WO2021110698A1 - Verfahren zur abstandsmessung mittels oct zur brennpunktsteuerung für laser bearbeitung von materialien und zugehöriges computerprogrammprodukt - Google Patents

Verfahren zur abstandsmessung mittels oct zur brennpunktsteuerung für laser bearbeitung von materialien und zugehöriges computerprogrammprodukt Download PDF

Info

Publication number
WO2021110698A1
WO2021110698A1 PCT/EP2020/084161 EP2020084161W WO2021110698A1 WO 2021110698 A1 WO2021110698 A1 WO 2021110698A1 EP 2020084161 W EP2020084161 W EP 2020084161W WO 2021110698 A1 WO2021110698 A1 WO 2021110698A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
workpiece
measuring
workpiece surface
optics
Prior art date
Application number
PCT/EP2020/084161
Other languages
English (en)
French (fr)
Inventor
Martin Stambke
Jan-Patrick Hermani
Original Assignee
Trumpf Laser Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser Gmbh filed Critical Trumpf Laser Gmbh
Priority to KR1020227022446A priority Critical patent/KR20220104819A/ko
Priority to CN202080084024.3A priority patent/CN114787579A/zh
Publication of WO2021110698A1 publication Critical patent/WO2021110698A1/de
Priority to US17/829,379 priority patent/US20220290973A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers

Definitions

  • the present invention relates to a method for distance measurement by means of an optical coherence tomography (English optical coherence tomography, OCT), the measuring beam of which is directed via laser processing optics, in particular via scanner optics, onto a workpiece surface.
  • OCT measurement technology is an interferometric relative distance measurement in which the length of the optical path length of a measurement section is compared with the path length of a reference section. Temperature differences between the measuring and reference sections lead to thermal drifts in the measured value. These drifts are not relevant for relative measurements, such as the height difference of a component or a welding depth measurement.
  • absolute measurements in particular to control the absolute distance between the laser processing optics and the workpiece, these thermal drifts pose a problem because they falsify the real distance value.
  • the temperatures are measured in the measurement and reference sections, and the drift is then compensated for using complex mathematical models.
  • the invention is based on the object of specifying an OCT measuring method with which distances, which are particularly relevant in the laser processing of workpieces, can be measured.
  • this object is achieved by a method for distance measurement by means of an OCT, the measuring beam of which is directed onto a workpiece surface via laser processing optics, in particular via scanner optics, with the following process steps:
  • step (a) the processing laser beam and the measuring beam are each directed perpendicular to the reference surface and in step (b) the measuring beam is directed perpendicular or obliquely onto the workpiece surface.
  • the laser processing optics are first aligned with a fixed reference point on the reference surface. This can be done by moving the entire laser processing optics at right angles to the optical axis running in the z-direction, i.e. in the x, y-direction, or in the case of laser processing optics designed as scanner optics, alternatively by deflecting the scanner mirror or mirrors. Then on the one hand the z-focus position of the processing laser beam is determined relative to the reference surface, e.g. using the method known from DE 10 2011 006 553 A1, and on the other hand, with the same setting of the laser processing optics, the reference distance between the reference arm mirror and the reference surface is measured using the measuring beam.
  • the focus position can be assigned to the OCT measuring system.
  • the measuring beam is then directed onto a workpiece, either by moving the laser processing optics in the x, y direction or by deflecting the scanner mirror (s), and the workpiece distance between the reference arm mirror and the workpiece surface is measured using the measuring beam. Based on the measured reference and workpiece distances and the measured focus distance, the distance between the focus position and the workpiece surface can be determined.
  • the measurements in steps (a) and (b) are carried out as promptly as possible so that any thermal drift that occurs between the measurements is negligible. He inventive method makes complex temperature control measures and faulty point temperature measurement as input variables for a mathematical correction superfluous.
  • step (b) In the simplest case, namely when the laser processing optics in step (b) are in the same z-position as in step (a) and the measuring beams are directed perpendicularly onto the reference and workpiece surfaces, the distance between the focus position and the workpiece surface corresponds to this Measured workpiece distance minus the difference between the measured reference distance and the measured focus distance.
  • the measuring beam is directed obliquely onto the workpiece surface in step (b)
  • the workpiece spacing can be determined using the measured oblique workpiece spacing and the known deflection angle of the laser processing optics.
  • step (c) this is also taken into account in step (c) when determining the distance.
  • the z-focus position of the machining laser beam directed onto the workpiece surface is preferably set relative to the workpiece surface on the basis of the determined distance, e.g. by moving the laser machining optics or a focusing optics in the z-direction until the desired focus distance to the workpiece surface is set.
  • a target distance between the workpiece surface and the z focus position stored in a machine control is advantageously corrected to the determined distance, e.g. by means of a corresponding offset value.
  • the current distance can preferably be determined cyclically on the basis of currently measured reference and workpiece distances, with or without step (a).
  • a target focus distance from the workpiece surface stored in a control is corrected to the currently determined distance.
  • the above-mentioned object is also achieved according to the invention by a method for distance measurement by means of an OCT, the measuring beam of which is directed onto a workpiece surface via laser processing optics, in particular via scanner optics, with the following process steps: Measuring the workpiece distance between a reference arm mirror of the coherence tomograph and the workpiece surface by means of two measuring beams directed at the workpiece surface by the laser processing optics, each at different angles of incidence; and determining the distance between the deflection optics and the workpiece surface on the basis of the two angles of incidence and the difference between the two measured workpiece distances.
  • One of the two measuring beams is advantageously directed perpendicularly onto the workpiece surface.
  • the OCT measuring beam is, for example, undeflected and positioned on a flat workpiece surface, deflected by the scanner optics by the angle.
  • the path length difference between the two OCT distance measurements is a function of the distance between the scanner optics and the workpiece surface, so that the distance can be determined using the deflection angle and the length difference between the two measured workpiece distances.
  • a deviation of the distance from a known target value e.g. from the dimension drawing of the scanner optics
  • a surface offset present between the two points of incidence of the two measuring beams in the z-direction is preferably taken into account when determining the distance.
  • the method can also be used for a non-flat workpiece surface, but the surface offset of the workpiece in the z-direction between the two measuring positions, e.g. between the deflected and deflected measuring position, must be known.
  • a target distance stored in a machine control unit between the deflecting optics and the workpiece surface is corrected to the determined distance.
  • the invention also relates to a computer program product which has code means which are adapted to carry out all the steps of the method according to the invention when the program is on one of the Laser processing optics controlling machine control of a laser processing machine runs.
  • Figs. 1a, 1b schematically show a laser processing machine suitable for carrying out a first OCT measuring method according to the invention, with a reference surface for measuring the focal position of a processing laser beam as a reference for OCT distance measurements;
  • FIGs. 2a-2c a second OCT measuring method according to the invention that can be carried out with the laser processing machine of FIG. 1, wherein OCT distance measurements on a flat workpiece surface (FIG. 2a), a stepped workpiece surface (FIG. 2b) and a curved workpiece surface (FIG. 2b ) be performed.
  • FIGS. 1a, 1b schematically shown laser processing machine 1 comprises a laser beam generator 2 for generating a processing laser beam 3, an optical coherence tomograph (OCT) 4 for generating a measuring beam 5 and a processing head 6 with scanner optics 7 that can be moved in the x, y, z directions for one- or two-dimensional deflection of the two beams 3, 5 in the x, y direction.
  • the scanner optics 7 can for example have a scanner mirror which can be deflected about two axes or two scanner mirrors which can each be deflected about an axis.
  • the two beams 3, 5 are aligned collinearly to one another via egg NEN inclined mirror 8, which allows the measuring beam 5 and deflects the processing laser beam 3 common scanner optics 7 supplied by means of a deflection mirror 9.
  • the two beams 3, 5 can be directed onto a reference surface 10 or onto a workpiece surface 11 via the scanner optics 7 and / or by moving the processing head 6 in the x, y directions.
  • an OCT scanner (not shown) can be arranged in the beam path of the measuring beam 5 in front of the mirror 8 in order to be able to deflect the measuring beam 5 with respect to the processing laser beam 3.
  • the OCT 4 is attached to the processing head 6 and has, in a known manner, an OCT light source (eg superluminescent diode) 12 for generating an OCT beam 13, a beam splitter 14 for splitting the OCT beam 13 into the measuring beam 5 and a reference beam 15 .
  • the measuring beam 5 strikes the reference or workpiece surface 10, 11, at which the measuring beam 5 is at least partially reflected and returned to the beam splitter 14 which is opaque or partially transparent in this direction.
  • the reference beam 15 is reflected by a reference arm mirror 16 and also returned to the beam splitter 14.
  • the superposition of the two reflected beams 5, 15 is finally detected by a detector (OCT sensor) 17 in order to establish a distance between the reference arm mirror 16 and the reference - relative to the reference distance - by comparing the optical path lengths of the measurement and reference distances - Or to determine the workpiece surface 10, 11.
  • OCT sensor OCT sensor
  • the focal position F of the machining laser beam 3 aligned at right angles to the reference surface 10 is determined relative to the reference surface 10, for example by means of the measuring method known from DE 102011 006 553 A1.
  • a sensor is arranged on the reference surface 10, which has a perforated screen with a power detector provided behind the perforated screen.
  • the hole diameter of the pinhole corresponds approximately to the focus diameter of the machining laser beam 3.
  • the machining laser beam 3 is - by means of a focusing optics 18 of the machining head 6 or by moving the machining head 6 in the z-direction - move in a z-grid and the laser power in each of the grid points measured with the power detector.
  • the peak value that is to say the z focus position F of the processing laser beam 3 can then be determined from the measured values as a distance A relative to the reference surface 10.
  • the focusing optics 18 can also be arranged in front of the scanner optics 7, either before or after the coupling of the measuring beam (mirror 8).
  • a reference distance L0 between reference arm mirror 16 and reference surface 10 is then measured by means of the measuring beam 5 directed at the same angle onto the same point P1 of reference surface 10 as machining beam 3.
  • the measuring beam 5 can also be directed onto a point P2 of the reference surface 10 as close as possible to the point of impact P1 of the machining beam 3; the smaller the distance between the points P1, P2, the more accurate the referencing of the measuring beam 5 to the focus position F.
  • the measuring beam 5 ' is aligned on the workpiece surface 11, e.g. by moving the processing head 6 in the xy direction (Fig. 1a) or by deflecting the scanner optics 7 or the scanner mirror by the deflection angle a (Fig 1 b).
  • a workpiece distance L1 between the reference arm mirror 16 and the workpiece surface 11 is measured by means of the measuring beam 5 ‘.
  • a distance X1 between focus position F and workpiece surface 11 can be determined.
  • X1 L0 - L1 - A - Dz, where Dz represents a z-shift of the focus position F that occurred between the measurements of the reference and workpiece distances L0, L1.
  • This z- Displacement Dz can take place, for example, by a z movement of the processing optics 7, shown in dashed lines in FIG. 1 a, or by a z movement of the focus optics 18.
  • X1 L0 - L1cos (a) - A - Dz, where Dz represents a z-shift of the focus position F that occurred between the measurements of the reference and workpiece distances L0, L1.
  • the measurements of the reference and workpiece lengths L0, L1 and the focus position F can be carried out in any order, but must be carried out promptly so that thermal drift between the measurements is negligible.
  • the focal position F of the machining laser beam 3 directed onto the workpiece surface 11 can be adjusted relative to the workpiece surface 11, e.g. by moving the machining head 6 or the focusing optics 18 in the z-direction until a desired target distance is reached the focus position F to the workpiece surface 11 is set.
  • the movement of the laser processing optics 7, in particular the deflection of the scanner optics, and the measurements of the reference and workpiece distances L0, L1 can be controlled by a machine control 19, which can also determine the distance X1.
  • the measurements of the reference and workpiece distances L0, L1 can be carried out cyclically - with or without renewed measurement of the focus position F of the machining laser beam 3. If there is a deviation from the previously determined distance X1 stored in the machine control 19 (e.g. as a result of thermal drifts), the target distance between the reference and workpiece surface 10, 11 stored in the machine control 19 can be corrected to the currently determined distance X1 .
  • Figs. 2a-2c show a second OCT measuring method that can be carried out with the laser processing machine 1 for determining an absolute distance X2 between the scanner optics 7 and the workpiece surface 11, the OCT distance measurements on a flat workpiece surface 11 (Fig. 2a), a stepped workpiece surface 11 in the z-direction (Fig. 2b) and a workpiece surface 11 curved in the z-direction (Fig. 2b) can be carried out.
  • a1 0 °
  • AL L1-L2 between the two measured workpiece distances L1, L2
  • the absolute distance X2 between the scanner optics 7, more precisely the tilt axis of the scanner mirror, and the workpiece surface 11 can be determined:
  • Vcos a 2 cos a x Vcos a 2 cos a x
  • a target distance stored in the machine control 19 between the deflection optics 7 and the workpiece surface 11 can be corrected to the determined absolute distance X2.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

