WO2021114188A1 - 一种基于无线能量传输驱动的目标被动追踪系统和方法 - Google Patents

一种基于无线能量传输驱动的目标被动追踪系统和方法 Download PDF

Info

Publication number
WO2021114188A1
WO2021114188A1 PCT/CN2019/124927 CN2019124927W WO2021114188A1 WO 2021114188 A1 WO2021114188 A1 WO 2021114188A1 CN 2019124927 W CN2019124927 W CN 2019124927W WO 2021114188 A1 WO2021114188 A1 WO 2021114188A1
Authority
WO
WIPO (PCT)
Prior art keywords
passive
passive anchor
node
target
anchor node
Prior art date
Application number
PCT/CN2019/124927
Other languages
English (en)
French (fr)
Inventor
赵毓斌
须成忠
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2019/124927 priority Critical patent/WO2021114188A1/zh
Publication of WO2021114188A1 publication Critical patent/WO2021114188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to the field of communication technology, in particular to a target passive tracking system and method based on wireless energy transmission drive.
  • IoT Internet of Things
  • a positioning system based on the Internet of Things (IoT) extending its life cycle is a key issue.
  • IoT devices can be deployed in such a vast area on a large scale and require sufficient energy to maintain a long service life.
  • researchers have proposed many energy-saving solutions.
  • the battery will inevitably be exhausted eventually.
  • the battery can be replaced or recharged, it is inconvenient, expensive and even dangerous for a network deployed on a large scale in a harsh environment.
  • the current energy supply technology for the Internet of Things is mainly divided into two aspects, one is energy-saving technology, and the other is the use of wireless charging technology.
  • energy-saving technologies for the Internet of Things
  • wireless charging technology to charge IoT devices, such as magnetic induction technology, magnetic coupling technology, and microwave wireless charging technology.
  • wireless charging technology directly for IoT positioning systems in the existing technology.
  • the purpose of the present invention is to overcome the above-mentioned drawbacks of the prior art, and provide a target passive tracking system and method driven by wireless energy transmission, which can simultaneously control the accuracy of system positioning and the overall power consumption.
  • a target passive tracking system driven by wireless energy transmission includes: an energy transmitting device, multiple passive anchor nodes and target nodes, wherein the energy transmitting device contains multiple antennas and has wireless energy transmission and feedback data receiving functions; the target node periodically broadcasts ranging Signal; the passive anchor node receives the wireless energy sent by the energy transmitting device as a power supply, and captures the ranging signal sent by the target node to be tracked, and converts the ranging signal sent by the target node into the ranging information back To the energy transmitting device, and then the energy transmitting device locates the position of the target node based on the ranging information.
  • a method for passive tracking of targets driven by wireless energy transmission is provided for the above-mentioned system provided by the present invention.
  • the method includes the following steps: designing a multi-objective optimization problem of joint system positioning accuracy and energy consumption; By solving the optimization problem, the passive anchor nodes participating in the positioning are selected and the received power of the selected passive anchor nodes is controlled and distributed.
  • the present invention has the advantages that it can continuously provide energy for the wireless Internet of Things positioning system and solve the battery bottleneck problem; the power distribution technology provided by the present invention can adjust the energy transmitting device (E-AP)
  • the signal power vector can control the accuracy of system positioning and overall power consumption, and realize the on-demand distribution of power.
  • Fig. 1 is an architecture diagram of a target passive tracking system driven by wireless energy transmission according to the present invention.
  • the present invention provides a target passive tracking system driven by wireless energy transmission, which is an IoT positioning system that supports wireless charging.
  • the system includes an energy transmitting device (E-AP) 110 and multiple passives.
  • Anchor node 120 and target node 130 also referred to as target or tracking target).
  • the energy transmitting device 110 includes multiple antennas and has wireless energy transmission and feedback data receiving functions.
  • the energy transmitting device 110 transmits energy to the passive anchor node 120.
  • the passive anchor node 120 also called a reference node, has a known or measurable position.
  • the passive anchor node 120 is a wireless node of the Internet of Things that does not contain any power or battery equipment.
  • the passive anchor node 120 receives the wireless energy sent by the E-AP as a power source, and at the same time captures the signal sent by the target node 130, and combines the target The signal sent by the node 130 is converted into ranging information and sent back to the E-AP.
  • the E-AP receives signals from multiple passive anchor nodes 120 and estimates the location of the target node 130 in real time through a specific positioning algorithm.
  • the position of the target node 130 cannot be directly measured, and the position of the target node needs to be estimated based on the position of the passive anchor node 120. Therefore, the positioning method of the target node is passive positioning.
  • the target node 130 is, for example, a terminal or other types of wireless sensor nodes.
  • the wireless signal transmission (including energy and ranging signal) is divided into two parts.
  • the first part is the wireless energy transmission part, and the second part is the wireless ranging signal transmission part.
  • the passive anchor node After the passive anchor node obtains the energy sent by the E-AP, it will capture the ranging signal sent by the target node and convert the ranging signal into ranging information (such as the distance between the anchor node and the target node ) Is sent back to the E-AP, and the E-AP determines the location of the target node based on this information.
  • the periodic broadcast ranging signal of the target node such as RSS signal (received signal strength signal)
  • RSS signal received signal strength signal
  • a positioning method in the prior art can be used for positioning, such as a trilateral positioning method.
  • the specific positioning process will not be repeated in the present invention. The following will focus on specific solutions to improve positioning accuracy and reduce system energy consumption.
  • the next Cramero is used as the measurement standard of the positioning accuracy of the system.
  • the next Cramero is the inverse matrix of the Fisher matrix.
  • the cost in the embodiment of the present invention is the inverse matrix of the Fisher matrix.
  • the Hill matrix can be expressed as:
  • is the direction angle from the nth passive anchor node to the target node
  • is the spatial attenuation factor
  • d n represents the target node to the actual distance passive anchor nodes
  • P tar represents a passive anchor node receives wireless energy minima threshold, when the received power is less than the threshold, then the anchor node does not work, otherwise it is Activation
  • a n is a step function:
  • c n is the channel attenuation coefficient
  • the present invention is designed to solve the following problems:
  • P 0 is the total power of the transmitted signal
  • I the variance of the background noise.
  • problem one can be extended to a multi-objective optimization problem to perform joint optimization of positioning accuracy and power consumption, that is, problem two.
  • the solution of problem two is divided into two parts.
  • the first step is to search for all passive anchor nodes that meet the defined conditions to achieve the best positioning accuracy.
  • the second step is to calculate the energy consumption of the passive anchor nodes after determining the passive anchor nodes. The minimum value.
  • Problem 3 Multi-objective optimization to improve the optimal positioning accuracy and achieve the lowest power consumption at the same time.
  • each anchor node is set to 0 or 1 respectively, forming a sequence of 0, 1.
  • 0 means that this node is not required to participate in the calculation
  • 1 means that the anchor node will participate in the calculation.
  • N -1 such combined sequences;
  • the passive anchor nodes participating in the positioning can be selected and the received power of the selected passive anchor nodes can be controlled, thereby reducing the positioning accuracy while ensuring the positioning accuracy.
  • the energy consumption of the entire system can be determined in the above manner and the corresponding feasible solution of r x .
  • a heuristic algorithm is used to solve the problem.
  • the specific steps include:
  • the present invention applies wireless charging technology to the Internet of Things positioning system, and at the same time provides multi-objective optimization that can improve the optimal positioning accuracy and achieve the lowest power consumption at the same time.
  • the present invention proposes an exhaustive method and a heuristic algorithm for the multi-objective optimization problem, thereby reducing the complexity of calculation and improving the positioning accuracy and the real-time performance of power on-demand distribution.
  • the present invention may be a system, a method and/or a computer program product.
  • the computer program product may include a computer non-transitory readable storage medium loaded with computer readable program instructions for enabling a processor to implement various aspects of the present invention.
  • the computer-readable storage medium may be a tangible device that holds and stores instructions used by the instruction execution device.
  • the computer-readable storage medium may include, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing, for example.
  • Non-exhaustive list of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供一种基于无线能量传输驱动的目标被动追踪系统和方法。该系统包括能量发射装置,多个无源锚节点和目标节点,其中:所述能量发射装置含有多个天线,具有无线能量发射和反馈数据接收功能;所述目标节点周期性的广播测距信号;所述无源锚节点通过接收所述能量发射装置发送的无线能量作为供电电源,并捕捉待追踪目标节点发送的测距信号,且将目标节点发送的测距信号转化为测距信息回传至所述能量发射装置,进而由所述能量发射装置基于该测距信息定位目标节点的位置。本发明的系统和方法能够控制定位精度和总体功耗,实现功率的按需分配。

Description

一种基于无线能量传输驱动的目标被动追踪系统和方法 技术领域
本发明涉及通信技术领域,尤其涉及一种基于无线能量传输驱动的目标被动追踪系统和方法。
背景技术
对于基于物联网(IoT)的定位系统来说,延长其生命周期是一个关键问题。特别是在GPS无法到达的环境中,如建筑物、城市峡谷、树冠下或洞穴,物联网设备可以大规模部署在这样广阔的区域,需要足够的能量来维持较长的使用寿命。为了使无线定位系统保持在低能耗模式,研究者们提出了很多节能方案。然而,无论如何设计物联网系统的节能方案,最终都不可避免地会耗尽电池。虽然电池可以更换或充电,但对于在恶劣环境下大规模部署的网络来说,是不方便、昂贵甚至危险的。
近年来,基于射频(RF)的无线功率传输(WPT)技术得到了学术界和工业界的广泛关注。对于功率受限的无线网络或无线传感器网络来说,这是一个很有前途的解决方案。有了WPT,物联网节点可以在没有电池的情况下工作,并且仍然有无限的电源供应。因此,使用WPT可以有效地解决物联网设备的能量瓶颈。在WPT中,一些通信和相关应用出现在最近的工作中。同步无线信息和功率传输(SWIPT)系统采集无线能量,为无线设备供电,以便传输数据。实践证明,许多无线通信系统都可以与无线功率传输技术相结合,有效地优化了MIMO、后向散射技术、基于中继的通信和毫米波传输系统等。除了基础研究外,WPT还被广泛应用于RFID、体域网、地下传感网等通信系统中。因此,WPT是一种很有前途和可行的无线通信和应用解决方案,它将有利于无线定位系统作为一种新型的能源供应商。
目前针对物联网的能量供给技术,主要分为两个方面,一方面是节能技术,另一个方面是采用无线充电技术。目前尽管存在大量的物联网节能技术,但除了采用电力线供电以外,还没有能够保证物联网节点能够持续 工作的技术方案。采用无线充电技术为物联网设备充电目前也有很多方案,例如采用磁感应技术、磁耦合技术和微波无线充电技术,但在现有技术还不存在直接针对物联网定位系统的无线充电技术的应用,也不存在针对无线充电定位系统的资源和能量分配方法。
在现有技术中,尽管有很多针对定位系统的节能技术,例如降低采样频率、降低信号发射功率等,在保证一定定位精度的前提下,尽可能的降低系统的总能耗。然而这种方法的固有缺点是电池的容量始终是一个下降的过程,无论采用何种节能技术,最终电池仍然会被耗尽,仍需重新充电或更换电池。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种基于无线能量传输驱动的目标被动追踪系统和方法,能够同时控制系统定位的精度以及总体功耗。
根据本发明的第一方面,提供了一种基于无线能量传输驱动的目标被动追踪系统。该系统包括:能量发射装置,多个无源锚节点和目标节点,其中,所述能量发射装置含有多个天线,具有无线能量发射和反馈数据接收功能;所述目标节点周期性的广播测距信号;所述无源锚节点通过接收所述能量发射装置发送的无线能量作为供电电源,并捕捉待追踪目标节点发送的测距信号,且将目标节点发送的测距信号转化为测距信息回传至所述能量发射装置,进而由所述能量发射装置基于该测距信息定位目标节点的位置。
根据发明的第二方面,提供一种基于无线能量传输驱动的目标被动追踪方法,用于本发明所提供上述系统,该方法包括以下步骤:设计联合系统定位精度和能耗的多目标优化问题;通过求解该优化问题来选择参与定位的无源锚节点并控制分配所选无源锚节点的接收功率。
与现有技术相比,本发明的优点在于:可以持续地为无线物联网定位系统提供能量,解决了电池瓶颈问题;本发明所提供的功率分配技术,通过调节能量发射装置(E-AP)的信号功率向量,能够控制系统定位的精度以及总体功耗,实现功率的按需分配。
附图说明
以下附图仅对本发明作示意性的说明和解释,并不用于限定本发明的范围,其中:
图1是根据本发明的基于无线能量传输驱动的目标被动追踪系统的架构图。
具体实施方式
