WO2021110173A1 - Liposome formulation of fluticasone propionate - Google Patents

Liposome formulation of fluticasone propionate Download PDF

Info

Publication number
WO2021110173A1
WO2021110173A1 PCT/CN2020/134315 CN2020134315W WO2021110173A1 WO 2021110173 A1 WO2021110173 A1 WO 2021110173A1 CN 2020134315 W CN2020134315 W CN 2020134315W WO 2021110173 A1 WO2021110173 A1 WO 2021110173A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
fluticasone propionate
formulation
liposome
liposomes
Prior art date
Application number
PCT/CN2020/134315
Other languages
French (fr)
Inventor
Caigu HUANG
Original Assignee
Anovent Pharmaceuticals Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anovent Pharmaceuticals Co., Ltd filed Critical Anovent Pharmaceuticals Co., Ltd
Publication of WO2021110173A1 publication Critical patent/WO2021110173A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system

Definitions

  • the present invention relates to a liposome formulation and a preparation method for the liposome formulation.
  • Fluticasone propionate chemically known as S-fluoromethyl-6 ⁇ , 9 ⁇ -difluoro-11 ⁇ -hydroxy-16 ⁇ -methyl-3-oxo-17 ⁇ -propionyloxyandrosta-1, 4-diene-17 ⁇ -carbothiate, has the following structure:
  • Fluticasone propionate has been described, as a type of corticosteroid, can be used to treat asthma, allergic rhinitis, as well as eosinophilic esophagitis. Also, fluticasone propionate has shown anti-inflammatory activity.
  • Fluticasone propionate has been administered by means of dry powder inhalation. However, it is difficult or unpleasant for some patients, in particular for children and the elderly, to administer by dry powder inhalation. Furthermore, fluticasone propionate has poor solubility in water. Fluticasone propionate is typically suspended in an aqueous solution, which results in administration of less than optimal amounts of the drug substance for absorption. The inability to administer optimal amounts of a drug substance results in reduced bioavailability and efficacy of the drug substance. Therefore it is desirable to have a formulation of fluticasone propionate in a liposomal form, which is suitable for nebulization.
  • Liposomes are microscopic closed vesicles which have an internal phase enclosed by one or more lipid bilayers. Liposomes can entrap the active agent, fluticasone propionate, with high efficiency, and can secure stable retention of fluticasone propionate by the liposome constituents so that the fluticasone propionate can be delivered to a target tissue. Liposomes can improve protection of the encapsulated drug, increase drug stability, change the in vivo distribution behavior of the drug, and carry the drug to a diseased region by passive or active targeting, as well as improve drug efficacy and reduce drug toxicity.
  • the present invention relates to liposomal formulations, which are particularly suitable for administering fluticasone propionate by nebulization inhalation, especially for treating asthma and chronic obstructive pulmonary disease.
  • liposomal formulations are advantageous compared with conventional dry powder inhalation. For example, administration by means of dry powder inhalation is more difficult, particularly for children and elderly patients. Also, dry powder inhalation may cause side effects in the lung.
  • the liposomal formulations of the present invention are particularly suited for administering fluticasone propionate by nebulization inhalation, especially for treating asthma and chronic obstructive pulmonary disease.
  • the present invention relates to fluticasone propionate encapsulated in liposomes and methods for its preparation.
  • One aspect of the present invention provides liposomes having a high uniformity which results in minimizing side effects, high drug-loading capacity, high encapsulation efficiency, and good stability, and are suitable for preparing a liposome formulation.
  • the liposome formulation is characterized by liposomes having desirable compositions and physical characteristics.
  • the liposome formulations of the present invention comprise lipid ingredients encapsulating fluticasone propionate.
  • the liposome formulations of the present invention comprise one or more lipid ingredients and fluticasone propionate, having a mass ratio of the fluticasone propionate to that of the lipid ingredient (s) , called the drug to lipid ratio, of about 1: 5 to about 1: 50 by weight, preferably about 1: 10 to about 1: 40.
  • This drug to lipid ratio enhances stability and effectiveness, and also has an impact on drug release and liposome integrity.
  • the liposomes of the present invention range in size from about 50 to about 800 nm, more specifically in the size range of about 100 nm to about 500 nm, depending on the type of fluticasone propionate and/or the carrier used. In one embodiment, the liposomes are in the size range of about 177 nm.
  • Another aspect of the present invention is to provide a method for producing a liposome formulation.
  • Liposomes formulated by this process have desirable characteristics.
  • the method of preparing the liposomes includes the steps of (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline solution to form liposome vesicles. If desired, a further step of ultrafiltration and concentration of the resulting liposome vesicle-containing solution may be applied for the preparation process.
  • the process steps are suitable for commercial production by scaling up preparation of liposomal formulation of fluticasone propionate.
  • the formulation is prepared by (1) mixing fluticasone propionate with lipid ingredients comprising DPPC and cholesterol in a molar ratio of about 1: 1, with the mass ratio of fluticasone propionate to lipid in the range of about 1: 5 to about 1: 50, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
  • the formulation comprises a plurality of liposomes, composed of an amount of one or more lipid ingredients encapsulating fluticasone propionate.
  • the lipid ingredients comprise DPPC and cholesterol, and the mass ratio of fluticasone propionate to lipid ingredients may be in the range of about 1: 5 to about 1: 50.
  • the formulation is prepared by the following steps: (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
  • This preparation method can produce a liposome formulation, which has useful characteristics by, for example, varying the ratio of the lipid ingredients, the drug to lipid ratio, and the pH value, so as to be suitable for nebulization inhalation or soft mist inhalation.
  • FIG. 1 is a graph of the size distribution of fluticasone propionate liposome of sample 4 of example 2.
  • FIG. 2 is a graph of the size distribution of fluticasone propionate liposome of sample 5 of example 2.
  • FIG. 3 is a graph of the size distribution of fluticasone propionate liposome of sample 6 of example 2.
  • FIG. 4 is a graph of the size distribution of fluticasone propionate liposome of sample 7 of example 2.
  • FIG. 5 is a graph of the size distribution of fluticasone propionate liposome of sample 8 of example 2.
  • FIG. 6 is a graph of the size distribution of fluticasone propionate liposome of sample 9 of example 2.
  • FIG. 7 is a graph of particle size distribution of droplets from sample 1 of example 2 using a compressed air nebulizer.
  • FIG. 8 is a graph of particle size distribution of droplets from sample 2 of example 2 using a compressed air nebulizer.
  • FIG. 9 is a graph of particle size distribution of droplets from sample 3 of example 2 using a compressed air nebulizer.
  • FIG. 10 is a graph of particle size distribution of droplets from sample 4 of example 2 using a compressed air nebulizer.
  • FIG. 11 is a graph of particle size distribution of droplets from sample 1 of example 2 using an ultrasonic vibrating mesh nebulizer.
  • FIG. 12 is a graph of particle size distribution of droplets from sample 2 of example 2 using an ultrasonic vibrating mesh nebulizer.
  • FIG. 13 is a graph of particle size distribution of droplets from sample 3 of example 2 using an ultrasonic vibrating mesh nebulizer.
  • FIG. 14 is a graph of particle size distribution of droplets from sample 5 of example 2 using an ultrasonic vibrating mesh nebulizer.
  • the present invention provides a liposomal formulation and a method for preparing the liposomal formulation.
  • the formulation comprises a plurality of liposomes encapsulating fluticasone propionate.
  • the physical characteristics of each liposome facilitate stability and effectiveness of the liposomal formulation.
  • the formulation is characterized by liposomes which are substantially uniform in size and shape distribution, while being relatively rigid. The liposomal formulation has little variation in size among the liposomes.
  • the invention provides an efficient method for preparing the liposomal formulation, which can meet the needs of large-scale preparation of liposomes.
  • liposome refers to microscopic closed vesicles having an internal phase enclosed by lipid bilayer.
  • liposome includes small single-membrane liposomes, large single-membrane liposomes, still larger single-membrane liposomes, multilayer liposomes having multiple concentric membranes, liposomes having multiple membranes that are not concentric, but irregular, etc.
  • liposome internal phase refers to an aqueous region enclosed in the lipid bilayer of the liposome, and is used with the same meaning as “internal water phase” and “liposome internal water phase. ”
  • the present invention relates to a liposome formulation.
  • Different liposome ingredients may be used to form the liposomes of the invention.
  • the lipid ingredient is one or more non-toxic biocompatible lipids, for example, lipids prepared from phosphatidyl-choline, phosphoglycerol, and/or cholesterol.
  • the lipid ingredient may comprise dipalmitoylphosphatidylcholine (DPPC) , diastearoylphosphatidylcholine (DSPC) , diastearoylphosphatidylglycerol (DSPG) and cholesterol.
  • the lipid ingredient comprises dipalmitoylphosphatidylcholine (DPPC) and cholesterol or combinations thereof, which may be present in a molar ratio of about 1: 1 (DPPC: cholesterol) .
  • lipid ingredients refers to one or more sterols and/or one or more lipids.
  • exemplary lipid ingredients include, for example, cholesterol and diastearoylphosphatidylcholine (DSPC) , cholesterol and dipalmitoylphosphatidylcholine (DPPC) , etc.
  • the liposome is not particularly limited in terms of form as long as it is a liposome capable of encapsulating a drug.
  • encapsulating means taking a form in which a drug is contained in an inner water phase and a membrane itself with respect to the liposome.
  • the liposome may be a form where a drug is encapsulated within a closed space formed of a membrane, a form where a drug is included in the membrane itself, or a combination thereof.
  • average particle size refers to an average value of diameters of liposomes as measured by a light scattering method.
  • the liposome is preferably in the form of a spherical shape or a morphology close thereto.
  • step includes not only an independent step, but also a step which may not be clearly separated from another step, insofar as an expected effect of the step can be attained.
  • the liposome formulation is characterized by liposomes having a desirable composition and physical characteristics.
  • the liposomes of the present invention comprise lipid ingredients encapsulating fluticasone propionate.
  • the lipid may be selected from the group consisting of phosphatidylcholine (PC) , phosphatidic acid (PA) , phosphatidylethanolamine (PE) , phosphatidylglycerol (PG) , phosphatidylserine (PS) , phosphatidylinositol (PI) , dimyristoyl phosphatidyl choline (DMPC) , distearoylphosphatidyl choline (DSPC) , dipalmitoyl phosphatidyl choline (DPPC) , dimyristoyl phosphatidyl glycerol (DMPG) , distearoylphosphatidyl glycerol (DSPG) , dioleoyl
  • the sterol may be at least one kind selected from the group including cholesterol, ergosterol, and lanosterol.
  • the lipid ingredients may comprise a lipid and cholesterol, a lipid and ergosterol, or a lipid and lanosterol.
  • the lipid and sterol are present in a molar ratio of about 0.6: 1 to about 1.4: 1.
  • the lipid ingredients are selected from dipalmitoylphosphatidylcholine (DPPC) and cholesterol in the range of about 0.6: 1 to about 1.4: 1 in molar ratios (DPPC: cholesterol) .
  • the term “drug to lipid ratio” refers to the relative amounts of the drug to the lipid ingredients by mass.
  • the liposome has a drug to lipid ratio between about 1: 5 and about 1: 50 by weight.
  • the liposome has a drug to lipid ratio between about 1: 10 and about 1: 40 by weight.
  • the pH affects the properties of the liposomal formulation in the solvent.
  • the pH affects the stability, drug leakage rate from the liposome, and drug encapsulation capability of the liposome formulation.
  • the pH value of the liposomal formulation is from about 4.0 to about 7.0.
  • the liposomal formulation has a pH value in the range of about 5.0 to about 6.0.
  • the liposome formulation comprises a plurality of liposomes which have the characteristics described above and are substantially uniform in size and shape.
  • the liposomes may be in the size range of about 50 to about 800 nm. In an embodiment, the size range is about 70to about 500 nm, particularly, the size range is about 100 to about 500 nm.
  • the size of the liposomes is about 177 nm. In another embodiment, the size of the liposomes is about 146 nm.
  • the liposome formulation may be formulated using one or more physiologically acceptable carriers comprising excipients and auxiliaries known in the art.
  • the liposome formulation may be administered by any route which effectively transports the liposomes to the appropriate site of action.
  • One effective route of administration is inhalation.
  • Other suitable routes of administration may include intramuscular, subcutaneous and intraperitoneal.
  • the liposome formulation may comprise an antioxidant selected from the group consisting of water-soluble antioxidants and oil-soluble antioxidants.
  • oil-soluble antioxidants include, but are not limited to, alpha-tocopherol, alpha-tocopherol succinate, alpha-tocopherol acetate, and mixtures thereof.
  • water-soluble antioxidants include, but are not limited to, ascorbic acid, sodium bisulfite, sodium sulfite, sodium pyrosulfite, L-cysteine, and mixtures thereof.
  • the ratio of the antioxidant added is from about 0 to about 1.0% (w/v) . In a preferred embodiment, the antioxidant is omitted entirely.
  • the processes for making the liposomes and liposome formulation permit the manipulation of the physical characteristics described above, as well as control of certain process parameters, for example, solvent composition, solvent ratios, and vesicle preparation temperature.
  • the preparation of the liposome formulation comprises the steps: (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
  • a further step of ultrafiltration and concentration of the resulting liposome vesicle-containing solution may be used.
  • the preparation method has the advantage that the physiological and chemical features of the liposome can be controlled, and monitored.
  • the drug to lipid ratio may be managed by the selection of the lipid ingredients used to form the liposome or the amount of lipids added to the dissolved active agent. Increasing the amount of lipid ingredient decreases the drug to lipid ratio, and vice versa.
  • the first step comprises mixing fluticasone propionate and lipid ingredients with a lipid solvent to form a lipid solution.
  • the lipid solvent is heated to a temperature in the range of about 40°C to about 80°C to facilitate solubilization of the fluticasone propionate and lipid ingredients.
  • the lipid solvent is heated to a temperature of about 50°Cto facilitate solubilization of the fluticasone propionate and lipid ingredients.
