WO2021111620A1 - 端末及び測定報告送信方法 - Google Patents

端末及び測定報告送信方法 Download PDF

Info

Publication number
WO2021111620A1
WO2021111620A1 PCT/JP2019/047851 JP2019047851W WO2021111620A1 WO 2021111620 A1 WO2021111620 A1 WO 2021111620A1 JP 2019047851 W JP2019047851 W JP 2019047851W WO 2021111620 A1 WO2021111620 A1 WO 2021111620A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
condition
reception quality
event
beams
Prior art date
Application number
PCT/JP2019/047851
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021562420A priority Critical patent/JP7440538B2/ja
Priority to US17/756,870 priority patent/US20230007521A1/en
Priority to PCT/JP2019/047851 priority patent/WO2021111620A1/ja
Publication of WO2021111620A1 publication Critical patent/WO2021111620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a terminal for transmitting a measurement report including reception quality for a serving cell and a cell including a neighboring cell to a radio access network, and a measurement report transmission method.
  • the 3rd Generation Partnership Project (3GPP) is a specification of Long Term Evolution (LTE), LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and 5th generation mobile communication system for the purpose of further speeding up LTE. (Hereinafter, also referred to as 5G, New Radio (NR) or Next Generation (NG)) is being specified. Furthermore, specifications for mobile communication systems after 5G are being promoted (sometimes called 6G or beyond 5G, but not limited to these names).
  • the terminal (UE) receives the service cell (cell of the connected state (RRC Connected) in the radio resource control (RRC) layer) and the reception quality (RSRP (Reference Signal Received Power)) of the neighboring cell formed in the vicinity of the serving cell.
  • RRC radio resource control
  • RSRP Reference Signal Received Power
  • a Measurement report containing measurement results of RSRQ (Reference Signal Received Quality), SINR (Signal-to-Interference plus Noise Ratio), etc. can be transmitted to the radio access network (NG RAN) (see Non-Patent Document 1).
  • the procedure (Measurement reporting) for transmitting the measurement report is started.
  • Entering conditions include conditions defined for reception quality on a cell-by-cell basis.
  • One aspect of the present disclosure is whether or not a terminal executes a transmission unit that transmits a measurement report including reception quality for a cell including a serving cell and a neighboring cell to a radio access network, and a procedure for transmitting the measurement report.
  • a control unit for determining whether or not the enterting condition used for determining the above is satisfied is provided, and the enterting condition includes at least a condition relating to an individual beam from the cell.
  • One aspect of the present disclosure is a method of transmitting a measurement report, wherein the terminal transmits a measurement report including reception quality for a cell including a serving cell and a neighboring cell to a radio access network, and the terminal transmits the measurement.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram for explaining an application scene according to the embodiment.
  • FIG. 3 is a diagram showing the UE 200 according to the embodiment.
  • FIG. 4 is a diagram showing an example of MeasConfig according to the embodiment.
  • FIG. 5 is a diagram showing an example of Measure Results according to the embodiment.
  • FIG. 6 is a sequence diagram showing a measurement report transmission method according to the embodiment.
  • FIG. 7 is a flow chart showing the operation of the UE 200 according to the embodiment.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the UE 200 according to the embodiment.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 100 according to the embodiment.
  • the wireless communication system 100 is a wireless communication system according to Long Term Evolution (LTE) and 5G New Radio (NR).
  • LTE Long Term Evolution
  • NR 5G New Radio
  • LTE and NR may be interpreted as radio access technology (RAT), and in embodiments, LTE may be referred to as the first radio access technology and NR may be referred to as the second radio access technology.
  • NR may be considered to include wireless access technology after 5G.
  • the wireless communication system 100 includes Evolved Universal Terrestrial Radio Access Network 110 (hereinafter, E-UTRAN110) and Next Generation-Radio Access Network 120 (hereinafter, NG RAN120). Further, the wireless communication system 100 includes a terminal 200.
  • E-UTRAN110 Evolved Universal Terrestrial Radio Access Network 110
  • NG RAN120 Next Generation-Radio Access Network 120
  • E-UTRAN110 includes eNB111, which is a wireless base station that complies with LTE.
  • the eNB 111 has one or more cells (here, cells C11, C12, C13).
  • the eNB 111 may have one cell.
  • NG RAN120 includes gNB121, which is a radio base station that complies with 5G (NR).
  • gNB121 has one or more cells (here, cells C21, C22, C23).
  • the gNB 121 may have one cell.
  • the term "cell” may be used to mean the function of the eNB 111 or gNB 121, that is, the function of communicating with the terminal 200.
  • the term “cell” may be used to mean the coverage area of eNB 111 or gNB 121. Each cell may be distinguished by the frequency used in each cell.
  • E-UTRAN110 and NGRAN120 may be eNB111 or gNB121
  • the eNB 1111, gNB 121, and terminal 200 may support carrier aggregation (CA) using a plurality of component carriers (CC), and are dual that simultaneously transmit component carriers between a plurality of NG-RAN Nodes and the terminal 200. It may correspond to connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC connectivity
  • the eNB111, gNB121 and terminal 200 execute wireless communication via the wireless bearer.
  • the wireless bearer may include an SRB Signaling Radio Bearer (SRB) and a DRB Data Radio Bearer (DRB).
  • SRB SRB Signaling Radio Bearer
  • DRB DRB Data Radio Bearer
  • the terminal 200 is not particularly limited, but may be called a "mobile station (MS)” or a “user terminal (UE)". In the following, the terminal 200 will be referred to as UE200.
  • the UE200 may be an unmanned aerial vehicle (UAV).
  • the serving cell may be called a PCell (PrimaryCell) or a PSCell (PrimarySecondaryCell).
  • FIG. 2 is a diagram for explaining an application scene according to the embodiment.
  • the serving cell of UE200 is cell P40
  • the neighboring cells formed in the vicinity of the serving cell may include cells N50 (here, cells N51, N52), cells N60 (here, cells N61, N62, N63).
  • Cell P40 may be a cell belonging to E-UTRAN110 or a cell belonging to NG RAN120.
  • cell N50 may be a cell belonging to E-UTRAN110
  • cell N60 may be a cell belonging to NG RAN120.
  • cells belonging to E-UTRAN110 may be referred to as EUTRA cells
  • cells belonging to NG RAN120 may be referred to as NR cells.
  • the cells belonging to NG RAN120 may be configured to output one or more beams with strong directivity (three beams in FIG. 2).
  • a highly directional beam is achieved by a large number of antennas (eg, up to 128).
  • Massive MIMO MultiInput MultiOutput
  • the UE 200 is a measurement report (hereinafter referred to as Measurement) including reception quality for cells including a serving cell (here, cell P40) and neighboring cells (here, cells N51, N52, N61, N62, N63). report) is sent to the radio access network (here, cell P40).
  • the procedure by which the UE 200 sends a Measurement report may be referred to as Measurement reporting).
  • the reception quality for the cell may include the reception quality of the beam from the cell, or may include the reception quality of the cell based on the beam from the cell.
  • UE200 may execute Measurement reporting on a regular basis. UE200 may execute Measurement reporting for each event. Entering conditions for starting Measurement reporting and leaving conditions for ending Measurement reporting may be set for each event. Existing events may include the following events (see 3GPP TS38.331 V15.7.0, Chapters 5.5.4.2 to 5.5.4.7 “Event A1” to “Event A6”).
  • Event A1 is an event in which the reception quality of the serving cell becomes better than the threshold value.
  • the enterting condition is Ms --Hys> Thresh and the leaving condition is Ms + Hys ⁇ Thresh.
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh is the threshold value.
  • Event A2 is an event in which the reception quality of the serving cell becomes worse than the threshold value.
  • the enterting condition is Ms + Hys ⁇ Thresh and the leaving condition is Ms --Hys> Thresh.
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh is the threshold value.
  • Event A3 is an event in which the reception quality of neighboring cells is better than the reception quality of serving by an offset.
  • the enterting condition is Mn + Ofn + Ocn --Hys> Mp + Ofp + Ocp + Off
  • the leaving condition is Mn + Ofn + Ocn + Hys ⁇ Mp + Ofp + Ocp + Off.
  • Mn is the reception quality of the neighboring cell
  • Ofn is the offset peculiar to the measurement target
  • Ocn is the offset peculiar to the cell
  • Mp is the reception quality of the serving cell
  • Ofp is the offset specific to the measurement target
  • Ocp is the offset specific to the cell.
  • Hys is a hysteresis parameter
  • Off is a parameter used in Event A3.
  • Event A4 is an event in which the reception quality of neighboring cells becomes better than the threshold value.
  • the enterting condition is Mn + Ofn + Ocn --Hys> Thresh
  • the leaving condition is Mn + Ofn + Ocn + Hys ⁇ Thresh.
  • Mn is the reception quality of the neighboring cell
  • Ofn is the offset peculiar to the measurement target
  • Ocn is the offset peculiar to the cell.
  • Hys is a hysteresis parameter and Thresh is a threshold.
  • Event A5 is an event in which the reception quality of the serving cell becomes worse than the threshold value and the reception quality of the neighboring cells becomes better than the threshold value.
  • the enterting condition is Mp + Hys ⁇ Thresh1 and Mn + Ofn + Ocn --Hys> Thresh2
  • the leaving condition is Mp --Hys> Thresh1 and Mn + Ofn + Ocn + Hys ⁇ Thresh2. ..
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh1 is the threshold value
  • Mn is the reception quality of neighboring cells
  • Ofn is the offset specific to the measurement target
  • Ocn is the offset specific to the cell.
  • Hys is a hysteresis parameter and Thresh2 is a threshold.
  • Event A6 is an event in which the reception quality of neighboring cells is better than the reception quality of SCell (Secondary Cell) by an offset.
  • the enterting condition is Mn + Ocn --Hys> Ms + Ocs + Off
  • the leaving condition is Mn + Ocn + Hys ⁇ Ms + Ocs + Off.
  • Mn is the reception quality of neighboring cells
  • Ocn is the offset peculiar to the cell
  • Ms is the reception quality of the SCell
  • Ocs is the offset inherent in the cell.
  • Hys is a hysteresis parameter
  • Off is a parameter used in Event A6.
  • the trigger condition used for determining whether or not to execute Measurement reporting may include at least a condition relating to an individual beam from a neighboring cell.
  • the trigger condition (condition regarding individual beams) used for determining whether or not to start Measurement reporting may include a condition in which the total number of beams observed as beams from neighboring cells exceeds the threshold value.
  • the threshold value compared to the total number of beams may be referred to as numOfTriggerBeam.
  • the above-mentioned threshold value may be called numOfTriggerSSB.
  • CSI Channel State Information
  • Reference Signal Reference Signal
  • the threshold value (for example, numOfTriggerBeam) may be set for the entire neighboring cells. For example, as shown in FIG. 2, in the case where cells N61, N62, and N63 are provided as neighboring cells, and when “9” is configured as the threshold value, the UE 200 has all the beams from cells N61, N62, and N63. Measurement reporting may be started when (9 beams) are observed. Alternatively, in the case where cells N61, N62, and N63 are provided as neighboring cells, and when "6" is configured as the threshold value, the UE200 has a total number of beams observed as beams from cells N61, N62, and N63. If it is 6 ”or higher, Measurement reporting may be started.
  • the threshold value (for example, numOfTriggerBeam) may be set for one neighboring cell. For example, as shown in FIG. 2, in the case where the cell N61 is targeted as a neighboring cell, when “3” is configured as the threshold value, the UE 200 has all the beams (three beams) from the cell N61. Measurement reporting may be started when observed. Alternatively, in the case where cell N61 is targeted as a neighboring cell, when "2" is configured as the threshold value, UE200 is when the total number of beams observed as beams from cell N61 is "2" or more. In addition, Measurement reporting may be started.
  • the process of comparing the total number of beams with the threshold value may be executed for neighboring cells triggered by the above-mentioned event (for example, Event A3, A4, A5, A6).
  • the trigger condition may include a condition in which the number of neighboring cells observed by the UE 200 exceeds the threshold value.
  • the threshold value compared to the number of neighboring cells may be referred to as numOfTriggerCell.
  • the UE 200 may start Measurement reporting when the number of neighboring cells observed by the UE 200 exceeds a threshold value (for example, numOfTriggerCell).
  • the numOfTriggerCell may be used in combination with the numOfTriggerBeam.
  • the trigger condition may include a condition that a certain time has passed since the Measurement report was sent.
  • the transmission of the Measurement report may be prohibited until the timer started by the transmission of the Measurement report expires.
  • Such a timer may be referred to as a ULInterferenceProhibitTimer.
  • ULInterferenceProhibitTimer may be used in combination with numOfTriggerBeam.
  • FIG. 3 is a diagram showing a functional block configuration of the UE 200 according to the embodiment.
  • the UE 200 includes a receiving unit 210, a measuring unit 220, a transmitting unit 230, and a control unit 240.
  • the receiving unit 210 receives various information from the network (for example, eNB111 or gNB121).
  • the receiving unit 210 receives a configuration information element (hereinafter, “MeasConfig”) used for executing Measurement reporting from a network (for example, a serving cell).
  • MeasConfig a configuration information element used for executing Measurement reporting from a network (for example, a serving cell).
  • the network can configure Measurement reporting that causes the UE to report the measurement results for each SS / PBCH Block (hereinafter referred to as Measurement results).
  • the network may configure Measurement reporting that causes the UE to report Measurement results for each SS / PBCH Block (s), and Measurement reporting that causes the UE to report Measurement results for each cell based on SS / PBCH Block (s). May be configured.
  • the network may configure Measurement reporting that causes the UE to report Measurement results for each CSI-RS resource, or may configure Measurement reporting that causes the UE to report Measurement results for each cell based on the CSI-RS resource. ..
  • MeasConfig (configuration information element) includes measObjectToRemoveList, measObjectToAddModList, reportConfigToRemoveList, reportConfigToAddModList, measIdToRemoveList, measIdToAddModList, s-MeasureConfig, quantityConfig, measGapConfig, measGapSharingConfig, etc. See the “MeasConfig” column in Chapter 6.3.2 “Radio resource control information elements”).
  • MeasObjectToRemoveList is a list of measObjects to be deleted, and measObjectToAddModList is a list of measObjects to be added or modified.
  • measObject is a list of objects that UE200 should perform measurements on. The measObject may be specified by frequency.
  • ReportConfigToRemoveList is a list of reportConfigs to be deleted
  • reportConfigToAddModList is a list of reportConfigs to be added or modified.
  • reportConfig is a report structure for each measObject.
  • the report structure may include conditions for transmitting the Measurement report, the type of RS (Reference Signal) used by the UE 200, the report format, and the like.
  • the conditions for transmitting the Measurement report may include the above-mentioned event type and parameters (threshold value, hysteresis, offset, etc.) that define the conditions defined for each of the above-mentioned events.
  • the RS type may be an information element that specifies SS / PBCH Block or CSI-RS.
  • the threshold value to be compared with the number of beams may be included in the reportConfig.
  • a threshold eg, numOfTriggerCell
  • the value set in the timer (for example, ULInterferenceProhibitTimer) started by sending the Measurement report may be included in the reportConfig.
  • MeasIdToRemoveList is a list of measId to be deleted, and measIdToAddModList is a list of measId to be added or modified.
  • measId is an identifier that links measObject and reportConfig.
  • the s-MeasureConfig is the threshold of the serving cell (PCell / PSCell) for controlling whether or not the UE200 measures the non-serving cell (intra-frequency, inter-frequency and inter-RAT neighboring cells).
  • the quantityConfig is an information element that defines the configuration in which the measurements should be filtered.
  • measGapConfig and measGapSharingConfig are information elements used by the UE 200 to perform measurements.
  • the measuring unit 220 measures the reception quality of cells including serving cells and neighboring cells. For example, the measuring unit 220 measures the reception quality of RS (Reference Signal) received from the EUTRA cell. The measuring unit 220 measures the reception quality of the beam observed as the beam from the NR cell. The reception quality may be RSRP, RSRQ, or SINR. The reception quality of the NR cell may be the average value of the reception quality of the observed beam.
  • RS Reference Signal
  • the transmission unit 230 transmits various information to the network (eNB111 or gNB121). In the embodiment, the transmission unit 230 transmits the Measurement report to the network (for example, a serving cell).
  • the Measurement report includes the measResults shown in FIG. Specifically, MeasResults includes measId, measResultServingMOList, measResultNeighCells, measResultServFreqListEUTRA-SCG, measResultServFreqListNR-SCG, measResultSFTD-EUTRA, measResultSFTD-NR, measResultCellListSFTD-NR (TS38.331 V15.7.0) See the “measResults” column of “control information elements”).
  • MeasId is the identifier of the report in which the report was made.
  • the measResultServingMOList contains the measurement results of SpCell, SCell, and best neighboring cells included in the measObject.
  • measResultNeighCells includes the measurement result of EUTRA cell and the measurement result of NR cell.
  • measResultServFreqListEUTRA-SCG includes the measurement result of the serving frequency of SCG (Secondary Cell Group) of EUTRA.
  • measResultServFreqListNR-SCG contains the measurement result of the serving frequency of SCG of NR.
  • MeasResultSFTD-EUTRA includes the result of SFTD measurement (SFN and Frame timing difference measurement) between PCell of NR and EUTRA cell in NR-E-UTRA Dual Connectivity.
  • MeasResultSFTD-NR includes the result of SFTD measurement between PCell of NR and PSCell of NR in NR-NR Dual Connectivity.
  • MeasResultCellListSFTD-NR contains the result of SFTD measurement between PCell of NR and neighboring cells of NR.
  • the control unit 240 controls the operation of the UE 200. For example, the control unit 240 may periodically execute Measurement reporting. The control unit 240 may execute Measurement reporting for each event. Entering conditions for starting Measurement reporting and leaving conditions for ending Measurement reporting may be set for each event.
  • control unit 240 starts Measurement reporting when the trigger condition used for determining whether or not to start Measurement reporting is satisfied.
  • the above-mentioned entertaining condition for each event may be considered as a part of the trigger condition.
  • the control unit 240 ends Measurement reporting when the trigger condition used for determining whether or not to end Measurement reporting is satisfied.
  • the above-mentioned leaving conditions for each event may be considered as part of the trigger conditions.
  • the trigger condition may include at least a condition relating to individual beams from neighboring cells.
  • the conditions for individual beams may include conditions where the total number of beams observed as beams from neighboring cells exceeds a threshold (eg, numOfTriggerBeam).
  • the trigger condition may include a condition in which the number of neighboring cells observed by the UE 200 exceeds a threshold value (for example, numOfTriggerCell). numOfTriggerBeam and numOfTriggerCell may be used together.
  • the trigger condition may include a condition that the timer (ULInterferenceProhibitTimer) activated by the transmission of the Measurement report expires. In other words, the transmission of the Measurement report may be prohibited until the timer expires.
  • FIG. 6 is a sequence diagram showing a measurement report transmission method according to the embodiment.
  • step S10 the UE 200 receives the RRC Connection Reconfiguration from the network (here, cell P40).
  • Cell P40 is a serving cell.
  • RRCConnectionReconfiguration is a message sent when reconfiguring an RRC connection.
  • the RRC Connection Reconfiguration includes the MeasConfig (information element) shown in FIG.
  • UE200 executes the measurement based on MeasConfig. Specifically, the UE 200 measures the reception quality for cells including serving cells and neighboring cells. Neighboring cells may include EUTRA cells or NR cells. The reception quality may be RSRP, RSRQ, or SINR. The reception quality of the NR cell may be the average value of the reception quality of the observed beam.
  • step S12 UE200 sends a Measurement report.
  • the Measurement report includes the Measure Results shown in FIG.
  • Measurement Results may include Measurement results of SS / PBCH Block (s), or may include Measurement results for each cell based on SS / PBCH Block (s).
  • the Measurement Results may include Measurement results for each CSI-RS resource, or may include Measurement results for each cell based on the CSI-RS resource.
  • FIG. 7 is a flow chart showing a measurement report transmission method according to the embodiment.
  • step S20 the UE 200 receives the MeasConfig.
  • MeasConfig is included in RRC Connection Reconfiguration.
  • step S21 UE200 executes the measurement based on MeasConfig. Since the operation of step S21 is the same as that of step S11, the description thereof will be omitted.
  • step S22 UE200 determines whether numOfTriggerBeam is included in MeasConfig. If the determination result is YES, the UE 200 performs the process of step S23. If the determination result is NO, the UE 200 performs the process of step S24.
  • the UE 200 determines whether or not the trigger condition for starting Measurement reporting is satisfied.
  • the trigger condition includes a condition in which the number of neighboring cells observed by the UE 200 exceeds a threshold (eg, numOfTriggerCell).
  • the trigger condition may include the above-mentioned enterting condition for each event.
  • step S23 the trigger condition is satisfied in step S23. If the trigger condition is not met, the measurement of reception quality for the serving cell and neighboring cells is continued. The determination in step S23 may be made in response to the detection of a new cell. The determination in step S23 may be made on a regular basis. If the leaving conditions are met, the UE 200 ends Measurement reporting.
  • step S24 the UE 200 determines whether or not the trigger condition for starting the Measurement report is satisfied.
  • the trigger condition does not include a condition in which the number of neighboring cells observed by the UE 200 exceeds a threshold (eg, numOfTriggerCell).
  • the trigger condition may include the above-mentioned enterting condition for each event.
