WO2021110301A1 - Method and apparatus for determining a state of a machine - Google Patents

Method and apparatus for determining a state of a machine Download PDF

Info

Publication number
WO2021110301A1
WO2021110301A1 PCT/EP2020/077993 EP2020077993W WO2021110301A1 WO 2021110301 A1 WO2021110301 A1 WO 2021110301A1 EP 2020077993 W EP2020077993 W EP 2020077993W WO 2021110301 A1 WO2021110301 A1 WO 2021110301A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
machine
model
features
following features
Prior art date
Application number
PCT/EP2020/077993
Other languages
German (de)
French (fr)
Inventor
Ruben KAPP
Joachim Soubari
Juergen Sojka
Mario Herrera
Martin Kessler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021110301A1 publication Critical patent/WO2021110301A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0232Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions
    • B60R16/0234Circuits relating to the driving or the functioning of the vehicle for measuring vehicle parameters and indicating critical, abnormal or dangerous conditions related to maintenance or repairing of vehicles
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/063Lift of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining a condition of a machine and detecting anomalies in its components.
  • the present invention also relates to a corresponding device, a corresponding computer program and a corresponding storage medium.
  • OBD on-board diagnosis
  • Errors detected in this way are displayed to the driver via a control lamp and permanently stored in the respective control unit so that they can later be queried by a specialist workshop via standardized interfaces.
  • DE102013200573A1 relates to a method and an associated device for the active diagnosis of components of an exhaust gas cleaning system of an internal combustion engine, which at least one Has catalytic converter, with a first exhaust gas probe arranged in front of the catalytic converter and a second exhaust gas probe arranged behind the catalytic converter, wherein during preconditioning with an air-fuel mixture with a rich air-fuel ratio and in a subsequent measurement phase with a lean air Fuel ratio is operated and where an oxygen storage capacity of the catalyst is determined from an integrated oxygen input into the catalyst during the measurement phase until a lean air-fuel ratio is detected at the second exhaust gas probe, or where the internal combustion engine is used to determine the oxygen storage capacity the preconditioning is operated with a lean air-fuel ratio and operated in the subsequent measurement phase with a rich air-fuel ratio and the oxygen storage capacity from an integrated oxygen discharge from the catalytic converter during the Measurement phase until a rich air / fuel ratio is detected on the second exhaust gas probe.
  • the invention provides a method for determining a state of a machine, a corresponding device, a corresponding computer program and a corresponding storage medium according to the independent claims.
  • the approach according to the invention is based on the knowledge that diagnostic systems according to the prior art are typically not able to monitor components that are not relevant to exhaust emissions or that have corresponding sensors.
  • the detection of anomalies in the components and a prediction of component failures is not readily possible, since generic diagnostic systems are generally only designed to detect faults that have already occurred.
  • the prediction of errors is not part of the functional scope of such diagnostic systems.
  • measured variables the course of which over time could indicate anomalies and future errors, are not recorded or are only recorded on the basis of accumulated values, so that no historical database is available for such a vehicle-internal error prediction.
  • a basic idea of the proposed solution is to use machine components that are conventionally not monitored or monitored to a limited extent - z. B.
  • the sensor signals detected in this way can be monitored in a computing unit such as a central vehicle control unit (VCU) or another electronic control unit (ECU) in the vehicle and prepared for further processing by using a suitable algorithm is calculated.
  • the signals can be used in the processing unit or electronic control unit in the form of transient signals, diagnostic features or statistical features or their frequencies or as a spectogram or spectral bands or prepared for further analysis.
  • the data and features from the signal can be evaluated with the help of machine learning - for example by means of artificial neural networks - or on the basis of data and physical models with the aim of determining the current status of the monitored component, anomalies in the monitored components to detect their remaining service life or to predict the expected point in time at which their functional impairment becomes noticeable to the driver.
  • the signals from the sensors can be sent to the cloud in the form of suitable data via a telematics unit in the vehicle or a mobile phone, and features can be extracted in the cloud.
  • One advantage of the monitoring of the condition of engine components and systems according to the invention lies in the possibility of recognizing or even predicting defects and signs of wear as well as their localization (pinpointing). Relevant information can be provided over the air using web services and other cloud solutions. An OBD interface is not absolutely necessary for this.
  • Figure 1 shows the flow chart of a method according to a first embodiment.
  • FIG. 2 schematically shows a control device according to a second embodiment.
  • FIG. 1 illustrates the basic sequence of a method according to the invention (10).
  • structure-borne sound sensors (12) such as vibration velocity sensors, vibration displacement sensors or vibration acceleration sensors are used. Piezoceramics are for this purpose particularly suitable.
  • the on-board sensors already provided in conventional vehicles come into consideration, in the case of gasoline engines, for example, the knock sensor (24) built into the engine block or crankcase, or in the case of CRI2 or CRI3 diesel engines, the needle closing sensors built into the injectors , NCS; 25).
  • One or more structure-borne sound sensors (12) or one or more piezo sensors (13) can be used or signals coming from the ECU or other components can be used to increase the quality of the prediction (21) and the quality of the analysis.
  • the sensors (12) measure the structure-borne noise, i.e. mechanical oscillation, and convert this into electrical voltage.
  • the resulting voltage signal (15) can be electrically amplified or preprocessed via analog filters, depending on the application.
  • the signal (15) is converted into a digital data stream for further digital processing.
  • the digital data stream is processed in a computing unit (16) in the vehicle.
  • Various methods and algorithms are used for processing and analysis.
  • the signal (15) represented by the data can, for example, be analyzed at the time and frequency level for the presence of certain frequencies and ranges / sections or for certain threshold values to be exceeded.
  • the data and / or features (17) extracted in this way can ultimately serve as input for physical models or statistical models (19) formed by machine learning (18).
  • the extracted data and / or features (17) are preferably packet-oriented via a transmission unit (22) in the form of a communication interface ⁇ connectivity control unit, CCU) or telematics unit (telematics unit, TCU) to an external computer, for example in the cloud ( 23) sent.
  • the feature data (17) are then stored on the server and can be combined with other fleet data and prepared for further processing.
  • the data and / or features (17) are stored in the cloud (23) for this purpose, for example through machine learning (18) based methods are evaluated with regard to possible faults in the machine (11) in order to make a relevant prediction (21).
  • the described merging of the feature data (17) obtained in different vehicles of a fleet improves the models (19) used in the context of the method (10), but requires external computers, e.g. B. in the cloud (23).
  • a large number of relevant models (19) and algorithms can be considered.
  • a separate model (19) is typically used for each state (20) to be predicted.
  • a single model (19) may nonetheless be used to predict (21) multiple component failures.
  • the NCS (25) of a CRS3 injector monitors (14) at a point of the combustion cycle - defined with respect to the top dead center of the cylinder in question - over a defined period of time, e.g. B. 400 ms.
  • the features (17) of the scanned signal (15) extracted by the ECU (16) are transmitted to the VCU (22) and z. B. stored compressed by an encoder.
  • the signal (15) or its features (17) can already be checked for plausibility and validity, so that only permissible signals (15) are processed further.
  • This monitoring (14), transmission, compression and storage takes place over the duration of the driving cycle at defined time intervals and only when the vehicle is in a defined state, e.g. B. only in overrun phases. So many features (17) are collected until a predetermined amount of data is reached. The features (17) are then transmitted to the cloud (23).
  • the feature data (17) are decompressed in the cloud (23) and merged with inventory data in a database. Prediction models (19) are then applied to the new database and new predictions (21) are made.
  • the feature data (17) are propagated through a convolutional neural network for the purpose of anomaly detection. Frequency and amplitude, for example, serve as examined parameters.
  • further measured variables are also transmitted from the vehicle.
  • the CNN used as model (19) in the present application example classifies the underlying signal (15) as normal or abnormal on the basis of the feature data (17) present at its input. If an anomaly is detected in this way over a certain number of measurements, the remaining range can be calculated using a further algorithm. This information can be transmitted or otherwise made available to the driver or owner of the vehicle.
  • This method (10) can, for example, in software or hardware or in a mixed form of software and hardware, for example in one
  • Control unit (30) can be implemented, as the schematic illustration in FIG. 2 illustrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method (10) for determining a state (20) of a machine (11), characterized by the following features (17): - the machine (11) is continuously monitored (14) by sensors (12, 13), - measurement signals (15) from the sensors (12, 13) are supplied to a computing unit (16), - features (17) of the measurement signals (15) extracted by the computing unit (16) are evaluated on the basis of a model (19), and - the state (20) is derived from the features (17) by means of the model (19).

Description

Beschreibung description
Titel title
Verfahren und Vorrichtung zum Bestimmen eines Zustandes einer Maschine Method and device for determining a state of a machine
Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen eines Zustandes einer Maschine und Erkennen von Anomalien in ihren Komponenten. Die vorliegende Erfindung betrifft darüber hinaus eine entsprechende Vorrichtung, ein entsprechendes Computerprogramm sowie ein entsprechendes Speichermedium. The present invention relates to a method for determining a condition of a machine and detecting anomalies in its components. The present invention also relates to a corresponding device, a corresponding computer program and a corresponding storage medium.
Stand der Technik State of the art
Während des Fährbetriebes eines Kraftfahrzeuges nach dem Stand der Technik werden alle abgasbeeinflussenden Systeme und weitere wichtige Steuergeräte, deren Daten durch ihre Software zugänglich sind, zum Zwecke der Borddiagnose {on-board diagnosis, OBD) überwacht. Einschlägige Verfahren umfassen beispielsweise elektrische Diagnosen wie die Erkennung von Kurzschlüssen nach Masse oder Batterie, Kabelbrüchen oder unplausiblen Spannungen zwischen bestimmten Leitungen ebenso wie Plausibilitätsprüfung, Abgleich und Gradienten-Überwachung unterschiedlichster von Sensoren gelieferter Messsignale. During the ferry operation of a motor vehicle according to the state of the art, all exhaust-influencing systems and other important control units, the data of which are accessible through their software, are monitored for the purpose of on-board diagnosis (OBD). Relevant methods include, for example, electrical diagnoses such as the detection of short circuits to ground or battery, cable breaks or implausible voltages between certain lines as well as plausibility checks, balancing and gradient monitoring of a wide variety of measurement signals supplied by sensors.
Auf diesem Weg erkannte Fehler werden dem Fahrer über eine Kontrollleuchte angezeigt und im jeweiligen Steuergerät dauerhaft gespeichert, sodass sie später durch eine Fachwerkstatt über genormte Schnittstellen abgefragt werden können. Errors detected in this way are displayed to the driver via a control lamp and permanently stored in the respective control unit so that they can later be queried by a specialist workshop via standardized interfaces.
DE102013200573A1 beispielsweise betrifft ein Verfahren und eine zugehörige Vorrichtung zur aktiven Diagnose von Komponenten einer Abgasreinigungsanlage einer Brennkraftmaschine, welche mindestens einen Katalysator aufweist, mit einer vor dem Katalysator angeordneten ersten Abgassonde und einer hinter dem Katalysator angeordneten zweiten Abgassonde, wobei während einer Vorkonditionierung mit einem Luft- Kraftst off - Gemisch mit einem fetten Luft- Kraftstoff- Verhältnis und in einer anschließenden Messphase mit einem mageren Luft- Kraftstoff- Verhältnis betrieben wird und wobei eine Sauerstoff-Speicherfähigkeit des Katalysators aus einem integrierten Sauerstoffeintrag in den Katalysator während der Messphase bis zum Nachweis eines mageren Luft- Kraftstoff- Verhältnisses an der zweiten Abgassonde bestimmt wird oder wobei zur Bestimmung der Sauerstoff-Speicherfähigkeit die Brennkraftmaschine während der Vorkonditionierung mit einem mageren Luft- Kraftstoff-Verhältnis betrieben und in der anschließenden Messphase mit einem fetten Luft- Kraftstoff- Verhältnis betrieben wird und wobei die Sauerstoff- Speicherfähigkeit aus einem integrierten Sauerstoffaustrag aus dem Katalysator während der Messphase bis zum Nachweis eines fetten Luft- Kraftst off - Verhältnisses an der zweiten Abgassonde bestimmt wird. DE102013200573A1, for example, relates to a method and an associated device for the active diagnosis of components of an exhaust gas cleaning system of an internal combustion engine, which at least one Has catalytic converter, with a first exhaust gas probe arranged in front of the catalytic converter and a second exhaust gas probe arranged behind the catalytic converter, wherein during preconditioning with an air-fuel mixture with a rich air-fuel ratio and in a subsequent measurement phase with a lean air Fuel ratio is operated and where an oxygen storage capacity of the catalyst is determined from an integrated oxygen input into the catalyst during the measurement phase until a lean air-fuel ratio is detected at the second exhaust gas probe, or where the internal combustion engine is used to determine the oxygen storage capacity the preconditioning is operated with a lean air-fuel ratio and operated in the subsequent measurement phase with a rich air-fuel ratio and the oxygen storage capacity from an integrated oxygen discharge from the catalytic converter during the Measurement phase until a rich air / fuel ratio is detected on the second exhaust gas probe.
Offenbarung der Erfindung Disclosure of the invention
Die Erfindung stellt ein Verfahren zum Bestimmen eines Zustandes einer Maschine, eine entsprechende Vorrichtung, ein entsprechendes Computerprogramm sowie ein entsprechendes Speichermedium gemäß den unabhängigen Ansprüchen bereit. The invention provides a method for determining a state of a machine, a corresponding device, a corresponding computer program and a corresponding storage medium according to the independent claims.
