WO2021112276A1 - Fuel cell system and control method thereof - Google Patents

Fuel cell system and control method thereof Download PDF

Info

Publication number
WO2021112276A1
WO2021112276A1 PCT/KR2019/016998 KR2019016998W WO2021112276A1 WO 2021112276 A1 WO2021112276 A1 WO 2021112276A1 KR 2019016998 W KR2019016998 W KR 2019016998W WO 2021112276 A1 WO2021112276 A1 WO 2021112276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
humidifier
inlet end
humidity
compressor
Prior art date
Application number
PCT/KR2019/016998
Other languages
French (fr)
Korean (ko)
Inventor
백지숙
오흥렬
Original Assignee
코오롱머티리얼(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱머티리얼(주) filed Critical 코오롱머티리얼(주)
Priority to PCT/KR2019/016998 priority Critical patent/WO2021112276A1/en
Publication of WO2021112276A1 publication Critical patent/WO2021112276A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a method for controlling the same.
  • a fuel cell is a power generation type cell that produces electricity by combining hydrogen and oxygen. Unlike general chemical cells such as dry cells and storage batteries, fuel cells can continuously produce electricity as long as hydrogen and oxygen are supplied, and there is no heat loss, so the efficiency is about twice that of an internal combustion engine.
  • the fuel cell has the advantage of being environmentally friendly and reducing concerns about resource depletion due to increased energy consumption.
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • PAFC Phosphoric Acid Fuel Cell
  • Molten Carbonate Fuel Cell Molten Carbonate Fuel Cell
  • MCFC Solid Oxide Fuel Cell
  • AFC Alkaline Fuel Cell
  • PEMFC polymer electrolyte fuel cell
  • PEMFC polymer electrolyte fuel cell
  • MEA membrane-electrode assembly
  • a bubbler humidification method in which water is supplied by passing a target gas through a diffuser after filling a pressure-resistant container with water, 2) the amount of supplied water required for fuel cell reaction
  • a direct injection method in which moisture is calculated and directly supplying moisture to a gas flow pipe through a solenoid valve
  • 3) a humidification membrane method in which moisture is supplied to a fluidized bed of gas using a polymer membrane.
  • the humidification membrane method for humidifying the polymer electrolyte membrane by providing water vapor to the gas supplied to the polymer electrolyte membrane using a membrane that selectively transmits only water vapor contained in the exhaust gas is advantageous in that the humidifier can be reduced in weight and size.
  • the selective permeable membrane used in the humidification membrane method is preferably a hollow fiber membrane having a large permeation area per unit volume when forming a module.
  • a membrane humidifier is manufactured using a hollow fiber membrane, the high integration of the hollow fiber membrane with a large contact surface area is possible, so that the fuel cell can be sufficiently humidified even with a small capacity, and low-cost materials can be used, and the high temperature in the fuel cell There is an advantage in that moisture and heat contained in the discharged unreacted gas can be recovered and reused through a humidifier.
  • the dry air compressed by the compressor receives moisture from the wet air supplied from the fuel cell stack in the humidifier, becomes humidified air, and flows into the fuel cell stack.
  • the water positive ions that have passed through the polymer electrolyte membrane cannot combine with oxygen but with electrons, thereby becoming hydrogen and burning again, thereby damaging the electrodes of the fuel cell.
  • An object of the present invention is to provide a fuel cell system capable of preventing anode flooding of a fuel cell by adjusting the humidification amount of a humidifier, and a method for controlling the same.
  • the fuel cell system of the present invention for achieving the above object includes a compressor for sucking air and compressing it, a humidifier for humidifying the air compressed in the compressor, a fuel cell stack receiving the humidified air from the humidifier, and the fuel cell stack a humidity sensor installed at the inlet end of the humidifier, a bypass passage connected from the inlet end of the humidifier to the inlet end of the fuel cell stack, a bypass valve installed at the inlet end of the bypass passage, and the humidity sensor and a control unit for controlling the bypass valve according to the humidity value to be changed.
  • control unit opens the bypass valve when the humidity value measured by the humidity sensor is 50% or more.
  • control unit closes the bypass valve when the humidity value measured by the humidity sensor is less than 50%.
  • the control method of the fuel cell system of the present invention includes a compressor for sucking air and compressing it, a humidifier for humidifying the air compressed by the compressor, a fuel cell stack receiving humidified air from the humidifier, and the inlet of the humidifier.
  • a control method of a fuel cell system including a bypass flow path connected to an inlet end of a fuel cell stack, the method comprising: measuring a humidity at an inlet end of the fuel cell stack; determining whether the measured humidity is 50% or more step, and controlling the air compressed in the compressor to flow to the humidifier or the bypass passage according to whether the measured humidity is 50% or more.
  • the bypass valve when the measured humidity is 50% or more, the bypass valve is opened to allow the compressed air from the compressor to flow into the bypass flow path, and when the measured humidity is less than 50%, the bypass valve is closed. It is preferable to control the air compressed in the compressor to pass through the humidifier.
  • FIG. 1 is a view showing a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a control method of a fuel cell system according to an embodiment of the present invention.
  • FIG. 1 is a view showing a fuel cell system according to an embodiment of the present invention.
  • the fuel cell system includes a compressor 10 that sucks and compresses air, a humidifier 30 that humidifies the air compressed in the compressor, and air humidified in the humidifier.