  • step S24 the trigger condition is satisfied in step S24. If the trigger condition is not met, the measurement of reception quality for the serving cell and neighboring cells is continued. The determination in step S24 may be made in response to the detection of a new cell. The determination in step S24 may be made on a regular basis. If the leaving conditions are met, the UE 200 ends Measurement reporting.
  • step S25 UE200 sends a Measurement report. Since the operation of step S25 is the same as that of step S12, the description thereof will be omitted.
  • step S26 the UE 200 activates a timer (for example, ULInterferenceProhibitTimer).
  • a timer for example, ULInterferenceProhibitTimer
  • step S27 UE200 determines whether the timer has expired. If the determination result is YES, UE200 returns to the process of step S21. If the determination result is YES, the UE 200 waits until the timer expires.
  • the trigger condition used for determining whether or not to execute Measurement reporting may include at least a condition relating to an individual beam from a neighboring cell.
  • Conditions for individual beams may include conditions where the total number of beams observed as beams from neighboring cells exceeds a threshold (eg, numOfTriggerBeam).
  • the UE200 is an unmanned aerial vehicle (UAV)
  • UAV unmanned aerial vehicle
  • the visibility of the propagation environment is good, and the beam from the NR cell is easily observed. Therefore, embodiments are useful in cases where the UE 200 is an unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle
  • the UE200 is not limited to an unmanned aerial vehicle (UAV) because the same situation can occur in a case where the UE200 is on a higher floor.
  • Event X1 For example, the entertaining condition for Event X1 may be defined as the number of neighour beams whose qualities become offset better than PCell / PSCell exceeds the number X1.
  • the enterting condition of Event X1 is the number of beams that have a better reception quality by offset than the reception quality of the serving cell (PCell or PSCell) for the beams observed as beams from neighboring cells. ) Exceeds the threshold (the number X1).
  • the parameters (offset, threshold value) that define the enterting condition may be included in the above-mentioned reportConfig.
  • Event Y1 For example, the entertaining condition for Event Y1 may be defined as the number of neighbor beams whose qualities become better than absolute threshold exceeds the number Y1.
  • the enterting condition of Event Y1 is that the number of beams (the number of neighour beams) having better reception quality than the absolute threshold (absolute threshold) is the threshold value (the number of neighour beams) for the beams observed as beams from neighboring cells. Includes the condition that the number Y1) is exceeded.
  • the parameters (absolute threshold value, threshold value) that define the enterting condition may be included in the above-mentioned reportConfig.
  • Event Z1 For example, the entertaining condition of Event Z1 may be defined as the PCell / PSCell becomes worse than absolute threshold1 AND the number of neighbor beams whose qualities become better than another absolute threshold2 exceeds the number Z1.
  • the enterting condition of Event Z1 is that the reception quality of the serving cell (PCell / PSCell) is worse than the absolute threshold (threshold1), and the beam observed as a beam from the neighboring cell has an absolute threshold (another absolute threshold2). ) Includes the condition that the number of beams (the number of neighour beams) with better reception quality exceeds the threshold (the number Z1).
  • the trigger condition includes a condition in which the reception quality of the serving cell is worse than the absolute threshold value, in addition to the condition regarding the beam observed as the beam from the neighboring cell.
  • the parameters (absolute threshold value, threshold value) that define the enterting condition may be included in the above-mentioned reportConfig.
  • the situation where the measurement report related to the NR cell is frequently transmitted is suppressed.
  • the entry condition for each event includes the condition for individual beams from neighboring cells.
  • the conditions for individual beams are as follows for Event A3 to Event A5 described above.
  • the conditions for the individual beams may include the condition that the reception quality of the beams is better than the absolute threshold.
  • the trigger condition includes a condition defined for the reception quality of at least one of the serving cell and the neighboring cell.
  • Event A3 * The entertaining condition of Event A3 * may be defined as Neighborhood becomes amount of offset better than PCell / PSCell, and each beam of Neighborhood is better than absolute threshold X2.
  • the parameter (absolute threshold value) that defines the enterting condition may be included in the above-mentioned reportConfig.
  • Event A4 * The entertaining condition of Event A4 * may be defined as Neighborhood becomes better than absolute threshold, and each beam of Neighborhood is better than another absolute threshold Y2.
  • each of the beams observed as beams from neighboring cells is better than the absolute threshold (another absolute thresholdY2).
  • the parameter (absolute threshold value) that defines the enterting condition may be included in the above-mentioned reportConfig.
  • Event A5 * The entertaining condition of Event A5 * may be defined as PCell / PSCell becomes worse than absolute threshold1 AND Neighborhood becomes better than another absolute threshold2, AND each beam of Neighborhood is better than another absolute threshold Z2.
  • each of the beams observed as beams from neighboring cells is better than the absolute threshold (another absolute thresholdZ2).
  • the parameter (absolute threshold value) that defines the enterting condition may be included in the above-mentioned reportConfig.
  • the situation where the measurement report related to the NR cell is frequently transmitted is suppressed.
  • the condition that the reception quality of the beam is better than the absolute threshold value is included. According to such a configuration, when a beam having a good reception quality and a beam having a poor reception quality are mixed, a measurement report containing measResults regarding an unstable NR cell that transmits these beams is transmitted. It is possible to reduce the possibility that an unstable NR cell is selected as the target cell for handover, and the success rate of Mobility is improved.
  • the UE200 is an unmanned aerial vehicle (UAV)
  • UAV unmanned aerial vehicle
  • the visibility of the propagation environment is good, and the possibility that a beam having good reception quality and a beam having poor reception quality are mixed increases. Therefore, embodiments are useful in cases where the UE 200 is an unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle
  • the UE200 is not limited to an unmanned aerial vehicle (UAV) because the same situation occurs when the UE200 is on a higher floor.
  • the reception quality of the NR cell may be the average value of the reception quality of the observed beam.
  • the reception quality of the NR cell may be the median reception quality of the observed beam.
  • the NR cell may be a serving cell or an adjacent cell. For example, when the NR cell is an adjacent cell, the above-mentioned Event A3 to Event A5 and the above-mentioned Event A3 * to Event A5 * may be rewritten as follows.
  • Event A3 ** The entertaining condition of Event A3 ** may be defined as Neighborhood becomes amount of offset better than PCell / PSCell, the neighbor is calculated by median value of beams' qualities of the cell by rewriting Event A3. That is, the reception quality of neighboring cells compared with the serving cell (PCell / PSCell) in Event A3 is calculated by the median value of the beam.
  • the entertaining condition of Event A3 ** can be defined as Neighbor becomes amount of offset better than Pcell / PSCell and median value of beams' qualities of neighbor is better than absolute thresholdX by rewriting the entertaining condition of Event A3 *. May be done. That is, the reception quality of neighboring cells compared with the absolute threshold (absolute thresholdX2) in Event A3 * is calculated by the median value of the beam.
  • Event A4 ** The entertaining condition of Event A4 ** may be defined as Neighborhood becomes better than absolute threshold, the neighbor is calculated by median value of beams' qualities of the cell by rewriting Event A4. That is, the reception quality of neighboring cells compared with the absolute threshold in Event A4 is calculated by the median value of the beam.
  • the entertaining condition of Event A4 ** may be defined as Neighbor becomes better than absolute threshold and median value of beams' qualities of neighbor is better than absolute threshold Y2 by rewriting the entertaining condition of Event A4 *. .. That is, the reception quality of neighboring cells compared with the absolute threshold (absolute thresholdY2) in Event A4 * is calculated by the median value of the beam.
  • Event A5 ** The entertaining condition of Event A5 ** is defined as PCell / PSCell becomes worse than absolute threshold1 AND Neighbor becomes better than another absolute threshold2, the neighbor is calculated by median value of beams' qualities of the cell by rewriting Event A5. May be done. The reception quality of neighboring cells compared to another absolute threshold in Event A5 is calculated by the median of the beam.
  • the entertaining condition of Event A5 ** can be changed from the entertaining condition of Event A5 * by rewriting the entertaining condition of Event A5 *. It may be defined as is better than absolute threshold Z2. That is, the reception quality of neighboring cells compared with the absolute threshold (absolute thresholdZ2) in Event A5 * is calculated by the median value of the beam.
  • the situation where the measurement report related to the NR cell is frequently transmitted is suppressed. Further, as in the second modification, it is possible to reduce the possibility that an unstable NR cell is selected as the target cell for handover.
  • the trigger condition used for determining whether or not to execute Measurement reporting is the condition for starting Measurement reporting (for example, the enterting condition) has been mainly described.
  • the trigger condition may be a condition for ending Measurement reporting (for example, a leaving condition).
  • the trigger condition may include the condition that the total number of beams observed as beams from neighboring cells is below the threshold.
  • the reception quality of neighboring cells is calculated by the median value of the beam.
  • the third modification is not limited to this.
  • the reception quality of the serving cell may be calculated by the median value of the beam.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs the calculation, controls the communication by the communication device 1004, and the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the hardware may realize a part or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a truth value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a part or all of a base station that provides communication services in this coverage and at least one of the coverage areas of a base station subsystem.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the time interval for example, the number of symbols
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as the Pilot depending on the applied standard.
  • RS Reference Signal
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • 100 ... wireless communication system 110 ... E-UTRAN, 111 ... eNB, 120 ... NG RAN, 121 ... gNB 121, 200 ... UE, 210 ... receiver, 220 ... measurement unit, 230 ... transmitter, 240 ... control unit, 1001 ... Processor, 1002... Memory, 1003... Storage, 1004... Communication device, 1005... Input device, 1006... Output device, 1007... Bus, C11 ⁇ C13... Cell, C21 ⁇ C23... Cell, P40... Serving cell, N50 (N51, N51, N52) ... Neighboring cell, N60 (N61-N63) ... Neighboring cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を無線アクセスネットワークに送信する送信部と、前記測定報告を送信する手順を実行するか否かの判定に用いるトリガ条件が満たされているか否かを判定する制御部と、を備える。前記トリガ条件は、少なくとも、前記近隣セルからの個別のビームに関する条件を含む。