为了使本发明的目的、技术方案、设计方法及优点更加清楚明了,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
在本文示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本发明提供一种基于无线能量传输驱动的目标被动追踪系统,其是支持无线充电的物联网定位系统,参见图1所示,该系统包括能量发射装置(E-AP)110、多个无源锚节点120和目标节点130(也称为目标或追踪目标)。
能量发射装置110,含有多个天线,具有无线能量发射和反馈数据接收功能,能量发射装置110发送能量至无源锚节点120。
无源锚节点120,也称为参照节点,其位置已知或可测。无源锚节点120是不含有任何电源或电池设备的物联网无线节点,该无源锚节点120通过接收E-AP发送的无线能量作为供电电源,同时捕捉目标节点130发送的信号,并将目标节点130发送的信号转化为测距信息回传至E-AP。E-AP通过接收多个无源锚节点120回传的信号,通过特定的定位算法实时估计目标节点130的位置。
目标节点130的位置不可直接测量,需根据无源锚节点120的位置对目标节点的位置进行估计,因此目标节点的定位方式是被动定位。目标节点130例如是终端或其他类型的无线传感器节点等。
在图1的系统架构下,将无线信号传输(包括能量和测距信号)分为两个部分,第一部分为无线能量传输部分,第二个部分为无线测距信号传输部分,下文将一一进行介绍。
对于无线能量传输部分,E-AP含有K个天线,形成相互正交的信号向量x=[x 1,…,x K] T,其中每个信号的功率为
Figure PCTCN2019124927-appb-000001
k指代第k个天线,则信号的功率向量为
Figure PCTCN2019124927-appb-000002
系统共含有N个锚节点,从E-AP到无源锚节点的信道矩阵为G=[g 1,…,g N] T,其中每个元素g kn=[G] kn表示从第k个天线到第n个锚节点的信道衰减系数。多个天线到达第n个锚节点的信道衰减系数向量为g n=[g 1n,…,g Kn]。进一步地,定义信道增益
Figure PCTCN2019124927-appb-000003
为g kn的均方,信道增益向量为
Figure PCTCN2019124927-appb-000004
对于无线测距信号传输部分,无源锚节点获得E-AP发送的能量后,将捕获目标节点发送的测距信号,并将测距信号转化为测距信息(例如锚节点和目标节点的距离)回传至E-AP,进而E-AP依据这些信息判定目标节点所在位置。例如,目标节点周期的广播测距信号,如RSS信号(接收信号强度信号),依据RSS信号可以估计锚节点和目标节点之间的距离,进而E-AP可以定位目标节点的位置。
需说明的是,在本发明提供的系统架构下,可采用现有技术中的定位方法进行定位,例如三边定位方法,对于具体的定位过程本发明在此不再赘述。以下将重点介绍提高定位精度和降低系统能耗的具体方案。
在一个实施例中,为了获得最佳的估计精度,采用克拉美罗下届作为系统定位精度的衡量标准,其中克拉美罗下届是费希尔矩阵的逆矩阵,本发明实施例中的费希尔矩阵可以表示为:
Figure PCTCN2019124927-appb-000005
其中,
Figure PCTCN2019124927-appb-000006
为方向角矩阵,φ为第n个无源锚节点到达目标节点的方向角,β为空间衰减因子,
Figure PCTCN2019124927-appb-000007
代表噪声功率,d n表示目标节点到无源锚节点的实际距离,P tar表示无源锚节点接收到无线能量的最低门限,若接收功率小于该门限,则该锚节点不工作,否则就被激活,a n为阶跃函数:
Figure PCTCN2019124927-appb-000008
其中,c n为信道衰减系数,
Figure PCTCN2019124927-appb-000009
