WO2006079407A1 - Secondary air diagnosis in an internal combustion engine - Google Patents

Secondary air diagnosis in an internal combustion engine Download PDF

Info

Publication number
WO2006079407A1
WO2006079407A1 PCT/EP2005/013871 EP2005013871W WO2006079407A1 WO 2006079407 A1 WO2006079407 A1 WO 2006079407A1 EP 2005013871 W EP2005013871 W EP 2005013871W WO 2006079407 A1 WO2006079407 A1 WO 2006079407A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary air
block
gas pressure
pressure
pmitt
Prior art date
Application number
PCT/EP2005/013871
Other languages
German (de)
French (fr)
Inventor
Michael-Rainer Busch
Rudolf Klein
Johannes Koenders
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2006079407A1 publication Critical patent/WO2006079407A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/14Systems for adding secondary air into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a device according to the preamble of claim 6.
  • a method for monitoring a secondary air system comprising a secondary air pump of an internal combustion engine is known, in which a signal characterizing the secondary air flow is determined.
  • a signal characterizing the secondary air flow is determined.
  • at least one signal of at least one operating characteristic of the secondary air pump is determined during the determination of the signal characterizing the secondary air flow, and it is concluded that there is an error in the secondary air system if the signal of the at least one operating parameter lies outside a predefinable interval.
  • the object of the present invention is to improve the detection of leaks and malfunctions of a secondary air system of an exhaust system arranged in a motor vehicle.
  • the inventive method is characterized in that between a secondary air pump and a catalyst, the gas pressure is detected in its time course by means of a pressure sensor, that a frequency analysis of the time course of the gas pressure is performed and that an error in the secondary air system is determined by evaluating the frequency analysis.
  • a fault in the secondary air system can be detected solely by the evaluation of the gas pressure. A recording and evaluation of operating variables of the secondary air system is not necessary.
  • a frequency analysis resolves the time course of the gas pressure into its periodic components.
  • One of these further influencing variables may be a leak in the region between the secondary air pump and the catalytic converter.
  • a frequency analysis allows to differentiate between the different superimposed parameters by separating the different periodic components.
  • a change in the time course of the curve after frequency analysis of a causative influence factor can be assigned. Since even the smallest holes or leaks change the temporal pressure curve, the device is suitable for detecting even the smallest leaks in the secondary air system.
  • the frequency analysis method is a Fourier analysis.
  • the Fourier analysis is an accurate and secure way to perform a frequency analysis.
  • a frequency range to be considered is selected as a function of an engine speed and an ambient air pressure, and the maximum value of the gas pressure in this frequency range is determined.
  • the highest pressure value of the frequency analysis is in the range of the frequency of the power strokes of the engine and is thus dependent on the engine speed. , Thus, the frequency range in which the highest pressure value is located, in a simple manner can be limited.
  • this maximum value of the gas pressure is compared with a threshold value and when the threshold value is undershot, a leak in the secondary air system is detected. This makes it possible to detect even the smallest holes in the area between the secondary air pump and the secondary air valve as well as between the secondary air valve and the catalyst.
  • a sliding time average of the gas pressure is additionally formed, this mean value is compared with a threshold value and the secondary air pump is detected as defective if the mean value is smaller than the threshold value.
  • the sliding time average is understood to be an average value over a time interval in which the interval is shifted by one or more measuring points during each averaging, but overlaps with the preceding time interval.
  • the moving average is formed over a period corresponding to a crankshaft angle of the engine of 720 ° ent. In this period have at an internal combustion - machine all cylinders once worked. This minimizes fluctuations in the mean value due to unequal cylinder work.
  • the mean value of the gas pressure is dependent on secondary air mass flow rate. A decrease in the gas pressure can be interpreted as a drop in the secondary air mass flow rate. This means that the secondary air pump is not working anymore. So it can be set a threshold below which the secondary air pump is considered defective. This makes it possible to detect a malfunction of the secondary air pump only with a pressure sensor and an evaluation unit connected thereto. Information about operating parameters of the secondary air pump is not necessary.
  • the device according to the invention is characterized in that a pressure sensor for detecting the time profile of the gas pressure between the secondary air supply and catalyst and an evaluation unit connected to the pressure sensor are provided, that a frequency analysis unit associated with the evaluation unit is provided for transforming the time profile of the gas pressure detected by the pressure sensor and means are provided for detecting an error by evaluating the frequency analysis.
  • the time profile of the gas pressure can be detected in a variant A between a secondary air pump and a secondary air valve or in a variant B between the secondary air valve and a catalyst.
  • Variant A has the advantage that the pressure sensor is exposed to lower thermal loads.
  • Variant B has the advantage that the signals are easier to evaluate, since the signals are larger and small disturbances are better recognizable.
  • the curve of the temporal pressure curve results from a superposition of different influences.
  • the main influence is the combustion process in the cylinders of the internal combustion engine of the motor vehicle and the geometry of the exhaust system.
  • One of these further influencing variables may be a leak in the region between the secondary air pump and the catalytic converter.
  • a frequency analysis of the time course of the gas pressure makes it possible to separate the different, superimposed, influencing variables.
  • a change in the time course of the curve after frequency analysis of a causative influence factor can be assigned. Since even the smallest holes change the time profile of the gas pressure, the device is suitable for detecting even the smallest holes and leaks in the secondary air system.
  • Fig. 1 an embodiment of the invention
  • FIG. 2 two pressure pulsation curves
  • FIG. 3 is an illustration of the dependence of the average gas pressure on the air mass flow rate
  • FIG. 4 different frequency-analyzed gas pressure curves.
  • Fig. 1 shows an embodiment of the invention Method.
  • the pressure in the exhaust system is recorded.