Description

端末及び測定報告送信方法
 本発明は、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を無線アクセスネットワークに送信する端末及び測定報告送信方法に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(以下、5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)の仕様化も進められている。さらに、5G以降の移動通信方式の仕様化も進められている(6Gやbeyond 5Gなどと呼称される場合もあるが、これらの呼称に限られない)。
 NRでは、端末(UE)が、サービングセル(無線リソース制御(RRC)レイヤにおける接続状態(RRC Connected)のセル)及びサービングセルの近隣に形成される近隣セルに関する受信品質(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal-to-Interference plus Noise Ratio)など)の測定結果を含むMeasurement reportを無線アクセスネットワーク(NG RAN)に送信することができる(非特許文献1参照)。
3GPP TS38.331 V15.7.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC); Protocol specification (Release 15)、3GPP、2019年9月
 上述した技術では、エンタリング条件が満たされた場合に、測定報告を送信する手順(Measurement reporting)が開始される。エンタリング条件は、セル単位の受信品質について定められる条件を含む。
 ところで、近年では、各セルから1以上の指向性の強いビームを放射する技術が提案されている(beam formingなど)。しかしながら、セル単位の受信品質について定められるエンタリング条件は、このような技術を想定していない。このような状況下において、発明者等は、鋭意検討の結果、上述した状況に鑑み、測定報告の送信の頻発に伴ってアップリンクの干渉が増大する可能性があることを見出した。
 本開示の一態様は、端末であって、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を無線アクセスネットワークに送信する送信部と、前記測定報告を送信する手順を実行するか否かの判定に用いるエンタリング条件が満たされているか否かを判定する制御部と、を備え、前記エンタリング条件は、少なくとも、前記セルからの個別のビームに関する条件を含む。
 本開示の一態様は、測定報告送信方法であって、端末から無線アクセスネットワークに対して、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を送信するステップと、前記端末が、前記測定報告を送信する手順を実行するか否かの判定に用いるエンタリング条件が満たされているか否かを判定するステップと、を備え、前記エンタリング条件は、少なくとも、前記セルからの個別のビームに関する条件を含む。
図1は、無線通信システム10の全体概略構成図である。 図2は、実施形態に係る適用シーンについて説明するための図である。 図3は、実施形態に係るUE200を示す図である。 図4は、実施形態に係るMeasConfigの一例を示す図である。 図5は、実施形態に係るMeasResultsの一例を示す図である。 図6は、実施形態に係る測定報告送信方法を示すシーケンス図である。 図7は、実施形態に係るUE200の動作を示すフロー図である。 図8は、実施形態に係るUE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム100の全体概略構成図である。無線通信システム100は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。なお、LTEは4Gと呼ばれてもよいし、NRは、5Gと呼ばれてもよい。LTE及びNRは、無線アクセス技術(RAT)と解釈されてもよく、実施形態では、LTEは、第1無線アクセス技術と呼ばれ、NRは、第2無線アクセス技術と呼ばれてもよい。NRは、5G以降の無線アクセス技術も含まれると考えてもよい。
 無線通信システム100は、Evolved Universal Terrestrial Radio Access Network 110(以下、E-UTRAN110)、及びNext Generation-Radio Access Network 120(以下、NG RAN120)を含む。また、無線通信システム100は、端末200を含む。
 E-UTRAN110は、LTEに従った無線基地局であるeNB111を含む。eNB111は、1以上のセル(ここでは、セルC11、C12、C13)を有する。eNB111が有するセルは1つであってもよい。
 NG RAN120は、5G(NR)に従った無線基地局であるgNB121を含む。gNB121は、1以上のセル(ここでは、セルC21、C22、C23)を有する。gNB121が有するセルは1つであってもよい。
 「セル」という用語は、eNB111又はgNB121が有する機能、すなわち、端末200と通信を行う機能の意味で用いられてもよい。「セル」という用語は、eNB111又はgNB121のカバレッジエリアの意味で用いられてもよい。各セルは、各セルで使用する周波数によって区別されてもよい。E-UTRAN110及びNG RAN120(eNB111又はgNB121でもよい)は、単に無線アクセスネットワークと呼ばれてもよく、ネットワークと呼ばれてもよい。
 eNB1111、gNB121及び端末200は、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)に対応していてもよく、複数のNG-RAN Nodeと端末200との間においてコンポーネントキャリアを同時送信するデュアルコネクティビティ(DC)に対応してもよい。
 eNB111、gNB121及び端末200は、無線ベアラを介して無線通信を実行する。無線ベアラは、SRB Signaling Radio Bearer(SRB)及びDRB Data Radio Bearer(DRB)を含んでもよい。
 端末200は、特に限定されるものではないが、「移動局(Mobile Station:MS)」、「ユーザ端末(User Equipment:UE)」と呼ばれてもよい。以下においては、端末200についてUE200と称する。UE200は、無人航空機(Unmanned Aerial Vehicles (UAV))であってもよい。サービングセルは、PCell(Primary Cell)と呼ばれてもよく、PSCell(Primary Secondary Cell)と呼ばれてもよい。
 (2)適用シーン
 図2は、実施形態に係る適用シーンについて説明するための図である。ここでは、UE200のサービングセルがセルP40であるケースについて例示する。例えば、サービングセルの近隣に形成される近隣セルは、セルN50(ここでは、セルN51、N52)、セルN60(ここでは、セルN61、N62、N63)を含んでもよい。
 セルP40は、E-UTRAN110に属するセルであってもよく、NG RAN120に属するセルであってもよい。例えば、セルN50は、E-UTRAN110に属するセルであり、セルN60は、NG RAN120に属するセルであってもよい。以下においては、E-UTRAN110に属するセルについてEUTRAセルと称することがあり、NG RAN120に属するセルについてNRセルと称することがある。
 ここで、NG RAN120に属するセル(例えば、セルN61、N62、N63)は、指向性が強い1以上のビーム(図2では、3本のビーム)を出力するように構成されてもよい。指向性が強いビームは、多数(例えば、最大で128)のアンテナによって実現される。このような技術は、Massive MIMO(Multi Input Multi Output)技術と呼ばれてもよい。
 このような背景下において、UE200は、サービングセル(ここでは、セルP40)及び近隣セル(ここでは、セルN51、N52、N61、N62、N63)を含むセルに関する受信品質を含む測定報告(以下、Measurement report)を無線アクセスネットワーク(ここでは、セルP40)に送信する。UE200がMeasurement reportを送信する手順は、Measurement reporting)と呼ばれてもよい。セルに関する受信品質は、セルからのビームの受信品質を含んでもよく、セルからのビームに基づいたセルの受信品質を含んでもよい。
 UE200は、定期的にMeasurement reportingを実行してもよい。UE200は、イベント毎にMeasurement reportingを実行してもよい。Measurement reportingを開始するエンタリング条件及びMeasurement reportingを終了するリービング条件がイベント毎に定められてもよい。既存のイベントは、以下に示すイベントを含んでもよい(3GPP TS38.331 V15.7.0の5.5.4.2~5.5.4.7章“Event A1”~“Event A6”を参照)。
 (i)Event A1
 Event A1は、サービングセルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Ms - Hys > Threshであり、リービング条件は、Ms + Hys < Threshである。
 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Threshは、閾値である。
 (ii)Event A2
 Event A2は、サービングセルの受信品質が閾値よりも悪くなるイベントである。例えば、エンタリング条件は、Ms + Hys < Threshであり、リービング条件は、Ms - Hys > Threshである。
 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Threshは、閾値である。
 (iii)Event A3
 Event A3は、近隣セルの受信品質がサービングの受信品質よりもオフセットだけ良くなるイベントである。例えば、エンタリング条件は、Mn + Ofn+ Ocn - Hys > Mp + Ofp + Ocp + Offであり、リービング条件は、Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Offである。
 ここで、Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Mpは、サービングセルの受信品質であり、Ofpは、測定対象に固有のオフセットであり、Ocpは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Offは、Event A3で用いるパラメータである。
 (iv)Event A4
 Event A4は、近隣セルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Mn + Ofn + Ocn - Hys > Threshであり、リービング条件は、Mn + Ofn + Ocn + Hys < Threshである。
 ここで、Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Threshは、閾値である。
 (v)Event A5
 Event A5は、サービングセルの受信品質が閾値よりも悪くなり、かつ、近隣セルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Mp + Hys < Thresh1、かつ、Mn + Ofn + Ocn - Hys > Thresh2であり、リービング条件は、Mp - Hys > Thresh1、かつ、Mn + Ofn + Ocn + Hys < Thresh2である。