Der erfindungsgemäße Ansatz fußt auf der Erkenntnis, dass Diagnosesysteme nach dem Stand der Technik typischerweise nicht in der Lage sind, Komponenten, die nicht abgasrelevant sind oder entsprechende Sensoren besitzen, zu überwachen. Die Erkennung von Anomalien an den Komponenten und eine Vorhersage von Komponentenausfällen ist nicht ohne weiteres möglich, da gattungsmäßige Diagnosesysteme in der Regel lediglich dazu ausgelegt sind, bereits eingetretene Fehler zu erkennen. Die Vorhersage von Fehlern indes zählt nicht zum Funktionsumfang derartiger Diagnosesysteme. Hinzu kommt, dass Messgrößen, deren zeitlicher Verlauf auf Anomalien und auf zukünftige Fehler hinweisen könnte, nicht oder allenfalls anhand akkumulierter Werte aufgezeichnet werden, sodass keine historische Datenbasis für eine solche fahrzeuginterne Fehlervorhersage vorliegt. Ein Grundgedanke der vorgeschlagenen Lösung besteht vor diesem Hintergrund darin, herkömmlicherweise nicht oder nur reduziert überwachte Maschinenkomponenten - z. B. Motor- oder anderweitige Antriebskomponenten - mit Hilfe von Körperschall- oder Piezo-Sensoren zu überwachen, um u. a. mechanische Ausfälle durch Risse am Material oder Lagerverschleiß an einer Pumpe, das vollständige Versagen einzelner Komponenten oder Erreichen anderer Eingriffsschwellen zu ermitteln und vorherzusagen. The approach according to the invention is based on the knowledge that diagnostic systems according to the prior art are typically not able to monitor components that are not relevant to exhaust emissions or that have corresponding sensors. The detection of anomalies in the components and a prediction of component failures is not readily possible, since generic diagnostic systems are generally only designed to detect faults that have already occurred. The prediction of errors, however, is not part of the functional scope of such diagnostic systems. In addition, measured variables, the course of which over time could indicate anomalies and future errors, are not recorded or are only recorded on the basis of accumulated values, so that no historical database is available for such a vehicle-internal error prediction. Against this background, a basic idea of the proposed solution is to use machine components that are conventionally not monitored or monitored to a limited extent - z. B. Motor or other drive components - to be monitored with the help of structure-borne sound or piezo sensors in order to determine and predict, among other things, mechanical failures due to cracks in the material or bearing wear on a pump, the complete failure of individual components or reaching other intervention thresholds.
Zu diesem Zweck können die solchermaßen erfassten Sensor-Signale in einer Recheneinheit wie einem zentralen Fahrzeugsteuergerät ( vehicle control unit, VCU) oder einer anderweitigen elektronischen Steuereinheit ( electronic control unit, ECU) im Fahrzeug überwacht und für die weitere Verarbeitung vorbereitet werden, indem mit einem geeigneten Algorithmus errechnet wird. Die Signale können in der Recheneinheit oder elektronischen Steuereinheit in Form von transiente Signale, Diagnosemerkmale bzw. statistische Features oder Ihre Frequenzen bzw. als Spektogramm oder Spektralbändern verwendet bzw. für die weitere Analyse vorbereitet werden. Die Daten und Merkmale aus dem Signal können mit Hilfe maschinellen Lernens ( machine learning) - etwa mittels künstlicher neuronaler Netze - oder auf Basis von Daten- und physikalischen Modellen mit dem Ziel ausgewertet werden, den aktuellen Zustand der überwachten Komponente, Anomalien in den Überwachten Komponenten zu detektieren, deren verbleibende Lebensdauer oder den erwarteten Zeitpunkt vorherzusagen, an dem ihre Funktionsminderung für den Fahrer wahrnehmbar wird. For this purpose, the sensor signals detected in this way can be monitored in a computing unit such as a central vehicle control unit (VCU) or another electronic control unit (ECU) in the vehicle and prepared for further processing by using a suitable algorithm is calculated. The signals can be used in the processing unit or electronic control unit in the form of transient signals, diagnostic features or statistical features or their frequencies or as a spectogram or spectral bands or prepared for further analysis. The data and features from the signal can be evaluated with the help of machine learning - for example by means of artificial neural networks - or on the basis of data and physical models with the aim of determining the current status of the monitored component, anomalies in the monitored components to detect their remaining service life or to predict the expected point in time at which their functional impairment becomes noticeable to the driver.
Für intensive Berechnungen können die Signale der Sensoren in Form geeigneter Daten über eine Telematik-Einheit des Fahrzeugs oder ein Handy in die Cloud gesendet werden und die Merkmalsextraktion kann in der Cloud erfolgen. For intensive calculations, the signals from the sensors can be sent to the cloud in the form of suitable data via a telematics unit in the vehicle or a mobile phone, and features can be extracted in the cloud.
Auf diese Weise können unvorhersehbare Ausfälle sowie ungeplante Werkstattbesuche oder sogar Autopannen vermieden werden. Dies wiederum steigert den Komfort des Fahrzeugführers und etwaiger Fahrgäste. Die erfindungsgemäß ermöglichte gezielte Erkennung der Anomalie oder defekten Komponente und Fehlerart erhöht die Planbarkeit etwaiger Werkstattaufenthalte und spart ggf. Zeit bei der Fehlersuche in der Werkstatt oder beim Erstausrüster ( original equipment manufacturer, OEM). In this way, unpredictable failures as well as unplanned workshop visits or even car breakdowns can be avoided. This in turn increases the comfort of the vehicle driver and any passengers. The targeted detection of the anomaly or defects made possible according to the invention Component and type of error make it easier to plan any visits to the workshop and, if necessary, save time when troubleshooting in the workshop or at the original equipment manufacturer (OEM).
Ein Vorzug der erfindungsgemäßen Zustandsüberwachung ( monitoring ) von Motorkomponenten und Systemen liegt somit in der eröffneten Möglichkeit zur Erkennung oder gar Prognose von Defekten und Verschleißerscheinungen sowie deren Lokalisierung {pinpointing ). Einschlägige Informationen können mittels Web-Services und anderweitiger Cloud-Lösungen über die Luftschnittstelle ( over the air) bereitgestellt werden. Eine OBD-Schnittstelle ist hierzu nicht zwingend erforderlich. One advantage of the monitoring of the condition of engine components and systems according to the invention lies in the possibility of recognizing or even predicting defects and signs of wear as well as their localization (pinpointing). Relevant information can be provided over the air using web services and other cloud solutions. An OBD interface is not absolutely necessary for this.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im unabhängigen Anspruch angegebenen Grundgedankens möglich. The measures listed in the dependent claims allow advantageous developments and improvements of the basic idea specified in the independent claim.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt: Exemplary embodiments of the invention are shown in the drawings and explained in more detail in the description below. It shows:
Figur 1 das Flussdiagramm eines Verfahrens gemäß einer ersten Ausführungsform. Figure 1 shows the flow chart of a method according to a first embodiment.
Figur 2 schematisch ein Steuergerät gemäß einer zweiten Ausführungsform. Ausführungsformen der Erfindung Figure 2 schematically shows a control device according to a second embodiment. Embodiments of the invention
Figur 1 illustriert den grundlegenden Ablauf eines erfindungsgemäßen Verfahrens (10). Um den Zustand (20) von Komponenten einer Maschine (11) zu messen, werden demnach Körperschallsensoren (12) wie Schwinggeschwindigkeitsaufnehmer, Schwingwegaufnehmer oder Schwingbeschleunigungsaufnehmer verwendet. Piezokeramiken sind hierzu besonders geeignet. In Betracht kommen insbesondere die in herkömmlichen Fahrzeugen ohnehin vorgesehenen Bord-Sensoren, im Falle von Benzinmotoren etwa der im Motorblock bzw. Kurbelgehäuse eingebaute Klopfsensor (24) oder im Falle on CRI2- oder CRI3-Dieselmotoren die auf den Injektoren verbauten Nadelschließsensoren ( needle closing sensors, NCS; 25). Es können ein oder mehrere Körperschallsensoren (12) bzw. ein oder mehrere Piezo-Sensoren (13) verwendet oder aus der ECU oder anderweitigen Komponente kommende Signale genutzt werden, um die Qualität der Vorhersage (21) und Analysequalität zu erhöhen. FIG. 1 illustrates the basic sequence of a method according to the invention (10). In order to measure the condition (20) of components of a machine (11), structure-borne sound sensors (12) such as vibration velocity sensors, vibration displacement sensors or vibration acceleration sensors are used. Piezoceramics are for this purpose particularly suitable. In particular, the on-board sensors already provided in conventional vehicles come into consideration, in the case of gasoline engines, for example, the knock sensor (24) built into the engine block or crankcase, or in the case of CRI2 or CRI3 diesel engines, the needle closing sensors built into the injectors , NCS; 25). One or more structure-borne sound sensors (12) or one or more piezo sensors (13) can be used or signals coming from the ECU or other components can be used to increase the quality of the prediction (21) and the quality of the analysis.
Die Sensoren (12) messen den Körperschall, also ein mechanisches Schwingen, und wandeln dieses in elektrische Spannung um. Das resultierende Spannungssignal (15) kann je nach Anwendungsfall elektrisch verstärkt oder über Analogfilter vorverarbeitet werden. Zur digitalen Weiterverarbeitung wird das Signal (15) in einen digitalen Datenstrom gewandelt. The sensors (12) measure the structure-borne noise, i.e. mechanical oscillation, and convert this into electrical voltage. The resulting voltage signal (15) can be electrically amplified or preprocessed via analog filters, depending on the application. The signal (15) is converted into a digital data stream for further digital processing.
Der digitale Datenstrom wird in einer Recheneinheit (16) im Fahrzeug verarbeitet. Zur Verarbeitung und Analyse kommen verschieden Methoden und Algorithmen zum Einsatz. Das durch die Daten repräsentierte Signal (15) kann beispielsweise auf Zeit- und Frequenzebene auf Vorliegen bestimmter Frequenzen und Bereichen/Abschnitte oder Überschreitung bestimmter Schwellwerte hin analysiert werden. Die auf diesem Wege extrahierten Daten und/oder Merkmale (17) können schließlich als Eingabe für physikalische oder durch maschinelles Lernen (18) gebildete statistische Modelle (19) dienen. The digital data stream is processed in a computing unit (16) in the vehicle. Various methods and algorithms are used for processing and analysis. The signal (15) represented by the data can, for example, be analyzed at the time and frequency level for the presence of certain frequencies and ranges / sections or for certain threshold values to be exceeded. The data and / or features (17) extracted in this way can ultimately serve as input for physical models or statistical models (19) formed by machine learning (18).
Angesichts der begrenzten Rechenleistung der Recheneinheiten (16) an Bord konventioneller Fahrzeuge können rechenintensivere Analysen ausgelagert werden. Hierzu werden die extrahierten Daten und/oder Merkmale (17) vorzugsweise paketorientiert über eine Sendeeinheit (22) in Gestalt einer Kommunikationsschnittstelle {Connectivity control unit, CCU) oder Telematik- Einheit ( telematics unit, TCU) an einen externen Rechner beispielsweise in der Cloud (23) gesendet. Auf dem Server werden die Merkmalsdaten (17) sodann gespeichert und können mit weiteren Flottendaten kombiniert sowie zur weiteren Verarbeitung vorbereitet werden. Die Daten und/oder Merkmale (17) werden in der Cloud (23) hierzu beispielsweise durch auf maschinellem Lernen (18) beruhende Methoden im Hinblick auf mögliche Fehlerfälle der Maschine (11) ausgewertet, um eine diesbezügliche Vorhersage (21) zu treffen. Das beschriebene Zusammenführen der in unterschiedlichen Fahrzeugen einer Flotte gewonnenen Merkmalsdaten (17) verbessert die im Rahmen des Verfahrens (10) genutzten Modelle (19), erfordert aber externe Rechner z. B. in der Cloud (23). In view of the limited computing power of the computing units (16) on board conventional vehicles, more computationally intensive