Ein Verfahren zur Abstandsmessung mittels eines optischen Kohärenz-tomographen (4), dessen Messstrahl (5, 5') über eine Laserbearbeitungsoptik (7), insbesondere über eine Scanneroptik, auf eine Werkstückoberfläche (11) gerichtet wird, umfasst erfindungsgemäß folgende Verfahrensschritte: (a) Messen des Fokusabstands (A) der z-Fokuslage (F) eines über die Laserbearbeitungsoptik (7) auf eine Referenzoberfläche (10) gerichteten Bearbeitungslaserstrahls (3) zu der Referenzoberfläche (10) und Messen eines Referenzabstands (L0) zwischen einem Referenzarmspiegel (16) des Kohärenztomographen (4) und der Referenzoberfläche (10) mittels des auf den gleichen Punkt (P1) der Referenzoberfläche (10) wie der Bearbeitungsstrahl (3) oder auf einen Punkt (P2) der Referenzoberfläche (10) neben dem Auftreffpunkt (P1) des Bearbeitungsstrahls (3) gerichteten Messstrahls (5); (b) Messen eines Werkstückabstands (L1) zwischen dem Referenzarmspiegel (16) und einer Werkstückoberfläche (11) mittels des auf die Werkstückoberfläche (11) gerichteten Messstrahls (5'), und (c) Ermitteln des Abstands (X1) zwischen Werkstückoberfläche (11) und z-Fokuslage (F) anhand der gemessenen Referenz- und Werkstückabstände (L0, L1) und des gemessenen Fokusabstands (A).