表示无源锚节点接收到的无线能量。
为了控制各无源锚节点接收到的无线能量并保证系统的定位精度,在一个实施例中,本发明设计求解下列问题:
问题一:
Figure PCTCN2019124927-appb-000010
s.t. 1 Tr x≤P 0
Figure PCTCN2019124927-appb-000011
Figure PCTCN2019124927-appb-000012
其中,P 0为发送信号总功率,
Figure PCTCN2019124927-appb-000013
为背景噪声的方差。该问题属于一个0-1规划问题,可以用穷举法求解。
进一步地,由于能耗分配与定位精度分析相对独立,因此可将问题一扩展为多目标优化问题,以进行定位精度和功耗的联合优化,即问题二。
问题二:提升最优定位精度且同时达到最低功耗的多目标优化:
Figure PCTCN2019124927-appb-000014
r x=min 1 Tr x
s.t. 1 Tr x≤P 0
Figure PCTCN2019124927-appb-000015
Figure PCTCN2019124927-appb-000016
问题二的求解分为两个部分,第一步是搜寻满足限定条件的所有无源锚节点,以达到最优的定位精度,第二步是在确定无源锚节点之后,计算其能耗的最小值。
进一步地,针对问题二,为降低计算的复杂度,将目标函数修改为:
问题三:提升最优定位精度且同时达到最低功耗的多目标优化。
Figure PCTCN2019124927-appb-000017
r x=min 1 Tr x
s.t. 1 Tr x≤P 0
Figure PCTCN2019124927-appb-000018
Figure PCTCN2019124927-appb-000019
在一个实施例中,采用以下步骤求解问题三:
将所有无源锚节点赋予权重
Figure PCTCN2019124927-appb-000020
并将各无源锚节点根据权重进行降序排列;
按照无源锚节点的排列顺序,对应每个锚节点分别设置为0或1,形成0,1序列。其中,0表示不需要这个节点参与计算,1表示该锚节点将参与计算。这样的组合序列共2 N-1个;
针对每一个序列,设置上述问题三中的受限条件,可采用线性规划方法求解r x=min 1 Tr x。若有可行解,则将该方法记录,否则重新选择新的序列进行计算和排查。
如此循环往复,最终选择定位精度最高的序列和对应的r x的可行解。
通过上述方式确定的序列以及对应的r x的可行解,在实际应用中即可选择出参与定位的无源锚节点并控制所选无源锚节点的接收功率,从而在保证定位精度的同时降低整个系统的能耗。
在一个优选实施例中,为了更进一步降低上述问题三的计算复杂度,采用启发式算法进行求解,具体步骤包括:
将所有无源锚节点赋予权重
Figure PCTCN2019124927-appb-000021
并将无源锚节点根据权重进行降序排列;
设定将要选择固定数量的无源锚节点N A,并从无源锚节点中选择权重最大的N A个节点。在此基础上,采用线性规划方法求解r x=min 1 Tr x
为验证本发明的效果,经过理论计算和大规模仿真,证明本发明提供的目标被动追踪系统完全不需要电池即可工作,并且定位精度能够随着发射功率的分配得到控制。
综上所述,本发明将无线充电技术应用到物联网定位系统,并同时提供能够提升最优定位精度且同时达到最低功耗的多目标优化。此外本发明针对该多目标优化问题,提出了穷举法和启发式算法,进而降低了计算的复杂度,提高了定位精度和功率按需分配的实时性。
需要说明的是,虽然上文按照特定顺序描述了各个步骤,但是并不意味着必须按照上述特定顺序来执行各个步骤,实际上,这些步骤中的一些可以并发执行,甚至改变顺序,只要能够实现所需要的功能即可。
本发明可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机非暂态可读存储介质,其上载有用于使处理器实现本发明的各 个方面的计算机可读程序指令。
计算机可读存储介质可以是保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以包括但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种基于无线能量传输驱动的目标被动追踪系统,包括:能量发射装置,多个无源锚节点和目标节点,其中:
    所述能量发射装置含有多个天线,具有无线能量发射和反馈数据接收功能;
    所述目标节点周期性的广播测距信号;
    所述无源锚节点通过接收所述能量发射装置发送的无线能量作为供电电源,并捕捉待追踪目标节点发送的测距信号,且将目标节点发送的测距信号转化为测距信息回传至所述能量发射装置,进而由所述能量发射装置基于该测距信息定位目标节点的位置。
  2. 根据权利要求1所述的基于无线能量传输驱动的目标被动追踪系统,其特征在于,以系统定位精度和能耗的联合优化为目标来选择参与定位的无源锚节点并控制分配所选无源锚节点的接收功率。
  3. 根据权利要求2所述的基于无线能量传输驱动的目标被动追踪系统,其特征在于,将系统定位精度和能耗的联合优化目标设置为:
    Figure PCTCN2019124927-appb-100001
    r x=min 1 Tr x
    s.t.1 Tr x≤P 0
    Figure PCTCN2019124927-appb-100002
    Figure PCTCN2019124927-appb-100003
    其中,
    Figure PCTCN2019124927-appb-100004
    为方向角矩阵,φ为第n个无源锚节点到达目标节点的方向角,β为空间衰减因子,
    Figure PCTCN2019124927-appb-100005
    为噪声功率,d n是目标节点到无源锚节点的实际距离,P tar表示无源锚节点接收到无线能量的最低门限,a n是用于指示无源锚节点是否激活的阶跃函数,c n为信道衰减系数,
    Figure PCTCN2019124927-appb-100006
    表示无源锚节点接收到的无线能量,P 0为发送信号总功率,r x是发送信号的功率向量,N是系统中无源锚节点的数量,K是能量发射装置的天线数量。
  4. 根据权利要求2所述的基于无线能量传输驱动的目标被动追踪系 统,其特征在于,将系统定位精度和能耗的联合优化目标设置为:
    Figure PCTCN2019124927-appb-100007
    r x=min 1 Tr x
    s.t.1 Tr x≤P 0
    Figure PCTCN2019124927-appb-100008
    Figure PCTCN2019124927-appb-100009
    其中,
    Figure PCTCN2019124927-appb-100010
    为方向角矩阵,φ为第n个无源锚节点到达目标节点的方向角,β为空间衰减因子,
    Figure PCTCN2019124927-appb-100011
    为噪声功率,d n是目标节点到无源锚节点的实际距离,P tar表示无源锚节点接收到无线能量的最低门限,a n是用于指示无源锚节点是否激活的阶跃函数,c n为信道衰减系数,
    Figure PCTCN2019124927-appb-100012
    表示无源锚节点接收到的无线能量,P 0为发送信号总功率,r x是发送信号的功率向量,N是系统中无源锚节点的数量,K是能量发射装置的天线数量。
  5. 根据权利要求4所述的基于无线能量传输驱动的目标被动追踪系统,其特征在于,根据以下步骤求解所述系统定位精度和能耗的联合优化目标:
    将系统的所有无源锚节点赋予权重
    Figure PCTCN2019124927-appb-100013
    并将所有无源锚节点按照权重进行降序排列;
    按照排列的顺序,对应每个无源锚节点分别设置为0或1,形成0,1序列,其中,0代表不需要该无源锚节点参与计算,1代表该无源锚节点将参与计算;
    针对每一个排列序列,设置联合优化目标中的受限条件,进而采用线性规划方法求解r x=min 1 Tr x,最终选择定位精度最高的序列和对应的r x的可行解,进而获得参与定位的无源锚节点并控制分配所选无源锚节点的接收功率。
  6. 根据权利要求4所述的基于无线能量传输驱动的目标被动追踪系统,其特征在于,根据以下步骤求解所述系统定位精度和能耗的联合优化目标:
    将系统的所有无源锚节点赋予权重
    Figure PCTCN2019124927-appb-100014
    并将所有无源锚节点按照权重进行降序排列;
    设定将选择的无源锚节点的数量N A,从所有无源锚节点中选择权重最大的N A个节点,并采用线性规划方法求解r x=min 1 Tr x,进而获得参与定位的无源锚节点并控制分配所选无源锚节点的接收功率。
  7. 根据权利要求1所述的基于无线能量传输驱动的目标被动追踪系统,其特征在于,通过求解以下优化问题来确定参与定位的无源锚节点并控制分配所选无源锚节点的接收功率:
    Figure PCTCN2019124927-appb-100015
    s.t.1 Tr x≤P 0
    Figure PCTCN2019124927-appb-100016
    Figure PCTCN2019124927-appb-100017
    其中,
    Figure PCTCN2019124927-appb-100018
    为方向角矩阵,φ为第n个无源锚节点到达目标节点的方向角,β为空间衰减因子,
    Figure PCTCN2019124927-appb-100019
    为噪声功率,d n是目标节点到无源锚节点的实际距离,P tar表示无源锚节点接收到无线能量的最低门限,a n是用于指示无源锚节点是否激活的阶跃函数,c n为信道衰减系数,
    Figure PCTCN2019124927-appb-100020
    表示无源锚节点接收到的无线能量,P 0为发送信号总功率,r x是发送信号的功率向量,N是系统中无源锚节点的数量,K是能量发射装置的天线数量。
  8. 一种基于无线能量传输驱动的目标被动追踪方法,用于权利要求1所述的系统,包括以下步骤:
    设计联合系统定位精度和能耗的多目标优化问题;
    通过求解该优化问题来选择参与定位的无源锚节点并控制分配所选无源锚节点的接收功率。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现根据权利要求8所述的方法的步骤。
  10. 一种电子设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序 时实现权利要求8所述的方法的步骤。
PCT/CN2019/124927 2019-12-12 2019-12-12 一种基于无线能量传输驱动的目标被动追踪系统和方法 WO2021114188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124927 WO2021114188A1 (zh) 2019-12-12 2019-12-12 一种基于无线能量传输驱动的目标被动追踪系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124927 WO2021114188A1 (zh) 2019-12-12 2019-12-12 一种基于无线能量传输驱动的目标被动追踪系统和方法

Publications (1)

Publication Number Publication Date
WO2021114188A1 true WO2021114188A1 (zh) 2021-06-17

Family

ID=76329323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124927 WO2021114188A1 (zh) 2019-12-12 2019-12-12 一种基于无线能量传输驱动的目标被动追踪系统和方法

Country Status (1)

Country Link
WO (1) WO2021114188A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676283A (zh) * 2021-07-02 2021-11-19 河南大学 一种基于加噪机制的单锚定位隐私保护方法
WO2024045194A1 (zh) * 2022-09-02 2024-03-07 Oppo广东移动通信有限公司 一种定位方法及装置、通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191832A (zh) * 2007-12-11 2008-06-04 宁波中科集成电路设计中心有限公司 一种基于测距的无线传感器网络节点定位方法
US20160057583A1 (en) * 2014-08-20 2016-02-25 Kabushiki Kaisha Toshiba Position estimation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191832A (zh) * 2007-12-11 2008-06-04 宁波中科集成电路设计中心有限公司 一种基于测距的无线传感器网络节点定位方法
US20160057583A1 (en) * 2014-08-20 2016-02-25 Kabushiki Kaisha Toshiba Position estimation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAPING ZHU; SONG XING; YUEYUE ZHANG; FENG YAN; LIANFENG SHEN: "Localisation algorithm with node selection under power constraint in software‐defined sensor networks", IET COMMUNICATIONS, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, GB, vol. 11, no. 13, 19 September 2017 (2017-09-19), GB, pages 2035 - 2041, XP006096733, ISSN: 1751-8628, DOI: 10.1049/iet-com.2017.0077 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676283A (zh) * 2021-07-02 2021-11-19 河南大学 一种基于加噪机制的单锚定位隐私保护方法
WO2024045194A1 (zh) * 2022-09-02 2024-03-07 Oppo广东移动通信有限公司 一种定位方法及装置、通信设备

Similar Documents

Publication Publication Date Title
Lin et al. Minimizing charging delay for directional charging
US10396859B1 (en) Apparatus for wirelessly transmitting power after confirming location of receiver and method thereof
WO2021114188A1 (zh) 一种基于无线能量传输驱动的目标被动追踪系统和方法
Huda et al. Wireless power transfer in wirelessly powered sensor networks: A review of recent progress
CN105182317A (zh) 一种基于集中式mimo雷达搜索模式下的资源管理方法
US20180146449A1 (en) Method and system for determining a location of wireless device
CN109997320A (zh) 包括天线的设备及其控制方法
CN108896985B (zh) 基于射频隐身的组网雷达多目标跟踪采样间隔控制方法
Zhang et al. A node localization approach using particle swarm optimization in wireless sensor networks
KR102042121B1 (ko) 전력 수신 장치의 수신 전력을 모니터링하여 무선 전력을 전송하는 무선 전력 전송 시스템
Zhou et al. Path loss model based on cluster at 28 GHz in the indoor and outdoor environments
Li et al. Review on positioning technology of wireless sensor networks
CN107728102A (zh) 一种阵列传感器的波达方向估计方法
CN111064286B (zh) 一种基于无线能量传输驱动的目标被动追踪系统和方法
Wei et al. Node localization algorithm for wireless sensor networks using compressive sensing theory
Gautam et al. Energy‐efficient localisation of sensor nodes in WSNs using single beacon node
CN113438733A (zh) 基于5g和wifi实现室内定位的系统、方法及电子设备
CN107968451B (zh) 基于微波无线充电的效率提升方法与装置
Yang et al. A novel method for measurement points selection in access points localization
CN104678351A (zh) 一种基于ZigBee技术的室内定位系统的算法
Zhao et al. Energy beamforming for cooperative localization in wireless-powered communication network
Yadav et al. Probabilistic scheme for intelligent jammer localization for wireless sensor networks
JP2023540893A (ja) ワイヤレス電力供給のための方法およびシステム
WO2021097593A1 (zh) 一种采用无线能量收集的定位追踪系统及方法
KR101547825B1 (ko) RTT(round trip time)를 이용한 위치측위 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956015

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19956015

Country of ref document: EP

Kind code of ref document: A1