  • a pressure sensor is provided in a region between the secondary air pump and the catalyst.
  • the pressure sensor records the time course of the gas pressure.
  • the gas pressure is recorded continuously or discontinuously. It can also be provided several pressure sensors for gas pressure detection.
  • the result of the pressure detection in block 5 is supplied to a frequency analysis.
  • This frequency analysis may be performed as a Fourier analysis or the like. Likewise, mathematically simpler analysis methods can also be used. Finally, the highest peak of the frequency analysis is determined and its maximum value pmax determined.
  • pmax is compared to a threshold S_pmax. This threshold depends on the design of the exhaust system and engine and is determined individually for each vehicle or each type.
  • blocks are preceded by blocks 5 to 8, the blocks 1 to 4.
  • blocks 1 to 4 is checked whether the secondary air pump is working properly.
  • a moving average value pmitt of the pressure is determined from the data of the pressure value detection of block 1.
  • Moving mean value means that the mean value is recalculated again and again, whereby the values for the mean value calculation lie in a time interval, which is shifted by the average time since the last calculation in each average value calculation.
  • the length of the time interval is typically selected to correspond to a time the engine needs at the current engine speed to rotate the crankshaft through an angle of 720 °.
  • the current mean value pmitt is compared with a threshold value S_pmitt. If the threshold falls below, then the secondary air pump is faulty.
  • pmitt is smaller than S_pmitt, then there is a fault of the secondary air pump. In this case, it is detected in block 4 that there is an error in the secondary air pump. This information can also be read out externally.
  • Block 5 records accordingly that the secondary air system is operating correctly. This information can also be read out externally in one embodiment.
  • blocks 2 and 3 are arranged between block 1 and block 5.
  • blocks 2 to 4 may go to block 6 be arranged.
  • the blocks 2 and 3 may be arranged between block 6 and block 8.
  • the blocks 2 to 4 can also be arranged downstream of the blocks 5 to 8 in an alternative embodiment.
  • Fig. 2 shows the temporal gas pressure profile at a pressure sensor.
  • curve 9 shows the pressure curve at a pressure sensor, which is arranged between the secondary air pump and secondary air valve in the vicinity of the secondary air valve.
  • Curve 10 shows the pressure curve at a pressure sensor which is arranged between the secondary air valve and the catalytic converter. It can be seen that at the measuring location of the curve 10, the pressure pulsations are significantly more pronounced than at the measuring location of the curve 9. In this case, the temporal change of the gas pressure at the measuring location is understood as pressure pulsations.
  • Fig. 3 shows how the mass flow rate of the secondary air pump affects the averaged gas pressure at the measuring location.
  • the gas pressure is averaged over a firmly selected in its width sliding interval.
  • This fixed width is typically 720 ° crankshaft angle rotation, but may be chosen differently (e.g., 360 ° crankshaft angle or fixed time intervals).
  • the time interval required to rotate the crankshaft through an angle of 720 °, depending on the speed of the engine be different lengths.
  • Fig. 3 shows that the mean gas pressure pmitt at the measuring location decreases as the mass flow rate of the secondary air pump decreases. An error in the secondary air pump can therefore be detected on the basis of the average gas pressure pmitt at the measuring location. It can to a threshold S_jpmitt for the average gas pressure pmitt are selected, below which the secondary air pump is detected as faulty.
  • Fig. 4 shows a schematic representation of various frequency-analyzed gas pressure curves.
  • the measured value interval is preferably considered, which was also selected for calculating the moving average value.
  • the result of the frequency analysis shows a main maximum, a limited frequency range, which is associated with a particularly high pressure. Such maxima are referred to in the present document as a peak. Further secondary peaks are outside the frequency range shown in FIG. In Fig. 4, various curves 11 through 15 are shown.
  • Curve 11 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump.
  • Curve 12 shows the frequency-analyzed pressure curve at the measuring location with the air mass flow rate of the secondary air pump reduced to 64%. Since the lower air mass flow rate of the secondary air pump less dampens the pressure fluctuations caused by the engine, the main peak is increased compared to the curve 11.
  • Curve 13 shows the frequency-analyzed pressure curve at the measuring location with an air mass flow rate of the secondary air pump reduced to 47%. Since the lower air mass flow rate of the secondary air pump attenuates the pressure fluctuations caused by the engine less, the main peak is increased compared to the curve 11 and the curve 12.
  • Curve 14 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump in the presence a leak between secondary air valve and catalyst. The peak is less high than in curves 11-13.
  • Curve 15 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump in the event of a leak between secondary air pump and secondary air valve.
  • the peak is less high than curves 11 through 13.
  • the comparison between curve 14 and curve 15 shows that a leak after the secondary air valve affects the peak height somewhat less than a leak before the secondary air valve.
  • the process can also be carried out on a peak other than the highest (secondary peak). It must be ensured that only the frequency range corresponding to this secondary peak is considered. The threshold is then set correspondingly lower.
  • the threshold S_pmax is to be selected so that the highest peak at 100% operating secondary air pump is always safely above this threshold S_pmax. If the peak falls below this threshold, a leak in the secondary air system is detected. The entire area between the secondary air pump and the catalytic converter is considered part of the secondary air system.
  • this threshold S2_pmax is subordinated to block 5 and now checks whether pmax> S2_pmax.
  • each exhaust system has a pressure sensor and the evaluation for the two exhaust systems takes place independently of one another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to a method and device for monitoring a secondary air system of an exhaust system mounted on a motor vehicle. The aim of said invention is to improve the recognition of tightness loss and disturbances in the secondary air system of an exhaust system mounted on a motor vehicle. For this purpose, the inventive method consists in detecting the gas pressure time sequences between a secondary air pump and a catalyst by means of a pressure sensor (block 1), in carrying out a frequency analysis of the gas pressure time sequences (block 5) and in determining the disturbances in the secondary air system by evaluating the frequency analysis.

Description

Sekundärluftdiagnose einer Brennkraftmaschine Secondary air diagnosis of an internal combustion engine
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 und eine Vorrichtung nach dem Oberbegriff des Anspruchs 6.The invention relates to a method according to the preamble of claim 1 and a device according to the preamble of claim 6.
Aus der DE 102 05 966 Al ist ein Verfahren zur Überwachung eines eine Sekundärluftpumpe umfassenden Sekundärluftsystems einer Brennkraftmaschine bekannt , bei dem ein den Sekundär- luftstrom charakterisierendes Signal bestimmt wird . Dazu wird mindestens ein Signal wenigstens einer Betriebskenngröße der Sekundärluftpumpe während der Bestimmung des den Sekundärluftstroms charakterisierenden Signals bestimmt und auf einen Fehler im Sekundärluftsystem geschlossen, wenn das Signal der wenigstens einen Betriebskenngröße außerhalb eines vorgebbaren Intervalls liegt .From DE 102 05 966 A1 a method for monitoring a secondary air system comprising a secondary air pump of an internal combustion engine is known, in which a signal characterizing the secondary air flow is determined. For this purpose, at least one signal of at least one operating characteristic of the secondary air pump is determined during the determination of the signal characterizing the secondary air flow, and it is concluded that there is an error in the secondary air system if the signal of the at least one operating parameter lies outside a predefinable interval.
Aufgabe der vorliegenden Erfindung ist es , die Erkennung von Undichtigkeiten und Störungen eines Sekundärluftsystems eines in einem Kraftfahrzeug angeordneten Abgassystems zu verbessern .The object of the present invention is to improve the detection of leaks and malfunctions of a secondary air system of an exhaust system arranged in a motor vehicle.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 und eine Vorrichtung mit den Merkmalen des Anspruchs 6 gelöst . Das erfindungsgemäße Verfahren zeichnet sich dadurch aus , dass zwischen einer Sekundärluftpumpe und einem Katalysator der Gasdruck in seinem zeitlichen Verlauf mittels eines Drucksensors erfasst wird, dass eine Frequenzanalyse des zeitlichen Verlaufs des Gasdrucks durchgeführt wird und dass durch Auswertung der Frequenzanalyse ein Fehler im SekundärluftSystem ermittelt wird . Damit kann ein Fehler im Sekundärluftsystem allein über die Auswertung des Gasdrucks erkannt werden . Eine Erfassung und Auswertung von Betriebsgrößen des Sekundärluftsystems ist nicht notwendig .This object is achieved by a method having the features of claim 1 and an apparatus having the features of claim 6. The inventive method is characterized in that between a secondary air pump and a catalyst, the gas pressure is detected in its time course by means of a pressure sensor, that a frequency analysis of the time course of the gas pressure is performed and that an error in the secondary air system is determined by evaluating the frequency analysis. Thus, a fault in the secondary air system can be detected solely by the evaluation of the gas pressure. A recording and evaluation of operating variables of the secondary air system is not necessary.
Eine Frequenzanalyse löst den zeitlichen Verlauf des Gasdrucks in seine periodischen Anteile auf . Dabei ist der größte periodische Anteil der Verbrennungsprozess in den Zylindern der Brennkraftmaschine des Kraftfahrzeuges . Diese Schwingung wird von der Geometrie des Abgassystems verändert . Dazu kommt eine schwingungsdämpfende Überlagerung durch den gleichmäßigen Luftstrom der Sekundärluftzufuhr . Hinzu kommen weitere Überlagerungen durch weitere Einflussgrößen. Eine dieser weiteren Einflussgrößen kann dabei ein Leck im Bereich zwischen Sekundärluftpumpe und Katalysator sein. Eine Frequenzanalyse erlaubt es die verschiedenen einander überlagerten Einflussgrößen voneinander zu unterscheiden, indem sie die verschiedenen periodischen Anteile voneinander trennt . Damit kann eine Veränderung im zeitlichen Verlauf der Kurve nach erfolgter Frequenzanalyse einer sie verursachenden Einflussgröße zugeordnet werden. Da bereits kleinste Löcher oder Lecks den zeitlichen Druckverlauf verändern, ist die Vorrichtung geeignet , selbst kleinste Undichtigkeiten im Sekundärluftsystem zu erkennen .A frequency analysis resolves the time course of the gas pressure into its periodic components. In this case, the largest periodic proportion of the combustion process in the cylinders of the internal combustion engine of the motor vehicle. This vibration is changed by the geometry of the exhaust system. In addition, there is a vibration damping overlay by the uniform air flow of the secondary air supply. In addition, there are further overlays due to further influencing factors. One of these further influencing variables may be a leak in the region between the secondary air pump and the catalytic converter. A frequency analysis allows to differentiate between the different superimposed parameters by separating the different periodic components. Thus, a change in the time course of the curve after frequency analysis of a causative influence factor can be assigned. Since even the smallest holes or leaks change the temporal pressure curve, the device is suitable for detecting even the smallest leaks in the secondary air system.
In einer Ausführungsform des Verfahrens ist das Frequenzanalyseverfahren eine Fourieranalyse . Die Fourieranalyse ist eine genaue und sichere Methode eine Frequenzanalyse durchzuführen .In one embodiment of the method, the frequency analysis method is a Fourier analysis. The Fourier analysis is an accurate and secure way to perform a frequency analysis.
In einer Ausführungsform wird in Abhängigkeit von einer Motordrehzahl und einem Umgebungsluftdruck ein zu betrachtender Frequenzbereich ausgewählt und der maximale Wert des Gasdrucks in diesem Frequenzbereich ermittelt . Der höchste Druckwert der Frequenzanalyse liegt im Bereich der Frequenz der Arbeitstakte des Motors und ist damit abhängig von der Motordrehzahl . , Damit ist der Frequenzbereich, in dem der höchste Druckwert liegt , auf einfache Weise eingrenzbar .In one embodiment, a frequency range to be considered is selected as a function of an engine speed and an ambient air pressure, and the maximum value of the gas pressure in this frequency range is determined. The highest pressure value of the frequency analysis is in the range of the frequency of the power strokes of the engine and is thus dependent on the engine speed. , Thus, the frequency range in which the highest pressure value is located, in a simple manner can be limited.
In einer Ausführungsform des Verfahrens wird dieser maximale Wert des Gasdrucks mit einem Schwellwert verglichen und bei Unterschreiten des Schwellwertes ein Leck im Sekundär- luftsystem erkannt . Damit ist es möglich selbst kleinste Löcher sowohl im Bereich zwischen Sekundärluftpumpe und Sekundärluftventil als auch zwischen Sekundärluftventil und Katalysator zu erfassen .In one embodiment of the method, this maximum value of the gas pressure is compared with a threshold value and when the threshold value is undershot, a leak in the secondary air system is detected. This makes it possible to detect even the smallest holes in the area between the secondary air pump and the secondary air valve as well as between the secondary air valve and the catalyst.
In einer Ausführungsform des Verfahrens wird zusätzlich ein gleitender zeitlicher Mittelwert des Gasdruckes gebildet , wird dieser Mittelwert mit einem Schwellwert verglichen und wird die Sekundärluftpumpe als fehlerhaft erkannt , wenn der Mittelwert kleiner ist als der Schwellwert .In one embodiment of the method, a sliding time average of the gas pressure is additionally formed, this mean value is compared with a threshold value and the secondary air pump is detected as defective if the mean value is smaller than the threshold value.
Als gleitender zeitlicher Mittelwert wird ein Mittelwert über ein Zeitintervall verstanden, bei dem das Intervall bei j eder Mittelwertbildung um einen oder mehrere Messpunkte verschoben wird, sich aber mit dem vorhergegangenen Zeitintervall überlappt . Typischerweise wird im vorliegenden Fall der gleitende Mittelwert über einen Zeitraum gebildet , der einem Kurbelwellenwinkel der Brennkraftmaschine von 720 ° ent spricht . In diesem Zeitraum haben bei einer Brennkraft - maschine alle Zylinder einmal gearbeitet . Damit werden Schwankungen des Mittelwertes durch ungleiches Arbeiten der Zylinder minimiert . Der Mittelwert des Gasdruckes ist abhängig von Sekundärluft-Massendurchsatz . Ein Absinken des Gasdruckes kann als Absinken des Sekundärluft-Massendurchsatz interpretiert werden . Dies bedeutet dass die Sekundärluftpumpe nicht mehr voll arbeitet . Es kann also ein Schwellenwert festgelegt werden unterhalb dessen die Sekundärluftpumpe als fehlerhaft angesehen wird. Damit ist es möglich, nur mit einem Drucksensor und einer damit verbundenen Auswerteeinheit eine Fehlfunktion der Sekundärluftpumpe zu erfassen . Informationen über Betriebsparameter der Sekundärluftpumpe sind dazu nicht notwendig .The sliding time average is understood to be an average value over a time interval in which the interval is shifted by one or more measuring points during each averaging, but overlaps with the preceding time interval. Typically, in the present case, the moving average is formed over a period corresponding to a crankshaft angle of the engine of 720 ° ent. In this period have at an internal combustion - machine all cylinders once worked. This minimizes fluctuations in the mean value due to unequal cylinder work. The mean value of the gas pressure is dependent on secondary air mass flow rate. A decrease in the gas pressure can be interpreted as a drop in the secondary air mass flow rate. This means that the secondary air pump is not working anymore. So it can be set a threshold below which the secondary air pump is considered defective. This makes it possible to detect a malfunction of the secondary air pump only with a pressure sensor and an evaluation unit connected thereto. Information about operating parameters of the secondary air pump is not necessary.
Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus , dass ein Drucksensor zur Erfassung des zeitlichen Verlaufs des Gasdruckes zwischen Sekundärluftzufuhr und Katalysator und eine mit dem Drucksensor verbundene Auswertungseinheit vorgesehen sind, dass eine der Auswertungseinheit zugeordnete Frequenzanalyseeinheit zur Transformierung des vom Drucksensor erfassten zeitlichen Verlaufs des Gasdrucks vorgesehen ist und dass Mittel zum Erkennen eines Fehlers durch Auswertung der Frequenzanalyse vorgesehen sind .The device according to the invention is characterized in that a pressure sensor for detecting the time profile of the gas pressure between the secondary air supply and catalyst and an evaluation unit connected to the pressure sensor are provided, that a frequency analysis unit associated with the evaluation unit is provided for transforming the time profile of the gas pressure detected by the pressure sensor and means are provided for detecting an error by evaluating the frequency analysis.
Der zeitliche Verlauf des Gasdruckes kann in einer Variante A zwischen einer Sekundärluftpumpe und einem Sekundärluftventil oder in einer Variante B zwischen dem Sekundärluftventil und einem Katalysator erfasst werden . Dabei hat Variante A den Vorteil , dass der Drucksensor geringeren thermischen Belastungen ausgesetzt ist . Variante B hat demgegenüber den Vorteil , dass die Signale leichter auszuwerten sind, da die Signale größer sind und kleine Störungen besser erkennbar sind . Die Kurve des zeitlichen Druckverlaufs resultiert aus einer Überlagerung von verschiedenen Einflüssen . Dabei ist der Haupteinfluss natürlich der Verbrennungsprozess in den Zylindern der Brennkraftmaschine des Kraftfahrzeuges sowie die Geometrie des Abgassystems . Dazu kommt eine Überlagerung durch die Sekundärluftzufuhr und weitere Überlagerungen durch weitere Einflussgrößen . Eine dieser weiteren Einflussgrößen kann dabei ein Leck im Bereich zwischen Sekundärluftpumpe und Katalysator sein.The time profile of the gas pressure can be detected in a variant A between a secondary air pump and a secondary air valve or in a variant B between the secondary air valve and a catalyst. Variant A has the advantage that the pressure sensor is exposed to lower thermal loads. Variant B, on the other hand, has the advantage that the signals are easier to evaluate, since the signals are larger and small disturbances are better recognizable. The curve of the temporal pressure curve results from a superposition of different influences. Of course, the main influence is the combustion process in the cylinders of the internal combustion engine of the motor vehicle and the geometry of the exhaust system. In addition, there is an overlay by the secondary air supply and further overlays by other influencing variables. One of these further influencing variables may be a leak in the region between the secondary air pump and the catalytic converter.
Eine Frequenzanalyse des zeitlichen Verlaufes des Gasdruckes erlaubt es , die verschiedenen, voneinander überlagerten, Einflussgrößen zu trennen . Damit kann eine Veränderung im zeitlichen Verlauf der Kurve nach erfolgter Frequenzanalyse einer sie verursachenden Einflussgröße zugeordnet werden . Da bereits kleinste Löcher den zeitlichen Verlauf des Gasdruckes verändern, ist die Vorrichtung geeignet , selbst kleinste Löcher und Undichtigkeiten im Sekundärluftsystem zu erkennen .A frequency analysis of the time course of the gas pressure makes it possible to separate the different, superimposed, influencing variables. Thus, a change in the time course of the curve after frequency analysis of a causative influence factor can be assigned. Since even the smallest holes change the time profile of the gas pressure, the device is suitable for detecting even the smallest holes and leaks in the secondary air system.
Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung sowie den Zeichnungen und Messkurven. Im Folgenden wird anhand der Zeichnung und Messkurven die Erfindung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Dabei zeigen :Further features and combinations of features result from the description as well as the drawings and measuring curves. In the following, the invention is illustrated with reference to the drawing and measurement curves and explained in more detail in the following description. Showing:
Fig . 1 eine Ausführungsform des erfindungsgemäßenFig. 1 an embodiment of the invention
Verfahrens ,Method,
Fig . 2 zwei Druckpulsationskurven, Fig . 3 eine Darstellung der Abhängigkeit des mittleren Gasdruckes vom Luftmassendurchsatz , Fig . 4 verschiedene frequenzanalysierte Gasdruckkurven .Fig. 2 two pressure pulsation curves, Fig. FIG. 3 is an illustration of the dependence of the average gas pressure on the air mass flow rate, FIG. 4 different frequency-analyzed gas pressure curves.
Fig . 1 zeigt eine Ausführungsform des erfindungsgemäßen Verfahren. In Block 1 wird der Druck im Abgassystem erfasst . Dazu ist beispielsweise in einem Bereich zwischen Sekundärluftpumpe und Katalysator ein Drucksensor vorgesehen . Der Drucksensor erfasst den zeitlichen Verlauf des Gasdrucks . Dazu wird der Gasdruck kontinuierlich oder diskontinuierlich erfasst . Es können auch mehrere Drucksensoren zur Gasdruckerfassung vorgesehen sein .Fig. 1 shows an embodiment of the invention Method. In block 1, the pressure in the exhaust system is recorded. For this purpose, for example, a pressure sensor is provided in a region between the secondary air pump and the catalyst. The pressure sensor records the time course of the gas pressure. For this purpose, the gas pressure is recorded continuously or discontinuously. It can also be provided several pressure sensors for gas pressure detection.
In der einfachsten Ausführungsform des erfindungsgemäßen Verfahrens wird das Ergebnis der Druckerfassung in Block 5 einer Frequenzanalyse zugeführt . Diese Frequenzanalyse kann als Fourieranalyse oder dergleichen ausgeführt sein . Ebenso können auch mathematisch einfachere Analyseverfahren eingesetzt werden . Schließlich wird der höchste Peak der Frequenzanalyse ermittelt und sein maximaler Wert pmax festgestellt .In the simplest embodiment of the method according to the invention, the result of the pressure detection in block 5 is supplied to a frequency analysis. This frequency analysis may be performed as a Fourier analysis or the like. Likewise, mathematically simpler analysis methods can also be used. Finally, the highest peak of the frequency analysis is determined and its maximum value pmax determined.
In Block 6 wird pmax mit einer Schwelle S_pmax verglichen . Diese Schwelle ist abhängig von der Ausführung des Abgassystems und Motors und wird für j edes Fahrzeug bzw. j ede Ausführung individuell festgelegt .In block 6, pmax is compared to a threshold S_pmax. This threshold depends on the design of the exhaust system and engine and is determined individually for each vehicle or each type.
Ist pmax kleiner als S_pmax so liegt ein Leck vor . In diesem Fall wird in Block 7 erfasst , dass ein Leck im Sekundärluftsystem vorliegt . Diese Information kann auch extern auslesbar sein .If pmax is less than S_pmax then there is a leak. In this case, it is detected in block 7 that there is a leak in the secondary air system. This information can also be read out externally.
Ist pmax größer als S_pmax so liegt kein Leck vor . In diesem Fall wird in Block 7 erfasst , dass das Sekundärluftsystem fehlerfrei (ok) ist . Diese Information kann auch extern auslesbar sein.If pmax is greater than S_pmax then there is no leak. In this case, it is detected in block 7 that the secondary air system is faultless (ok). This information can also be read out externally.
In der in Fig . 1 dargestellten Ausführungsform des Verfahrens sind den Blöcken 5 bis 8 die Blöcke 1 bis 4 vorangestellt . Durch die Blöcke 1 bis 4 wird überprüft , ob die Sekundärluftpumpe ordnungsgemäß arbeitet .In the in Fig. 1 embodiment shown, the blocks are preceded by blocks 5 to 8, the blocks 1 to 4. By blocks 1 to 4 is checked whether the secondary air pump is working properly.
In Block 2 wird aus den Daten der Druckwerterfassung des Blockes 1 ein gleitender Mittelwert pmitt des Druckes ermittelt . Dabei bedeutet gleitender Mittelwert , dass der Mittelwert immer wieder neu berechnet wird, wobei die Werte zur Mittelwertberechnung in einem Zeitintervall liegen, welches bei j eder Mittelwertberechnung um die seit der letzen Berechnung verstrichene Zeit verschoben wird .In block 2, a moving average value pmitt of the pressure is determined from the data of the pressure value detection of block 1. Moving mean value means that the mean value is recalculated again and again, whereby the values for the mean value calculation lie in a time interval, which is shifted by the average time since the last calculation in each average value calculation.
Die Länge des Zeitintervalls wird typischerweise so gewählt , dass sie einer Zeit entspricht , die der Motor bei der aktuellen Motordrehzahl benötigt , um die Kurbelwelle um einen Winkel von 720 ° zu drehen .The length of the time interval is typically selected to correspond to a time the engine needs at the current engine speed to rotate the crankshaft through an angle of 720 °.
In Block 3 wird der aktuelle Mittelwert pmitt mit einem Schwellwert S_pmitt verglichen . Wird der Schwellwert unterschritten, so ist die Sekundärluftpumpe fehlerhaft .In block 3, the current mean value pmitt is compared with a threshold value S_pmitt. If the threshold falls below, then the secondary air pump is faulty.
Ist pmitt kleiner als S_pmitt , so liegt ein Fehler der Sekundärluftpumpe vor . In diesem Fall wird in Block 4 erfasst , dass ein Fehler in der Sekundärluftpumpe vorliegt . Diese Information kann auch extern auslesbar sein .If pmitt is smaller than S_pmitt, then there is a fault of the secondary air pump. In this case, it is detected in block 4 that there is an error in the secondary air pump. This information can also be read out externally.
Ist pmitt größer als S_pmitt , so liegt kein Fehler vor . In Block 5 wird entsprechend erfasst , dass das Sekundärluft- System fehlerfrei arbeitet . Diese Information kann in einer Ausführungsform auch extern ausgelesen werden .If pmitt is greater than S_pmitt, then there is no error. Block 5 records accordingly that the secondary air system is operating correctly. This information can also be read out externally in one embodiment.
In der in Fig . 1 dargestellten Ausführungsform sind die Blöcke 2 und 3 zwischen Block 1 und Block 5 angeordnet . Es sind aber auch andere Ausführungsformen der Erfindung möglich . Beispielsweise können die Blöcke 2 bis 4 nach Block 6 angeordnet sein . Insbesondere können die Blöcke 2 und 3 zwischen Block 6 und Block 8 angeordnet sein .In the in Fig. 1, the blocks 2 and 3 are arranged between block 1 and block 5. However, other embodiments of the invention are possible. For example, blocks 2 to 4 may go to block 6 be arranged. In particular, the blocks 2 and 3 may be arranged between block 6 and block 8.
Die Blöcke 2 bis 4 können in einer alternativen Ausführungsform auch den Blöcken 5 bis 8 nachgeordnet sein .The blocks 2 to 4 can also be arranged downstream of the blocks 5 to 8 in an alternative embodiment.
Fig . 2 zeigt den zeitlichen Gasdruckverlauf an einem Drucksensor . Dabei zeigt Kurve 9 den Druckverlauf an einem Drucksensor, der zwischen Sekundärluftpumpe und Sekundärluftventil in der Nähe des Sekundärluftventils angeordnet ist . Kurve 10 zeigt den Druckverlauf an einem Drucksensor, der zwischen Sekundärluftventil und Katalysator angeordnet ist . Dabei ist erkennbar, dass am Messort der Kurve 10 die Druckpulsationen deutlich ausgeprägter sind als am Messort der Kurve 9. Dabei wird unter Druckpulsationen die zeitliche Veränderung des Gasdruckes am Messort verstanden .Fig. 2 shows the temporal gas pressure profile at a pressure sensor. In this case, curve 9 shows the pressure curve at a pressure sensor, which is arranged between the secondary air pump and secondary air valve in the vicinity of the secondary air valve. Curve 10 shows the pressure curve at a pressure sensor which is arranged between the secondary air valve and the catalytic converter. It can be seen that at the measuring location of the curve 10, the pressure pulsations are significantly more pronounced than at the measuring location of the curve 9. In this case, the temporal change of the gas pressure at the measuring location is understood as pressure pulsations.
Fig . 3 zeigt , wie sich der Massendurchsatz der Sekundärluftpumpe auf den gemittelten Gasdruck am Messort auswirkt . Dabei ist der Gasdruck über ein in seiner Breite fest gewähltes gleitendes Intervall gemittelt . Diese fest gewählte Breite beträgt typischerweise 720° Kurbelwellenwinkelumdrehung, kann aber auch anders gewählt werden ( z . B . 360° Kurbelwellenwinkel oder feste Zeitintervalle) . Dabei kann das Zeitintervall , welches benötigt wird, um die Kurbelwelle um einen Winkel von 720 ° zu drehen, abhängig von der Drehzahl des Motors , unterschiedlich lang sein .Fig. 3 shows how the mass flow rate of the secondary air pump affects the averaged gas pressure at the measuring location. In this case, the gas pressure is averaged over a firmly selected in its width sliding interval. This fixed width is typically 720 ° crankshaft angle rotation, but may be chosen differently (e.g., 360 ° crankshaft angle or fixed time intervals). In this case, the time interval required to rotate the crankshaft through an angle of 720 °, depending on the speed of the engine, be different lengths.
Fig . 3 zeigt , dass der mittlere Gasdruck pmitt am Messort bei sinkendem Massendurchsatz der Sekundärluftpumpe sinkt . Ein Fehler in der Sekundärluftpumpe kann also anhand des mittleren Gasdruckes pmitt am Messort erkannt werden . Es kann dazu eine Schwelle S_jpmitt für den mittleren Gasdruck pmitt gewählt werden, unterhalb derer die Sekundärluftpumpe als fehlerhaft erkannt wird .Fig. 3 shows that the mean gas pressure pmitt at the measuring location decreases as the mass flow rate of the secondary air pump decreases. An error in the secondary air pump can therefore be detected on the basis of the average gas pressure pmitt at the measuring location. It can to a threshold S_jpmitt for the average gas pressure pmitt are selected, below which the secondary air pump is detected as faulty.
Fig . 4 zeigt eine schematische Darstellung verschiedener frequenzanalysierter Gasdruckkurven . Als Datenbasis zur Durchführung der Frequenzanalyse wird bevorzugt das Mess- werteintervall betrachtet , dass auch zur Berechnung des gleitenden Mittelwertes gewählt wurde . Das Ergebnis der Frequenzanalyse zeigt ein Hauptmaximum, einen begrenzten Frequenzbereich, dem ein besonders hoher Druck zugeordnet ist . Solche Maxima werden in der vorliegenden Druckschrift auch als Peak bezeichnet . Weitere Nebenpeaks liegen außerhalb des in Fig .4 dargestellten Frequenzbereichs . In Fig . 4 sind verschiedene Kurven 11 bis 15 dargestellt .Fig. 4 shows a schematic representation of various frequency-analyzed gas pressure curves. As a database for carrying out the frequency analysis, the measured value interval is preferably considered, which was also selected for calculating the moving average value. The result of the frequency analysis shows a main maximum, a limited frequency range, which is associated with a particularly high pressure. Such maxima are referred to in the present document as a peak. Further secondary peaks are outside the frequency range shown in FIG. In Fig. 4, various curves 11 through 15 are shown.
Kurve 11 zeigt den frequenzanalysierten Druckverlauf am Messort bei 100% arbeitender Sekundärluftpumpe .Curve 11 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump.
Kurve 12 zeigt den frequenzanalysierten Druckverlauf am Messort bei auf 64% reduziertem Luftmassendurchsatz der Sekundärluftpumpe . Da der geringere Luftmassendurchsatz der Sekundärluftpumpe die vom Motor verursachten Druckschwankungen weniger dämpft , ist der Hauptpeak gegenüber dem der Kurve 11 erhöht .Curve 12 shows the frequency-analyzed pressure curve at the measuring location with the air mass flow rate of the secondary air pump reduced to 64%. Since the lower air mass flow rate of the secondary air pump less dampens the pressure fluctuations caused by the engine, the main peak is increased compared to the curve 11.
Kurve 13 zeigt den frequenzanalysierten Druckverlauf am Messort bei auf 47% reduziertem Luftmassendurchsatz der Sekundärluftpumpe . Da der geringere Luftmassendurchsatz der Sekundärluftpumpe die vom Motor verursachten Druckschwankungen weniger dämpft , ist der Hauptpeak gegenüber dem der Kurve 11 und der Kurve 12 erhöht .Curve 13 shows the frequency-analyzed pressure curve at the measuring location with an air mass flow rate of the secondary air pump reduced to 47%. Since the lower air mass flow rate of the secondary air pump attenuates the pressure fluctuations caused by the engine less, the main peak is increased compared to the curve 11 and the curve 12.
Kurve 14 zeigt den frequenzanalysierten Druckverlauf am Messort bei 100% arbeitender Sekundärluftpumpe bei Vorliegen einer Undichtigkeit zwischen Sekundärluftventil und Katalysator . Der Peak ist weniger hoch als bei den Kurven 11 bis 13.Curve 14 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump in the presence a leak between secondary air valve and catalyst. The peak is less high than in curves 11-13.
Kurve 15 zeigt den frequenzanalysierten Druckverlauf am Messort bei 100% arbeitender Sekundärluftpumpe bei vorliegen einer Undichtigkeit zwischen Sekundärluftpumpe und Sekundär- luftventil . Der Peak ist weniger hoch, als bei den Kurven 11 bis 13. Der Vergleich zwischen Kurve 14 und Kurve 15 zeigt , dass eine Undichtigkeit nach dem Sekundärluftventil die Peakhöhe etwas weniger beeinflusst als eine Undichtigkeit vor dem Sekundärluftventil .Curve 15 shows the frequency-analyzed pressure curve at the measuring location with 100% working secondary air pump in the event of a leak between secondary air pump and secondary air valve. The peak is less high than curves 11 through 13. The comparison between curve 14 and curve 15 shows that a leak after the secondary air valve affects the peak height somewhat less than a leak before the secondary air valve.
Das Verfahren kann auch an einem anderen als dem höchsten Peak durchgeführt werden (Nebenpeak) . Dabei muss sichergestellt werden, dass auch nur der diesem Nebenpeak ent sprechende Frequenzbereich betrachtet wird . Die Schwelle ist dann entsprechend niedriger festzulegen .The process can also be carried out on a peak other than the highest (secondary peak). It must be ensured that only the frequency range corresponding to this secondary peak is considered. The threshold is then set correspondingly lower.
Wie in Fig . 4 dargestellt , ist die Schwelle S_pmax so zu wählen, dass der höchste Peak bei 100% arbeitender Sekundärluftpumpe immer sicher oberhalb dieser Schwelle S_pmax ist . Unterschreitet der Peak diese Schwelle, wird eine Undichtigkeit des Sekundärluftsystems erkannt . Dabei gilt der gesamte Bereich zwischen Sekundärluftpumpe und Katalysator als Teil des Sekundärluftsystems .As shown in FIG. 4, the threshold S_pmax is to be selected so that the highest peak at 100% operating secondary air pump is always safely above this threshold S_pmax. If the peak falls below this threshold, a leak in the secondary air system is detected. The entire area between the secondary air pump and the catalytic converter is considered part of the secondary air system.
In Erweiterung der Erfindung ist es denkbar eine Schwelle S2_pmax oberhalb des Peaks der Kurve 11 einzuführen . Wenn diese Schwelle überschritten wird, gilt die Sekundärluftpumpe als fehlerhaft . Damit würde diese Schwelle S2_pmax in ihrer Funktion der Schwelle S_pmitt entsprechen . Sie kann als zusätzliche Absicherung der Schwelle s_pmitt dienen . Alternativ kann die Schwelle S2_pmax auch die Schwelle S_pmitt ersetzen . In diesem Fall entfällt Block 2 der Fig . 1 Block 3 wird Block 5 nachgeordnet und überprüft nunmehr, ob pmax > S2_pmax ist .In extension of the invention, it is conceivable to introduce a threshold S2_pmax above the peak of the curve 11. If this threshold is exceeded, the secondary air pump is considered faulty. Thus, this threshold S2_pmax would correspond in its function to the threshold S_pmitt. It can serve as additional protection of the threshold s_pmitt. Alternatively, the threshold S2_pmax can also replace the threshold S_pmitt. In this case, block 2 of FIG. 1 block 3 is subordinated to block 5 and now checks whether pmax> S2_pmax.
Sind zwei unabhängige Abgassysteme vorhanden, beispielsweise bei einem V-Motor, so weist j edes Abgassystem einen Drucksensor auf und die Auswertung für die beiden Abgassysteme erfolgt unabhängig voneinander . If two independent exhaust systems are present, for example in a V engine, then each exhaust system has a pressure sensor and the evaluation for the two exhaust systems takes place independently of one another.