  • the fuel cell stack 80 receiving the supply, the humidity sensor 70 installed at the inlet end of the fuel cell stack, the bypass flow path 50 connected from the inlet end of the humidifier to the inlet end of the fuel cell stack, and the bypass flow path It includes a bypass valve 40 installed at the inlet end, and a control unit 100 for controlling the bypass valve 40 according to a humidity value measured by the humidity sensor 70 .
  • the compressor 10 is for supplying air to the cathode of the fuel cell, and sucks in external air (hereinafter referred to as "dry air"), compresses the dry air, and supplies it to the humidifier 30 .
  • a dry air supply passage 20 is connected between the compressor 10 and the humidifier 30 .
  • the humidifier 30 humidifies the dry air compressed in the compressor 10 and supplies it to the fuel cell stack 80 .
  • the exhaust gas discharged from the cathode of the fuel cell hereinafter referred to as "wet air”
  • the dry air supplied from the compressor 10 exchange gas-to-gas moisture in the humidifier 30 to moisten the dry air with a membrane. This is done
  • the fuel cell stack 80 has a membrane-electrode assembly (MEA) interposed therebetween, and an air electrode including a separator (commonly referred to as a “separator plate” or a bipolar plate) on both sides thereof and a fuel electrode are disposed. made up of aggregates
  • Hot and humid humid air is discharged from the cathode of the fuel cell, and hot and humid hydrogen as unreacted hydrogen is discharged from the anode of the fuel cell.
  • the wet air is supplied from the fuel cell stack 80 through the wet air supply passage 90 connected to the humidifier 30 to exchange moisture with the dry air.
  • the humidified air discharged from the humidifier 30 after water exchange is supplied to the fuel cell stack 80 through the humidified air supply passage 60 .
  • a humidity sensor 70 is installed at the inlet end of the fuel cell stack 80 in the humidified air supply passage 60 .
  • the humidity sensor 70 measures the humidity of the humidified air flowing into the fuel cell stack 80 .
  • the bypass flow path 50 is connected from the inlet end of the humidifier 30 in the dry air supply passage 20 to the inlet end of the fuel cell stack 80 in the humidified air supply passage 60 .
  • Compressed air supplied from the compressor 10 may be supplied directly to the fuel cell stack 80 without being humidified while selectively passing through the humidifier 30 through the bypass flow path 50 . That is, since there is no need to humidify the compressed dry air when the humidity is high, the dry air may bypass the humidifier 30 and be directly supplied to the fuel cell stack 80 .
  • a bypass valve 40 is installed at the inlet end of the bypass flow passage 50 .
  • the bypass valve 40 may be configured as a three-way valve provided in a connection portion of the dry air supply passage 20 to the bypass passage 50 .
  • bypass valve 40 installed at the inlet end of the bypass flow path 50 is closed, all of the dry air flows into the humidifier 30 .
  • bypass valve 40 is opened, all of the dry air is supplied to the fuel cell stack 80 without being humidified through the bypass flow passage 50 .
  • the bypass valve 40 may be configured as an on/off valve, but may also be configured as a valve whose opening rate can be adjusted in stages. In the latter case, the opening degree of the bypass valve 40 may be adjusted according to the humidity of the humidified air flowing into the fuel cell stack 80 .
  • the controller 100 controls the bypass valve 40 according to the humidity value measured by the humidity sensor 70 . That is, the control unit 100 receives the measurement value of the humidity sensor 70 and controls the bypass valve 40 according to the humidity value. When the humidity value is low, the bypass valve 40 is closed, and when the humidity value is high, the bypass valve 40 is opened.
  • control unit 100 opens the bypass valve 40 when the humidity value measured by the humidity sensor 70 is 50% or more. That is, if the humidity value at the inlet end of the fuel cell stack 80 is 50% or more, there is no need to humidify the dry air.
  • the controller 100 closes the bypass valve 40 . That is, when the humidity value at the inlet end of the fuel cell stack 80 is less than 50%, the dry air is humidified while passing through the humidifier 30 , and then supplied to the fuel cell stack 80 .
  • FIG. 2 is a flowchart illustrating a control method of a fuel cell system according to an embodiment of the present invention.
  • a method of controlling the fuel cell system will be described with reference to FIG. 2 .
  • the fuel cell system is as described above with reference to FIG. 1 .
  • the air compressed in the compressor 10 is controlled to flow into the humidifier 30 or the bypass flow path 50 .
  • the bypass valve 40 is opened to control the air compressed in the compressor 10 to flow into the bypass flow path 50 (S40).
  • the bypass valve 40 is closed to control the air compressed in the compressor 10 to pass through the humidifier 30 (S50).
  • the anode flooding of the fuel cell due to excessive humidification can be prevented by controlling the humidification amount of the humidifier in the low flow rate or low power section.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system of the present invention comprises: a compressor that sucks in and compresses air; a humidifier that humidifies the air compressed by the compressor; a fuel cell stack that receives humidified air from the humidifier; a humidity sensor installed at the inlet end of the fuel cell stack; a bypass flow path connected from the inlet end of the humidifier to the inlet end of the fuel cell stack; a bypass valve installed at the inlet end of the bypass flow path; and a control unit that controls the bypass valve according to a humidity value measured by the humidity sensor. According to the present invention, it is possible to prevent an anode flooding phenomenon of the fuel cell due to excessive humidification by controlling the humidification amount of the humidifier in a low flow rate or low power section.