Description

VERFAHREN ZUR ABSTANDSMESSUNG MITTELS OCT ZUR BRENNPUNKTSTEUERUNG FÜR LASER BEARBEITUNG VON MATERIALIEN UND ZUGEHÖRIGES COMPUTERPROGRAMMPRODUKT
Die vorliegende Erfindung betrifft ein Verfahren zur Abstandsmessung mittels ei nes optischen Kohärenztomographen (englisch optical coherence tomography, OCT), dessen Messstrahl über eine Laserbearbeitungsoptik, insbesondere über eine Scanneroptik, auf eine Werkstückoberfläche gerichtet wird. Die OCT-Messtechnik ist eine interferometrische Relativabstandsmessung, bei der die Länge der optischen Weglänge einer Messstrecke mit der Weglänge einer Re ferenzstrecke verglichen wird. Temperaturunterschiede zwischen Mess- und Refe renzstrecke führen zu thermischen Drifts des Messwertes. Diese Drifts sind für re lative Messungen, wie z.B. der Höhendifferenz eines Bauteils oder einer Ein schweißtiefenmessung, nicht relevant. Bei Absolutmessungen, insbesondere zur Regelung des Absolutabstandes zwischen Laserbearbeitungsoptik und Werk stück, stellen diese thermischen Drifts ein Problem dar, da sie den realen Ab standswert verfälschen. Meist werden die Temperaturen in den Mess- und Refe renzstrecken gemessen, und die Drift wird dann mittels mathematischer Modelle aufwändig kompensiert.
Zur Bestimmung des absoluten Arbeitsabstandes zwischen Laserbearbeitungsop tik und Werkstück wird aktuell Lasertriangulation in Kombination mit einer Be obachtungskamera eingesetzt. Nachteil dieser Lösung ist bei Scanneroptiken al lerdings die Einschränkung auf eine bestimmte Bearbeitungsposition (in der Regel die Position im unausgelenkten Zustand der Scanneroptik).
Der Erfindung liegt demgegenüber die Aufgabe zugrunde, ein OCT-Messverfahren anzugeben, mit dem Abstände, welche insbesondere bei der Laserbearbeitung von Werkstücken relevant sind, gemessen werden können.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Abstandsmessung mittels eines OCT, dessen Messstrahl über eine Laserbearbeitungsoptik, insbe sondere über eine Scanneroptik, auf eine Werkstückoberfläche gerichtet wird, mit folgenden Verfahrensschritten gelöst:
(a) Messen des Fokusabstands der z-Fokuslage eines über die Laserbearbei tungsoptik auf eine Referenzoberfläche gerichteten Bearbeitungslaserstrahls zu der Referenzoberfläche und Messen eines Referenzabstands zwischen ei nem Referenzarmspiegel des Kohärenztomographen und der Referenzober fläche mittels des auf den gleichen Punkt der Referenzoberfläche wie der Be arbeitungsstrahl oder auf einen Punkt der Referenzoberfläche neben dem Auf treffpunkt des Bearbeitungsstrahls gerichteten Messstrahls; (b) Messen eines Werkstückabstands zwischen dem Referenzarmspiegel und ei ner Werkstückoberfläche mittels des auf die Werkstückoberfläche gerichteten Messstrahls, und
(c) Ermitteln des Abstands zwischen Werkstückoberfläche und z-Fokuslage an hand der gemessenen Referenz- und Werkstückabstände und des gemesse nen Fokusabstands.
Vorzugsweise werden in Schritt (a) der Bearbeitungslaserstrahl und der Mess strahl jeweils senkrecht auf die Referenzoberfläche gerichtet und wird in Schritt (b) der Messstrahl senkrecht oder schräg auf die Werkstückoberfläche gerichtet.
Erfindungsgemäß wird die Laserbearbeitungsoptik zunächst auf einen festen Re ferenzpunkt der Referenzoberfläche ausgerichtet. Dies kann durch Verfahren der gesamten Laserbearbeitungsoptik rechtwinklig zu der in z-Richtung verlaufenden optischen Achse, also in x-, y-Richtung, oder im Falle einer als Scanneroptik aus gebildeten Laserbearbeitungsoptik alternativ durch Auslenken des bzw. der Scan nerspiegel erfolgen. Dann wird einerseits die z-Fokuslage des Bearbeitungslaser strahls relativ zur Referenzoberfläche bestimmt, z.B. mittels des aus DE 10 2011 006 553 A1 bekannten Verfahrens, und andererseits, bei gleicher Einstellung der Laserbearbeitungsoptik, der Referenzabstand zwischen Referenzarmspiegel und Referenzoberfläche mittels des Messstrahls gemessen. Durch diese beiden Mes sungen lässt sich die Fokuslage dem OCT-Messsystem zuordnen. Anschließend wird der Messstrahl auf ein Werkstück gerichtet, entweder durch Verfahren der La serbearbeitungsoptik in x-, y-Richtung oder durch Auslenken des bzw. der Scan nerspiegel, und der Werkstückabstand zwischen Referenzarmspiegel und Werk stückoberfläche wird mittels des Messstrahls gemessen. Anhand der gemessenen Referenz- und Werkstückabstände und des gemessenen Fokusabstands kann der Abstand zwischen Fokuslage und Werkstückoberfläche ermittelt werden. Die Mes sungen in den Schritten (a) und (b) erfolgen möglichst so zeitnah, dass eine zwi schen den Messungen auftretende thermische Drift vernachlässigbar ist. Das er findungsgemäße Verfahren macht aufwändige Temperierungsmaßnahmen und fehlerbehaftete punktuelle Temperaturmessung als Eingangsgrößen für eine ma thematische Korrektur überflüssig. Im einfachsten Fall, nämlich wenn sich die Laserbearbeitungsoptik in Schritt (b) auf der gleichen z-Position wie in Schritt (a) befindet und die Messstrahlen jeweils senkrecht auf die Referenz- und Werkstückoberflächen gerichtet werden, ent spricht der Abstand zwischen Fokuslage und Werkstückoberfläche dem gemesse nen Werkstückabstand minus der Differenz zwischen dem gemessenen Referenz abstand und dem gemessenen Fokusabstand. Für den Fall, dass in Schritt (b) der Messstrahl schräg auf die Werkstückoberfläche gerichtet wird, kann der Werk stückabstand anhand des gemessenen schrägen Werkstückabstands und des be kannten Ablenkwinkels der Laserbearbeitungsoptik ermittelt werden. Für den Fall schließlich, dass zwischen den Schritten (a) und (b) eine Bewegung der Laserbe arbeitungsoptik in z-Richtung stattgefunden hat, wird dies in Schritt (c) bei der Er mittlung des Abstands ebenfalls berücksichtigt.
Vorzugsweise wird die z-Fokuslage des auf die Werkstückoberfläche gerichteten Bearbeitungslaserstrahls relativ zu der Werkstückoberfläche anhand des ermittel ten Abstands eingestellt, z.B. indem die Laserbearbeitungsoptik oder eine Fokus sieroptik soweit in z-Richtung verfahren wird, bis der gewünschte Fokusabstand zur Werkstückoberfläche eingestellt ist.
Ein in einer Maschinensteuerung gespeicherter Sollabstand zwischen Werkstück oberfläche und z-Fokuslage wird vorteilhaft auf den ermittelten Abstand, z.B. mit tels eines entsprechenden Offset-Wertes, korrigiert.