Claims

Patentansprüche claims
1. Verfahren zur Überwachung eines Sekundärluftsystems eines in einem Kraftfahrzeug angeordneten Abgassystems , dadurch gekennzeichnet ,1. A method for monitoring a secondary air system of an exhaust system arranged in a motor vehicle, characterized
- dass zwischen einer Sekundärluftpumpe und einem Katalysator der Gasdruck in seinem zeitlichen Verlauf mittels eines Drucksensors erfasst wird (Block 1) ,- That between a secondary air pump and a catalyst, the gas pressure is detected in its time course by means of a pressure sensor (block 1),
- dass eine Frequenzanalyse des zeitlichen Verlaufs des Gasdrucks durchgeführt wird (Block 5 )- that a frequency analysis of the time course of the gas pressure is performed (block 5)
- und dass durch Auswertung der Freguenzanalyse (Block 6) ein Fehler im Sekundärluftsystem ermittelt wird .- And that an error in the secondary air system is determined by evaluation of Freguenzanalyse (block 6).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet , dass das Frequenzanalyseverfahren (Block 5) eine Fourieranalyse ist .2. The method according to claim 1, characterized in that the frequency analysis method (block 5) is a Fourier analysis.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet ,3. The method according to claim 1 or 2, characterized
- dass in Abhängigkeit von einer Motordrehzahl und einem Umgebungsluftdruck ein zu betrachtender Frequenzbereich ausgewählt wird,that a frequency range to be considered is selected as a function of an engine speed and an ambient air pressure,
- und dass der maximale Wert (pmax) des Gasdrucks in diesem Frequenzbereich ermittelt wird (Block 5) . - And that the maximum value (pmax) of the gas pressure in this frequency range is determined (block 5).
4. Verfahren nach Anspruch 3 , dadurch gekennzeichnet ,4. The method according to claim 3, characterized
- dass dieser maximale Wert (pmax) des Gasdrucks mit einem Schwellwert (S_pmax) verglichen wird (Block 6) ,that this maximum value (pmax) of the gas pressure is compared with a threshold value (S_pmax) (block 6),
- und dass bei Unterschreiten des Schwellwertes (S_pmax) ein Leck im Sekundärluftsystem erkannt wird (Block 7 ) .- And that falls below the threshold (S_pmax) a leak in the secondary air system is detected (block 7).
5. Verfahren nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet ,5. The method according to any one of claims 1 to 4, characterized
- dass zusätzlich ein gleitender zeitlicher Mittelwert (pmitt) des Gasdruckes gebildet wird (Block 2 ) ,- that in addition a sliding time average (pmitt) of the gas pressure is formed (block 2),
- dass dieser Mittelwert (pmitt) mit einem Schwellwert (S_pmitt) verglichen wird (Block 3 ) und- That this average (pmitt) with a threshold (S_pmitt) is compared (block 3) and
- dass die Sekundärluftpumpe als fehlerhaft erkannt wird (Block 4) , wenn der Mittelwert (pmitt) kleiner ist als der Schwellwert (S_pmitt) .- That the secondary air pump is detected as faulty (block 4), when the average value (pmitt) is less than the threshold value (S_pmitt).
6. Vorrichtung zur Überwachung eines Sekundärluftsystems eines in einem Kraftfahrzeug angeordneten Abgassystems , wobei das Abgassystem einen Katalysator aufweist , dadurch gekennzeichnet ,6. An apparatus for monitoring a secondary air system of an exhaust system arranged in a motor vehicle, wherein the exhaust system comprises a catalytic converter, characterized
- dass ein Drucksensor zu Erfassung des zeitlichen Verlaufs des Gasdruckes zwischen Sekundärluftzufuhr und Katalysator und eine mit dem Drucksensor verbundene Auswertungseinheit vorgesehen sind,that a pressure sensor for detecting the time profile of the gas pressure between the secondary air supply and the catalyst and an evaluation unit connected to the pressure sensor are provided,
- dass eine der Auswertungseinheit zugeordnete Frequenzanalyseeinheit zur Transformierung des vom Drucksensor erfassten zeitlichen Verlaufs des Gasdrucks vorgesehen ist ,a frequency analysis unit assigned to the evaluation unit is provided for transforming the time profile of the gas pressure detected by the pressure sensor,
- dass Mittel zum Erkennen eines Fehlers durch Auswertung der Frequenzanalyse vorgesehen sind . - That means are provided for detecting an error by evaluating the frequency analysis.
PCT/EP2005/013871 2005-01-26 2005-12-22 Secondary air diagnosis in an internal combustion engine WO2006079407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005003591.4 2005-01-26
DE102005003591A DE102005003591A1 (en) 2005-01-26 2005-01-26 Secondary air diagnosis of an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2006079407A1 true WO2006079407A1 (en) 2006-08-03

