WO2021110434A1 - Procédé de détermination et/ou de surveillance d'au moins une propriété rhéologique d'un milieu - Google Patents

Procédé de détermination et/ou de surveillance d'au moins une propriété rhéologique d'un milieu Download PDF

Info

Publication number
WO2021110434A1
WO2021110434A1 PCT/EP2020/082856 EP2020082856W WO2021110434A1 WO 2021110434 A1 WO2021110434 A1 WO 2021110434A1 EP 2020082856 W EP2020082856 W EP 2020082856W WO 2021110434 A1 WO2021110434 A1 WO 2021110434A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
flow profile
pipeline
determined
speed
Prior art date
Application number
PCT/EP2020/082856
Other languages
German (de)
English (en)
Inventor
Martine Lefebvre
Rebecca Page
Raphael KUHNEN
Wolfgang Drahm
Ulrich Kaiser
Original Assignee
Endress+Hauser SE+Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser SE+Co. KG filed Critical Endress+Hauser SE+Co. KG
Publication of WO2021110434A1 publication Critical patent/WO2021110434A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0066Determining flow properties indirectly by measuring other parameters of the system electrical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0073Determining flow properties indirectly by measuring other parameters of the system acoustic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0086Determining flow properties indirectly by measuring other parameters of the system magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system
    • G01N2011/0093Determining flow properties indirectly by measuring other parameters of the system thermal properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave

Definitions

  • the present invention relates to a method, in particular a computer-implemented method, for determining and / or monitoring at least one rheological property of a medium.
  • the present invention also relates to a computer program for determining the rheological properties, as well as a computer program product with a corresponding computer program.
  • Rheology is generally concerned with the deformation and flow behavior of matter.
  • the phenomenological relationship between the deformation of a body and the external stress that causes it is described using so-called rheological models, for example.
  • rheological models for example.
  • properties such as elasticity, viscosity and plasticity
  • model bodies of a spring, a damping cylinder and a friction block usually taken from mechanics, are used.
  • non-Newtonian liquids i.e. liquids whose behavior deviates from that of a Newtonian liquid
  • Newtonian liquid is a fluid with linear viscous flow behavior, the movement of which satisfies the Navier-Stokes equations.
  • the shear rate is proportional to the shear stress, so that a load-independent viscosity results.
  • the viscosity depends on the shear rate and thus on the flow rate of the respective medium.
  • rheometers have become known from the prior art for investigating the rheological properties, which are used to determine different rheological properties, such as, for example, shear rheometers, extensional rheometers, bending bar rheometers, or rotational rheometers.
  • the disadvantage of such measuring devices is that they are used to determine rheological Properties each samples of the medium to be examined must be removed from the process and examined separately.
  • measuring devices have also been described with which theological properties can be determined directly in the process.
  • an NMR spectrometer is used, for example, to determine a velocity profile of the flowing medium.
  • EP3450930A1 proposes determining a speed profile of the flowing medium by means of a large number of ultrasonic transceivers which define a large number of acoustic paths through the medium or the pipeline.
  • the present invention is based on the object of providing a simple way of determining and / or monitoring at least one theological property of a medium.
  • the object on which the invention is based is achieved by a method, in particular a computer-implemented method, for determining and / or monitoring at least one theological property of a flowable medium in a pipeline, comprising the following method steps:
  • the at least two measuring areas are located in the same plane which runs perpendicular to the longitudinal axis and thus parallel to the cross-sectional area through the pipeline.
  • the measuring areas are in different planes relative to the longitudinal axis, i.e. they have at least partially different distances from the center of the cross-sectional area of the pipeline.
  • the measured values for the speed are preferably determined by means of a non-invasive measuring arrangement or by means of a non-invasive measuring device. In this way, the flowing medium in the pipeline is not influenced, so that no effects caused by the measuring device or the measuring arrangement affect the flow profile. However, a non-invasive determination of the measured values for the speed is not absolutely necessary
  • the first and second measured value for the speed are determined by means of at least one ultrasonic flow measuring device.
  • Ultrasonic flowmeters often work according to the transit time difference principle, in which different transit times of ultrasonic waves, in particular ultrasonic pulses, so-called bursts, are evaluated relative to the direction of flow of the liquid.
  • ultrasonic pulses are both with and at a certain angle to the pipe axis sent against the direction of flow. The flow velocity of the medium and, if the diameter of the pipe section is known, the volume flow can be determined from the transit time difference.
  • ultrasonic waves are generated or received with the help of so-called ultrasonic transducers.
  • ultrasonic transducers are firmly attached in the pipe wall of the relevant pipe section or, in the case of clamp-on ultrasonic flow measuring systems, are pressed onto the pipe wall from outside the measuring pipe.
  • the ultrasonic transducers usually comprise an electromechanical transducer element, for example a piezoelectric element, and a coupling layer, sometimes also referred to as a membrane.
  • the ultrasonic transducers are typically arranged in a common plane on the measuring tube, either on opposite sides of the measuring tube, then the acoustic signal, projected onto a tube cross-section, runs once along a secant through the measuring tube, or on the same side of the measuring tube, then the acoustic signal reflected on the opposite side of the measuring tube, whereby the acoustic signal crosses the measuring tube twice along the secant projected onto the cross-section through the measuring tube.
  • the first and second measured values for the speed are determined by means of at least one magnetically inductive flow measuring device.
  • a magnetic-inductive flowmeter based on Faraday's law of induction, a magnetic field of constant strength over time is generated by means of a magnet system attached to a partial measuring tube section, essentially perpendicular to the direction of flow of an electrically conductive fluid flowing through the pipeline. This deflects the ions present in the flowing fluid in opposite directions.
  • the electrical voltage resulting from this charge separation is tapped by means of at least one measuring electrode pair, which is also fastened in the measuring tube section. The voltage tapped is proportional to the flow velocity of the fluid and thus proportional to the volume flow.
  • the first and second measured values for the speed are determined by means of at least one thermal Flow meter determined.
  • thermal or calorimetric flowmeters There are basically two measuring principles available for thermal or calorimetric flowmeters.
  • a sensor element is exposed to a medium flowing through a pipeline and heated in such a way that its temperature remains essentially constant.
  • medium properties such as the medium temperature, its density or composition
  • the mass flow of the medium through the pipeline can be determined using the heating power required to keep the temperature at a constant value.
  • the medium temperature is understood to mean that temperature which the medium has without an additional heat input from a heating element.
  • the heating element is operated with constant heating power and the temperature of the medium is measured downstream of the heating element.
  • the measured temperature of the medium provides information about the mass flow.
  • a second sensor element can also be used to measure the temperature of the medium, in particular with a variable medium temperature.
  • the heating elements of thermal flow meters are often implemented in the form of resistance heaters.
  • resistance elements e.g. B.
  • RTD resistance elements Resistance Temperature Detector
  • platinum elements are used, as is also commercially available under the names PT10, PT100, and PT1000.
  • the resistance elements are converted into electrical power supplied by them, e.g. B. as a result of an increased power supply, heated.
  • a model is used to determine the flow profile of the medium, which model describes the speed of the medium as a function of the location within the pipeline.
  • At least one parameter of the model is determined on the basis of the first and second measured value.
  • a parabolic function is used as the model.
  • a model based on a parabolic function is particularly advantageous when the flow profile of the medium is in the Pipeline is rotationally symmetrical. In this case, it is sufficient to consider a parabola to characterize the flow.
  • a parabolic function is advantageously completely characterized by three parameters, so that this configuration can advantageously be implemented with particularly little computing effort.
  • a reference flow profile is determined for the medium.
  • the reference flow profile is selected in particular such that it is characteristic of a reference value for the rheological property of the medium to be determined and / or monitored.
  • the reference flow profile can be stored, for example, in a storage unit and can be determined empirically using a reference medium as well as calculated using a mathematical model.
  • the reference flow profile is rotationally symmetrical.
  • the determined flow profile is compared with the reference flow profile, in particular a discrepancy between the reference flow profile and the determined flow profile being recognized.
  • a statement about the pipeline is made in the event of a discrepancy between the determined flow profile and rotational symmetry. This procedure is based on the knowledge that the rheological properties of the medium have no influence on the rotational symmetry of a flow profile of the flowing medium. If a non-rotationally symmetrical flow profile of the medium to be examined is found, this indicates a cause that is not based on the flow behavior of the medium. A statement can thus be made about the pipeline itself. For example, it can be recognized whether there is an obstacle in the pipeline, for example in the form of a deposit or a solid in the pipeline. It is therefore possible to draw conclusions about undesired, unfavorable flow conditions.
  • a further embodiment includes that a change in at least one rheological property of the medium is recognized on the basis of the comparison of the determined flow profile with the reference flow profile.
  • a deviation from a reference variable can therefore be detected in a simple manner. Many processes do not require knowledge of the absolute values of certain media properties, such as the viscosity, but only the determination of a deviation from the respective desired target values.
  • the calculation unit is therefore preferably a unit equipped with artificial intelligence and learns to recognize a deviation from a reference. So it is an intelligent process monitoring.
  • the machine learning process that the calculation unit goes through can be both a supervised and an unsupervised learning process.
  • the calculation unit can be trained both offline and online.
  • Offline training is understood to mean training before the method is carried out, that is to say before the method is used in the ongoing process. In principle, it involves training under laboratory conditions.
  • the calculation unit can also be trained online, i.e. in the ongoing process or while the method is being carried out in the process.
  • the method of self-organized cards can be used for training and for recognizing the deviation from a reference.
  • the object on which the invention is based is also achieved by a computer program for determining and / or monitoring at least one rheological property of a flowable medium in a pipeline with computer-readable program code elements which, when they are on a computer are executed, cause the computer to execute at least one embodiment of the method according to the invention.
  • the object on which the invention is based is also achieved by a computer program product with a computer program according to the invention and at least one computer-readable medium on which at least the computer program is stored.
  • FIG. 1 shows by way of example possible measuring devices or measuring arrangements which are suitable for carrying out a method according to the invention
  • FIG. 1 three exemplary measuring devices or measuring arrangements are sketched which are suitable for carrying out a method according to the invention.
  • the arrangement used in each case should be designed to acquire at least two measured values for the speed corresponding to two different measuring areas along a cross-sectional area through the pipeline.
  • the measured values for the speeds v1-v5 are recorded by means of an ultrasonic flow meter 1. Shown is a cross-sectional area A of a pipe 2 through which a medium M flows, on the wall of which five transceiver pairs 3a, 3a'-3e, 3e 'are arranged, for example, in five different measuring areas B1-B5.
  • a speed profile in a plane perpendicular to a longitudinal axis of the Pipeline 2 can be determined, which can be used to determine and / or monitor at least one theological property of the medium M.
  • five measuring ranges B1-B5 do not necessarily have to be defined. Rather, at least two measuring ranges B1, B2 should be defined in order to be able to obtain at least two different measured values for the speed v1 and v2.
  • a thermal flow measuring device 4 is used to determine the measured values for the speeds v1-v7.
  • a cross-sectional area A of the pipeline 2 through which the medium M flows is again shown.
  • seven measuring ranges B1-B7 were defined, in which the seven measured values for the speed v1-v7 are determined.
  • two measuring inserts 5a, 5b are integrated into the pipeline, with one fleece element 6a-6g being arranged within the first measuring insert 5a and one temperature sensor 7a-7g within the second measuring insert 5b in each measuring area B1-B7.
  • FIG. 1c shows a magneto-inductive flowmeter 9, which uses a single magnet system 9 to generate a magnetic field B and five pairs of electrodes 10a, 10a'-10e, 10e 'aligned perpendicular to a direction of the magnetic field B for picking up the respectively induced Voltage, on the basis of which the respective value for the speed v1 -v5 can be determined, and which five different measuring ranges B1-B7 are assigned.
  • each pair of electrodes 10, 10 ′ can also have a separate magnet system 9.
  • the use of a single magnet system 9 advantageously leads to a particularly compact structure.
  • FIG. 2 An exemplary embodiment of the method according to the invention is illustrated below with reference to FIG. 2.
  • a pipeline through which a medium M with a rotationally symmetrical flow profile S flows is shown.
  • theological properties can also be monitored and / or determined on the basis of a comparison of the determined flow profile S with one or more reference flow profiles S ‘.
  • the comparison between the determined flow profile S and the reference flow profile S ‘ can advantageously be carried out by means of an intelligent calculation unit 11, not shown here.
  • the method according to the invention is carried out at a point in time at which the medium M flows into the pipeline 2, in particular at a point in time at which the medium M passes the measuring device or the measuring arrangement 1, 4, 9.
  • a value for the velocity v of the medium M at an inflow time t can be determined for each measuring range B, so that the inflow times t are also available for determining the flow profile in addition to the values for the velocity v.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