 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Thresh1は、閾値である。Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Thresh2は、閾値である。
 (vi)Event A6
 Event A6は、近隣セルの受信品質がSCell(Secondary Cell)の受信品質よりもオフセットだけ良くなるイベントである。例えば、エンタリング条件は、Mn + Ocn - Hys > Ms + Ocs + Offであり、リービング条件は、Mn + Ocn + Hys < Ms + Ocs + Offである。
 ここで、Mnは、近隣セルの受信品質であり、Ocnは、セルに固有のオフセットである。Msは、SCellの受信品質であり、Ocsは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Offは、Event A6で用いるパラメータである。
 上述したように、既存のイベントでは、エンタリング条件及びリービング条件は、セル単位の受信品質について定められるに過ぎない。これに対して、実施形態では、Measurement reportingを実行するか否かの判定に用いるトリガ条件は、少なくとも、近隣セルからの個別のビームに関する条件を含んでもよい。具体的には、Measurement reportingを開始するか否かの判定に用いるトリガ条件(個別のビームに関する条件)は、近隣セルからのビームとして観測されるビームの総数が閾値を超える条件を含んでもよい。ビームの総数と比較される閾値は、numOfTriggerBeamと呼ばれてもよい。ビームの数としてSS/PBCH Block(Synchronization Signal/Physical Broadcast Channel Block)の数をカウントする場合には、上述した閾値は、numOfTriggerSSBと呼ばれてもよい。ビームの数としてCSI(Channel State Information)-RS(Reference Signal)の数をカウントする場合には、上述した閾値は、numOfTriggerCSI-RSと呼ばれてもよい。
 閾値(例えば、numOfTriggerBeam)は、近隣セルの全体を対象に設定されてもよい。例えば、図2に示すように、近隣セルとしてセルN61、N62、N63が設けられるケースにおいて、閾値として“9”が構成される場合において、UE200は、セルN61、N62、N63からの全てのビーム(9つのビーム)が観測される場合に、Measurement reportingを開始してもよい。或いは、近隣セルとしてセルN61、N62、N63が設けられるケースにおいて、閾値として“6”が構成される場合において、UE200は、セルN61、N62、N63からのビームとして観測されるビームの総数が“6”以上である場合に、Measurement reportingを開始してもよい。
 閾値(例えば、numOfTriggerBeam)は、1つの近隣セルを対象に設定されてもよい。例えば、図2に示すように、近隣セルとしてセルN61が対象とされるケースにおいて、閾値として“3”が構成される場合において、UE200は、セルN61からの全てのビーム(3つのビーム)が観測される場合に、Measurement reportingを開始してもよい。或いは、近隣セルとしてセルN61が対象とされるケースにおいて、閾値として“2”が構成される場合において、UE200は、セルN61からのビームとして観測されるビームの総数が“2”以上である場合に、Measurement reportingを開始してもよい。
 ビームの総数と閾値とを比較する処理は、上述したイベント(例えば、Event A3、A4、A5、A6)でトリガされた近隣セルを対象として実行されてもよい。
 トリガ条件は、UE200によって観測される近隣セルの数が閾値を超える条件を含んでもよい。近隣セルの数と比較される閾値は、numOfTriggerCellと呼ばれてもよい。UE200は、UE200によって観測される近隣セルの数が閾値(例えば、numOfTriggerCell)を超える場合に、Measurement reportingを開始してもよい。numOfTriggerCellは、numOfTriggerBeamと併用されてもよい。
 トリガ条件は、Measurement reportを送信してから一定時間が経過するという条件を含んでもよい。Measurement reportの送信によって起動するタイマが満了するまで、Measurement reportの送信が禁止されてもよい。このようなタイマは、ULInterferenceProhibitTimerと呼ばれてもよい。ULInterferenceProhibitTimerは、numOfTriggerBeamと併用されてもよい。
 (3)端末の機能ブロック構成
 図3は、実施形態に係るUE200の機能ブロック構成を示す図である。図3に示すように、UE200は、受信部210と、測定部220と、送信部230と、制御部240と、を備える。
 受信部210は、ネットワーク(例えば、eNB111又はgNB121)から各種情報を受信する。実施形態では、受信部210は、Measurement reportingの実行に用いる構成情報要素(以下、MeasConfig)をネットワーク(例えば、サービングセル)から受信する。
 ネットワークは、SS/PBCH Block毎の測定結果(以下、Measurement results)をUEに報告させるMeasurement reportingを構成することができる。ネットワークは、SS/PBCH Block(s)毎のMeasurement resultsをUEに報告させるMeasurement reportingを構成してもよく、SS/PBCH Block(s)に基づいたセル毎のMeasurement resultsをUEに報告させるMeasurement reportingを構成してもよい。ネットワークは、CSI-RSリソース毎のMeasurement resultsをUEに報告させるMeasurement reportingを構成してもよく、CSI-RSリソースに基づいたセル毎のMeasurement resultsをUEに報告させるMeasurement reportingを構成してもよい。
 例えば、MeasConfig(構成情報要素)は、図4に示すように、measObjectToRemoveList、measObjectToAddModList、reportConfigToRemoveList、reportConfigToAddModList、measIdToRemoveList、measIdToAddModList、s-MeasureConfig、quantityConfig、measGapConfig、measGapSharingConfigなどを含む(3GPP TS38.331 V15.7.0の6.3.2章“Radio resource control information elements”の“MeasConfig”欄を参照)。
 measObjectToRemoveListは、削除すべきmeasObjectのリストであり、measObjectToAddModListは、追加又は修正すべきmeasObjectのリストである。measObjectは、UE200が測定を実行すべき対象のリストである。measObjectは、周波数によって指定されてもよい。
 reportConfigToRemoveListは、削除すべきreportConfigのリストであり、reportConfigToAddModListは、追加又は修正すべきreportConfigのリストである。reportConfigは、measObject毎の報告構成である。報告構成は、Measurement reportを送信する条件、UE200が用いるRS(Reference Signal)のタイプ、報告フォーマットなどを含んでもよい。Measurement reportを送信する条件は、上述したイベントの種別、上述したイベント毎に定められた条件を定義するパラメータ(閾値、ヒステリシス、オフセットなど)を含んでもよい。RSのタイプは、SS/PBCH Block又はCSI-RSを指定する情報要素であってもよい。
 実施形態では、ビームの数と比較される閾値(例えば、numOfTriggerBeam)は、reportConfigに含まれてもよい。近隣セルの数と比較される閾値(例えば、numOfTriggerCell)は、reportConfigに含まれてもよい。Measurement reportの送信によって起動されるタイマ(例えば、ULInterferenceProhibitTimer)にセットされる値は、reportConfigに含まれてもよい。
 measIdToRemoveListは、削除すべきmeasIdのリストであり、measIdToAddModListは、追加又は修正すべきmeasIdのリストである。measIdは、measObjectとreportConfigとをリンクさせる識別子である。
 s-MeasureConfigは、非サービングセル( intra-frequency, inter-frequency and inter-RAT neighbouring cells)の測定をUE200が行うか否かを制御するためのサービングセル(PCell/PSCell)の閾値である。quantityConfigは、測定をフィルタリングすべき構成を定義する情報要素である。measGapConfig及びmeasGapSharingConfigは、測定を実行するためにUE200が用いる情報要素である。
 測定部220は、サービングセル及び近隣セルを含むセルに関する受信品質を測定する。例えば、測定部220は、EUTRAセルから受信するRS(Reference Signal)の受信品質を測定する。測定部220は、NRセルからのビームとして観測されるビームの受信品質を測定する。受信品質は、RSRPであってもよく、RSRQであってもよく、SINRであってもよい。NRセルの受信品質は、観測されるビームの受信品質の平均値であってもよい。
 送信部230は、ネットワーク(eNB111又はgNB121)に各種情報を送信する。実施形態では、送信部230は、Measurement reportをネットワーク(例えば、サービングセル)に送信する。
 例えば、Measurement reportは、図5に示すmeasResults(測定結果)を含む。具体的には、MeasResultsは、measId、measResultServingMOList、measResultNeighCells、measResultServFreqListEUTRA-SCG、measResultServFreqListNR-SCG、measResultSFTD-EUTRA、measResultSFTD-NR、measResultCellListSFTD-NRを含む(TS38.331 V15.7.0の6.3.2章“Radio resource control information elements”の“measResults”欄を参照)。
 measIdは、報告が行われた報告の識別子である。measResultServingMOListは、measObjectに含まれるSpCell、SCell、best neighbouring cellの測定結果を含む。measResultNeighCellsは、EUTRAセルの測定結果、NRセルの測定結果を含む。measResultServFreqListEUTRA-SCGは、EUTRAのSCG(Secondary Cell Group)のサービング周波数の測定結果を含む。measResultServFreqListNR-SCGは、NRのSCGのサービング周波数の測定結果を含む。