Bevorzugt kann der aktuelle Abstand anhand von aktuell gemessenen Referenz- und Werkstückabständen, mit oder ohne Schritt (a), zyklisch ermittelt werden. Bei Abweichung von dem zuvor ermittelten und gespeicherten Wert (z.B. in Folge von thermischen Drifts) wird ein in einer Steuerung gespeicherter Soll-Fokusabstand zur Werkstückoberfläche auf den aktuell ermittelten Abstand korrigiert.
Die oben genannte Aufgabe wird erfindungsgemäß auch durch ein Verfahren zur Abstandsmessung mittels eines OCT, dessen Messstrahl über eine Laserbearbei tungsoptik, insbesondere über eine Scanneroptik, auf eine Werkstückoberfläche gerichtet wird, mit folgenden Verfahrensschritten gelöst: Messen des Werkstückabstands zwischen einem Referenzarmspiegel des Ko härenztomographen und der Werkstückoberfläche mittels zweier von der La serbearbeitungsoptik jeweils unter unterschiedlichen Einfallswinkeln auf die Werkstückoberfläche gerichteter Messstrahlen; und Ermitteln des Abstands zwischen Ablenkoptik und Werkstückoberfläche an hand der beiden Einfallswinkel und der Differenz zwischen den beiden gemes senen Werkstückabständen.
Vorteilhaft wird dabei einer der beiden Messstrahlen senkrecht auf die Werkstück oberfläche gerichtet.
Erfindungsgemäß wird der OCT-Messstrahl z.B. unausgelenkt und durch die Scanneroptik um den Winkel ausgelenkt auf einer ebenen Werkstückoberfläche positioniert. Der Weglängenunterschied zwischen den beiden OCT-Abstands- messungen ist eine Funktion des Abstandes zwischen Scanneroptik und Werk stückoberfläche, so dass der Abstand anhand der Ablenkwinkel und der Län gendifferenz zwischen den beiden gemessenen Werkstückabständen ermittelt werden kann. Eine Abweichung des Abstandes von einem bekannten Sollwert (z.B. aus Maßbild der Scanneroptik) kann so gemessen und korrigiert werden.
Bevorzugt wird ein zwischen den beiden Auftreffpunkten der beiden Messstrahlen in z-Richtung vorhandener Oberflächenversatz beim Ermitteln des Abstandes be rücksichtigt. Bei einer nicht ebenen Werkstückoberfläche kann das Verfahren ebenfalls angewendet werden, jedoch muss der in z-Richtung vorhandene Ober flächenversatz des Werkstücks zwischen den beiden Messpositionen, also z.B. zwischen ausgelenkter und ausgelenkter Messposition, bekannt sein.
Besonders vorteilhaft wird ein in einer Maschinensteuerung gespeicherter Sollab stand zwischen Ablenkoptik und Werkstückoberfläche auf den ermittelten Abstand korrigiert.
Die Erfindung betrifft schließlich auch ein Com puterprogramm produkt, welches Codemittel aufweist, die zum Durchführen aller Schritte des erfindungsgemäßen Verfahrens angepasst sind, wenn das Programm auf einer die Laserbearbeitungsoptik ansteuernden Maschinensteuerung einer Laserbearbei tungsmaschine abläuft.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung sind der Beschreibung, den Zeichnungen und den Ansprüchen entnehmbar. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merk male je für sich oder zu mehreren in beliebigen Kombinationen Verwendung fin den. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschlie ßende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigen:
Fign. 1a, 1 b schematisch eine zum Durchführen eines ersten erfindungsgemä ßen OCT-Messverfahrens geeignete Laserbearbeitungsmaschine mit einer Referenzoberfläche zum Messen der Fokuslage eines Bearbeitungslaserstrahls als Referenz für OCT-Abstandsmessun- gen; und
Fign. 2a-2c ein mit der Laserbearbeitungsmaschine von Fig. 1 durchführbares, zweites erfindungsgemäßes OCT-Messverfahren, wobei OCT- Abstandsmessungen an einer ebenen Werkstückoberfläche (Fig. 2a), einer gestuften Werkstückoberfläche (Fig. 2b) und einer ge krümmten Werkstückoberfläche (Fig. 2b) durchgeführt werden.
Die in Fign. 1a, 1b schematisch gezeigte Laserbearbeitungsmaschine 1 umfasst einen Laserstrahlerzeuger 2 zum Erzeugen eines Bearbeitungslaserstrahls 3, ei nen optischen Kohärenztomographen (OCT) 4 zum Erzeugen eines Messstrahls 5 und einen in x-, y-, z-Richtung verfahrbaren Bearbeitungskopf 6 mit einer Scanner optik 7 zum ein- oder zweidimensionalen Ablenken der beiden Strahlen 3, 5 in x-, y-Richtung. Die Scanneroptik 7 kann beispielsweise einen um zwei Achsen ab lenkbaren Scannerspiegel oder zwei jeweils um eine Achse ablenkbare Scanner spiegel aufweisen. Im Bearbeitungskopf 6 werden die beiden Strahlen 3, 5 über ei nen schräg gestellten Spiegel 8, der den Messstrahl 5 durchlässt und den Bear beitungslaserstrahl 3 umlenkt, zueinander kollinear ausgerichtet und der gemeinsamen Scanneroptik 7 mittels eines Umlenkspiegels 9 zugeführt. Über die Scanneroptik 7 und/oder durch Verfahren des Bearbeitungskopfes 6 in x-, y-Rich- tung können die beiden Strahlen 3, 5 auf eine Referenzoberfläche 10 oder auf eine Werkstückoberfläche 11 gerichtet werden. Optional kann im Strahlengang des Messstrahls 5 vor dem Spiegel 8 ein OCT-Scanner (nicht gezeigt) angeordnet sein, um den Messstrahl 5 gegenüber dem Bearbeitungslaserstrahl 3 ablenken zu können.
Der OCT 4 ist am Bearbeitungskopf 6 befestigt und weist in bekannter Weise eine OCT-Lichtquelle (z.B. Superlumineszenzdiode) 12 zur Erzeugung eines OCT- Strahls 13, einen Strahlteiler 14 zum Aufteilen des OCT-Strahls 13 in den Mess strahl 5 und einen Referenzstrahl 15 auf. Der Messstrahl 5 trifft auf die Referenz oder Werkstückoberfläche 10, 11 , an welcher der Messstrahl 5 zumindest teil weise reflektiert und an den in dieser Richtung undurchlässigen oder teildurchläs sigen Strahlteiler 14 zurückgeführt wird. Der Referenzstrahl 15 wird von einem Re ferenzarmspiegel 16 reflektiert und ebenfalls an den Strahlteiler 14 zurückgeführt. Die Überlagerung der beiden reflektierten Strahlen 5, 15 wird schließlich von ei nem Detektor (OCT Sensor) 17 detektiert, um durch Vergleich der optischen Weg längen der Mess- und Referenzstrecken einen - bezogen auf die Referenzstrecke relativen - Abstand zwischen dem Referenzarmspiegel 16 und der Referenz- oder Werkstückoberfläche 10, 11 zu ermitteln. Statt wie gezeigt den gesamten OCT 4 am beweglichen Bearbeitungskopf 6 zu befestigen, können alternativ einzelne Komponenten des OCT 4, die bezüglich eines Laufzeitunterschieds von Mess- und Referenzstrahlen 5, 15 unkritisch sind, wie z.B. die OCT-Lichtquelle 12 und der OCT-Sensor 17, auch anderswo, insbesondere ortsfest, befestigt sein.