  • the second step comprises injecting the mixture into normal saline solution to form liposome vesicles.
  • the second step may comprise a hydrophilic solution, for example, water, to form liposome vesicles in addition to, or in place of, the normal saline described above.
  • the mixture of fluticasone propionate and lipid ingredients is added to the normal saline or water solution at ambient temperature, for example, the temperature of about 25°C.
  • the normal saline or water solution may be optionally heated during the process.
  • the solution may be heated to a temperature that facilitates solubilization and liposome formation.
  • the normal saline or water solution may be 25°C during the process of forming liposomes.
  • a step of ultrafiltration and concentration may be conducted.
  • Different types of filtration membranes may be used during the ultrafiltration process.
  • the ultrafiltration step uses a hollow fiber membrane, where the formulation is pushed through the open hollow cores of the fiber, and the micro-molecules are filtered through the outer membrane of the fiber while the relatively larger liposomes remain within the fiber.
  • the cartridge is typically filled with 100%alcohol for one hour.
  • the cartridge may be soaked for over one hour.
  • the alcohol may be pumped through the cartridge at 5 psig.
  • the alcohol is removed, and the cartridge is rinsed with clean water.
  • a reused hollow fiber cartridge may be used.
  • the fiber cartridge before ultrafiltration, the fiber cartridge may be washed with pure water, and then the sample may be pumped through the cartridge for ultrafiltration, until the liposome sample is concentrated to a desired concentration. After finishing ultrafiltration, the cartridge may be washed by pure water, and then the cartridge may be soaked with 5%NaOH solution.
  • ultrafiltration and concentration may be accomplished using a peristaltic pump connected with a hollow fiber cartridge.
  • the fiber cartridge may be washed by pure water, and then the sample of liposome formulation may be pumped through the cartridge for ultrafiltration, until the sample is concentrated.
  • the liposome formulation may be filtered by a hollow fiber cartridge for concentrating to a volume of, for example, about 10 mL and removing ethanol and free fluticasone propionate.
  • the hollow fiber cartridge may be washed by pure water, and then soaked with 5%NaOH.
  • the process may further include a dialyzing step wherein the formulation is dialyzed against a volume of a buffered solution.
  • the buffer solution is normal saline.
  • Other buffer additives are known in the art, including, but not limited to, sucrose, glycine, sodium and/or succinate.
  • the buffer solution preferably reflects the environment of the final formulation that is external to the liposome.
  • the buffer solution is isotonic and non-toxic to cells.
  • the buffer solution may be filtered to further reduce contaminants and may be prepared in advance of the preparation process.
  • the lipid ingredients may be in the form of a solution containing the desired starting amount of the lipid ingredient (s) in a volume of one or more lipid solvents. Any suitable lipid ingredient (s) and lipid solvent may be used.
  • the lipid ingredients may comprise DPPC and cholesterol in a molar ratio of about 1: 1, prior to liposome formation.
  • the resultant liposome formed according to this combination of lipids may also have about a 1: 1 molar ratio of DPPC and cholesterol.
  • lipid solvents include, but are not limited to, ethanol, t-butanol, water, and mixtures thereof.
  • the lipid ingredients are dissolved in the lipid solvent.
  • the lipid solvent may be heated to a temperature that facilitates solubilization of the lipid ingredients, for example, ranging from about 40°C to about 80 °C to generate the lipid solution.
  • the initial concentration of lipid ingredients dissolved in the ethanol may be in the range of about 0.33 to about 1.0g/L.
  • the lipid solution may be prepared apart from the manufacturing process discussed herein.
  • the mixture of the fluticasone propionate and the lipid solvent forms the lipid solution.
  • the drug to lipid ratio may be controlled by varying the amount of lipid ingredients and fluticasone propionate.
  • mildly heating the lipid solvent may aid in mixing together the lipid ingredients and fluticasone propionate. This mixing process can result in efficient encapsulation of fluticasone propionate into multi-lamellar vesicles.
  • the weight ratio of lipid to drug increases the stability of the liposome formulation without significantly compromising delivery. This process permits the drug to lipid ratio to be varied in the range of about 1: 5 to about 1: 50 by weight, such as in the range of about 1: 10 to about 1: 40.
  • the liposome formulation may be added to fluticasone propionate at a ratio of about 10 parts lipid ingredients to about 1 part fluticasone propionate.
  • the liposome formulation may be added to fluticasone propionate solution at a ratio of about 25 part lipid ingredients to about 1 part fluticasone propionate.
  • Another aspect of this invention is a liposome formulation made in accordance with the preparation steps described above, wherein the formulation comprises DPPC and cholesterol in a molar ratio of about 1: 1, and a mass ratio of fluticasone propionate to lipid ingredients in the range of about 1: 5 to about 1: 50, which is prepared by the following steps: (1) mixing fluticasone propionate with lipid ingredients comprising lipid and sterol; (2) injecting the mixture into normal saline solution to form liposome vesicles.
  • the preparation of the formulation is prepared by (1) mixing fluticasone propionate with lipid ingredients comprising DPPC and cholesterol in a molar ratio of about 1: 1, and a mass ratio of fluticasone propionate to lipid in the range of about 1: 5 to about 1: 50, (2) injecting the mixture into normal saline solution to form liposome vesicles.
  • the preparation process produces a liposome formulation with useful characteristics and features as described above, including about a 1: 1 molar ratio of DPPC and cholesterol, a pH value between about 4.0 and about 7.0, a drug to lipid ratio in the range of about 1: 5 to about 1: 50.
  • Lipid ingredients DPPC/cholesterol (molar ratio 1: 1) ;
  • the lipid solution containing fluticasone propionate was added to 50 ml normal saline and mixed for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to final volume with normal saline.
  • Sample 1 8.5 mg DPPC and 4.4 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.63 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 2 16.5 mg DPPC and 8.7 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.59 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until completely dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 3 24.6 mg DPPC and 13.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.56 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 4 32.9 mg DPPC and 17.5 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.62 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 5 40.8 mg DPPC and 21.6 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.39 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 6 48.9 mg DPPC and 26.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.69 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 7 57.3 mg DPPC and 30.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.39 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 8 65.7 mg DPPC and 34.9 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.45 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
  • Sample 9 82.1 mg DPPC and 43.0 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 °C in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.37 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