 measResultSFTD-EUTRAは、NR-E-UTRA Dual Connectivityにおいて、NRのPCellとEUTRAセルとの間のSFTD測定(SFN and Frame timing difference measurement)の結果を含む。
 measResultSFTD-NRは、NR-NR Dual Connectivityにおいて、NRのPCellとNRのPSCellとの間のSFTD測定の結果を含む。
 measResultCellListSFTD-NRは、NRのPCellとNRの近隣セルとの間のSFTD測定の結果を含む。
 制御部240は、UE200の動作を制御する。例えば、制御部240は、定期的にMeasurement reportingを実行してもよい。制御部240は、イベント毎にMeasurement reportingを実行してもよい。Measurement reportingを開始するエンタリング条件及びMeasurement reportingを終了するリービング条件がイベント毎に定められてもよい。
 具体的には、制御部240は、Measurement reportingを開始するか否かの判定に用いるトリガ条件が満たされた場合に、Measurement reportingを開始する。上述したイベント毎のエンタリング条件は、トリガ条件の一部であると考えてもよい。制御部240は、Measurement reportingを終了するか否かの判定に用いるトリガ条件が満たされた場合に、Measurement reportingを終了する。上述したイベント毎のリービング条件は、トリガ条件の一部であると考えてもよい。
 ここで、トリガ条件は、少なくとも、近隣セルからの個別のビームに関する条件を含んでもよい。具体的には、個別のビームに関する条件は、近隣セルからのビームとして観測されるビームの総数が閾値(例えば、numOfTriggerBeam)を超える条件を含んでもよい。
 トリガ条件は、UE200によって観測される近隣セルの数が閾値(例えば、numOfTriggerCell)を超える条件を含んでもよい。numOfTriggerBeam及びnumOfTriggerCellは併用されてもよい。
 トリガ条件は、Measurement reportの送信によって起動するタイマ(ULInterferenceProhibitTimer)が満了するという条件を含んでもよい。言い換えると、タイマが満了するまで、Measurement reportの送信が禁止されてもよい。
 (4)測定報告送信方法
 第1に、UE200とネットワークとの関係に基づいて、測定報告送信方法について説明する。図6は、実施形態に係る測定報告送信方法を示すシーケンス図である。
 図6に示すように、ステップS10において、UE200は、RRC Connection Reconfigurationをネットワーク(ここでは、セルP40)から受信する。セルP40は、サービングセルである。RRC Connection Reconfigurationは、RRC接続を再構成する際に送信されるメッセージである。上述したように、RRC Connection Reconfigurationは、図4に示すMeasConfig(情報要素)を含む。
 ステップS11において、UE200は、MeasConfigに基づいて測定を実行する。具体的には、UE200は、サービングセル及び近隣セルを含むセルに関する受信品質を測定する。近隣セルは、EUTRAセルを含んでもよく、NRセルを含んでもよい。受信品質は、RSRPであってもよく、RSRQであってもよく、SINRであってもよい。NRセルの受信品質は、観測されるビームの受信品質の平均値であってもよい。
 ステップS12において、UE200は、Measurement reportを送信する。Measurement reportは、図5に示すMeasResultsを含む。MeasResultsは、SS/PBCH Block(s)のMeasurement resultsを含んでもよく、SS/PBCH Block(s)に基づいたセル毎のMeasurement resultsを含んでもよい。MeasResultsは、CSI-RSリソース毎のMeasurement resultsを含んでもよく、CSI-RSリソースに基づいたセル毎のMeasurement resultsを含んでもよい。
 第2に、UE200の動作に基づいて、測定報告送信方法について説明する。図7は、実施形態に係る測定報告送信方法を示すフロー図である。
 図7に示すように、ステップS20において、UE200は、MeasConfigを受信する。例えば、MeasConfigは、RRC Connection Reconfigurationに含まれる。
 ステップS21において、UE200は、MeasConfigに基づいて測定を実行する。ステップS21の動作はステップS11と同様であるため、その説明については省略する。
 ステップS22において、UE200は、numOfTriggerBeamがMeasConfigに含まれるか否かを判定する。判定結果がYESである場合には、UE200はステップS23の処理を行う。判定結果がNOである場合には、UE200はステップS24の処理を行う。
 ステップS23において、UE200は、Measurement reportingを開始するトリガ条件が満たされているか否かを判定する。ステップS23では、トリガ条件は、UE200によって観測される近隣セルの数が閾値(例えば、numOfTriggerCell)を超える条件を含む。トリガ条件は、上述したイベント毎のエンタリング条件を含んでもよい。
 ここでは、ステップS23においてトリガ条件が満たされているものとして説明を続ける。トリガ条件が満たされていない場合には、サービングセル及び近隣セルに関する受信品質の測定を継続する。ステップS23の判定は新たなセルの検出に応じて行われてもよい。ステップS23の判定は定期的に行われてもよい。リービング条件が満たされた場合には、UE200はMeasurement reportingを終了する。
 ステップS24において、UE200は、Measurement reportを開始するトリガ条件が満たされているか否かを判定する。ステップS23では、トリガ条件は、UE200によって観測される近隣セルの数が閾値(例えば、numOfTriggerCell)を超える条件を含まない。トリガ条件は、上述したイベント毎のエンタリング条件を含んでもよい。
 ここでは、ステップS24においてトリガ条件が満たされているものとして説明を続ける。トリガ条件が満たされていない場合には、サービングセル及び近隣セルに関する受信品質の測定を継続する。ステップS24の判定は新たなセルの検出に応じて行われてもよい。ステップS24の判定は定期的に行われてもよい。リービング条件が満たされた場合には、UE200はMeasurement reportingを終了する。
 ステップS25において、UE200は、Measurement reportを送信する。ステップS25の動作はステップS12と同様であるため、その説明については省略する。
 ステップS26において、UE200は、タイマ(例えば、ULInterferenceProhibitTimer)を起動する。
 ステップS27において、UE200は、タイマが満了したか否かを判定する。判定結果がYESである場合に、UE200は、ステップS21の処理に戻る。判定結果がYESである場合に、UE200は、タイマが満了するまで待機する。
 (5)作用及び効果
 実施形態では、Measurement reportingを実行するか否かの判定に用いるトリガ条件は、少なくとも、近隣セルからの個別のビームに関する条件を含んでもよい。個別のビームに関する条件は、近隣セルからのビームとして観測されるビームの総数が閾値(例えば、numOfTriggerBeam)を超える条件を含んでもよい。このような構成によれば、近隣セル(NRセル)からの一部のビームが観測されただけでMeasurement reportingが開始する可能性が軽減され、NRセルに関するMeasurement reportの送信が頻発してしまう事態が抑制される。
 ここで、UE200が無人航空機(UAV)であるケースにおいては、伝搬環境の見通しが良好であり、NRセルからのビームが観測されやすい。従って、実施形態は、UE200が無人航空機(UAV)であるケースにおいて有用である。但し、UE200が無人航空機(UAV)でないケースであっても、UE200が高層階に存在するケースなどにおいて同様の状況が生じ得ることから、UE200が無人航空機(UAV)に限定されるものではない。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
 実施形態では、イベント毎のエントリー条件とは別に、近隣セルからの個別のビームに関する条件が構成されるケースについて説明した。これに対して、変更例1では、イベント毎のエントリー条件が、近隣セルからの個別のビームに関する条件を含むケースについて例示する。具体的には、以下に示す新たなEventが導入されてもよい。
 (i)Event X1
 例えば、Event X1のエンタリング条件は、the number of neighour beams whose qualities become offset better than PCell/PSCell exceeds the number X1と定義されてもよい。
 すなわち、Event X1のエンタリング条件は、近隣セルからのビームとして観測されるビームについて、サービングセル(PCell又はPSCell)の受信品質よりもオフセットだけ良好な受信品質を有するビームの数(the number of neighour beams)が閾値(the number X1)を超えるという条件を含む。
 ここで、エンタリング条件を定義するパラメータ(オフセット、閾値)については、上述したreportConfigに含まれてもよい。
 (ii)Event Y1
 例えば、Event Y1のエンタリング条件は、the number of neighbour beams whose qualities become better than absolute threshold exceeds the number Y1と定義されてもよい。
 すなわち、Event Y1のエンタリング条件は、近隣セルからのビームとして観測されるビームについて、絶対閾値(absolute threshold)よりも良好な受信品質を有するビームの数(the number of neighour beams)が閾値(the number Y1)を超えるという条件を含む。
 ここで、エンタリング条件を定義するパラメータ(絶対閾値、閾値)については、上述したreportConfigに含まれてもよい。
 (iii)Event Z1
 例えば、Event Z1のエンタリング条件は、the PCell/PSCell becomes worse than absolute threshold1 AND the number of neighbour beams whose qualities become better than another absolute threshold2 exceeds the number Z1と定義されてもよい。
 すなわち、Event Z1のエンタリング条件は、サービングセル(PCell/PSCell)の受信品質が絶対閾値(threshold1)よりも悪化し、かつ、近隣セルからのビームとして観測されるビームについて、絶対閾値(another absolute threshold2)よりも良好な受信品質を有するビームの数(the number of neighour beams)が閾値(the number Z1)を超えるという条件を含む。
