高压硬岩低频扰动真三轴试验机构
CN202132032U (zh) 一种用于油井液位测量的自动气枪
CN102168552A (zh) 用于油井液位测量的自动气枪
CN113702214A (zh) 一种用于成层式组合材料进行一维应力波传播的试验方法
US3062036A (en) Inertial shock tester
CN210802911U (zh) 一种超音速发动机试车台
CN113188927A (zh) 一种埋地有压管道冲击动力模型试验装置及试验方法
CN110701965B (zh) 一种通用大深度潜射导弹发射模拟系统
CN110749449A (zh) 一种超音速发动机试车台及其试验方法
CN214749508U (zh) 一种管道
CN212780325U (zh) 霍普金森压杆真三轴可视化系统
CN109612762B (zh) 一种适用于隧道防护门的风压试验装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3101296

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019929193

Country of ref document: EP

Effective date: 20210526

ENP Entry into the national phase

Ref document number: 2019449031

Country of ref document: AU

Date of ref document: 20191220

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE