WO2021114112A1 - 一种基于污泥挥发分含量测算污泥热值的方法 - Google Patents

一种基于污泥挥发分含量测算污泥热值的方法 Download PDF

Info

Publication number
WO2021114112A1
WO2021114112A1 PCT/CN2019/124408 CN2019124408W WO2021114112A1 WO 2021114112 A1 WO2021114112 A1 WO 2021114112A1 CN 2019124408 W CN2019124408 W CN 2019124408W WO 2021114112 A1 WO2021114112 A1 WO 2021114112A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
crucible
sludge
calorific value
volatile
Prior art date
Application number
PCT/CN2019/124408
Other languages
English (en)
French (fr)
Inventor
陈思杨
Original Assignee
深圳市能源环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市能源环保有限公司 filed Critical 深圳市能源环保有限公司
Priority to PCT/CN2019/124408 priority Critical patent/WO2021114112A1/zh
Publication of WO2021114112A1 publication Critical patent/WO2021114112A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • G01N7/16Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by heating the material

Definitions

  • the invention relates to a method for testing the calorific value of sludge, in particular to a method for measuring the calorific value of sludge based on the volatile content of the sludge.
  • Sludge is a kind of solid waste that has great harm to the human body and the environment, and the environmental problems caused by the massive increase in sludge production have become increasingly prominent. Since sludge contains a large amount of water and organic matter, it is recognized that the most effective and thorough treatment method is sludge drying incineration, and sludge drying incineration is closely related to the sludge calorific value index, which determines the calorific value. Whether the subsequent self-sustaining combustion and auxiliary fuel consumption can have a greater impact on the continuous and stable operation of the equipment and the operating economy. In fact, the calorific value of sludge varies greatly in different regions. The lowest calorific value is only 3MJ/kg, and the highest can exceed 15MJ/kg. The difference in calorific value directly affects the efficiency of sludge incineration.
  • the existing sludge calorific value test method based on the first law of thermodynamics is the heat capacity method, that is, a known amount of sludge sample is placed in a sealed container (oxygen bomb), and excess oxygen is introduced and ignited to make the sludge sample in Complete combustion in an oxygen-rich atmosphere, and the released heat is transferred to the surrounding water that has been treated with constant temperature.
  • the calorific value is calculated based on the value of the water temperature rise before and after the measurement, the specific heat capacity of the water and the heat capacity of the instrument.
  • this method has high requirements for experimental equipment and environmental temperature and humidity. The temperature measurement of the equipment needs to be accurate to 0.0001°C or higher. The temperature and humidity of the environment need to be kept constant.
  • the present invention proposes a method for measuring the calorific value of sludge based on the volatile content of sludge.
  • a method for measuring the calorific value of sludge based on the volatile content of sludge By calculating the volatile components of various samples and their corresponding calorific values, by establishing an XY plane rectangular coordinate system, Take the volatile matter ((A%) as the X coordinate value, and the calorific value (Q) as the Y coordinate value. Determine the corresponding points of each sludge sample in the XY plane rectangular coordinate system, and use the volatile matter from low to high Fit each point to a curve in turn to obtain the sludge volatile matter-calorific value curve (A%-Q).
  • the technical solution adopted by the present invention to solve the technical problem is: a method for calculating the calorific value of sludge based on the volatile content of sludge, which is characterized in that it includes the following steps:
  • Step 01 Name the sludge sample as sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7...sample N;
  • Step 02 Use the moisture sensor to measure the moisture content of sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7... sample N, which are a 1 %, a 2 %, and a 3 % respectively , A 4 %, a 5 %, a 6 %, a 7 %...a N %;
  • Step 03 referring to the sample number, number and weigh the crucible with lid.
  • the numbers are: Crucible 1, Crucible 2, Crucible 3, Crucible 4, Crucible 5, Crucible 6, Crucible 7... Crucible N; Crucible 1, Crucible 2.
  • Step 04 Weigh the sample and crucible together using the crucible with lid as the container according to the order of the samples.
  • the serial number of the sample and the serial number of the crucible with lid should be one-to-one correspondence, and the masses are m 1x respectively; corresponding to sample 1 and crucible 1, X is 1; corresponding For sample 2 and crucible 2, X is 2; corresponding to sample 3 and crucible 3, X is 3; and so on;
  • Step 05 Put the weighed samples and the crucible into the electric furnace according to the order of the samples for burning, and weigh the burned samples one by one, the sample weighs m 2x ; corresponding to the burned sample 1 and crucible 1, X is 1; corresponding to sample 2 and crucible 2, X is 2; corresponding to sample 3 and crucible 3, X is 3; and so on;
  • Step 07 Use the heat capacity method and test the calorific value Q X of the samples according to the order of the samples.
  • the calorific values of sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7...Sample N are: Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 ??Q N ;
  • Step 08 Establish a rectangular coordinate system on the XY plane, with the volatile content A X % as the value on the X axis, and the calorific value (Q) as the value on the Y axis.
  • the coordinate values of the points corresponding to each sludge sample are:
  • Step 09 For any kind of sludge to be tested, just first calculate the volatile content of the sludge A to be tested %, according to the sludge volatile content-calorific value curve (A%-Q) obtained in step 08, in X By substituting A to be measured in the axis, the corresponding calorific value Q (that is, the value of the Y coordinate) can be directly found in the curve.
  • the soil moisture sensor described in step 02 is characterized in that it can respond to subtle changes in moisture content from 0-100% VWC, and maintain continuous measurement within the range, and is used in conjunction with a data collector , Can directly display the moisture content.
  • the crucible with a lid in step 03 can withstand a temperature of 1200°C at the highest.
  • step 05 a frequency conversion induction heating electric furnace is used, which can quickly raise the temperature to a specified working temperature for volatile content testing, so as to achieve the purpose of quickly determining the volatile content.
  • step 05 the crucible lid must be covered when burning the sample to avoid splashing when burning at high temperature.
  • the present invention proposes a method for measuring the calorific value of sludge based on the volatile content of sludge.
  • a method for measuring the calorific value of sludge based on the volatile content of sludge By calculating the volatile components of various samples and their corresponding calorific values, by establishing an XY plane rectangular coordinate system, Take the volatile matter ((A%) as the X coordinate value, and the calorific value (Q) as the Y coordinate value. Determine the corresponding points of each sludge sample in the XY plane rectangular coordinate system, and use the volatile matter from low to high Fit each point to a curve in turn to obtain the sludge volatile matter-calorific value curve (A%-Q).
  • a method for measuring the calorific value of sludge based on the volatile content of sludge which is characterized in that it includes the following steps:
  • Step 01 Name the sludge sample as sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7...sample N;
  • Step 02 Use the moisture sensor to measure the moisture content of sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7... sample N, which are a 1 %, a 2 %, and a 3 % respectively , A 4 %, a 5 %, a 6 %, a 7 %...a N %;
  • Step 03 referring to the sample number, number and weigh the crucible with lid.
  • the numbers are: Crucible 1, Crucible 2, Crucible 3, Crucible 4, Crucible 5, Crucible 6, Crucible 7... Crucible N; Crucible 1, Crucible 2.
  • Step 04 Weigh the sample and crucible together using the crucible with lid as the container according to the order of the samples.
  • the serial number of the sample and the serial number of the crucible with lid should be one-to-one correspondence, and the masses are m 1x respectively; corresponding to sample 1 and crucible 1, X is 1; corresponding For sample 2 and crucible 2, X is 2; corresponding to sample 3 and crucible 3, X is 3; and so on;
  • Step 05 Put the weighed samples and the crucible into the electric furnace according to the order of the samples for burning, and weigh the burned samples one by one, the sample weighs m 2x ; corresponding to the burned sample 1 and crucible 1, X is 1; corresponding to sample 2 and crucible 2, X is 2; corresponding to sample 3 and crucible 3, X is 3; and so on;
  • Step 07 Use the heat capacity method and test the calorific value Q X of the samples according to the order of the samples.
  • the calorific values of sample 1, sample 2, sample 3, sample 4, sample 5, sample 6, sample 7...Sample N are: Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 ??Q N ;
  • Step 08 Establish a rectangular coordinate system on the XY plane, with the volatile content A X % as the value on the X axis, and the calorific value (Q) as the value on the Y axis.
  • the coordinate values of the points corresponding to each sludge sample are:
  • Step 09 For any kind of sludge to be tested, just first calculate the volatile content of the sludge A to be tested %, according to the sludge volatile content-calorific value curve (A%-Q) obtained in step 08, in X By substituting A to be measured in the axis, the corresponding calorific value Q (that is, the value of the Y coordinate) can be directly found in the curve.
  • the soil moisture sensor described in step 02 is characterized in that it can respond to subtle changes in moisture content from 0-100% VWC, and maintain continuous measurement within the range, and is used in conjunction with a data collector , Can directly display the moisture content.
  • the crucible with a lid in step 03 can withstand a temperature of 1200°C at the highest.
  • step 05 a frequency conversion induction heating electric furnace is used, which can quickly raise the temperature to a specified working temperature for volatile content testing, so as to achieve the purpose of quickly determining the volatile content.
  • step 05 the crucible lid must be covered when burning the sample to avoid splashing when burning at high temperature.
  • the present invention suggests that in this example, after steps 01 to 09 are completed, for the sludge sample to be tested, after calculating the volatile matter A to be tested % of the sludge to be tested, in addition to finding the sludge to be tested by the curve In addition to the calorific value Q, it can also be calculated automatically by a computer.
  • the calculation content included in step 01 to step 09 to obtain the A%-Q mathematical relationship must be entered into the computer in the form of computer programming language to form a special calculation program for A%-Q.
  • A%-Q special calculation program for any kind of sludge to be tested, as long as the volatile content A to be tested % of the sludge is calculated first, you can enter A to be tested % in the computer and directly calculate the calorific value by the program Q.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种基于污泥挥发分含量测算污泥热值的方法,通过计算出各种样品的挥发分及其对应的热值,建立XY平面直角坐标系,以挥发分((A%)为X坐标的值,热值(Q)为Y坐标的值,在XY平面直角坐标系中确定各个污泥样品对应的各点,并以挥发分从低往高依次将各点拟合连成曲线,由此获得污泥挥发分-热值曲线(A%-Q)。对于任何一种待测的污泥,只要首先计算该污泥的挥发分A待测%,根据获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。可以有效地解决采用热容量法测量污泥热值所带来的费用高、工作量强度大、对技术人员的操作熟练度要求高等问题。

Description

一种基于污泥挥发分含量测算污泥热值的方法 技术领域
本发明涉及一种污泥热值的测试方法,特别涉及一种基于污泥挥发分含量测算污泥热值的方法。
背景技术
污泥是一种对人体和环境都有着巨大危害的固体废弃物,污泥产量大量增加引发的环境问题也日益突出。由于污泥中含有大量的水分和有机物质,因而目前公认最优有效、最彻底的处理方式是污泥干化焚烧,而污泥干化焚烧与污泥热值指标密切相关,热值高低决定后续是否可以自维持燃烧以及辅助燃料消耗量,对设备连续稳定运行以及运行经济性有着较大影响。实际上,不同地区的污泥热值差异非常大,热值最低的仅3MJ/kg,而最高的可以超过15MJ/kg,热值的差异直接影响污泥的焚烧效能。
因此,要实现污泥焚烧稳定、经济运行,对入厂污泥进行热值分析是非常必要的。依据热值数据对污泥进行卸料安排,保证进炉污泥混合相对均匀和热值稳定,以确保污泥焚烧系统稳定、经济运行。同时也可降低焚烧工况调整的难度,释放部分人力物力资源。
现有的基于热力学第一定律的污泥热值测试方法为热容量法,即将已知量的污泥样品置于密封容器(即氧弹)中,通入过量氧气并点火,使污泥样品在富氧气氛下完全燃烧,释放出的热量传递给周围已恒温处理的水,根据测量前后水温升高的数值、水的比热容及仪器热容量计算出热值。但该种方法对实验设备以及环境温湿度要求较高,设备的温度测量需要精确到0.0001℃甚至更高,环境的温湿度需要保持恒定,一次性投入及后续日常维护成本较高,不便于推广。另外,由于热容量法测量热值前处理要求较高,需要测量含水率以及对样品进行研磨过筛,并且对于热值较低污泥样品需要添加助燃物,整个测量过程时间很长,需要4个小时以上,劳动强度较大,同时对检测人员技术水平也有相当要求。
发明内容
为了解决现有技术问题,本发明提出一种基于污泥挥发分含量测算污泥热值的方法,通过计算出各种样品的挥发分及其对应的热值,通过建立XY平面直角坐标系,以挥发分((A%)为X坐标的值,热值(Q)为Y坐标的值,在XY平面直角坐标系中确定各个污泥样品对应的各点,并以挥发分从低往高依次将各点拟合连成曲线,由此获得污泥挥发分-热值曲线(A%-Q)。对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,根据获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。可以有效地解决现有采用热容量法测量污泥热值所带来的费用高、工作量强度大、对技术人员的操作熟练度要求高等问题。
本发明解决技术问题所采用的技术方案是:一种基于污泥挥发分含量测算污泥热值的方法,其特征是,包括以下步骤:
步骤01,将污泥样品命名为样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N;
步骤02,利用水分传感器对样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N的 含水率进行测量,分别为a 1%、a 2%、a 3%、a 4%、a 5%、a 6%、a 7%……a N%;
步骤03,参照样品编号,对带盖坩埚进行编号并称重,编号分别为:坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N;坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N的质量分别为m 坩埚1、m 坩埚2、m 坩埚3、m 坩埚4、m 坩埚5、m 坩埚6、m 坩埚7……m 坩埚N
步骤04,按照样品顺序以带盖坩埚为容器对样品和坩埚一起称量,样品序号与带盖坩埚序号需一一对应,质量分别为m 1x;对应样品1及坩埚1,X为1;对应样品2及坩埚2,X为2;对应样品3及坩埚3,X为3;以此类推;
步骤05:按照样品顺序将已经称量好的样品和坩埚一起放入电炉中进行灼烧,并对灼烧后的样品一一进行称重,样品称重为m 2x;对应灼烧后的样品1及坩埚1,X为1;对应灼烧后的样品2及坩埚2,X为2;对应灼烧后的样品3及坩埚3,X为3;以此类推;
步骤06:按照公式挥发分
Figure PCTCN2019124408-appb-000001
计算第X个样品的挥发分,其中X=1,2,3,4,5,6,7……N;
步骤07:采用热容量法并根据样品顺序分别测试样品的热值Q X,样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N对应的热值分别为:Q 1、Q 2、Q 3、Q 4、Q 5、Q 6、Q 7……Q N
步骤08,建立XY平面直角坐标系,以挥发分A X%为X轴的值,热值(Q)为Y轴的值,各个污泥样品对应的点坐标值分别为:
样品1的坐标为,X 1=A 1%,Y 1=Q 1
样品2的坐标为,X 2=A 2%,Y 2=Q 2
样品3的坐标为,X 3=A 3%,Y 3=Q 3
……
样品N的坐标为,X N=A N%,Y N=Q N
在XY平面直角坐标系中标出各个样品对应的点,并以挥发分从低往高依次将各点拟合连成曲线,此曲线即污泥挥发分-热值曲线(A%-Q);
步骤09:对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,根据步骤08中获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。
本发明优选方案,步骤02中所述土壤水分传感器,其特征在于可从0~100%VWC范围内灵敏感应水分含量的细微变化,且在量程范围内保持连续测量,并且与数据采集器配合使用,可以直接显示含水率。
本发明优选方案,步骤03中所述带盖坩埚,最高可耐温1200℃。
本发明优选方案,步骤05中,采用变频式感应加热电炉,可以快速升温至指定工作温度进行挥发分测试,从而达到快速测定挥发份目的。
本发明优选方案,步骤05中,对样品进行灼烧时必须盖好坩埚盖,避免在高温下灼烧时容易飞溅。
本发明的有益效果是:本发明提出一种基于污泥挥发分含量测算污泥热值的方法,通过计算出各种样品的挥发分及其对应的热值,通过建立XY平面直角坐标系,以挥发分((A%)为X坐标的值,热值(Q)为Y坐标的值,在XY平面直角坐标系中确定各个污泥样品对应的各点,并以挥发分从低往高依次将各点拟合连成曲线,由此获得污泥挥发分-热值曲线(A%-Q)。对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,根据获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。可以有效地解决现有采用热容量法测量污泥热值所带来的费用高、工作量强度大,对技术人员的操作熟练度要求高等问题。
具体实施方式
一种基于污泥挥发分含量测算污泥热值的方法,其特征是,包括以下步骤:
步骤01,将污泥样品命名为样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N;
步骤02,利用水分传感器对样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N的含水率进行测量,分别为a 1%、a 2%、a 3%、a 4%、a 5%、a 6%、a 7%……a N%;
步骤03,参照样品编号,对带盖坩埚进行编号并称重,编号分别为:坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N;坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N的质量分别为m 坩埚1、m 坩埚2、m 坩埚3、m 坩埚4、m 坩埚5、m 坩埚6、m 坩埚7……m 坩埚N
步骤04,按照样品顺序以带盖坩埚为容器对样品和坩埚一起称量,样品序号与带盖坩埚序号需一一对应,质量分别为m 1x;对应样品1及坩埚1,X为1;对应样品2及坩埚2,X为2;对应样品3及坩埚3,X为3;以此类推;
步骤05:按照样品顺序将已经称量好的样品和坩埚一起放入电炉中进行灼烧,并对灼烧后的样品一一进行称重,样品称重为m 2x;对应灼烧后的样品1及坩埚1,X为1;对应灼烧后的样品2及坩埚2,X为2;对应灼烧后的样品3及坩埚3,X为3;以此类推;
步骤06:按照公式挥发分
Figure PCTCN2019124408-appb-000002
计算第X个样品的挥发分,其中X=1,2,3,4,5,6,7……N;
步骤07:采用热容量法并根据样品顺序分别测试样品的热值Q X,样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N对应的热值分别为:Q 1、Q 2、Q 3、Q 4、Q 5、Q 6、Q 7……Q N
步骤08,建立XY平面直角坐标系,以挥发分A X%为X轴的值,热值(Q)为Y轴的值,各个污泥样品对应的点坐标值分别为:
样品1的坐标为,X 1=A 1%,Y 1=Q 1
样品2的坐标为,X 2=A 2%,Y 2=Q 2
样品3的坐标为,X 3=A 3%,Y 3=Q 3
……
样品N的坐标为,X N=A N%,Y N=Q N
在XY平面直角坐标系中标出各个样品对应的点,并以挥发分从低往高依次将各点拟合连成曲线,此曲线即污泥挥发分-热值曲线(A%-Q);
步骤09:对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,根据步骤08中获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。
本发明优选方案,步骤02中所述土壤水分传感器,其特征在于可从0~100%VWC范围内灵敏感应水分含量的细微变化,且在量程范围内保持连续测量,并且与数据采集器配合使用,可以直接显示含水率。
本发明优选方案,步骤03中所述带盖坩埚,最高可耐温1200℃。
本发明优选方案,步骤05中,采用变频式感应加热电炉,可以快速升温至指定工作温度进行挥发分测试,从而达到快速测定挥发份目的。
本发明优选方案,步骤05中,对样品进行灼烧时必须盖好坩埚盖,避免在高温下灼烧时容易飞溅。
本发明提示,本例中,步骤01至步骤09进行完毕后,对于待测污泥样品,在计算出待测污泥的挥发分A 待测%之后,除了可以利用曲线查找出待测污泥的热值Q之外,还可以采用电脑自动计算的方法。采用电脑自动计算的方法,必须将包含在步骤01至步骤09中以获得A%-Q数学关系的计算内容以电脑程序语言的方式录入到电脑中由此形成A%-Q专用计算程序。利用A%-Q专用计算程序,对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,就可以在电脑中输入A 待测%由程序直接计算出热值Q。

Claims (5)

  1. 一种基于污泥挥发分含量测算污泥热值的方法,其特征是,包括以下步骤:
    步骤01,将污泥样品命名为样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N;
    步骤02,利用水分传感器对样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N的含水率进行测量,分别为a 1%、a 2%、a 3%、a 4%、a 5%、a 6%、a 7%……a N%;
    步骤03,参照样品编号,对带盖坩埚进行编号并称重,编号分别为:坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N;坩埚1、坩埚2、坩埚3、坩埚4、坩埚5、坩埚6、坩埚7……坩埚N的质量分别为m 坩埚1、m 坩埚2、m 坩埚3、m 坩埚4、m 坩埚5、m 坩埚6、m 坩埚7……m 坩埚N
    步骤04,按照样品顺序以带盖坩埚为容器对样品和坩埚一起称量,样品序号与带盖坩埚序号需一一对应,质量分别为m 1x;对应样品1及坩埚1,X为1;对应样品2及坩埚2,X为2;对应样品3及坩埚3,X为3;以此类推;
    步骤05:按照样品顺序将已经称量好的样品和坩埚一起放入电炉中进行灼烧,并对灼烧后的样品一一进行称重,样品称重为m 2x;对应灼烧后的样品1及坩埚1,X为1;对应灼烧后的样品2及坩埚2,X为2;对应灼烧后的样品3及坩埚3,X为3;以此类推;
    步骤06:按照公式挥发分
    Figure PCTCN2019124408-appb-100001
    计算第X个样品的挥发分,其中X=1,2,3,4,5,6,7……N;
    步骤07:采用热容量法并根据样品顺序分别测试样品的热值Q X,样品1、样品2、样品3、样品4、样品5、样品6、样品7……样品N对应的热值分别为:Q 1、Q 2、Q 3、Q 4、Q 5、Q 6、Q 7……Q N
    步骤08,建立XY平面直角坐标系,以挥发分A X%为X轴的值,热值(Q)为Y轴的值,各个污泥样品对应的点坐标值分别为:
    样品1的坐标为,X 1=A 1%,Y 1=Q 1
    样品2的坐标为,X 2=A 2%,Y 2=Q 2
    样品3的坐标为,X 3=A 3%,Y 3=Q 3
    ……
    样品N的坐标为,X N=A N%,Y N=Q N
    在XY平面直角坐标系中标出各个样品对应的点,并以挥发分从低往高依次将各点拟合连成曲线,此曲线即污泥挥发分-热值曲线(A%-Q);
    步骤09:对于任何一种待测的污泥,只要首先计算该污泥的挥发分A 待测%,根据步骤08中获得的污泥挥发分-热值曲线(A%-Q),在X轴中代入A 待测%,就可以在曲线中直接查找出对应的热值Q(即Y坐标的值)。
  2. 根据权利要求1所述的一种基于污泥挥发分含量测算污泥热值的方法,其特征是,步骤02中所述 土壤水分传感器,其特征在于可从0~100%VWC范围内灵敏感应水分含量的细微变化,且在量程范围内保持连续测量,并且与数据采集器配合使用,可以直接显示含水率。
  3. 根据权利要求1所述的一种基于污泥挥发分含量测算污泥热值的方法,其特征是,步骤03中所述带盖坩埚,最高可耐温1200℃。
  4. 根据权利要求1所述的一种基于污泥挥发分含量测算污泥热值的方法,其特征是,步骤05中,采用变频式感应加热电炉,可以快速升温至指定工作温度进行挥发分测试,从而达到快速测定挥发份目的。
  5. 根据权利要求1所述的一种基于污泥挥发分含量测算污泥热值的方法,其特征是,步骤05中,对样品进行灼烧时必须盖好坩埚盖,避免在高温下灼烧时容易飞溅。
PCT/CN2019/124408 2019-12-10 2019-12-10 一种基于污泥挥发分含量测算污泥热值的方法 WO2021114112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124408 WO2021114112A1 (zh) 2019-12-10 2019-12-10 一种基于污泥挥发分含量测算污泥热值的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/124408 WO2021114112A1 (zh) 2019-12-10 2019-12-10 一种基于污泥挥发分含量测算污泥热值的方法

Publications (1)

Publication Number Publication Date
WO2021114112A1 true WO2021114112A1 (zh) 2021-06-17

Family

ID=76329188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124408 WO2021114112A1 (zh) 2019-12-10 2019-12-10 一种基于污泥挥发分含量测算污泥热值的方法

Country Status (1)

Country Link
WO (1) WO2021114112A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324029A (zh) * 2016-08-12 2017-01-11 国网山东省电力公司电力科学研究院 一种泥煤收到基低位发热量的确定方法
CN107290245A (zh) * 2017-07-25 2017-10-24 南京师范大学 一种测定污水污泥中组分含量及热值的热分析方法
CN108287231A (zh) * 2018-04-16 2018-07-17 中国计量大学 一种深度脱水污泥含水量检测装置
CN108548910A (zh) * 2018-04-16 2018-09-18 中国计量大学 一种深度脱水污泥含水量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324029A (zh) * 2016-08-12 2017-01-11 国网山东省电力公司电力科学研究院 一种泥煤收到基低位发热量的确定方法
CN107290245A (zh) * 2017-07-25 2017-10-24 南京师范大学 一种测定污水污泥中组分含量及热值的热分析方法
CN108287231A (zh) * 2018-04-16 2018-07-17 中国计量大学 一种深度脱水污泥含水量检测装置
CN108548910A (zh) * 2018-04-16 2018-09-18 中国计量大学 一种深度脱水污泥含水量检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1 May 2003, article ZHOU, XIAHAI: "Study on the Process of the Sludge Incineration in Stuttgart Wastewater Treatment Plant", pages: 1 - 90, XP055820748 *
GUO JINSONG, FAN YING, GAO XU, LIU ZHI-PING, MA SHU: "The Effect of Volatile Component on the Heat Value of Wastewater and Sludge Samples from WWTP", JOURNAL OF CHONGQING UNIVERSITY, vol. 33, no. 11, 1 November 2010 (2010-11-01), pages 135 - 138, XP055820745 *
GUO KAI, LI ZHI-GUANG; PENG HAI-JUN; SU MENG-FEI; XIA XING-LIANG: "Research on Calorific Value of Disintegration-Membrane Dehydration Municipal Sludge", CHEMISTRY & BIOENGINEERING - HUAXUE YU SHENGWU GONGCHENG, HUBEI SHENG HUAXUE GONGYE YANJIU SHEJIYUAN, CN, vol. 31, no. 12, 25 December 2014 (2014-12-25), CN, pages 58 - 62, XP055820747, ISSN: 1672-5425 *
MA, SHU: "Analysis and Research on Determination of Energy Value of WWTP Wastewater and Sludge", WANFANG DATA KNOWLEDGE SERVICE PLATFORM, 1 April 2007 (2007-04-01), pages 1 - 82, XP055820728, [retrieved on 20210702] *

Similar Documents

Publication Publication Date Title
CN201837570U (zh) 一种微波快速水分测定仪
CN109142412A (zh) 一种高炉干法除尘灰中锌、铁、钛含量的x荧光测定方法
CN104749120A (zh) 利用超级微波消解石墨炉原子吸收光谱法测定食用油中砷含量的方法
CN105807029A (zh) 基于热重的煤自燃特性测定装置
WO2021114112A1 (zh) 一种基于污泥挥发分含量测算污泥热值的方法
CN110987713A (zh) 一种基于污泥挥发分含量测算污泥热值的方法
CN104777070A (zh) 一种采用微波马弗炉快速测定多孔硅酸钙加填纸张灰分的方法
WO2021114109A1 (zh) 一种基于cielab色彩空间快速测算污泥热值的方法
CN105717252A (zh) 一种煤中氯的测定方法
CN201917543U (zh) Ccd可视化自燃点测定仪
CN110987836B (zh) 一种基于cielab色彩空间快速测算污泥热值的方法
CN107860715A (zh) 一种锅炉炉渣含碳量检测方法
CN103645202A (zh) 一种测定粮食中重金属镉元素的快速分析仪及测定方法
CN106197697A (zh) 一种温度检测装置
WO2023103275A1 (zh) 一种煤样快速化验方法
CN113447511A (zh) 一种炼钢化渣剂压片x荧光测量方法
CN206161626U (zh) 一种双燃烧系统碳硫分析仪
CN105548077B (zh) 利用折光率测定稻米中总淀粉含量的方法
CN206431133U (zh) 便携式全自动石油产品硫化氢测定仪
CN105424748A (zh) 一种锥形量热仪
CN114002249B (zh) 一种x荧光光谱法对铁水保温剂元素的联合测定方法
CN109633074A (zh) 一种自产焦炭制作热态性能标准样的方法
CN104535453B (zh) 一种确定垃圾衍生燃料燃烧特征温度的方法
CN213957273U (zh) 一种灰分检测设备
CN211718168U (zh) 一种测定玻璃粉软化点的简易装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955925

Country of ref document: EP

Kind code of ref document: A1