La présente invention concerne un procédé, en particulier un procédé mis en œuvre par ordinateur, pour déterminer et/ou surveiller au moins une propriété rhéologique d'un milieu fluide (M) dans une canalisation (2), comprenant les étapes de procédé suivantes : la détermination d'au moins une première zone de mesure (B1) et d'une seconde zone de mesure (B2), différente de la première zone de mesure (B1), le long d'une surface de section transversale (A) de la canalisation (2) perpendiculaire à un axe longitudinal de la canalisation (2), la première zone de mesure (B1) et la seconde zone de mesure (B2) se trouvant dans un plan perpendiculaire à l'axe longitudinal, la détermination d'une première valeur de mesure pour une vitesse (V1) du fluide (M) dans la canalisation (2) dans la première zone de mesure (B1), la détermination d'une seconde valeur mesurée pour une vitesse (V2) du milieu (M) à travers la canalisation (2) dans la seconde région de mesure (B2), la détermination d'un profil d'écoulement du milieu (M) dans la canalisation (2) au moins sur la base de la première valeur mesurée (v1) et de la seconde valeur mesurée (v2) pour la vitesse, et la détermination de la propriété rhéologique du milieu (M) au moins sur la base du profil d'écoulement. En outre, la présente invention concerne un programme d'ordinateur qui est configuré pour exécuter le procédé selon l'invention, et un produit programme d'ordinateur ayant un programme informatique selon l'invention.
PCT/EP2020/082856 2019-12-06 2020-11-20 Procédé de détermination et/ou de surveillance d'au moins une propriété rhéologique d'un milieu WO2021110434A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019133391.1A DE102019133391A1 (de) 2019-12-06 2019-12-06 Verfahren zur Bestimmung und/oder Überwachung zumindest einer rheologischen Eigenschaft eines Mediums
DE102019133391.1 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021110434A1 true WO2021110434A1 (fr) 2021-06-10