Family

ID=36011042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/013871 WO2006079407A1 (en) 2005-01-26 2005-12-22 Secondary air diagnosis in an internal combustion engine

Country Status (2)

Country Link
DE (1) DE102005003591A1 (en)
WO (1) WO2006079407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012070A2 (en) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Method and device for analyzing vibrations in a machine
CN104343671A (en) * 2013-07-31 2015-02-11 上海理工大学 Air pump performance test system
WO2016058775A1 (en) * 2014-10-14 2016-04-21 Continental Automotive Gmbh Method for monitoring the secondary air system in an exhaust gas purification system of an internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062794B4 (en) 2007-12-27 2023-07-06 Audi Ag Method and device for detecting a leak in an exhaust section of an internal combustion engine
DE102014210884B4 (en) * 2014-06-06 2016-05-12 Continental Automotive Gmbh Determining the pump power of a pump of a secondary air system of an internal combustion engine
DE102015200090B4 (en) 2015-01-07 2021-09-30 Volkswagen Aktiengesellschaft Secondary air system and procedure for testing the functionality of the secondary air system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816679A1 (en) * 1996-06-28 1998-01-07 Uraca Pumpenfabrik Gmbh & Co. Kg Method and device for the early detection of faults in pumps
JPH10281076A (en) * 1997-04-10 1998-10-20 Hitachi Ltd Fault diagnostic method for pumping plant and device thereof
DE10205966A1 (en) 2002-02-14 2003-08-21 Bosch Gmbh Robert Process and device for monitoring the functioning of a secondary air system in a combustion engine with an exhaust gas system, closes secondary pump if a defect arises
DE10334817A1 (en) * 2003-07-30 2005-03-10 Bosch Rexroth Ag Pump failure detection unit uses Fourier analysis of pressure sensor measurement to determine if characteristic frequency exceeds reference amplitude

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816679A1 (en) * 1996-06-28 1998-01-07 Uraca Pumpenfabrik Gmbh & Co. Kg Method and device for the early detection of faults in pumps
JPH10281076A (en) * 1997-04-10 1998-10-20 Hitachi Ltd Fault diagnostic method for pumping plant and device thereof
DE10205966A1 (en) 2002-02-14 2003-08-21 Bosch Gmbh Robert Process and device for monitoring the functioning of a secondary air system in a combustion engine with an exhaust gas system, closes secondary pump if a defect arises
DE10334817A1 (en) * 2003-07-30 2005-03-10 Bosch Rexroth Ag Pump failure detection unit uses Fourier analysis of pressure sensor measurement to determine if characteristic frequency exceeds reference amplitude

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012070A2 (en) * 2006-07-24 2008-01-31 Robert Bosch Gmbh Method and device for analyzing vibrations in a machine
WO2008012070A3 (en) * 2006-07-24 2008-04-17 Bosch Gmbh Robert Method and device for analyzing vibrations in a machine
CN104343671A (en) * 2013-07-31 2015-02-11 上海理工大学 Air pump performance test system
WO2016058775A1 (en) * 2014-10-14 2016-04-21 Continental Automotive Gmbh Method for monitoring the secondary air system in an exhaust gas purification system of an internal combustion engine
US10443475B2 (en) 2014-10-14 2019-10-15 Continental Automotive Gmbh Secondary air system in an exhaust gas purification system of an internal combustion engine

Also Published As

Publication number Publication date
DE102005003591A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1573188B1 (en) Device and method for identifying defects in a fuel injection system
DE102014209840A1 (en) Method and device for diagnosing a particulate filter
DE102012207655B4 (en) Method for diagnosing a valve in a fluid supply line
WO2004040104A1 (en) Method for testing at least three sensors, which detect a measurable variable for an internal combustion engine
DE19854046B4 (en) Device for determining normal value deviations of an engine
DE102012108027A1 (en) Oil pump control system for a vehicle and method of operation thereof
WO2006079407A1 (en) Secondary air diagnosis in an internal combustion engine
DE102005009464B4 (en) Method for diagnosing a system for metering reagent and compressed air into the exhaust area of an internal combustion engine and device for carrying out the method
DE102008001418A1 (en) Method and device for adapting the efficiency of a cooler in the return circuit of exhaust gas in an internal combustion engine
DE102017127517A1 (en) Method and device for controlling the fuel pressure
EP2047118B1 (en) Method for fault localization and diagnosis in a fluidic installation
EP2764220A1 (en) A method for monitoring an exhaust system
DE102006008775B4 (en) Engine control method and device
EP1637707B1 (en) Method of operating an exhaust treatment device of an internal combustion engine and device for carrying out the method
DE102010055137A1 (en) Method for operating a motor vehicle with two turbochargers
DE102013221995A1 (en) Method and device for the evaluation of abnormal burns of an internal combustion engine of a motor vehicle by a regression calculation of a physical quantity
DE102007039793A1 (en) Pneumatic system e.g. pneumatic brake system, monitoring method for commercial motor vehicle, involves detecting pressure signal continuously in pneumatic system, and analyzing resulting time response of detected pressure values
EP1995140B1 (en) Method for monitoring air-tightness of a compressed air system and electronic device provided for said method
EP1490588B1 (en) Device and method for detecting malfunctions in a fuel injection system provided with a fuel pressure damper
EP2184473A2 (en) Method and device for testing a pressure sensor of a fuel injection device
DE19727669B4 (en) Method for monitoring the function of an intake manifold flap for intake manifold switching of an internal combustion engine
DE102012018102A1 (en) Method for supplying air to a fuel cell
DE102012011484B4 (en) Monitoring an injection process in an internal combustion engine
DE102016215871A1 (en) Method and device for evaluating a diagnosis result
DE102012212390A1 (en) Method for performing selective motor parameter analysis for engine parameter of internal combustion engine, involves detecting cylinder pressure inside combustion space or -chamber of combustion engine to generate cylinder pressure signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05823843

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5823843

Country of ref document: EP