analyzes can be outsourced. For this purpose, the extracted data and / or features (17) are preferably packet-oriented via a transmission unit (22) in the form of a communication interface {connectivity control unit, CCU) or telematics unit (telematics unit, TCU) to an external computer, for example in the cloud ( 23) sent. The feature data (17) are then stored on the server and can be combined with other fleet data and prepared for further processing. The data and / or features (17) are stored in the cloud (23) for this purpose, for example through machine learning (18) based methods are evaluated with regard to possible faults in the machine (11) in order to make a relevant prediction (21). The described merging of the feature data (17) obtained in different vehicles of a fleet improves the models (19) used in the context of the method (10), but requires external computers, e.g. B. in the cloud (23).
Dabei kommt eine Vielzahl einschlägiger Modelle (19) und Algorithmen in Betracht. Typischerweise wird für jeden vorherzusagenden Zustand (20) ein eigenes Modell (19) verwendet. In Einzelfällen mag ein einzelnes Modell (19) gleichwohl zur Vorhersage (21) mehrerer Komponentenausfälle herangezogen werden. A large number of relevant models (19) and algorithms can be considered. A separate model (19) is typically used for each state (20) to be predicted. In individual cases, a single model (19) may nonetheless be used to predict (21) multiple component failures.
Dieses Vorgehen sei an einem konkreten Beispiel verdeutlicht: Der NCS (25) eines CRS3- Injektors etwa überwacht (14) an einem - bezüglich des oberen Totpunkts des betreffenden Zylinders definierten - Punkt des Verbrennungszyklus über eine definierte Zeitspanne von z. B. 400 ms. Die durch die ECU (16) extrahierten Merkmale (17) des abgetasteten Signales (15) werden an die VCU (22) übertragen und z. B. durch einen Encoder komprimiert gespeichert. In der ECU (16) oder VCU (22) können das Signal (15) oder dessen Merkmale (17) bereits plausibilisiert und auf Gültigkeit geprüft werden, sodass nur zulässige Signale (15) weiterverarbeitet werden. Diese Überwachung (14), Übertragung, Komprimierung und Speicherung erfolgt über die Dauer des Fahrzyklus in definierten Zeitabständen und nur, wenn sich das Fahrzeug in einem definierten Zustand befindet, z. B. nur in Schubphasen. Es werden so viele Merkmale (17) gesammelt, bis eine vorgegebene Datenmenge erreicht ist. Anschließend werden die Merkmale (17) in die Cloud (23) übermittelt. This procedure is illustrated by a specific example: The NCS (25) of a CRS3 injector monitors (14) at a point of the combustion cycle - defined with respect to the top dead center of the cylinder in question - over a defined period of time, e.g. B. 400 ms. The features (17) of the scanned signal (15) extracted by the ECU (16) are transmitted to the VCU (22) and z. B. stored compressed by an encoder. In the ECU (16) or VCU (22), the signal (15) or its features (17) can already be checked for plausibility and validity, so that only permissible signals (15) are processed further. This monitoring (14), transmission, compression and storage takes place over the duration of the driving cycle at defined time intervals and only when the vehicle is in a defined state, e.g. B. only in overrun phases. So many features (17) are collected until a predetermined amount of data is reached. The features (17) are then transmitted to the cloud (23).
In der Cloud (23) werden die Merkmalsdaten (17) dekomprimiert und in einer Datenbank mit Bestandsdaten zusammengeführt. Anschließend werden Vorhersagemodelle (19) auf die neue Datenbasis angewandt und neue Vorhersagen (21) getroffen. Hierzu werden die Merkmalsdaten (17) zwecks Anomalie-Erkennung durch ein neuronales Faltungsnetz {convolutional neural network) propagiert. Als untersuchte Parameter dienen beispielsweise Frequenz und Amplitude. Zur Verbesserung des Modells (19) werden zusätzlich weitere Messgrößen vom Fahrzeug übermittelt. Zu denken ist etwa an Kühlwassertemperatur, Rail-Druck und Umgebungstemperatur. Das im vorliegenden Anwendungsbeispiel als Modell (19) eingesetzte CNN klassifiziert das zugrundeliegende Signal (15) anhand der an seinem Eingang anliegenden Merkmalsdaten (17) als normal oder anormal. Wird über eine bestimmte Anzahl an Messungen auf diesem Wege eine Anomalie detektiert, so lässt sich mittels eines weiteren Algorithmus die Restreichweite berechnen. Diese Information kann dem Fahrzeugführer oder -halter übermittelt oder anderweitig bereitgestellt werden. The feature data (17) are decompressed in the cloud (23) and merged with inventory data in a database. Prediction models (19) are then applied to the new database and new predictions (21) are made. For this purpose, the feature data (17) are propagated through a convolutional neural network for the purpose of anomaly detection. Frequency and amplitude, for example, serve as examined parameters. In order to improve the model (19), further measured variables are also transmitted from the vehicle. One should think about Cooling water temperature, rail pressure and ambient temperature. The CNN used as model (19) in the present application example classifies the underlying signal (15) as normal or abnormal on the basis of the feature data (17) present at its input. If an anomaly is detected in this way over a certain number of measurements, the remaining range can be calculated using a further algorithm. This information can be transmitted or otherwise made available to the driver or owner of the vehicle.
Dieses Verfahren (10) kann beispielsweise in Software oder Hardware oder in einer Mischform aus Software und Hardware beispielsweise in einemThis method (10) can, for example, in software or hardware or in a mixed form of software and hardware, for example in one
Steuergerät (30) implementiert sein, wie die schematische Darstellung der Figur 2 verdeutlicht. Control unit (30) can be implemented, as the schematic illustration in FIG. 2 illustrates.

Claims

Ansprüche Expectations
1. Verfahren (10) zum Bestimmen eines Zustandes (20) einer Maschine (11), gekennzeichnet durch folgende Merkmale (17): 1. Method (10) for determining a state (20) of a machine (11), characterized by the following features (17):
- die Maschine (11) wird durch Sensoren (12, 13) fortlaufend überwacht (14), - the machine (11) is continuously monitored (14) by sensors (12, 13),
- Messsignale (15) der Sensoren (12, 13) werden einer Recheneinheit (16) zugeführt, - Measurement signals (15) from the sensors (12, 13) are fed to a computing unit (16),
- durch die Recheneinheit (16) extrahierte Merkmale (17) der Messsignale (15) werden anhand eines Modelles (19) ausgewertet und- Features (17) of the measurement signals (15) extracted by the computing unit (16) are evaluated and based on a model (19)
- der Zustand (20) wird mittels des Modelles (19) aus den Daten und/oder Merkmalen (17) abgeleitet. - The state (20) is derived from the data and / or features (17) by means of the model (19).
2. Verfahren (10) nach Anspruch 1, gekennzeichnet durch folgendes Merkmal: 2. The method (10) according to claim 1, characterized by the following feature:
- mittels des Modelles (19) wird ferner eine Vorhersage (21) hinsichtlich eines etwaigen Ausfalles der Maschine (11) getroffen. - Using the model (19), a prediction (21) is also made with regard to a possible failure of the machine (11).
3. Verfahren (10) nach Anspruch 1 oder 2, gekennzeichnet durch mindestens eines der folgenden Merkmale: 3. The method (10) according to claim 1 or 2, characterized by at least one of the following features:
- das Modell (19) ist ein durch maschinelles Lernen (18) gebildetes statistisches Modell (19) oder - The model (19) is a statistical model (19) or formed by machine learning (18)
- das Modell (19) ist ein physikalisches Teilmodell der überwachten (14) Maschine (11). - The model (19) is a physical partial model of the monitored (14) machine (11).
4. Verfahren (10) nach einem der Ansprüche 1 bis 3, gekennzeichnet durch folgende Merkmale: 4. The method (10) according to any one of claims 1 to 3, characterized by the following features:
- die Daten/Merkmale (17) werden durch eine Sendeeinheit (22) in eine Cloud (23) hochgeladen und - The data / features (17) are uploaded to a cloud (23) by a transmission unit (22) and
- das Auswerten erfolgt in der Cloud (23). - The evaluation takes place in the cloud (23).
5. Verfahren (10) nach einem der Ansprüche 1 bis 4, gekennzeichnet durch mindestens eines der folgenden Merkmale: 5. The method (10) according to any one of claims 1 to 4, characterized by at least one of the following features:
- die Recheneinheit (16) ist ein Computer, Mikrocontroller, Mikroprozessor oder - die Recheneinheit (16) ist ein Fahrzeug- oder anderweitigesthe arithmetic unit (16) is a computer, microcontroller, microprocessor or the arithmetic unit (16) is a vehicle or something else
Steuergerät. Control unit.
6. Verfahren (10) nach einem der Ansprüche 1 bis 5, gekennzeichnet durch mindestens eines der folgenden Merkmale: 6. The method (10) according to any one of claims 1 to 5, characterized by at least one of the following features:
- die Sensoren (12, 13) umfassen Körperschallsensoren (12), - die Sensoren (12, 13) umfassen Piezo-Sensoren (13) oder- the sensors (12, 13) comprise structure-borne sound sensors (12), - the sensors (12, 13) comprise piezo sensors (13) or
- die Messsignale (15) werden in der Recheneinheit (16) durch zusätzliche Signale ergänzt. - The measurement signals (15) are supplemented by additional signals in the arithmetic unit (16).
7. Verfahren (10) nach einem der Ansprüche 1 bis 6, gekennzeichnet durch eines der folgenden Merkmale: 7. The method (10) according to any one of claims 1 to 6, characterized by one of the following features:
- die Sensoren (12, 13) umfassen einen Klopfsensor (24) oder- The sensors (12, 13) comprise a knock sensor (24) or
- die Sensoren (12, 13) umfassen einen Nadelschließsensor (25). - The sensors (12, 13) comprise a needle closing sensor (25).
8. Computerprogramm, welches eingerichtet ist, das Verfahren (10) nach einem der Ansprüche 1 bis 7 auszuführen. 8. Computer program which is set up to carry out the method (10) according to one of claims 1 to 7.
9. Maschinenlesbares Speichermedium, auf dem das Computerprogramm nach Anspruch 8 gespeichert ist. 9. Machine-readable storage medium on which the computer program according to claim 8 is stored.
10. Vorrichtung (30), die eingerichtet ist, das Verfahren (10) nach einem der Ansprüche 1 bis 7 auszuführen. 10. Device (30) which is set up to carry out the method (10) according to one of claims 1 to 7.
PCT/EP2020/077993 2019-12-06 2020-10-06 Method and apparatus for determining a state of a machine WO2021110301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219084.7 2019-12-06
DE102019219084.7A DE102019219084A1 (en) 2019-12-06 2019-12-06 Method and device for determining a state of a machine

Publications (1)

Publication Number Publication Date
WO2021110301A1 true WO2021110301A1 (en) 2021-06-10

Family

ID=72752931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/077993 WO2021110301A1 (en) 2019-12-06 2020-10-06 Method and apparatus for determining a state of a machine

Country Status (2)