Description

연료전지 시스템 및 그 제어방법Fuel cell system and its control method
본 발명은 연료전지 시스템 및 그 제어방법에 관한 것이다. The present invention relates to a fuel cell system and a method for controlling the same.
연료 전지란 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료 전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배가량 높다는 장점이 있다. A fuel cell is a power generation type cell that produces electricity by combining hydrogen and oxygen. Unlike general chemical cells such as dry cells and storage batteries, fuel cells can continuously produce electricity as long as hydrogen and oxygen are supplied, and there is no heat loss, so the efficiency is about twice that of an internal combustion engine.
또한, 수소와 산소의 결합에 의해 발생하는 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 적다. 따라서, 연료 전지는 환경친화적일 뿐만 아니라 에너지 소비 증가에 따른 자원 고갈에 대한 걱정을 줄일 수 있다는 장점이 있다. In addition, since chemical energy generated by the combination of hydrogen and oxygen is directly converted into electrical energy, the emission of pollutants is small. Accordingly, the fuel cell has the advantage of being environmentally friendly and reducing concerns about resource depletion due to increased energy consumption.
이러한 연료 전지는 사용되는 전해질의 종류에 따라 크게 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC), 인산형 연료전지(Phosphoric Acid Fuel Cell: PAFC), 용융 탄산염형 연료 전지(Molten Carbonate Fuel Cell: MCFC), 고체 산화물형 연료 전지(Solid Oxide Fuel Cell: SOFC), 및 알칼리형 연료 전지(Alkaline Fuel Cell: AFC) 등으로 분류할 수 있다. These fuel cells are largely classified according to the type of electrolyte used: a Polymer Electrolyte Membrane Fuel Cell (PEMFC), a Phosphoric Acid Fuel Cell (PAFC), and a Molten Carbonate Fuel Cell (Molten Carbonate Fuel Cell). : MCFC), Solid Oxide Fuel Cell (SOFC), and Alkaline Fuel Cell (AFC).
이들 각각의 연료 전지는 근본적으로 동일한 원리에 의해 작동하지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다. 이 중에서 고분자 전해질형 연료 전지(PEMFC)는 다른 연료 전지에 비해 저온에서 동작한다는 점, 및 출력밀도가 커서 소형화가 가능하기 때문에 소규모 거치형 발전장비뿐만 아니라 수송 시스템에서도 가장 유망한 것으로 알려져 있다. Each of these fuel cells operates on the same fundamental principle, but the type of fuel used, operating temperature, catalyst, electrolyte, and the like are different from each other. Among them, the polymer electrolyte fuel cell (PEMFC) is known to be the most promising not only in small-scale stationary power generation equipment but also in transportation systems because it operates at a low temperature compared to other fuel cells and can be miniaturized due to its high power density.
고분자 전해질형 연료 전지(PEMFC)의 성능을 향상시키는 데 있어서 가장 중요한 요인 중 하나는, 막-전극 접합체(Membrane Electrode Assembly: MEA)의 고분자 전해질 막(Polymer Electrolyte Membrane 또는 Proton Exchange Membrane: PEM)에 일정량 이상의 수분을 공급함으로써 함수율을 유지하도록 하는 것이다. 고분자 전해질 막이 건조되면 발전 효율이 급격히 저하되기 때문이다. One of the most important factors in improving the performance of a polymer electrolyte fuel cell (PEMFC) is a certain amount of a polymer electrolyte membrane (Polymer Electrolyte Membrane or Proton Exchange Membrane: PEM) of a membrane-electrode assembly (MEA). It is to maintain the moisture content by supplying more moisture. This is because when the polymer electrolyte membrane is dried, the power generation efficiency is rapidly reduced.
고분자 전해질 막을 가습하는 방법으로는, 1) 내압 용기에 물을 채운 후 대상 기체를 확산기(diffuser)로 통과시켜 수분을 공급하는 버블러(bubbler) 가습 방식, 2) 연료 전지 반응에 필요한 공급 수분량을 계산하여 솔레노이드 밸브를 통해 가스 유동관에 직접 수분을 공급하는 직접 분사(direct injection) 방식, 및 3) 고분자 분리막을 이용하여 가스의 유동층에 수분을 공급하는 가습 막 방식 등이 있다. As a method of humidifying a polymer electrolyte membrane, 1) a bubbler humidification method in which water is supplied by passing a target gas through a diffuser after filling a pressure-resistant container with water, 2) the amount of supplied water required for fuel cell reaction There are a direct injection method in which moisture is calculated and directly supplying moisture to a gas flow pipe through a solenoid valve, and 3) a humidification membrane method in which moisture is supplied to a fluidized bed of gas using a polymer membrane.
이들 중에서도 배기가스 중에 포함되는 수증기만을 선택적으로 투과시키는 막을 이용하여 수증기를 고분자 전해질 막에 공급되는 가스에 제공함으로써 고분자 전해질 막을 가습하는 가습 막 방식이 가습기를 경량화 및 소형화할 수 있다는 점에서 유리하다. Among them, the humidification membrane method for humidifying the polymer electrolyte membrane by providing water vapor to the gas supplied to the polymer electrolyte membrane using a membrane that selectively transmits only water vapor contained in the exhaust gas is advantageous in that the humidifier can be reduced in weight and size.
가습 막 방식에 사용되는 선택적 투과막은 모듈을 형성할 경우 단위 체적당 투과 면적이 큰 중공사막이 바람직하다. 즉, 중공사막을 이용하여 막 가습기를 제조할 경우 접촉 표면적이 넓은 중공사막의 고집적화가 가능하여 소용량으로도 연료 전지의 가습이 충분히 이루어질 수 있고, 저가 소재의 사용이 가능하며, 연료전지에서 고온으로 배출되는 미반응 가스에 포함된 수분과 열을 회수하여 가습기를 통해 재사용할 수 있다는 이점을 갖는다. The selective permeable membrane used in the humidification membrane method is preferably a hollow fiber membrane having a large permeation area per unit volume when forming a module. In other words, when a membrane humidifier is manufactured using a hollow fiber membrane, the high integration of the hollow fiber membrane with a large contact surface area is possible, so that the fuel cell can be sufficiently humidified even with a small capacity, and low-cost materials can be used, and the high temperature in the fuel cell There is an advantage in that moisture and heat contained in the discharged unreacted gas can be recovered and reused through a humidifier.
한편, 압축기에 의해 압축된 건조 공기는 가습기에서 연료전지 스택으로부터 공급되는 습윤 공기로부터 습기를 공급받아 가습 공기가 되어 연료전지 스택으로 유입된다. Meanwhile, the dry air compressed by the compressor receives moisture from the wet air supplied from the fuel cell stack in the humidifier, becomes humidified air, and flows into the fuel cell stack.
그런데, 연료전지 양극에서는 전기 화학반응에 의해 물이 발생하고, 전해질막을 가습하는 것과 균형이 깨지면 수분이 전극에 부착되는 플러딩(flooding) 현상이 발생하여 오히려 연료전지의 전압이 떨어지는 성능 저하를 가져올 수 있다. However, in the anode of the fuel cell, water is generated by an electrochemical reaction, and when the balance with humidifying the electrolyte membrane is broken, a flooding phenomenon occurs in which moisture attaches to the electrode, which can lead to a decrease in the performance of the fuel cell voltage. have.
더욱이, 상기한 플러딩이 계속되면 고분자 전해질막을 통과한 수요양이온이 산소와 결합하지 못하고 전자와 결합하게 됨으로써 다시 수소가 되어 연소하게 됨으로써 연료전지의 전극을 손상시킬 수 있다. Moreover, if the flooding continues, the water positive ions that have passed through the polymer electrolyte membrane cannot combine with oxygen but with electrons, thereby becoming hydrogen and burning again, thereby damaging the electrodes of the fuel cell.
따라서, 저유량 또는 저출력 구간에서 과잉 가습으로 인한 연료전지 스택 내 플러딩 현상을 방지할 필요가 있다. Therefore, it is necessary to prevent a flooding phenomenon in the fuel cell stack due to excessive humidification in the low flow rate or low output section.
본 발명은 가습기의 가습량을 조절하여 연료전지의 양극 플러딩 현상을 방지할 수 있는 연료전지 시스템 및 그 제어방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a fuel cell system capable of preventing anode flooding of a fuel cell by adjusting the humidification amount of a humidifier, and a method for controlling the same.
상기 목적을 달성하기 위한 본 발명의 연료전지 시스템은, 공기를 흡입하여 압축하는 압축기, 상기 압축기에서 압축된 공기를 가습하는 가습기, 상기 가습기에서 가습된 공기를 공급받는 연료전지 스택, 상기 연료전지 스택의 입구단에 설치되는 습도센서, 상기 가습기의 입구단으로부터 상기 연료전지 스택의 입구단으로 연결되는 바이패스 유로, 상기 바이패스 유로의 입구단에 설치되는 바이패스 밸브, 및 상기 습도센서에 의해 측정되는 습도 값에 따라 상기 바이패스 밸브를 제어하는 제어부를 포함한다. The fuel cell system of the present invention for achieving the above object includes a compressor for sucking air and compressing it, a humidifier for humidifying the air compressed in the compressor, a fuel cell stack receiving the humidified air from the humidifier, and the fuel cell stack a humidity sensor installed at the inlet end of the humidifier, a bypass passage connected from the inlet end of the humidifier to the inlet end of the fuel cell stack, a bypass valve installed at the inlet end of the bypass passage, and the humidity sensor and a control unit for controlling the bypass valve according to the humidity value to be changed.
상기 제어부는 상기 습도센서에 의해 측정되는 습도 값이 50% 이상이면 상기 바이패스 밸브를 개방하는 것이 바람직하다. Preferably, the control unit opens the bypass valve when the humidity value measured by the humidity sensor is 50% or more.
상기 제어부는 상기 습도센서에 의해 측정되는 습도 값이 50% 미만이면 상기 바이패스 밸브를 폐쇄하는 것이 바람직하다. Preferably, the control unit closes the bypass valve when the humidity value measured by the humidity sensor is less than 50%.
본 발명의 연료전지 시스템의 제어방법은, 공기를 흡입하여 압축하는 압축기, 상기 압축기에서 압축된 공기를 가습하는 가습기, 상기 가습기에서 가습된 공기를 공급받는 연료전지 스택, 상기 가습기의 입구단으로부터 상기 연료전지 스택의 입구단으로 연결되는 바이패스 유로를 포함하는 연료전지 시스템의 제어 방법에 있어서, 상기 연료전지 스택의 입구단 습도를 측정하는 단계, 상기 측정된 습도가 50% 이상인지 여부를 판단하는 단계, 상기 측정된 습도가 50% 이상인지 여부에 따라 상기 압축기에서 압축된 공기가 상기 가습기 또는 바이패스 유로로 유동하도록 제어하는 단계를 포함한다.The control method of the fuel cell system of the present invention includes a compressor for sucking air and compressing it, a humidifier for humidifying the air compressed by the compressor, a fuel cell stack receiving humidified air from the humidifier, and the inlet of the humidifier. A control method of a fuel cell system including a bypass flow path connected to an inlet end of a fuel cell stack, the method comprising: measuring a humidity at an inlet end of the fuel cell stack; determining whether the measured humidity is 50% or more step, and controlling the air compressed in the compressor to flow to the humidifier or the bypass passage according to whether the measured humidity is 50% or more.
상기 제어 단계는 상기 측정된 습도가 50% 이상이면 바이패스 밸브를 개방하여 상기 압축기에서 압축된 공기가 상기 바이패스 유로로 유동하도록 하고, 상기 측정된 습도가 50% 미만이면 바이패스 밸브를 폐쇄하여 상기 압축기에서 압축된 공기가 상기 가습기를 통과하도록 제어하는 것이 바람직하다. In the control step, when the measured humidity is 50% or more, the bypass valve is opened to allow the compressed air from the compressor to flow into the bypass flow path, and when the measured humidity is less than 50%, the bypass valve is closed. It is preferable to control the air compressed in the compressor to pass through the humidifier.
상기한 본 발명의 연료전지 시스템 및 그 제어방법에 의하면, 가습기의 가습량을 조절하여 연료전지의 양극 플러딩 현상을 방지할 수 있다. According to the fuel cell system and the control method of the present invention described above, it is possible to prevent the anode flooding of the fuel cell by adjusting the humidification amount of the humidifier.
도 1은 본 발명의 일 실시예에 따른 연료전지 시스템을 나타내는 도면이다.1 is a view showing a fuel cell system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 연료전지 시스템의 제어방법을 나타내는 순서도이다. 2 is a flowchart illustrating a control method of a fuel cell system according to an embodiment of the present invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또 는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present invention, terms such as 'comprising' or 'having' are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, but one or more other It is to be understood that this does not preclude the possibility of addition or presence of features or numbers, steps, operations, components, parts, or combinations thereof.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this case, it should be noted that the same components in the accompanying drawings are denoted by the same reference numerals as much as possible. In addition, detailed descriptions of well-known functions and configurations that may obscure the gist of the present invention will be omitted. For the same reason, some components are exaggerated, omitted, or schematically illustrated in the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 연료전지 시스템을 나타내는 도면이다.1 is a view showing a fuel cell system according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 연료전지 시스템은, 공기를 흡입하여 압축하는 압축기(10), 압축기에서 압축된 공기를 가습하는 가습기(30), 가습기에서 가습된 공기를 공급받는 연료전지 스택(80), 연료전지 스택의 입구단에 설치되는 습도센서(70), 가습기의 입구단으로부터 연료전지 스택의 입구단으로 연결되는 바이패스 유로(50), 바이패스 유로의 입구단에 설치되는 바이패스 밸브(40), 습도센서(70)에 의해 측정되는 습도 값에 따라 바이패스 밸브(40)를 제어하는 제어부(100)를 포함한다.As shown in FIG. 1 , the fuel cell system according to an embodiment of the present invention includes a compressor 10 that sucks and compresses air, a humidifier 30 that humidifies the air compressed in the compressor, and air humidified in the humidifier. The fuel cell stack 80 receiving the supply, the humidity sensor 70 installed at the inlet end of the fuel cell stack, the bypass flow path 50 connected from the inlet end of the humidifier to the inlet end of the fuel cell stack, and the bypass flow path It includes a bypass valve 40 installed at the inlet end, and a control unit 100 for controlling the bypass valve 40 according to a humidity value measured by the humidity sensor 70 .
압축기(10)는 연료전지의 공기극으로 공기를 공급하기 위한 것으로서, 외부 공기(이하, "건조공기"라 함)를 흡입하여 그 건조공기를 압축하여 가습기(30)로 공급한다. 압축기(10)와 가습기(30) 사이는 건조공기 공급유로(20)에 의해 연결된다.The compressor 10 is for supplying air to the cathode of the fuel cell, and sucks in external air (hereinafter referred to as "dry air"), compresses the dry air, and supplies it to the humidifier 30 . A dry air supply passage 20 is connected between the compressor 10 and the humidifier 30 .
가습기(30)는 압축기(10)에서 압축된 건조공기를 가습하여 연료전지 스택(80)으로 공급한다. 연료전지의 공기극으로부터 배출되는 배출가스(이하, "습 윤공기"라 함)와 압축기(10)로부터 공급되는 건조공기가 가습기(30) 내에서 가스 대 가스 수분 교환을 하여, 건조공기에 막 가습이 이루어진다. The humidifier 30 humidifies the dry air compressed in the compressor 10 and supplies it to the fuel cell stack 80 . The exhaust gas discharged from the cathode of the fuel cell (hereinafter referred to as "wet air") and the dry air supplied from the compressor 10 exchange gas-to-gas moisture in the humidifier 30 to moisten the dry air with a membrane. this is done
연료전지 스택(80)은 막-전극 어셈블리(MEA)를 사이에 두고 이의 양측에 세퍼레이터(통상적으로 "분리판" 또는 바이폴라 플레이트" 라고도 함)를 포함한 공기극과 연료극이 배치된 단위 연료전지들의 전기 발생 집합체로 이루어진다. The fuel cell stack 80 has a membrane-electrode assembly (MEA) interposed therebetween, and an air electrode including a separator (commonly referred to as a “separator plate” or a bipolar plate) on both sides thereof and a fuel electrode are disposed. made up of aggregates
연료전지의 공기극에서는 고온 다습한 습윤공기를 배출하며, 연료전지의 연료극에서는 미반응 수소로서의 고온 다습한 습윤수소를 배출한다. 습윤공기는 연료전지 스택(80)으로부터 가습기(30)로 연결된 습윤공기 공급유로(90)를 통해 공급되어, 건조공기와 수분 교환을 한다. Hot and humid humid air is discharged from the cathode of the fuel cell, and hot and humid hydrogen as unreacted hydrogen is discharged from the anode of the fuel cell. The wet air is supplied from the fuel cell stack 80 through the wet air supply passage 90 connected to the humidifier 30 to exchange moisture with the dry air.
가습기(30)에서 수분 교환 후 배출되는 가습공기는 가습공기 공급유로(60)를 통해 연료전지 스택(80)으로 공급된다.The humidified air discharged from the humidifier 30 after water exchange is supplied to the fuel cell stack 80 through the humidified air supply passage 60 .
가습공기 공급유로(60)에서 연료전지 스택(80)의 입구단에 습도센서 (70)가 설치된다. 습도센서(70)는 연료전지 스택(80)으로 유입되는 가습공기의 습도를 측정한다. A humidity sensor 70 is installed at the inlet end of the fuel cell stack 80 in the humidified air supply passage 60 . The humidity sensor 70 measures the humidity of the humidified air flowing into the fuel cell stack 80 .
건조공기 공급유로(20)에서 가습기(30)의 입구단으로부터 가습공기 공급유로(60)에서 연료전지 스택(80)의 입구단으로 바이패스 유로(50)가 연결된다. 압축기(10)에서 공급되는 압축공기는 선택적으로 바이패스 유로(50)를 통해 가습기 (30)를 통과하면서 가습되지 않고 바로 연료전지 스택(80)으로 공급될 수 있다. 즉, 압축된 건조공기의 습도가 높을 경우 가습할 필요가 없음므로, 건조공기는 가습기(30)를 통과하지 않고 우회하여 연료전지 스택(80)으로 바로 공급될 수 있다. 바이패스 유로(50)의 입구단에는 바이패스 밸브(40)가 설치되어 있다. 바이패스 밸브(40)는 건조공기 공급유로(20)에서 바이패스 유로(50)와의 연결부에 구비되는 삼방밸브로 구성될 수도 있다. The bypass flow path 50 is connected from the inlet end of the humidifier 30 in the dry air supply passage 20 to the inlet end of the fuel cell stack 80 in the humidified air supply passage 60 . Compressed air supplied from the compressor 10 may be supplied directly to the fuel cell stack 80 without being humidified while selectively passing through the humidifier 30 through the bypass flow path 50 . That is, since there is no need to humidify the compressed dry air when the humidity is high, the dry air may bypass the humidifier 30 and be directly supplied to the fuel cell stack 80 . A bypass valve 40 is installed at the inlet end of the bypass flow passage 50 . The bypass valve 40 may be configured as a three-way valve provided in a connection portion of the dry air supply passage 20 to the bypass passage 50 .
바이패스 유로(50)의 입구단에 설치된 바이패스 밸브(40)를 폐쇄하면 건조공기는 모두 가습기(30)로 유입된다. 바이패스 밸브(40)를 개방하면 건조공기는 모두 바이패스 유로(50)를 통해 가습되지 않고 연료전지 스택(80)으로 공급된다. When the bypass valve 40 installed at the inlet end of the bypass flow path 50 is closed, all of the dry air flows into the humidifier 30 . When the bypass valve 40 is opened, all of the dry air is supplied to the fuel cell stack 80 without being humidified through the bypass flow passage 50 .
바이패스 밸브(40)는 온/오프 밸브로 구성될 수도 있으나, 그 개방률을 단계적으로 조절할 수 있는 밸브로 구성될 수도 있다. 후자의 경우, 연료전지 스택(80)으로 유입되는 가습공기의 습도에 따라 바이패스 밸브(40)의 개도를 조절할 수 있다. The bypass valve 40 may be configured as an on/off valve, but may also be configured as a valve whose opening rate can be adjusted in stages. In the latter case, the opening degree of the bypass valve 40 may be adjusted according to the humidity of the humidified air flowing into the fuel cell stack 80 .
제어부(100)는 습도센서(70)에 의해 측정되는 습도 값에 따라 바이패스 밸브(40)를 제어한다. 즉, 제어부(100)는 습도센서(70)의 측정값을 수신하여 그 습도 값에 따라 바이패스 밸브(40)를 제어한다. 습도 값이 낮으면 바이패스 밸브(40)를 폐쇄하고, 습도 값이 높으면 바이패스 밸브(40)를 개방한다. The controller 100 controls the bypass valve 40 according to the humidity value measured by the humidity sensor 70 . That is, the control unit 100 receives the measurement value of the humidity sensor 70 and controls the bypass valve 40 according to the humidity value. When the humidity value is low, the bypass valve 40 is closed, and when the humidity value is high, the bypass valve 40 is opened.
구체적으로, 제어부(100)는 습도센서(70)에 의해 측정되는 습도 값이 50% 이상이면 바이패스 밸브(40)를 개방한다. 즉, 연료전지 스택(80) 입구단의 습도 값이 50% 이상이면 건조공기에 가습할 필요가 없으므로, 건조공기는 가습기(30)를 통과하지 않고 바로 연료전지 스택(80)으로 공급된다. Specifically, the control unit 100 opens the bypass valve 40 when the humidity value measured by the humidity sensor 70 is 50% or more. That is, if the humidity value at the inlet end of the fuel cell stack 80 is 50% or more, there is no need to humidify the dry air.
또한, 습도센서(70)에 의해 측정되는 습도 값이 50% 미만이면 제어부 (100)는 바이패스 밸브(40)를 폐쇄한다. 즉, 연료전지 스택(80) 입구단의 습도 값이 50% 미만이면 건조공기가 가습기(30)를 통과하면서 가습되도록 한 다음 연료전지 스택(80)으로 공급한다. In addition, when the humidity value measured by the humidity sensor 70 is less than 50%, the controller 100 closes the bypass valve 40 . That is, when the humidity value at the inlet end of the fuel cell stack 80 is less than 50%, the dry air is humidified while passing through the humidifier 30 , and then supplied to the fuel cell stack 80 .
도 2는 본 발명의 일 실시예에 따른 연료전지 시스템의 제어방법을 나타내는 순서도이다. 2 is a flowchart illustrating a control method of a fuel cell system according to an embodiment of the present invention.
도 2를 참조하여 연료전지 시스템의 제어방법을 설명한다. A method of controlling the fuel cell system will be described with reference to FIG. 2 .
여기서, 연료전지 시스템은 도 1을 참조하여 상술한 바와 같다. Here, the fuel cell system is as described above with reference to FIG. 1 .
먼저, 연료전지 시스템의 작동 명령이 입력되면 연료전지 시스템을 작동한다(S10). First, when an operation command of the fuel cell system is input, the fuel cell system is operated ( S10 ).
다음에, 연료전지 스택의 입구단 습도를 측정한다(S20). Next, the humidity at the inlet of the fuel cell stack is measured (S20).
다음으로, 상기 측정된 습도가 50% 이상이지 여부를 판단한다(S30). Next, it is determined whether the measured humidity is 50% or more (S30).
마지막으로, 측정된 습도가 50% 이상인지 여부에 따라 압축기(10)에서 압축된 공기가 가습기(30) 또는 바이패스 유로(50)로 유동하도록 제어한다. Finally, depending on whether the measured humidity is 50% or more, the air compressed in the compressor 10 is controlled to flow into the humidifier 30 or the bypass flow path 50 .
상기 제어단계에서, 측정된 습도가 50% 이상이면 바이패스 밸브(40)를 개방하여 압축기(10)에서 압축된 공기가 바이패스 유로(50)로 유동하도록 제어한다(S40). In the control step, when the measured humidity is 50% or more, the bypass valve 40 is opened to control the air compressed in the compressor 10 to flow into the bypass flow path 50 (S40).
상기 제어단계에서, 측정된 습도가 50% 미만이면 바이패스 밸브(40)를 폐쇄하여 압축기(10)에서 압축된 공기가 가습기(30)를 통과하도록 제어한다 (S50). In the control step, if the measured humidity is less than 50%, the bypass valve 40 is closed to control the air compressed in the compressor 10 to pass through the humidifier 30 (S50).
본 발명에 의하면, 저유량 또는 저출력 구간에서 가습기의 가습량을 조절하여 과잉 가습으로 인한 연료전지의 양극 플러딩 현상을 방지할 수 있다. According to the present invention, the anode flooding of the fuel cell due to excessive humidification can be prevented by controlling the humidification amount of the humidifier in the low flow rate or low power section.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다. Above, an embodiment of the present invention has been described, but those of ordinary skill in the art can add, change, delete or add components within the scope that does not depart from the spirit of the present invention described in the claims. It will be said that various modifications and changes of the present invention can be made by, and this is also included within the scope of the present invention.

Claims (5)

  1. 공기를 흡입하여 압축하는 압축기;Compressor that sucks air and compresses it;
    상기 압축기에서 압축된 공기를 가습하는 가습기;a humidifier for humidifying the air compressed in the compressor;
    상기 가습기에서 가습된 공기를 공급받는 연료전지 스택; 상기 연료전지 스택의 입구단에 설치되는 습도센서;a fuel cell stack receiving the humidified air from the humidifier; a humidity sensor installed at the inlet end of the fuel cell stack;
    상기 가습기의 입구단으로부터 상기 연료전지 스택의 입구단으로 연결되는 바이패스 유로;a bypass passage connected from the inlet end of the humidifier to the inlet end of the fuel cell stack;
    상기 바이패스 유로의 입구단에 설치되는 바이패스 밸브; 및a bypass valve installed at the inlet end of the bypass flow path; and
    상기 습도센서에 의해 측정되는 습도 값에 따라 상기 바이패스 밸브를 제어하는 제어부A control unit for controlling the bypass valve according to the humidity value measured by the humidity sensor
    를 포함하는 연료전지 시스템. A fuel cell system comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 습도센서에 의해 측정되는 습도 값이 50% 이상이면 상기 바이패스 밸브를 개방하는 것을 특징으로 하는 연료전지 시스템. The control unit opens the bypass valve when the humidity value measured by the humidity sensor is 50% or more.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는 상기 습도센서에 의해 측정되는 습도 값이 50% 미만이면 상기 바이패스 밸브를 폐쇄하는 것을 특징으로 하는 연료전지 시스템. The control unit closes the bypass valve when the humidity value measured by the humidity sensor is less than 50%.
  4. 공기를 흡입하여 압축하는 압축기, 상기 압축기에서 압축된 공기를 가습하는 가습기, 상기 가습기에서 가습된 공기를 공급받는 연료전지 스택, 상기 가습기의 입구단으로부터 상기 연료전지 스택의 입구단으로 연결되는 바이패스 유로를 포함하는 연료전지 시스템의 제어방법에 있어서,A compressor that sucks air and compresses it, a humidifier that humidifies the air compressed by the compressor, a fuel cell stack receiving the humidified air from the humidifier, and a bypass connected from an inlet end of the humidifier to an inlet end of the fuel cell stack In the control method of a fuel cell system including a flow path,
    상기 연료전지 스택의 입구단 습도를 측정하는 단계;measuring the humidity at the inlet end of the fuel cell stack;
    상기 측정된 습도가 50% 이상인지 여부를 판단하는 단계;determining whether the measured humidity is 50% or more;
    상기 측정된 습도가 50% 이상인지 여부에 따라 상기 압축기에서 압축된 공기 가 상기 가습기 또는 바이패스 유로로 유동하도록 제어하는 단계controlling the air compressed in the compressor to flow to the humidifier or the bypass passage according to whether the measured humidity is 50% or more
    를 포함하는 연료 전지 시스템의 제어방법. A control method of a fuel cell system comprising a.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제어하는 단계는 상기 측정된 습도가 50% 이상이면 바이패스 밸브를 개방하여 상기 압축기에서 압축된 공기가 상기 바이패스 유로로 유동하도록 하고, 상기 측정된 습도가 50% 미만이면 바이패스 밸브를 폐쇄하여 상기 압축기에서 압축된 공기가 상기 가습기를 통과하도록 제어하는In the controlling step, when the measured humidity is 50% or more, the bypass valve is opened to allow the compressed air from the compressor to flow into the bypass flow path, and when the measured humidity is less than 50%, the bypass valve is closed. to control the air compressed in the compressor to pass through the humidifier.
    연료전지 시스템의 제어방법.A control method of a fuel cell system.
PCT/KR2019/016998 2019-12-04 2019-12-04 Fuel cell system and control method thereof WO2021112276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016998 WO2021112276A1 (en) 2019-12-04 2019-12-04 Fuel cell system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016998 WO2021112276A1 (en) 2019-12-04 2019-12-04 Fuel cell system and control method thereof

Publications (1)

Publication Number Publication Date
WO2021112276A1 true WO2021112276A1 (en) 2021-06-10

Family

ID=76221114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016998 WO2021112276A1 (en) 2019-12-04 2019-12-04 Fuel cell system and control method thereof

Country Status (1)

Country Link
WO (1) WO2021112276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050291A (en) * 2021-11-15 2022-02-15 上海重塑能源科技有限公司 Humidifier for fuel cell system and debugging and working method thereof
DE102022204523A1 (en) 2022-05-09 2023-11-09 Robert Bosch Gesellschaft mit beschränkter Haftung Fuel cell system and drying process for a fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030212A (en) * 2004-10-05 2006-04-10 현대자동차주식회사 System for recovering the cathode flooding for pem fuel cell and method for the same
KR20140129738A (en) * 2013-04-30 2014-11-07 현대자동차주식회사 Air supply device for fuel cell system and method for adjusting pressure of air blower
KR101459484B1 (en) * 2013-08-22 2014-11-07 현대자동차 주식회사 Air supply device for fuel cell
KR20150143941A (en) * 2014-06-13 2015-12-24 현대자동차주식회사 Fuel cell system for vehicle and method for controlling the same
KR20180070374A (en) * 2016-12-16 2018-06-26 현대자동차주식회사 Fuel cell system
KR20200055345A (en) * 2018-11-13 2020-05-21 코오롱머티리얼 주식회사 Fuel cell system and Method for controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060030212A (en) * 2004-10-05 2006-04-10 현대자동차주식회사 System for recovering the cathode flooding for pem fuel cell and method for the same
KR20140129738A (en) * 2013-04-30 2014-11-07 현대자동차주식회사 Air supply device for fuel cell system and method for adjusting pressure of air blower
KR101459484B1 (en) * 2013-08-22 2014-11-07 현대자동차 주식회사 Air supply device for fuel cell
KR20150143941A (en) * 2014-06-13 2015-12-24 현대자동차주식회사 Fuel cell system for vehicle and method for controlling the same
KR20180070374A (en) * 2016-12-16 2018-06-26 현대자동차주식회사 Fuel cell system
KR20200055345A (en) * 2018-11-13 2020-05-21 코오롱머티리얼 주식회사 Fuel cell system and Method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114050291A (en) * 2021-11-15 2022-02-15 上海重塑能源科技有限公司 Humidifier for fuel cell system and debugging and working method thereof
DE102022204523A1 (en) 2022-05-09 2023-11-09 Robert Bosch Gesellschaft mit beschränkter Haftung Fuel cell system and drying process for a fuel cell system

Similar Documents

Publication Publication Date Title
CA2490877C (en) Humidity controlled solid polymer electrolyte fuel cell assembly
KR20200055345A (en) Fuel cell system and Method for controlling the same
US20080160363A1 (en) Control of the Polymer Humidifying Membrane of a Fuel Cell
KR101209745B1 (en) fuel cell system
KR101481244B1 (en) Humidification apparatus for fuel cell system
CN107004876B (en) Method for disconnecting a fuel cell stack and fuel cell system
KR20210011204A (en) Humidifier for fuel cell
WO2021112276A1 (en) Fuel cell system and control method thereof
US20060029837A1 (en) Humidifier bypass system and method for PEM fuel cell
CN110190307B (en) Fuel cell system and humidity control method thereof
JP4603920B2 (en) Humidifier for fuel cell and fuel cell system provided with the same
JP4028320B2 (en) Fuel circulation fuel cell system
WO2019098642A2 (en) Fuel cell membrane humidifier
KR101610063B1 (en) Fuel cell system
JP4806913B2 (en) Fuel cell system
JPH08500931A (en) Fuel cell and method for humidifying electrolyte thereof
CN113571746B (en) Fuel cell system and method for preventing anode of electric pile from flooding
KR101220368B1 (en) Fuel cell system and humidification device of the same
JP2007294359A (en) Fuel cell system
JP2004265684A (en) Fuel cell system
JP2010192292A (en) Fuel cell system and method for operating the same
JP2004206951A (en) Fuel cell with dehumidification/humidification device
CN219350276U (en) Fuel cell air system
JP2011154802A (en) Fuel cell system
JP2009134977A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954824

Country of ref document: EP

Kind code of ref document: A1