 上述したように、Event Z1においては、トリガ条件は、近隣セルからのビームとして観測されるビームに関する条件に加えて、サービングセルの受信品質が絶対閾値よりも悪化する条件を含む。
 ここで、エンタリング条件を定義するパラメータ(絶対閾値、閾値)については、上述したreportConfigに含まれてもよい。
 このような構成によれば、実施形態と同様に、NRセルに関するMeasurement reportの送信が頻発してしまう事態が抑制される。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
 実施形態では、イベント毎のエントリー条件とは別に、近隣セルからの個別のビームに関する条件が構成されるケースについて説明した。これに対して、変更例2では、イベント毎のエントリー条件が、近隣セルからの個別のビームに関する条件を含むケースについて例示する。具体的には、上述したEvent A3~Event A5に個別のビームに関する条件が以下される。個別のビームに関する条件は、ビームの受信品質が絶対閾値よりも良好であるという条件を含んでもよい。さらに、トリガ条件(エンタリング条件)は、サービングセル及び近隣セルの少なくともいずれか1つの受信品質について定められる条件を含む。
 (i)Event A3*
 Event A3*のエンタリング条件は、Neighbour becomes amount of offset better than PCell/PSCell, and each beam of Neighbour is better than absolute thresholdX2と定義されてもよい。
 すなわち、上述したEvent A3のエンタリング条件に対して、近隣セルからのビームとして観測されるビームのそれぞれ(each beam of Neighbour)が絶対閾値(absolute thresholdX2)よりも良好であるという条件が追加される。
 ここで、エンタリング条件を定義するパラメータ(絶対閾値)については、上述したreportConfigに含まれてもよい。
 (ii)Event A4*
 Event A4*のエンタリング条件は、Neighbour becomes better than absolute threshold, and each beam of Neighbour is better than another absolute thresholdY2と定義されてもよい。
 すなわち、上述したEvent A4のエンタリング条件に対して、近隣セルからのビームとして観測されるビームのそれぞれ(each beam of Neighbour)が絶対閾値(another absolute thresholdY2)よりも良好であるという条件が追加される。
 ここで、エンタリング条件を定義するパラメータ(絶対閾値)については、上述したreportConfigに含まれてもよい。
 (iii)Event A5*
 Event A5*のエンタリング条件は、PCell/ PSCell becomes worse than absolute threshold1 AND Neighbour becomes better than another absolute threshold2, AND each beam of Neighbour is better than another absolute thresholdZ2.と定義されてもよい。
 すなわち、上述したEvent A5のエンタリング条件に対して、近隣セルからのビームとして観測されるビームのそれぞれ(each beam of Neighbour)が絶対閾値(another absolute thresholdZ2)よりも良好であるという条件が追加される。
 ここで、エンタリング条件を定義するパラメータ(絶対閾値)については、上述したreportConfigに含まれてもよい。
 このような構成によれば、実施形態と同様に、NRセルに関するMeasurement reportの送信が頻発してしまう事態が抑制される。
 さらに、変更例2においては、ビームの受信品質が絶対閾値よりも良好であるという条件を含む。このような構成によれば、良好な受信品質を有するビーム及び劣悪な受信品質を有するビームが混在する場合において、これらのビームを送出する不安定なNRセルに関するmeasResultsを含むMeasurement reportが送信され、ハンドオーバのターゲットセルとして不安定なNRセルが選択される可能性を軽減することができ、Mobilityの成功率が向上する。
 ここで、UE200が無人航空機(UAV)であるケースにおいては、伝搬環境の見通しが良好であり、良好な受信品質を有するビーム及び劣悪な受信品質を有するビームが混在する可能性が高まる。従って、実施形態は、UE200が無人航空機(UAV)であるケースにおいて有用である。但し、UE200が無人航空機(UAV)でないケースであっても、UE200が高層階に存在するケースなどにおいて同様の状況が生じることから、UE200が無人航空機(UAV)に限定されるものではない。
 [変更例3]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
 実施形態では、NRセルの受信品質は、観測されるビームの受信品質の平均値であってもよい。これに対して、変更例3では、NRセルの受信品質は、観測されるビームの受信品質の中央値であってもよい。NRセルは、サービングセルであってもよく、隣接セルであってもよい。例えば、NRセルが隣接セルである場合には、上述したEvent A3~Event A5、上述したEvent A3*~Event A5*は以下のように書き換えられてもよい。
 (i)Event A3**
 Event A3**のエンタリング条件は、Event A3を書き換えることによって、Neighbour becomes amount of offset better than PCell/PSCell, the neighbour is calculated by median value of beams’ qualities of the cellと定義されてもよい。すなわち、Event A3でサービングセル(PCell/PSCell)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 或いは、Event A3**のエンタリング条件は、Event A3*のエンタリング条件を書き換えることによって、Neighbour becomes amount of offset better than Pcell/PSCell and median value of beams’ qualities of neighbour is better than absolute thresholdX2と定義されてもよい。すなわち、Event A3*で絶対閾値(absolute thresholdX2)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 (ii)Event A4**
 Event A4**のエンタリング条件は、Event A4を書き換えることによって、Neighbour becomes better than absolute threshold, the neighbour is calculated by median value of beams’ qualities of the cellと定義されてもよい。すなわち、Event A4で絶対閾値(absolute threshold)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 或いは、Event A4**のエンタリング条件は、Event A4*のエンタリング条件を書き換えることによって、Neighbour becomes better than absolute threshold and median value of beams’ qualities of neighbour is better than absolute thresholdY2と定義されてもよい。すなわち、Event A4*で絶対閾値(absolute thresholdY2)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 (iii)Event A5**
 Event A5**のエンタリング条件は、Event A5を書き換えることによって、PCell/ PSCell becomes worse than absolute threshold1 AND Neighbour becomes better than another absolute threshold2, the neighbour is calculated by median value of beams’ qualities of the cellと定義されてもよい。Event A5で絶対閾値(another absolute threshold2)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 或いは、Event A5**のエンタリング条件は、Event A5*のエンタリング条件を書き換えることによって、PCell/ PSCell becomes worse than absolute threshold1 AND Neighbour becomes better than another absolute threshold2, and median value of beams’ qualities of neighbour is better than absolute thresholdZ2と定義されてもよい。すなわち、Event A5*で絶対閾値(absolute thresholdZ2)と比較される近隣セルの受信品質は、ビームの中央値によって算出される。
 このような構成によれば、実施形態と同様に、NRセルに関するMeasurement reportの送信が頻発してしまう事態が抑制される。さらに、変更例2と同様に、ハンドオーバのターゲットセルとして不安定なNRセルが選択される可能性を軽減することができる。
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 実施形態及び変更例では、Measurement reportingを実行するか否かの判定に用いるトリガ条件が、Measurement reportingを開始する条件(例えば、エンタリング条件)であるケースについて主として説明した。しかしながら、実施形態はこれに限定されるものではない。トリガ条件は、Measurement reportingを終了する条件(例えば、リービング条件)であってもよい。このようなケースにおいて、トリガ条件は、近隣セルからのビームとして観測されるビームの総数が閾値を下回るという条件を含んでもよい。
 変更例3では、近隣セルの受信品質がビームの中央値によって算出されるケースについて主として説明した。しかしながら、変更例3はこれに限定されるものではない。サービングセルの受信品質がビームの中央値によって算出されてもよい。
 上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したeNB111, gNB121及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、当該装置のハードウェア構成の一例を示す図である。図8に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 当該装置の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。