Family

ID=73543258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/082856 WO2021110434A1 (fr) 2019-12-06 2020-11-20 Procédé de détermination et/ou de surveillance d'au moins une propriété rhéologique d'un milieu

Country Status (2)

Country Link
DE (1) DE102019133391A1 (fr)
WO (1) WO2021110434A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090211330A1 (en) * 2005-04-20 2009-08-27 Endress + Hauser Flowtec Ag Method for ascertaining volume -or mass- flow of a medium
US20130345994A1 (en) * 2011-08-04 2013-12-26 Cape Peninsula University Of Technology Fluid visualisation and characterisation system and method; a transducer
WO2015068154A1 (fr) 2013-11-06 2015-05-14 Aspect Imaging Ltd. Mesure en ligne de rhéologie/viscosité, de densité et de débit
EP3450930A1 (fr) 2017-08-29 2019-03-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Mesure acoustique d'un écoulement de fluide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940985A (en) * 1975-04-18 1976-03-02 Westinghouse Electric Corporation Fluid flow measurement system for pipes
NL9301422A (nl) * 1993-08-17 1995-03-16 Servex Bv Werkwijze en inrichting voor het bepalen van eigenschappen van de stroming van een medium.
NL1001719C2 (nl) * 1995-11-22 1997-05-23 Krohne Altometer Werkwijze en inrichting voor de ultrasone meting van de snelheid en doorstroomhoeveelheid van een medium in een buisleiding.
DE10227918A1 (de) * 2002-06-21 2004-01-15 Bühler AG Verfahren zum Bestimmen rheologischer Parameter eines Fluids
DE10229220A1 (de) * 2002-06-28 2004-02-26 Bühler AG Ultraschall-Doppler-Methode zur Bestimmung rheologischer Parameter eines Fluids
DE102007004936B4 (de) * 2006-12-19 2011-01-13 Krohne Ag Ultraschalldurchflußmeßgerät
EP2072972B1 (fr) * 2007-12-21 2016-04-13 SICK Engineering GmbH Dispositif de mesure du mouvement d'un fluide dans un tuyau
DE102010060131A1 (de) * 2010-10-22 2012-04-26 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung und Verfahren zur Erfassung des räumlichen Geschwindigkeitsprofils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090211330A1 (en) * 2005-04-20 2009-08-27 Endress + Hauser Flowtec Ag Method for ascertaining volume -or mass- flow of a medium
US20130345994A1 (en) * 2011-08-04 2013-12-26 Cape Peninsula University Of Technology Fluid visualisation and characterisation system and method; a transducer
WO2015068154A1 (fr) 2013-11-06 2015-05-14 Aspect Imaging Ltd. Mesure en ligne de rhéologie/viscosité, de densité et de débit
US20170097293A1 (en) * 2013-11-06 2017-04-06 Aspect Imaging Ltd. Inline rheology/viscosity, density, and flow rate measurement
EP3450930A1 (fr) 2017-08-29 2019-03-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Mesure acoustique d'un écoulement de fluide