Um die Werkstückoberfläche 11 relativ zur z-Fokuslage F des Bearbeitungslaser strahls 3 einzumessen, wird wie folgt vorgegangen.
Die Fokuslage F des rechtwinklig auf die Referenzoberfläche 10 ausgerichteten Bearbeitungslaserstrahls 3 wird relativ zu der Referenzoberfläche 10 ermittelt, z.B. mittels des aus DE 102011 006 553 A1 bekannten Messverfahrens. Hierbei wird auf der Referenzoberfläche 10 ein Messaufnehmer angeordnet, der eine Loch blende mit einem hinter der Lochblende vorgesehenen Leistungsdetektor aufweist. Der Lochdurchmesser der Lochblende entspricht etwa dem Fokusdurchmesser des Bearbeitungslaserstrahls 3. Der Bearbeitungslaserstrahl 3 wird - mittels einer Fokussieroptik 18 des Bearbeitungskopfes 6 oder durch Verfahren des Bearbei tungskopfes 6 in z-Richtung - in einem z-Raster verfahren und in jedem der Ras terpunkte die Laserleistung mit dem Leistungsdetektor gemessen. Aus den Mess werten kann dann der Scheitelwert, also die z-Fokuslage F des Bearbeitungslaser strahls 3, als ein Abstand A relativ zur Referenzoberfläche 10 ermittelt werden. Statt wie gezeigt nach der Scanneroptik 7 kann die Fokussieroptik 18 auch vor der Scanneroptik 7 angeordnet sein, und zwar entweder vor oder nach der Messstrah leinkopplung (Spiegel 8).
Anschließend wird ein Referenzabstand L0 zwischen Referenzarmspiegel 16 und Referenzoberfläche 10 mittels des unter dem gleichen Winkel auf den gleichen Punkt P1 der Referenzoberfläche 10 wie der Bearbeitungsstrahl 3 gerichteten Messstrahls 5 gemessen. Alternativ kann der Messstrahl 5 auch auf einen Punkt P2 der Referenzoberfläche 10 möglichst nahe neben dem Auftreffpunkt P1 des Bearbeitungsstrahls 3 gerichtet werden; je geringer der Abstand zwischen den bei den Punkten P1 , P2, desto genauer ist die Referenzierung des Messstrahls 5 auf die Fokuslage F.
Abschließend wird, wie gestrichelt dargestellt, der Messstrahl 5‘ auf die Werk stückoberfläche 11 ausgerichtet, z.B. durch Verfahren des Bearbeitungskopfes 6 in x-y-Richtung (Fig. 1a) oder durch Auslenken der Scanneroptik 7 bzw. des Scan nerspiegels um den Ablenkwinkel a (Fig. 1 b). Ein Werkstückabstand L1 zwischen Referenzarmspiegel 16 und Werkstückoberfläche 11 wird mittels des Messstrahls 5‘ gemessen. Anhand der gemessenen Referenz- und Werkstückabstände L0, L1 und des gemessenen Abstandes A kann ein Abstand X1 zwischen Fokuslage F und Werkstückoberfläche 11 ermittelt werden.
Im Fall des in Fig. 1a senkrecht auf die Werkstückoberfläche 11 gerichteten Mess strahls 5‘ gilt für den Abstand X1 :
X1 = L0 - L1 - A - Dz, wobei Dz eine zwischen den Messungen der Referenz- und Werkstückabstände L0, L1 stattgefundene z-Verschiebung der Fokuslage F darstellt. Diese z- Verschiebung Dz kann beispielsweise durch eine in Fig. 1a gestrichelt dargestellte z-Bewegung der Bearbeitungsoptik 7 oder durch eine z-Bewegung der Fokusoptik 18 erfolgen.
Im Fall des in Fig. 1 b unter dem Winkel a (a 0°) auf die Werkstückoberfläche 11 gerichteten Messstrahls 5‘ gilt für den Abstand X1 :
X1 = L0 - L1cos(a) - A - Dz, wobei Dz eine zwischen den Messungen der Referenz- und Werkstückabstände L0, L1 stattgefundene z-Verschiebung der Fokuslage F darstellt.
Die Messungen der Referenz- und Werkstücklängen L0, L1 und der Fokuslage F können in beliebiger Reihenfolge erfolgen, aber müssen so zeitnah erfolgen, dass eine thermische Drift zwischen den Messungen vernachlässigbar ist.
Anhand des ermittelten Abstands X1 kann die Fokuslage F des auf die Werkstück oberfläche 11 gerichteten Bearbeitungslaserstrahls 3 relativ zu der Werkstück oberfläche 11 eingestellt werden, z.B. indem der Bearbeitungskopf 6 oder die Fo kussieroptik 18 soweit in z-Richtung verfahren werden, bis ein gewünschter Soll abstand der Fokuslage F zur Werkstückoberfläche 11 eingestellt ist.
Die Bewegung der Laserbearbeitungsoptik 7, insbesondere die Ablenkung der Scanneroptik, sowie die Messungen der Referenz- und Werkstückabstände L0, L1 können von einer Maschinensteuerung 19 gesteuert werden, die auch die Ermitt lung des Abstands X1 übernehmen kann. Die Messungen der Referenz- und Werkstückabstände L0, L1 können - mit oder ohne erneute Messung der Fokus lage F des Bearbeitungslaserstrahls 3 - zyklisch durchgeführt werden. Bei Abwei chung von dem zuvor ermittelten und in der Maschinensteuerung 19 gespeicher ten Abstand X1 (z.B. in Folge von thermischen Drifts) kann der in der Maschinen steuerung 19 gespeicherte Sollabstand zwischen Referenz- und Werkstückober fläche 10, 11 auf den aktuell ermittelten Abstand X1 korrigiert werden.
Fign. 2a-2c zeigen ein mit der Laserbearbeitungsmaschine 1 durchführbares zweites OCT-Messverfahren zum Ermitteln eines Absolutabstands X2 zwischen der Scanneroptik 7 und der Werkstückoberfläche 11 , wobei die OCT-Abstands- messungen an einer ebenen Werkstückoberfläche 11 (Fig. 2a), einer in z-Richtung gestuften Werkstückoberfläche 11 (Fig. 2b) und einer in z-Richtung beliebig ge krümmten Werkstückoberfläche 11 (Fig. 2b) durchgeführt werden.
Die - bezogen auf die Referenzstrecke relativen - Werkstückabstände L1, L2 zwi schen dem Referenzarmspiegel 16 und der Werkstückoberfläche 11 werden mit tels zweier jeweils unter unterschiedlichen Einfallswinkeln a1 (hier: a1=0°), a2 auf die Werkstückoberfläche 11 gerichteter Messstrahlen 5, 5‘ gemessen. Anhand der beiden Einfallswinkel a1 , a2 und der Längendifferenz AL = L1-L2 zwischen den beiden gemessenen Werkstückabständen L1 , L2 kann der Absolutabstand X2 zwi schen der Scanneroptik 7, genauer gesagt der Kippachse des Scannerspiegels, und der Werkstückoberfläche 11 ermittelt werden:
AL Dz
Figure imgf000012_0001
( - — ) 2
Vcos a2 cos ax) wobei Dz einen z-Oberflächenversatz der Werkstückoberfläche 11 zwischen den beiden Messpunkten P1, P2 darstellt.
Im Fall der Fig. 2a, also bei ebener Werkstückoberfläche 11 (Dz=0) und bei senk recht (a1 =0°) auf die Werkstückoberfläche 11 gerichtetem Messstrahl 5, gilt für den Absolutabstand X2:
Figure imgf000012_0002
Im Fall der Fign. 2b und 2c, also bei einem z-Oberflächenversatz Dz {DzFO) zwi schen den beiden Messpunkten P 1 , P2 und bei senkrecht (a1 =0°) auf die Werk stückoberfläche 11 gerichtetem Messstrahl 5, gilt für den Absolutabstand X2:
AL Az
2 ( 1 _ L cos a2
Vcos a2 )
Ein in der Maschinensteuerung 19 gespeicherter Sollabstand zwischen Ablenkop tik 7 und Werkstückoberfläche 11 kann auf den ermittelten Absolutabstand X2 kor rigiert werden.