Country Link
DE (1) DE102019219084A1 (en)
WO (1) WO2021110301A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665502B (en) * 2021-07-08 2023-03-03 深圳市道通科技股份有限公司 Vehicle system description diagram generation method, display method and auxiliary fault diagnosis method
DE102021213931A1 (en) 2021-12-08 2023-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Method for determining operating variables of an internal combustion engine
DE102021133338A1 (en) 2021-12-15 2023-06-15 Balluff Gmbh Methods for monitoring using machine learning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020120386A1 (en) * 2001-02-27 2002-08-29 Guojun Shi Method and apparatus for determining oxygen storage capacity time of a catalytic converter
DE102008005524A1 (en) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Method for controlling a self-igniting internal combustion engine and control device for controlling a self-igniting internal combustion engine
DE102009000088A1 (en) * 2009-01-08 2010-07-29 Ford Global Technologies, LLC, Dearborn Arrangement for reducing vibrations of internal combustion engine, has active vibration damper, which is controlled by control signals, such that vibrations of internal combustion engine are reduced or canceled
DE102013200573A1 (en) 2013-01-16 2014-07-17 Robert Bosch Gmbh Method for active diagnosis of components of emission control system in internal combustion engine of vehicle, involves determining oxygen storage capability in engine during pre-conditioning, and adjusting aging state/storage of catalyst
DE102017215541A1 (en) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Method for detecting damage to a fuel injector
DE102019107797A1 (en) * 2018-04-05 2019-10-10 GM Global Technology Operations LLC VEHICLE PRECAUTIONS AND REMEDIES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020120386A1 (en) * 2001-02-27 2002-08-29 Guojun Shi Method and apparatus for determining oxygen storage capacity time of a catalytic converter
DE102008005524A1 (en) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Method for controlling a self-igniting internal combustion engine and control device for controlling a self-igniting internal combustion engine
DE102009000088A1 (en) * 2009-01-08 2010-07-29 Ford Global Technologies, LLC, Dearborn Arrangement for reducing vibrations of internal combustion engine, has active vibration damper, which is controlled by control signals, such that vibrations of internal combustion engine are reduced or canceled
DE102013200573A1 (en) 2013-01-16 2014-07-17 Robert Bosch Gmbh Method for active diagnosis of components of emission control system in internal combustion engine of vehicle, involves determining oxygen storage capability in engine during pre-conditioning, and adjusting aging state/storage of catalyst
DE102017215541A1 (en) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Method for detecting damage to a fuel injector
DE102019107797A1 (en) * 2018-04-05 2019-10-10 GM Global Technology Operations LLC VEHICLE PRECAUTIONS AND REMEDIES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAUL BALTUSIS: "2004-21-0009 On Board Vehicle Diagnostics", 18 October 2004 (2004-10-18), United States, XP055485344, Retrieved from the Internet <URL:https://saemobilus.sae.org/content/2004-21-0009/> [retrieved on 20180618] *

Also Published As

Publication number Publication date
DE102019219084A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2021110301A1 (en) Method and apparatus for determining a state of a machine
DE102020103768B4 (en) Monitor and diagnose vehicle system problems with machine learning classifiers
DE19651986B4 (en) Method and device for comparing machines in a fleet
DE102014209810B4 (en) Method and device for detecting soot and ash loading of a particle filter
DE10235525B4 (en) Method and system for monitoring the condition of a vehicle
DE112012003854T5 (en) Systems and methods for diagnosing a motor
DE102014209840A1 (en) Method and device for diagnosing a particulate filter
EP1423827A2 (en) Device and method for the early recognition and prediction of unit damage
DE112009000439T5 (en) A vehicle information recording device, a vehicle information communication system, and a vehicle information communication method
WO2018177897A1 (en) Method and computer program product for diagnosing a particle filter
EP3644038A1 (en) Method for predicting the maintenance of components of a combustion engine by means of a structure-borne sound sensor
DE102019108446A1 (en) Method and apparatus for isolating a vehicle-side fault
DE102018003801B4 (en) Method and control arrangement for predicting a malfunction of a wheel bearing unit of an axle in a vehicle
DE102007039793A1 (en) Pneumatic system e.g. pneumatic brake system, monitoring method for commercial motor vehicle, involves detecting pressure signal continuously in pneumatic system, and analyzing resulting time response of detected pressure values
WO2008080725A1 (en) Device for diagnosing malfunctions in internal combustion engines
EP2210239B1 (en) Method for detecting information
DE102020121119A1 (en) METHOD AND SYSTEM FOR DETECTING ENGINE OIL DETERMINATION
EP2691627A1 (en) Method for monitoring components of a motor vehicle and motor vehicle having a corresponding monitoring device
DE102005009103B4 (en) Method and device for diagnosing an air intake sensor associated with an intake tract of an internal combustion engine
WO2006079407A1 (en) Secondary air diagnosis in an internal combustion engine
DE10062606A1 (en) Monitoring of the mechanical state of electric motor vehicles to detect damage or incorrect operation of the motor or drive mechanism based on statistical analysis of measured motor operating values, e.g. supply voltage
DE102010039800A1 (en) Method and device for detecting the autonomous running of an internal combustion engine
DE102015214987B4 (en) Determination of a defective component of a vehicle
DE102017130549A1 (en) Method for carrying out a self-diagnosis in an autonomous vehicle
DE112019004868T5 (en) PROCEDURE AND CONTROL UNIT FOR HANDLING A VARIATING LOAD ON A COMPONENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786547

Country of ref document: EP

Kind code of ref document: A1