 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 100…無線通信システム、110…E-UTRAN、111…eNB、120…NG RAN、121…gNB121、200…UE、210…受信部、220…測定部、230…送信部、240…制御部、1001…プロセッサ、1002…メモリ、1003…ストレージ、1004…通信装置、1005…入力装置、1006…出力装置、1007…バス、C11~C13…セル、C21~C23…セル、P40…サービングセル、N50(N51,N52)…近隣セル、N60(N61~N63)…近隣セル

Claims (5)

  1.  サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を無線アクセスネットワークに送信する送信部と、
     前記測定報告を送信する手順を実行するか否かの判定に用いるトリガ条件が満たされているか否かを判定する制御部と、を備え、
     前記トリガ条件は、少なくとも、前記セルからの個別のビームに関する条件を含む、端末。
  2.  前記トリガ条件は、前記近隣セルからのビームとして観測されるビームの総数が閾値を超える条件を含む、請求項1に記載の端末。
  3.  前記トリガ条件は、前記近隣セルからのビームとして観測されるビームについて、前記サービングセルの受信品質又は絶対閾値よりも良好な受信品質を有するビームの総数が閾値を超える条件を含む、請求項1又は請求項2に記載の端末。
  4.  前記トリガ条件は、前記近隣セルからのビームとして観測されるビームの受信品質が前記サービングセルの受信品質又は絶対閾値よりも良好であるという条件を含む、請求項1に記載の端末。
  5.  端末から無線アクセスネットワークに対して、サービングセル及び近隣セルを含むセルに関する受信品質を含む測定報告を送信するステップと、
     前記端末が、前記測定報告を送信する手順を実行するか否かの判定に用いるトリガ条件が満たされているか否かを判定するステップと、を備え、
     前記トリガ条件は、少なくとも、前記セルからの個別のビームに関する条件を含む、測定報告送信方法。
PCT/JP2019/047851 2019-12-06 2019-12-06 端末及び測定報告送信方法 WO2021111620A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021562420A JP7440538B2 (ja) 2019-12-06 2019-12-06 端末及び測定報告送信方法
US17/756,870 US20230007521A1 (en) 2019-12-06 2019-12-06 Terminal and measurement report transmission method
PCT/JP2019/047851 WO2021111620A1 (ja) 2019-12-06 2019-12-06 端末及び測定報告送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047851 WO2021111620A1 (ja) 2019-12-06 2019-12-06 端末及び測定報告送信方法

Publications (1)

Publication Number Publication Date
WO2021111620A1 true WO2021111620A1 (ja) 2021-06-10

Family

ID=76222509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047851 WO2021111620A1 (ja) 2019-12-06 2019-12-06 端末及び測定報告送信方法

Country Status (3)

Country Link
US (1) US20230007521A1 (ja)
JP (1) JP7440538B2 (ja)
WO (1) WO2021111620A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128186A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP2019532586A (ja) * 2016-10-13 2019-11-07 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 測定報告方法および関連デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2018030845A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 송/수신단 변경을 위한 단말의 측정, 보고, 및 변경 절차와 이를 지원하는 기지국 절차를 특징으로 하는 장치 및 시스템
RU2745833C1 (ru) * 2017-09-28 2021-04-01 Телефонактиеболагет Лм Эрикссон (Пабл) Процедура произвольного доступа при многолучевом распространении при выполнении хендовера
CN118102371A (zh) * 2018-02-19 2024-05-28 瑞典爱立信有限公司 解决与nr小区质量推导相关的模糊性的方法和用户设备
EP3796570A4 (en) 2018-05-18 2022-01-05 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
US12088357B2 (en) * 2019-06-20 2024-09-10 Nokia Technologies Oy Performing radio channel measurements

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532586A (ja) * 2016-10-13 2019-11-07 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 測定報告方法および関連デバイス
WO2018128186A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ端末及び無線通信方法

Also Published As

Publication number Publication date
JP7440538B2 (ja) 2024-02-28
JPWO2021111620A1 (ja) 2021-06-10
US20230007521A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US20190230546A1 (en) User equipment and transmission method
CN112970280A (zh) 用户装置以及基站装置
JP7558958B2 (ja) 端末
JP7285324B2 (ja) 端末、通信システム、及び通信方法
WO2022044908A1 (ja) 端末及び無線通信システム
WO2021171721A1 (ja) 端末、無線基地局及び無線通信方法
WO2020144785A1 (ja) 端末及び通信方法
WO2022097686A1 (ja) 無線基地局、無線通信システム及び無線通信方法
WO2022039189A1 (ja) 端末及び無線通信システム
WO2022153372A1 (ja) 無線基地局及び端末
WO2022234654A1 (ja) 端末及び無線通信方法
WO2022085158A1 (ja) 端末及び無線基地局
WO2021075225A1 (ja) 端末
WO2022091191A1 (ja) 基地局、端末及び通信方法
JP7312837B2 (ja) 端末
WO2021192306A1 (ja) 端末
JP7186806B2 (ja) 端末、通信方法及び無線通信システム
CN117751627A (zh) 无线基站以及无线通信系统
JP7440538B2 (ja) 端末及び測定報告送信方法
EP4016870A1 (en) Terminal and communication method
WO2022137554A1 (ja) 無線基地局
JP2020155874A (ja) 基地局及び無線通信制御方法
WO2022085196A1 (ja) 端末
JP7273861B2 (ja) 端末、通信方法、及び無線通信システム
WO2022259537A1 (ja) 端末及び無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955154

Country of ref document: EP

Kind code of ref document: A1