Claims

Patentansprüche
1. Verfahren zur Abstandsmessung mittels eines optischen Kohärenztomogra phen (4), dessen Messstrahl (5, 5‘) über eine Laserbearbeitungsoptik (7), insbesondere über eine Scanneroptik, auf eine Werkstückoberfläche (11 ) gerichtet wird, mit folgenden Verfahrensschritten:
(a) Messen des Fokusabstands (A) der z-Fokuslage (F) eines über die La serbearbeitungsoptik (7) auf eine Referenzoberfläche (10) gerichteten Bearbeitungslaserstrahls (3) zu der Referenzoberfläche (10) und Mes sen eines Referenzabstands (L0) zwischen einem Referenzarmspiegel (16) des Kohärenztomographen (4) und der Referenzoberfläche (10) mittels des auf den gleichen Punkt (P1) der Referenzoberfläche (10) wie der Bearbeitungsstrahl (3) oder auf einen Punkt (P2) der Referenz oberfläche (10) neben dem Auftreffpunkt (P1) des Bearbeitungsstrahls (3) gerichteten Messstrahls (5);
(b) Messen eines Werkstückabstands (L1) zwischen dem Referenzarm spiegel (16) und einer Werkstückoberfläche (11) mittels des auf die Werkstückoberfläche (11) gerichteten Messstrahls (5‘), und
(c) Ermitteln des Abstands (X1 ) zwischen Werkstückoberfläche (11 ) und z- Fokuslage (F) anhand der gemessenen Referenz- und Werkstückab stände (L0, L1) und des gemessenen Fokusabstands (A).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Schritt (a) der Bearbeitungslaserstrahl (3) und der Messstrahl (5) jeweils senkrecht auf die Referenzoberfläche (10) gerichtet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt (b) der Messstrahl (5‘) senkrecht oder schräg auf die Werkstückoberfläche (11) gerichtet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass in Schritt (c) eine zwischen den Schritten (a) und (b) in z- Richtung stattgefundene Bewegung (Dz) eines Bearbeitungskopfes (6) oder einer Fokussieroptik (18) des Bearbeitungskopfes (6) bei der Ermittlung des Abstands (X1) berücksichtigt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass in Schritt (b) der Messstrahl (5‘) durch die Laserbearbei tungsoptik (7) oder durch eine x-y-Relativbewegung zwischen Laserbear beitungsoptik (7) und Werkstück auf die Werkstückoberfläche (11 ) gerichtet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die z-Fokuslage (F) des auf die Werkstückoberfläche (11 ) gerichteten Bearbeitungslaserstrahls (3) relativ zu der Werkstückoberfläche (11 ) anhand des ermittelten Abstands (X1 ) eingestellt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass ein in einer Maschinensteuerung (19) gespeicherter Sollab stand zwischen Werkstückoberfläche (11 ) und z-Fokuslage (F) auf den er mittelten Abstand (X1) korrigiert wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass der aktuelle Abstand (X1) anhand von aktuell gemessenen Referenz- und Werkstückabständen (L0, L1) zyklisch ermittelt wird.
9. Verfahren zur Abstandsmessung mittels eines optischen Kohärenztomogra phen (4), dessen Messstrahl (5; 5‘) über eine Laserbearbeitungsoptik (7), insbesondere über eine Scanneroptik, auf eine Werkstückoberfläche (11 ) gerichtet wird, mit folgenden Verfahrensschritten:
Messen des Werkstückabstands (L1 , L2) zwischen einem Referenz armspiegel (16) des Kohärenztomographen (4) und der Werkstückober fläche (11 ) mittels zweier von der Laserbearbeitungsoptik (7) jeweils unter unterschiedlichen Einfallswinkeln (a1 , a2) auf die Werkstückober fläche (11) gerichteter Messstrahlen (5, 5‘); und Ermitteln des Abstands (X2) zwischen Ablenkoptik (7) und Werkstück oberfläche (11) anhand der beiden Einfallswinkel (a1, a2) und der Diffe renz (AL) zwischen den beiden gemessenen Werkstückabständen (L1 , L2).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass einer der bei den Messstrahlen (5, 5‘) senkrecht auf die Werkstückoberfläche (11) ge richtet wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass ein zwischen den beiden Messpunkten (P 1 , P2) der beiden Messstrahlen (5, 5‘) in z-Richtung vorhandener Oberflächenversatz (Az) der Werkstückoberflä che (11) beim Ermitteln des Abstandes (X2) berücksichtigt wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass ein in einer Maschinensteuerung (19) gespeicherter Sollabstand zwi schen Ablenkoptik (7) und Werkstückoberfläche (11 ) auf den ermittelten Abstand (X2) korrigiert wird.
13. Com puterprogramm produkt, welches Codemittel aufweist, die zum Durch führen aller Schritte des Verfahrens nach einem der vorhergehenden An sprüche angepasst sind, wenn das Programm auf einer die Laserbearbei tungsoptik (7) ansteuernden Maschinensteuerung (19) einer Laserbearbei tungsmaschine (1) abläuft.
PCT/EP2020/084161 2019-12-02 2020-12-01 Verfahren zur abstandsmessung mittels oct zur brennpunktsteuerung für laser bearbeitung von materialien und zugehöriges computerprogrammprodukt WO2021110698A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227022446A KR20220104819A (ko) 2019-12-02 2020-12-01 재료의 레이저 가공을 위한 초점 제어를 위해 oct에 의해 거리를 측정하는 방법 및 관련 컴퓨터 프로그램 제품
CN202080084024.3A CN114787579A (zh) 2019-12-02 2020-12-01 用于为了激光加工材料的焦点控制而借助于oct测量间距的方法及所属的计算机程序产品
US17/829,379 US20220290973A1 (en) 2019-12-02 2022-06-01 Method for distance measurement by means of oct and associated computer program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019132619.2A DE102019132619A1 (de) 2019-12-02 2019-12-02 Verfahren zur Abstandsmessung mittels OCT und zugehöriges Computerprogrammprodukt
DE102019132619.2 2019-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/829,379 Continuation US20220290973A1 (en) 2019-12-02 2022-06-01 Method for distance measurement by means of oct and associated computer program product

Publications (1)

Publication Number Publication Date
WO2021110698A1 true WO2021110698A1 (de) 2021-06-10

Family

ID=73748031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/084161 WO2021110698A1 (de) 2019-12-02 2020-12-01 Verfahren zur abstandsmessung mittels oct zur brennpunktsteuerung für laser bearbeitung von materialien und zugehöriges computerprogrammprodukt

Country Status (5)

Country Link
US (1) US20220290973A1 (de)
KR (1) KR20220104819A (de)
CN (1) CN114787579A (de)
DE (1) DE102019132619A1 (de)
WO (1) WO2021110698A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103016B3 (de) * 2022-02-09 2023-06-01 Jenoptik Automatisierungstechnik Gmbh Verfahren zum Einbringen einer Perforationslinie in eine Airbag-Abdeckung
DE102022116153A1 (de) 2022-06-29 2024-01-04 Trumpf Laser Gmbh Verfahren zur Korrektur von optischen Weglängenmessfehlern eines Mess-Scanners an einer Laserbearbeitungsoptik
DE102022116927A1 (de) 2022-07-07 2024-01-18 Trumpf Laser Gmbh Laserbearbeitungsmaschine mit frequenzkammbasiertem Abstandssensor sowie zugehöriges Verfahren mit frequenzkammbasierter Abstandsmessung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006553A1 (de) 2011-03-31 2012-10-04 Trumpf Laser Gmbh + Co. Kg Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum
US8822875B2 (en) * 2010-09-25 2014-09-02 Queen's University At Kingston Methods and systems for coherent imaging and feedback control for modification of materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129851A (ja) * 2003-10-27 2005-05-19 Disco Abrasive Syst Ltd レーザ光線を利用した加工方法
DE102013217783A1 (de) * 2013-09-05 2015-03-05 Sauer Gmbh Lasertec Verfahren zur Bearbeitung eines Werkstücks mittels eines Laserstrahls, Laserwerkzeug, Lasermaschine, Maschinensteuerung
DE102013015656B4 (de) * 2013-09-23 2016-02-18 Precitec Optronik Gmbh Verfahren zum Messen der Eindringtiefe eines Laserstrahls in ein Werkstück, Verfahren zum Bearbeiten eines Werkstücks sowie Laserbearbeitungsvorrichtung
DE102014203645B4 (de) * 2014-02-28 2016-06-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zum optischen Bestimmen eines Abstandes
DE102014007887B4 (de) * 2014-05-26 2015-12-10 Lessmüller Lasertechnik GmbH Laserbearbeitungsvorrichtung mit einer Messvorrichtung zum Erfassen von Oberflächendaten und/oder Grenzflächen eines durch eine Laserbearbeitungsvorrichtung zu bearbeitenden Werkstücks
DE102014217154B4 (de) * 2014-08-28 2016-09-22 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Einstechen in metallische Werkstücke mittels eines Laserstrahls sowie zugehörige Laserbearbeitungsmaschine und Computerprogrammprodukt
DE102017115922C5 (de) * 2017-07-14 2023-03-23 Precitec Gmbh & Co. Kg Verfahren und Vorrichtung zur Messung und Einstellung eines Abstands zwischen einem Bearbeitungskopf und einem Werkstück sowie dazugehöriges Verfahren zur Regelung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822875B2 (en) * 2010-09-25 2014-09-02 Queen's University At Kingston Methods and systems for coherent imaging and feedback control for modification of materials
DE102011006553A1 (de) 2011-03-31 2012-10-04 Trumpf Laser Gmbh + Co. Kg Verfahren zum Ermitteln der Fokuslage eines Laserstrahls in seinem Arbeitsfeld oder Arbeitsraum