Also Published As

Publication number Publication date
DE102019133391A1 (de) 2021-06-10

Similar Documents

Publication Publication Date Title
EP2739944B1 (fr) Procédé de détection d'un dépôt ou d'une abrasion dans un débitmètre
EP3489634A1 (fr) Dispositif de mesure par ultrasons et procédé de mesure par ultrasons sur un fluide s'écoulant
EP0046965A1 (fr) Procédé et appareil pour la détermination dynamique du débit massique independant de la densité
EP3298360B1 (fr) Procédé, produit de logiciel d'ordinateur et appareil pour déterminer un paramètre caractéristique pour évaluer un dispositif de mesure comprenant un débitmètre ultrasonore du type clamp-on et une conduite de mesure
EP2614337B1 (fr) Procédé de détection d'un engorgement dans un débitmètre à effet coriolis
DE102007023840A1 (de) Thermischer Massendurchflussmesser und Verfahren zu dessen Betrieb
WO2014191136A1 (fr) Dispositif pour déterminer et/ou surveiller le débit volumique et/ou massique d'un fluide
EP4022259B1 (fr) Débitmètre à induction magnétique et procédé de fonctionnement d'un débitmètre à induction magnétique
DE102020129074A1 (de) Durchflussmessgerät, Verfahren zum Betreiben eines Durchflussmessgeräts, Anlage und Verfahren zum Betreiben einer Anlage
DE102017005207A1 (de) Verfahren zur Bestimmung des Drucks eines Fluids
WO2008142075A1 (fr) Procédé de diagnostic pour appareils de mesure de débit massique thermiques
DE102010030952A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder eienr Durchflussgeschwindigkeit
DE102012104042A1 (de) Verfahren zur Überwachung des Betriebszustandes eines Ultraschallwandlers in einem Ultraschall-Durchflussmessgerät
WO2021110434A1 (fr) Procédé de détermination et/ou de surveillance d'au moins une propriété rhéologique d'un milieu
DE102013006397B4 (de) Thermischer Durchflussmesser und Verfahren zum Betrieb desselben
AT520557B1 (de) Verfahren zur Ermittlung eines korrigierten Werts für die viskositätsabhängige Schallgeschwindigkeit in einem zu untersuchenden Fluid
EP4060295B1 (fr) Procédé de compensation de l'effet du nombre de reynolds sur la mesure d'un débitmètre massique de coriolis et appareil correspondant
DE102017213084A1 (de) Verfahren und Vorrichtung für eine sichere Durchflussmessung
WO2019015912A1 (fr) Débitmètre thermique
DE102011050716B4 (de) Verfahren und Vorrichtung zur Online-Messung der Viskosität eines Fluids
DE102010018948A1 (de) Thermischer Massendurchflussmesser mit zusätzlichen Sensormitteln sowie Verfahren zum Betrieb desselben
DE102020100722A1 (de) Druckmessgerät mit Sensor zur Erfassung von Anhaftungen an der Messmembran sowie Verfahren zum Betreiben eines solchen Druckmessgeräts
EP1731883B1 (fr) Procédé pour détecter un changement géométrique d'un canal de mesure de débit par ultrasons
DE102018124069A1 (de) Magnetisch-induktives Durchflussmessgerät mit Sensor zur Erfassung einer weiteren Messgröße
DE102013114424A1 (de) Thermischer Durchflusssensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20811286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20811286

Country of ref document: EP

Kind code of ref document: A1