A formulation comprising a plurality of liposomes encapsulating fluticasone propionate, wherein the liposomes comprise a lipid ingredient that comprises a lipid and a sterol, and wherein the fluticasone propionate and lipid ingredient are present in a weight ratio between 1:5 and 1:50. The method of preparing the formulation comprises the steps of (1) mixing fluticasone propionate with lipid ingredients comprising lipid and sterol, and (2) injecting the mixture into a normal saline solution. This method can produce liposome formulations having desirable properties, such as, for example, the ratio of the lipid ingredients, the drug to lipid ratio, and the pH value, so as to be suitable for inhalation by nebulization.

Description

LIPOSOME FORMULATION OF FLUTICASONE PROPIONATE FIELD OF THE INVENTION
The present invention relates to a liposome formulation and a preparation method for the liposome formulation.
BACKGROUND OF THE INVENTION
Fluticasone propionate, chemically known as S-fluoromethyl-6α, 9α-difluoro-11β-hydroxy-16α-methyl-3-oxo-17α-propionyloxyandrosta-1, 4-diene-17β-carbothiate, has the following structure:
Figure PCTCN2020134315-appb-000001
Fluticasone propionate has been described, as a type of corticosteroid, can be used to treat asthma, allergic rhinitis, as well as eosinophilic esophagitis. Also, fluticasone propionate has shown anti-inflammatory activity.
Fluticasone propionate has been administered by means of dry powder inhalation. However, it is difficult or unpleasant for some patients, in particular for children and the elderly, to administer by dry powder inhalation. Furthermore, fluticasone propionate has poor solubility in water. Fluticasone propionate is typically suspended in an aqueous solution, which results in administration of less than optimal amounts of the drug substance for absorption. The inability to administer optimal amounts of a drug substance results in reduced bioavailability and efficacy of the drug substance. Therefore it is desirable to have a formulation of fluticasone propionate in a liposomal form, which is suitable for nebulization.
Liposomes are microscopic closed vesicles which have an internal phase enclosed by one or more lipid bilayers. Liposomes can entrap the active agent, fluticasone propionate, with high efficiency, and can secure stable retention of fluticasone propionate by the liposome constituents so that the fluticasone propionate can be delivered to a target tissue. Liposomes can improve protection of the encapsulated drug, increase drug stability, change the in vivo  distribution behavior of the drug, and carry the drug to a diseased region by passive or active targeting, as well as improve drug efficacy and reduce drug toxicity.
Accordingly, the present invention relates to liposomal formulations, which are particularly suitable for administering fluticasone propionate by nebulization inhalation, especially for treating asthma and chronic obstructive pulmonary disease.
Furthermore, liposomal formulations are advantageous compared with conventional dry powder inhalation. For example, administration by means of dry powder inhalation is more difficult, particularly for children and elderly patients. Also, dry powder inhalation may cause side effects in the lung. The liposomal formulations of the present invention are particularly suited for administering fluticasone propionate by nebulization inhalation, especially for treating asthma and chronic obstructive pulmonary disease.
SUMMARY OF THE INVENTION
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
The present invention relates to fluticasone propionate encapsulated in liposomes and methods for its preparation. One aspect of the present invention provides liposomes having a high uniformity which results in minimizing side effects, high drug-loading capacity, high encapsulation efficiency, and good stability, and are suitable for preparing a liposome formulation.
The liposome formulation is characterized by liposomes having desirable compositions and physical characteristics. The liposome formulations of the present invention comprise lipid ingredients encapsulating fluticasone propionate.
The liposome formulations of the present invention comprise one or more lipid ingredients and fluticasone propionate, having a mass ratio of the fluticasone propionate to that of the lipid ingredient (s) , called the drug to lipid ratio, of about 1: 5 to about 1: 50 by weight, preferably about 1: 10 to about 1: 40. This drug to lipid ratio enhances stability and effectiveness, and also has an impact on drug release and liposome integrity. These and other structural characteristics impart unexpected benefits to the instant formulation.
The liposomes of the present invention range in size from about 50 to about 800 nm, more specifically in the size range of about 100 nm to about 500 nm, depending on the type of fluticasone propionate and/or the carrier used. In one embodiment, the liposomes are in the size range of about 177 nm.
Another aspect of the present invention is to provide a method for producing a liposome formulation. Liposomes formulated by this process have desirable characteristics. The method of preparing the liposomes includes the steps of (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline  solution to form liposome vesicles. If desired, a further step of ultrafiltration and concentration of the resulting liposome vesicle-containing solution may be applied for the preparation process.
The process steps are suitable for commercial production by scaling up preparation of liposomal formulation of fluticasone propionate.
In one embodiment, the formulation is prepared by (1) mixing fluticasone propionate with lipid ingredients comprising DPPC and cholesterol in a molar ratio of about 1: 1, with the mass ratio of fluticasone propionate to lipid in the range of about 1: 5 to about 1: 50, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
Yet another aspect of the present invention is a liposome formulation made in accordance with the preparation steps described above. The formulation comprises a plurality of liposomes, composed of an amount of one or more lipid ingredients encapsulating fluticasone propionate. In one embodiment, the lipid ingredients comprise DPPC and cholesterol, and the mass ratio of fluticasone propionate to lipid ingredients may be in the range of about 1: 5 to about 1: 50. The formulation is prepared by the following steps: (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
This preparation method can produce a liposome formulation, which has useful characteristics by, for example, varying the ratio of the lipid ingredients, the drug to lipid ratio, and the pH value, so as to be suitable for nebulization inhalation or soft mist inhalation.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a graph of the size distribution of fluticasone propionate liposome of sample 4 of example 2.
FIG. 2 is a graph of the size distribution of fluticasone propionate liposome of sample 5 of example 2.
FIG. 3 is a graph of the size distribution of fluticasone propionate liposome of sample 6 of example 2.
FIG. 4 is a graph of the size distribution of fluticasone propionate liposome of sample 7 of example 2.
FIG. 5 is a graph of the size distribution of fluticasone propionate liposome of sample 8 of example 2.
FIG. 6 is a graph of the size distribution of fluticasone propionate liposome of sample 9 of example 2.
FIG. 7 is a graph of particle size distribution of droplets from sample 1 of example 2 using a compressed air nebulizer.
FIG. 8 is a graph of particle size distribution of droplets from sample 2 of example 2 using a compressed air nebulizer.
FIG. 9 is a graph of particle size distribution of droplets from sample 3 of example 2 using a compressed air nebulizer.
FIG. 10 is a graph of particle size distribution of droplets from sample 4 of example 2 using a compressed air nebulizer.
FIG. 11 is a graph of particle size distribution of droplets from sample 1 of example 2 using an ultrasonic vibrating mesh nebulizer.
FIG. 12 is a graph of particle size distribution of droplets from sample 2 of example 2 using an ultrasonic vibrating mesh nebulizer.
FIG. 13 is a graph of particle size distribution of droplets from sample 3 of example 2 using an ultrasonic vibrating mesh nebulizer.
FIG. 14 is a graph of particle size distribution of droplets from sample 5 of example 2 using an ultrasonic vibrating mesh nebulizer.
DETAILED DESCRIPTION OF THE INVENTION
For purposes of describing the invention, reference now will be made in detail to embodiments and/or methods of the invention, one or more examples of which are illustrated in or with the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features or steps illustrated or described as part of one embodiment can be used with another embodiment or steps to yield a still further embodiments or methods. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
The present invention provides a liposomal formulation and a method for preparing the liposomal formulation. The formulation comprises a plurality of liposomes encapsulating fluticasone propionate. The physical characteristics of each liposome facilitate stability and effectiveness of the liposomal formulation. The formulation is characterized by liposomes which are substantially uniform in size and shape distribution, while being relatively rigid. The liposomal formulation has little variation in size among the liposomes.
Additionally, the invention provides an efficient method for preparing the liposomal formulation, which can meet the needs of large-scale preparation of liposomes.
As used herein, the term “liposome” refers to microscopic closed vesicles having an internal phase enclosed by lipid bilayer. In the present invention, liposome includes small single-membrane liposomes, large single-membrane liposomes, still larger single-membrane liposomes,  multilayer liposomes having multiple concentric membranes, liposomes having multiple membranes that are not concentric, but irregular, etc.
The term “liposome internal phase” refers to an aqueous region enclosed in the lipid bilayer of the liposome, and is used with the same meaning as “internal water phase” and “liposome internal water phase. ”
The present invention relates to a liposome formulation. Different liposome ingredients may be used to form the liposomes of the invention. Preferably, the lipid ingredient is one or more non-toxic biocompatible lipids, for example, lipids prepared from phosphatidyl-choline, phosphoglycerol, and/or cholesterol. In an embodiment, the lipid ingredient may comprise dipalmitoylphosphatidylcholine (DPPC) , diastearoylphosphatidylcholine (DSPC) , diastearoylphosphatidylglycerol (DSPG) and cholesterol. In one embodiment, the lipid ingredient comprises dipalmitoylphosphatidylcholine (DPPC) and cholesterol or combinations thereof, which may be present in a molar ratio of about 1: 1 (DPPC: cholesterol) .
As used herein, the term “lipid ingredients” refers to one or more sterols and/or one or more lipids. Exemplary lipid ingredients include, for example, cholesterol and diastearoylphosphatidylcholine (DSPC) , cholesterol and dipalmitoylphosphatidylcholine (DPPC) , etc.
The liposome is not particularly limited in terms of form as long as it is a liposome capable of encapsulating a drug.
The term “encapsulating” means taking a form in which a drug is contained in an inner water phase and a membrane itself with respect to the liposome. For example, the liposome may be a form where a drug is encapsulated within a closed space formed of a membrane, a form where a drug is included in the membrane itself, or a combination thereof.
As used herein, the term “average particle size” refers to an average value of diameters of liposomes as measured by a light scattering method.
The liposome is preferably in the form of a spherical shape or a morphology close thereto.
The term “step” as used herein includes not only an independent step, but also a step which may not be clearly separated from another step, insofar as an expected effect of the step can be attained.
The liposome formulation is characterized by liposomes having a desirable composition and physical characteristics. The liposomes of the present invention comprise lipid ingredients encapsulating fluticasone propionate. According to the invention, the lipid may be selected from the group consisting of phosphatidylcholine (PC) , phosphatidic acid (PA) , phosphatidylethanolamine (PE) , phosphatidylglycerol (PG) , phosphatidylserine (PS) , phosphatidylinositol (PI) , dimyristoyl phosphatidyl choline (DMPC) , distearoylphosphatidyl choline (DSPC) , dipalmitoyl phosphatidyl choline (DPPC) , dimyristoyl phosphatidyl glycerol (DMPG) , distearoylphosphatidyl glycerol (DSPG) , dioleoyl phosphatidyl glycerol (DOPG) , dipalmitoylphosphatidylglycerol (DPPG) , dimyristoyl phosphatidyl serine (DMPS) , distearoyl phosphatidyl serine (DSPS) , dioleoyl phosphatidyl serine (DOPS) , dipalmitoyl phosphatidyl  serine (DPPS) , dioleoyl phosphatidyl ethanolamine (DOPE) , palmitoyloleoylphosphatidylcholine (POPC) , palmitoyloleoyl-phosphatidylethanolamine (POPE) , dioleoyl-phosphatidylethanolamine 4- (N-maleimidomethyl-cyclohexane-1-carboxylate (DOPE-mal) , dipalmitoyl phosphatidyl ethanolamine (DPPE) , dimyristoylphosphoethanolamine (DMPE) , distearoyl-phosphatidylethanolamine (DSPE) , distearoylphosphatidylcholine (DSPC) , dioleoylphosphatidylcholine (DOPC) , dipalmitoylphosphatidylcholine (DPPC) , palmitoyloleoylphosphatidylcholine (POPC) , and palmitoyloleoyl-phosphatidylethanolamine (POPE) .
According to the invention, the sterol may be at least one kind selected from the group including cholesterol, ergosterol, and lanosterol.
The lipid ingredients may comprise a lipid and cholesterol, a lipid and ergosterol, or a lipid and lanosterol. In an embodiment, the lipid and sterol are present in a molar ratio of about 0.6: 1 to about 1.4: 1. In another embodiment, the lipid ingredients are selected from dipalmitoylphosphatidylcholine (DPPC) and cholesterol in the range of about 0.6: 1 to about 1.4: 1 in molar ratios (DPPC: cholesterol) .
Within the scope of the present invention, the term “drug to lipid ratio” refers to the relative amounts of the drug to the lipid ingredients by mass. In one embodiment, the liposome has a drug to lipid ratio between about 1: 5 and about 1: 50 by weight. In another embodiment, the liposome has a drug to lipid ratio between about 1: 10 and about 1: 40 by weight.
The pH affects the properties of the liposomal formulation in the solvent. The pH affects the stability, drug leakage rate from the liposome, and drug encapsulation capability of the liposome formulation. The pH value of the liposomal formulation is from about 4.0 to about 7.0. In one embodiment, the liposomal formulation has a pH value in the range of about 5.0 to about 6.0.
According to the invention, the liposome formulation comprises a plurality of liposomes which have the characteristics described above and are substantially uniform in size and shape. The liposomes may be in the size range of about 50 to about 800 nm. In an embodiment, the size range is about 70to about 500 nm, particularly, the size range is about 100 to about 500 nm.
In an embodiment, the size of the liposomes is about 177 nm. In another embodiment, the size of the liposomes is about 146 nm.
According to the present invention, the liposome formulation may be formulated using one or more physiologically acceptable carriers comprising excipients and auxiliaries known in the art.
The liposome formulation may be administered by any route which effectively transports the liposomes to the appropriate site of action. One effective route of administration is inhalation. Other suitable routes of administration may include intramuscular, subcutaneous and intraperitoneal.
According to the invention, the liposome formulation may comprise an antioxidant selected from the group consisting of water-soluble antioxidants and oil-soluble antioxidants.  Examples of oil-soluble antioxidants include, but are not limited to, alpha-tocopherol, alpha-tocopherol succinate, alpha-tocopherol acetate, and mixtures thereof. Examples of water-soluble antioxidants include, but are not limited to, ascorbic acid, sodium bisulfite, sodium sulfite, sodium pyrosulfite, L-cysteine, and mixtures thereof. The ratio of the antioxidant added is from about 0 to about 1.0% (w/v) . In a preferred embodiment, the antioxidant is omitted entirely.
The processes for making the liposomes and liposome formulation permit the manipulation of the physical characteristics described above, as well as control of certain process parameters, for example, solvent composition, solvent ratios, and vesicle preparation temperature. The preparation of the liposome formulation comprises the steps: (1) mixing fluticasone propionate with lipid ingredients comprising a lipid and a sterol, and (2) injecting the mixture into normal saline solution to form liposome vesicles.
If desired, a further step of ultrafiltration and concentration of the resulting liposome vesicle-containing solution may be used.
The preparation method has the advantage that the physiological and chemical features of the liposome can be controlled, and monitored. For example, the drug to lipid ratio may be managed by the selection of the lipid ingredients used to form the liposome or the amount of lipids added to the dissolved active agent. Increasing the amount of lipid ingredient decreases the drug to lipid ratio, and vice versa.
The first step comprises mixing fluticasone propionate and lipid ingredients with a lipid solvent to form a lipid solution. In many cases, the lipid solvent is heated to a temperature in the range of about 40℃ to about 80℃ to facilitate solubilization of the fluticasone propionate and lipid ingredients.
In a preferred embodiment, the lipid solvent is heated to a temperature of about 50℃to facilitate solubilization of the fluticasone propionate and lipid ingredients.
The second step comprises injecting the mixture into normal saline solution to form liposome vesicles. The second step may comprise a hydrophilic solution, for example, water, to form liposome vesicles in addition to, or in place of, the normal saline described above.
The mixture of fluticasone propionate and lipid ingredients is added to the normal saline or water solution at ambient temperature, for example, the temperature of about 25℃. The normal saline or water solution may be optionally heated during the process. The solution may be heated to a temperature that facilitates solubilization and liposome formation. In an embodiment, the normal saline or water solution may be 25℃ during the process of forming liposomes.
If desired, a step of ultrafiltration and concentration may be conducted. Different types of filtration membranes may be used during the ultrafiltration process. In one embodiment, the ultrafiltration step uses a hollow fiber membrane, where the formulation is pushed through the open hollow cores of the fiber, and the micro-molecules are filtered through the outer membrane of the fiber while the relatively larger liposomes remain within the fiber.
For a new hollow fiber cartridge, the cartridge is typically filled with 100%alcohol for one hour. In an embodiment, the cartridge may be soaked for over one hour. In an embodiment, the alcohol may be pumped through the cartridge at 5 psig. In an embodiment, the alcohol is removed, and the cartridge is rinsed with clean water.
In an embodiment, a reused hollow fiber cartridge may be used. In such an embodiment, before ultrafiltration, the fiber cartridge may be washed with pure water, and then the sample may be pumped through the cartridge for ultrafiltration, until the liposome sample is concentrated to a desired concentration. After finishing ultrafiltration, the cartridge may be washed by pure water, and then the cartridge may be soaked with 5%NaOH solution.
In an embodiment, ultrafiltration and concentration may be accomplished using a peristaltic pump connected with a hollow fiber cartridge. In such an embodiment, before ultrafiltration, the fiber cartridge may be washed by pure water, and then the sample of liposome formulation may be pumped through the cartridge for ultrafiltration, until the sample is concentrated.
In an embodiment, the liposome formulation may be filtered by a hollow fiber cartridge for concentrating to a volume of, for example, about 10 mL and removing ethanol and free fluticasone propionate.
In an embodiment, after ultrafiltration, the hollow fiber cartridge may be washed by pure water, and then soaked with 5%NaOH.
After ultrafiltration, the process may further include a dialyzing step wherein the formulation is dialyzed against a volume of a buffered solution. In one embodiment, the buffer solution is normal saline. Other buffer additives are known in the art, including, but not limited to, sucrose, glycine, sodium and/or succinate. The buffer solution preferably reflects the environment of the final formulation that is external to the liposome. Preferably, the buffer solution is isotonic and non-toxic to cells. The buffer solution may be filtered to further reduce contaminants and may be prepared in advance of the preparation process.
The lipid ingredients may be in the form of a solution containing the desired starting amount of the lipid ingredient (s) in a volume of one or more lipid solvents. Any suitable lipid ingredient (s) and lipid solvent may be used. For example, the lipid ingredients may comprise DPPC and cholesterol in a molar ratio of about 1: 1, prior to liposome formation. The resultant liposome formed according to this combination of lipids may also have about a 1: 1 molar ratio of DPPC and cholesterol.
Examples of lipid solvents include, but are not limited to, ethanol, t-butanol, water, and mixtures thereof. The lipid ingredients are dissolved in the lipid solvent. The lipid solvent may be heated to a temperature that facilitates solubilization of the lipid ingredients, for example, ranging from about 40℃ to about 80 ℃ to generate the lipid solution.
The initial concentration of lipid ingredients dissolved in the ethanol may be in the range of about 0.33 to about 1.0g/L. The lipid solution may be prepared apart from the manufacturing process discussed herein.
The mixture of the fluticasone propionate and the lipid solvent forms the lipid solution. The drug to lipid ratio may be controlled by varying the amount of lipid ingredients and fluticasone propionate. Optionally, mildly heating the lipid solvent may aid in mixing together the lipid ingredients and fluticasone propionate. This mixing process can result in efficient encapsulation of fluticasone propionate into multi-lamellar vesicles.
The weight ratio of lipid to drug increases the stability of the liposome formulation without significantly compromising delivery. This process permits the drug to lipid ratio to be varied in the range of about 1: 5 to about 1: 50 by weight, such as in the range of about 1: 10 to about 1: 40. In one embodiment, the liposome formulation may be added to fluticasone propionate at a ratio of about 10 parts lipid ingredients to about 1 part fluticasone propionate. In another embodiment, the liposome formulation may be added to fluticasone propionate solution at a ratio of about 25 part lipid ingredients to about 1 part fluticasone propionate.
Another aspect of this invention is a liposome formulation made in accordance with the preparation steps described above, wherein the formulation comprises DPPC and cholesterol in a molar ratio of about 1: 1, and a mass ratio of fluticasone propionate to lipid ingredients in the range of about 1: 5 to about 1: 50, which is prepared by the following steps: (1) mixing fluticasone propionate with lipid ingredients comprising lipid and sterol; (2) injecting the mixture into normal saline solution to form liposome vesicles.
In accordance with the above description, in an embodiment, the preparation of the formulation is prepared by (1) mixing fluticasone propionate with lipid ingredients comprising DPPC and cholesterol in a molar ratio of about 1: 1, and a mass ratio of fluticasone propionate to lipid in the range of about 1: 5 to about 1: 50, (2) injecting the mixture into normal saline solution to form liposome vesicles.
The preparation process produces a liposome formulation with useful characteristics and features as described above, including about a 1: 1 molar ratio of DPPC and cholesterol, a pH value between about 4.0 and about 7.0, a drug to lipid ratio in the range of about 1: 5 to about 1: 50.
The present invention will be described in further detail with reference to the following examples. The following examples are intended to illustrate and exemplify the various aspects of carrying out the present invention and are not intended to limit the scope of the present invention in any way.
Example 1
Preparation of 100 ml liposomal formulation of fluticasone propionate:
Initial total volume : 100 ml;
Ethanol volume: 30%;
Lipid ingredients: DPPC/cholesterol (molar ratio 1: 1) ;
Initial lipid ingredients: 0.3 mg/ml;
Initial fluticasone propionate : 0.025 mg/ml;
Final formulation volume: 100 ml;
Preparation steps:
(1) mixing fluticasone propionate with lipid ingredients:
24.6 mg DPPC and 13.2 mg cholesterol were dissolved in 30 ml ethanol, which was heated to a temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.56 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until completely dissolved.
(2) injecting the lipid solution into normal saline solution to form liposome vesicles:
The lipid solution containing fluticasone propionate was added to 50 ml normal saline and mixed for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to final volume with normal saline.
Example 2
In accordance with the preparation method described above, nine different samples were prepared with high encapsulation efficiency and different drug to lipid ratios. The encapsulation efficiency of nine samples was over 90%, and the encapsulation efficiency of sample 2 was more than 96%. The average particle sizes of the liposomes were in range of 146 nm to 211 nm.
Sample 1: 8.5 mg DPPC and 4.4 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.63 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 2: 16.5 mg DPPC and 8.7 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.59 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until completely dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 3: 24.6 mg DPPC and 13.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.56 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20  minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 4: 32.9 mg DPPC and 17.5 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.62 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 5: 40.8 mg DPPC and 21.6 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.39 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 6: 48.9 mg DPPC and 26.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.69 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 7: 57.3 mg DPPC and 30.2 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.39 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 8: 65.7 mg DPPC and 34.9 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to provide a lipid solution. Then 2.45 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
Sample 9: 82.1 mg DPPC and 43.0 mg cholesterol were dissolved in 30 ml of ethanol, which was heated to temperature of 50 ℃ in a beaker, and mixed until completely dissolved to  provide a lipid solution. Then 2.37 mg of fluticasone propionate was added to the lipid solution, and the solution was stirred until the components were completely dissolved. The lipid solution containing fluticasone propionate was then added to 50 ml of normal saline and stirred for 20 minutes until dissolved. After that, the solution was transferred into a 100 ml volumetric flask, and the flask was made to volume with normal saline.
As shown in table 1, table 2, table 3 and table 4, the results indicated that the encapsulation efficiencies of all batch liposomal formulations were more than 90%. The liposomal average particle sizes were in range of 140 nm to 211nm (FIG. 1-FIG. 6) .
Table 1. Sample parameters
Figure PCTCN2020134315-appb-000002
Table 2. Sample parameters
Figure PCTCN2020134315-appb-000003
Figure PCTCN2020134315-appb-000004
Table 3. Physical and chemical properties of the samples
Figure PCTCN2020134315-appb-000005
Table 4. Physical and chemical properties of the samples
Figure PCTCN2020134315-appb-000006
Figure PCTCN2020134315-appb-000007
Example 3
All the samples were sprayed using an ultrasonic vibrating mesh nebulizer and a compressed air nebulizer. A Malvern Spraytec (STP5313) was used to measure the particle size distribution of the droplets. The particle size distribution of the droplets is expressed in terms of D10, D50 and D90. As shown in table 5, table 6, and FIG. 7-14, the D50 values of the droplets formed with both the compressed air nebulizer and the ultrasonic vibrating mesh nebulizer were less than 5 μm, and D90 values of the droplets formed with both the compressed air nebulizer and the ultrasonic vibrating mesh nebulizer were less than 17 μm.
Table 5. Particle size distribution from different types of nebulizers
Figure PCTCN2020134315-appb-000008
Figure PCTCN2020134315-appb-000009
Table 6. Particle size distribution from different types of nebulizers
Figure PCTCN2020134315-appb-000010
Figure PCTCN2020134315-appb-000011
As various changes can be made in the above-described subject matter without departing from the scope and spirit of the present invention, it is intended that all subject matter contained in the above description, or defined in the appended claims, be interpreted as descriptive and illustrative of the present invention.