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DORSCH F ET AL: "Controlling laser processing via optical coherence topography", ENHANCED AND SYNTHETIC VISION 2003 : [CONFERENCE ENHANCED AND SYNTHETIC VISION 2002] ; 21 APRIL 2003, ORLANDO, FLORIDA, USA; [PROCEEDINGS OF SPIE ISSN 0277-786X], SPIE, US, vol. 10911, 27 February 2019 (2019-02-27), pages 109110G - 109110G, XP060117769, ISBN: 978-1-5106-3673-6, DOI: 10.1117/12.2509630 *
KUNZE ROUWEN ET AL: "Monitoring of laser material processing using machine integrated low-coherence interferometry", PROCEEDINGS OF SPIE; [PROCEEDINGS OF SPIE ISSN 0277-786X VOLUME 10524], SPIE, US, vol. 10449, 13 June 2017 (2017-06-13), pages 104492U - 104492U, XP060093478, ISBN: 978-1-5106-1533-5, DOI: 10.1117/12.2270896 *
RAELE MARCUS PAULO ET AL: "Development of a dynamic interferometric focusing system for femtosecond laser machining", PROCEEDINGS OF SPIE; [PROCEEDINGS OF SPIE ISSN 0277-786X VOLUME 10524], SPIE, US, vol. 10094, 17 February 2017 (2017-02-17), pages 100940N - 100940N, XP060085556, ISBN: 978-1-5106-1533-5, DOI: 10.1117/12.2256559 *
YANG JI ET AL: "Real-time depth monitoring and control of laser machining through scanning beam delivery system", JOURNAL OF PHYSICS D: APPLIED PHYSICS, INSTITUTE OF PHYSICS PUBLISHING LTD, GB, vol. 48, no. 15, 25 March 2015 (2015-03-25), pages 155301, XP020282655, ISSN: 0022-3727, [retrieved on 20150325], DOI: 10.1088/0022-3727/48/15/155301 *

Also Published As

Publication number Publication date
CN114787579A (zh) 2022-07-22
US20220290973A1 (en) 2022-09-15
KR20220104819A (ko) 2022-07-26
DE102019132619A1 (de) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2021110698A1 (de) Verfahren zur abstandsmessung mittels oct zur brennpunktsteuerung für laser bearbeitung von materialien und zugehöriges computerprogrammprodukt
DE102013008269B4 (de) Bearbeitungskopf für eine Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
EP3049755B1 (de) Verfahren zum messen der eindringtiefe eines laserstrahls in ein werkstück sowie laserbearbeitungsvorrichtung
DE102017117413B4 (de) Verfahren zur optischen Messung der Einschweißtiefe
DE102014011569B4 (de) Verfahren zum Messen des Abstands zwischen einem Werkstück und einem Bearbeitungskopf einer Laserbearbeitungsvorrichtung
DE102017126867A1 (de) Laserbearbeitungssystem und Verfahren zur Laserbearbeitung
DE102018105877B3 (de) Vorrichtung für die Bestimmung einer Ausrichtung einer optischen Vorrichtung eines Kohärenztomographen, Kohärenztomograph und Laserbearbeitungssystem
DE19963010B4 (de) Verfahren und Vorrichtung zur Laserbearbeitung von Werkstücken
DE102005022095A1 (de) Verfahren und Vorrichtung zur Bestimmung einer lateralen Relativbewegung zwischen einem Bearbeitungskopf und einem Werkstück
WO2020094709A2 (de) Verfahren und computerprogrammprodukt zur oct-messstrahljustierung
WO1991008439A1 (de) Verfahren und anordnung zur optoelektronischen vermessung von gegenständen
DE102012212278B4 (de) Anordnung zum Erzeugen von Bohrungen oder Schweißnähten
DE102015015330A1 (de) Vorrichtung und Verfahren zum Überwachen eines mit einem oszillierenden Bearbeitungsstrahl ausgeführten Bearbeitungsprozesses unter Verwendung eines OCT-Messstrahls
EP1728045A1 (de) Niederkohärenz-interferometrisches verfahren und gerät zur lichtoptischen abtastung von oberflächen
EP4132738A1 (de) Verfahren, bearbeitungsmaschine und computerprogramm zur werkstücklageerfassung mittels oct
EP3418680A1 (de) System und verfahren zur positionierungsmessung
DE102015109960B4 (de) Vorrichtung und Verfahren zum optischen Bestimmen einer Position und/oder Orientierung eines Manipulators
WO2021191440A1 (de) Verfahren zur oct-schweissnahtüberwachung sowie zugehörige laserbearbeitungsmaschine und computerprogrammprodukt
EP1944569B1 (de) Verfahren und Vorrichtung zum optischen Ausmessen eines Objekts, insbesondere eines Werkstücks oder Werkzeugs
DE102011001475B4 (de) Verfahren und Vorrichtungen zur Positionsbestimmung
WO2011036033A1 (de) Verfahren und vorrichtungen zur bestimmung von orientierung und position eines objekts
EP3443303B1 (de) Positionsmessanordnung und verfahren zum betrieb einer positionsmessanordnung
EP3374732B1 (de) Verfahren und vorrichtung zur bestimmung der räumlichen position eines gegenstandes mittels interferometrischer längenmessung
DE102018124208B4 (de) Verfahren und Vorrichtung zur Überwachung eines Laserbearbeitungsprozesses an einem Werkstück sowie dazugehöriges Laserbearbeitungssystem
EP4010656A1 (de) Verfahren zum anzeigen eines oct-abgetasteten bereichs einer werkstückoberfläche und/oder zum vermessen von oberflächenmerkmalen sowie zugehöriges oct-system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227022446

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817191

Country of ref document: EP

Kind code of ref document: A1