Claims (16)

  1. A formulation comprising a plurality of liposomes encapsulating fluticasone propionate, wherein the liposomes comprise a lipid ingredient that comprises a lipid and a sterol, and wherein the fluticasone propionate and lipid ingredient are present in a weight ratio between about 1: 5 and about 1: 50 (fluticasone propionate to lipid) .
  2. The formulation according to claim 1, wherein the liposomes have an average size of about 50 to about 800 nm.
  3. The formulation according to claim 1, having a pH of about 4.0 to about 7.0.
  4. The formulation according to claim 1, wherein the lipid and sterol are present in a molar ratio of about 0.6: 1 to about 1.4: 1.
  5. The formulation according to claim 1, wherein the lipid is selected from the group consisting of phosphatidylcholine (PC) , phosphatidic acid (PA) , phosphatidylethanolamine (PE) , phosphatidylglycerol (PG) , phosphatidylserine (PS) , phosphatidylinositol (PI) , dimyristoyl phosphatidyl choline (DMPC) , distearoylphosphatidyl choline (DSPC) , dipalmitoyl phosphatidyl choline (DPPC) , dimyristoyl phosphatidyl glycerol (DMPG) , distearoylphosphatidyl glycerol (DSPG) , dioleoyl phosphatidyl glycerol (DOPG) , dipalmitoylphosphatidylglycerol (DPPG) , dimyristoyl phosphatidyl serine (DMPS) , distearoyl phosphatidyl serine (DSPS) , dioleoyl phosphatidyl serine (DOPS) , dipalmitoyl phosphatidyl serine (DPPS) , dioleoyl phosphatidyl ethanolamine (DOPE) , palmitoyloleoylphosphatidylcholine (POPC) , palmitoyloleoyl-phosphatidylethanolamine (POPE) , dioleoyl-phosphatidylethanolamine 4- (N-maleimidomethyp-cyclohexane-1-carboxylate (DOPE-mal) , dipalmitoyl phosphatidyl ethanolamine (DPPE) , dimyristoylphosphoethanolamine (DMPE) , distearoyl-phosphatidylethanolamine (DSPE) , distearoylphosphatidylcholine (DSPC) , dioleoylphosphatidylcholine (DOPC) , dipalmitoylphosphatidylcholine (DPPC) , and any combination thereof.
  6. The formulation according to claim 1, wherein the sterol is selected from the group consisting of cholesterol, ergosterol, lanosterol, and any combination thereof.
  7. The formulation according to claim 1, wherein the weight ratio of the fluticasone propionate to lipid ingredient ranges from about 1: 10 to about 1: 40.
  8. The formulation according to claim 1, wherein the liposomes have a D50 value of less than about 5 μm.
  9. The formulation according to claim 1, further comprising an antioxidant selected from the group consisting of a water-soluble antioxidant and an oil-soluble antioxidant.
  10. A method of preparing a liposome formulation, comprising the steps of: (1) mixing fluticasone propionate with a lipid ingredient in a solvent, wherein the lipid ingredient comprises a lipid and a sterol, to provide a first mixture; and (2) injecting the first mixture into a normal saline solution to form a second mixture comprising liposome vesicles.
  11. The method according to claim 10, wherein the liposome formulation has a pH ranging from about 4.0 to about 7.0.
  12. The method according to claim 10, wherein the lipid and the sterol are in a molar ratio of lipid to sterol ranging from about 0.6: 1 to about 1.4: 1.
  13. The method according to claim 10, wherein the fluticasone propionate and lipid ingredient are present in a mass ratio that ranges from about 1: 5 to about 1: 50.
  14. The method according to claim 10, wherein the mixing of step (1) is carried out at a temperature between about 40℃ and about 80℃.
  15. The method according to claim 10, wherein the mixing of step (1) is carried out at a temperature between about 40℃ and about 60℃.
  16. The method according to claim 10, wherein step (2) is carried out at a temperature between about 25℃ and about 30℃.
PCT/CN2020/134315 2019-12-06 2020-12-07 Liposome formulation of fluticasone propionate WO2021110173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962944366P 2019-12-06 2019-12-06
US62/944,366 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021110173A1 true WO2021110173A1 (en) 2021-06-10

Family

ID=76222235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134315 WO2021110173A1 (en) 2019-12-06 2020-12-07 Liposome formulation of fluticasone propionate

Country Status (1)

Country Link
WO (1) WO2021110173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590819A (en) * 2022-10-12 2023-01-13 郑英(Cn) Red fennel liposome, preparation method and gel paste thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202051A1 (en) * 2006-02-10 2007-08-30 Pari Gmbh Aerosols for sinunasal drug delivery
CN101257891A (en) * 2005-09-01 2008-09-03 比奥里波克斯公司 Antihistamine- and corticosteroid- containing liposome composition and its use for the manufacture of a medicament for treating rhinitis and related disorders
CN101366699A (en) * 2007-08-17 2009-02-18 香港浸会大学 Novel formulation of dehydrated lipid vesicles for controlled release of active pharmaceutical ingredient via inhalation
CN101601650A (en) * 2008-06-11 2009-12-16 天津金耀集团有限公司 Fluticasone propionate lipidosome cream
CN111789816A (en) * 2019-04-08 2020-10-20 上海谷森医药有限公司 Fluticasone furoate liposome suspension and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257891A (en) * 2005-09-01 2008-09-03 比奥里波克斯公司 Antihistamine- and corticosteroid- containing liposome composition and its use for the manufacture of a medicament for treating rhinitis and related disorders
US20070202051A1 (en) * 2006-02-10 2007-08-30 Pari Gmbh Aerosols for sinunasal drug delivery
CN101366699A (en) * 2007-08-17 2009-02-18 香港浸会大学 Novel formulation of dehydrated lipid vesicles for controlled release of active pharmaceutical ingredient via inhalation
CN101601650A (en) * 2008-06-11 2009-12-16 天津金耀集团有限公司 Fluticasone propionate lipidosome cream
CN111789816A (en) * 2019-04-08 2020-10-20 上海谷森医药有限公司 Fluticasone furoate liposome suspension and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIRALE N. M., R. D. VIDHATE, M. S. NAGARSENKER: "Fluticasone Propionate Liposomes for Pulmonary Delivery", INDIAN JOURNAL PHARMACEUTICAL SCIENCES, vol. 71, no. 6, 31 December 2009 (2009-12-31), pages 709 - 711, XP055819231 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590819A (en) * 2022-10-12 2023-01-13 郑英(Cn) Red fennel liposome, preparation method and gel paste thereof
CN115590819B (en) * 2022-10-12 2024-02-02 郑英 Red fennel liposome, preparation method and gel paste thereof

Similar Documents

Publication Publication Date Title
AU2013351934B2 (en) Prostacylin compositions and methods for using the same
NO870237L (en) PROCEDURE AND SYSTEM FOR LIPOSOM INHALATION.
TWI728255B (en) Liposome compositions comprising weak acid drugs and uses thereof
CN107427482A (en) The multivesicular liposome preparation of tranexamic acid
WO2015138423A9 (en) Prostacylin compositions and methods for using the same
KR101102834B1 (en) New methods and apparatus for preparing liposomes
BE1005952A4 (en) Liposomes.
WO2001000173A1 (en) Method of regulating leakage of drug encapsulated in liposomes
Arora Advances in niosome as a drug carrier: a review
WO2021110173A1 (en) Liposome formulation of fluticasone propionate
JP2024075590A (en) Method for producing liposomal drug formulations
US11083693B1 (en) Liposome formulation of vilanterol trifenatate
CN111789816B (en) Fluticasone furoate liposome suspension and preparation method thereof
US11304901B2 (en) Liposome formulation of fluticasone furoate and method of preparation
EP3711749A1 (en) Method of making lipid nanoparticles
CN109077998B (en) Salmeterol lipid complex and preparation method thereof
JPH10512876A (en) Liposomes containing corticosteroids
CN100493530C (en) Method for preparing coated magnolia fargesii volatile oil nano liposome nasal drops
WO2016048242A1 (en) Sustained timolol maleate delivery from liposomes for glaucoma therapy and ocular hypertension
US20140056968A1 (en) Liposome formulation comprising an anti-tumour active substance, method for its preparation and pharmaceutical compositions comprising it
JP2006069929A (en) Preparation for treating mycosis and method for producing the same
TWI250877B (en) Process for producing liposome suspensions and products containing liposome suspensions produced thereby
CN100467013C (en) Coated magnolia fargesii volatile oil nano liposome nasal drops
JP4694776B2 (en) Fine particle composition or liposome preparation
Gauthy et al. Development of a sustained-release form of dexamethasone for the local treatment of sensorineural hearing loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897081

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20897081

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20897081

Country of ref document: EP

Kind code of ref document: A1