WO2021109829A1 - 纳米颗粒硫化镉材料的制备方法与结构 - Google Patents

纳米颗粒硫化镉材料的制备方法与结构 Download PDF

Info

Publication number
WO2021109829A1
WO2021109829A1 PCT/CN2020/128450 CN2020128450W WO2021109829A1 WO 2021109829 A1 WO2021109829 A1 WO 2021109829A1 CN 2020128450 W CN2020128450 W CN 2020128450W WO 2021109829 A1 WO2021109829 A1 WO 2021109829A1
Authority
WO
WIPO (PCT)
Prior art keywords
cadmium
polar
source solution
sulfur source
nano
Prior art date
Application number
PCT/CN2020/128450
Other languages
English (en)
French (fr)
Inventor
吴昊
张阳阳
李江宇
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021109829A1 publication Critical patent/WO2021109829A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to the technical field of preparation of cadmium sulfide, in particular to a preparation method and structure of a nano-particle cadmium sulfide material, which can be specifically applied to a photoelectric conversion device.
  • Cadmium sulfide is a direct bandgap semiconductor material with a band gap of about 2.4eV, which can well match the visible light region of sunlight. It has excellent photoelectric conversion characteristics. It is used in the production of hydrogen by photolysis of water, photocatalysis and photodegradation. , Solar cells and other fields have huge application potential. Nano-scale cadmium sulfide has the characteristics of large specific surface area and high efficiency; the size effect of the nanostructure can change the energy level of cadmium sulfide and widen the band gap, which has great advantages in the field of photoelectric conversion.
  • the main methods for synthesizing cadmium sulfide nanoparticles are wet chemical method and gas phase synthesis method. The wet chemical method has the characteristics of large output, low cost, and low environmental pollution, and is particularly suitable for industrial production.
  • Invention Patent Application Publication No. CN103936058A discloses a method for preparing cadmium sulfide quantum dots, using cadmium carboxylate as a cadmium source, using (TMS)2S as a sulfur source, and synthesizing CdS quantum dots with octadecene as a solvent at 200°C.
  • the diameter of CdS quantum dots is between 2 ⁇ 5.3nm, which is extremely unstable. , Prone to agglomeration, affecting the catalytic effect. Therefore, it is necessary to find a new low-cost preparation method of cadmium sulfide spherical nanoparticles.
  • CN1594674A discloses a wet-solid-phase reaction preparation method of cadmium sulfide semiconductor nanocrystals.
  • Mercaptoacetic acid and cadmium chloride are mixed at a molar ratio of 1.8 to 2.2:1, and ground; deionized water is added to wash away excess sulfhydryl groups.
  • the CdS sol is settled in acetone or ether; filtered, washed, and dried to obtain nano-CdS crystals.
  • the size of the nano-particles is between 3 and 5 nm, but the surface is modified with thioglycolic acid, which is water-soluble and biologically compatible.
  • CN107043124A discloses a cadmium sulfide nanoflower and a preparation method thereof.
  • the cadmium sulfide nanoflower is assembled by a plurality of cadmium sulfide nanosheets and self-assembled into a flower-like pellet.
  • the preparation method is to disperse and/or dissolve the cadmium source and thiourea in a mixed solution of diethylenetriamine/ethanol, followed by a hydrothermal reaction, solid-liquid separation, washing, and freeze-drying to obtain the cadmium sulfide nanoflower, flower
  • the size of the shaped pellets is 200 nm to 2 ⁇ m.
  • One of the main objectives of the present invention is to provide a method for preparing nano-particle cadmium sulfide materials to realize the technical problem of how to produce nano-particle cadmium sulfide materials with specific shapes and specific sizes at low cost by pure wet chemical method.
  • Another main objective of the present invention is to provide a structure of nano-particle cadmium sulfide material, which has an appropriately large surface area and a relatively wide band gap and is not prone to agglomeration, so as to realize the application in the field of photoelectric conversion, and can be used in the field of photoelectric conversion. It is produced at low cost by pure wet chemical method under non-high temperature conditions.
  • the two-phase solution is used to dissolve the sulfur source and the cadmium source for immiscible mixing and stirring.
  • the cadmium ion is located at the fluctuating interface between the non-polar solvent and the polar solvent to enrich the soluble sulfur source.
  • Sulfide ions move to the wave interface.
  • the two-phase wave interface is conducive to the reaction to produce nano-particle cadmium sulfide materials.
  • the shape is spherical and the average particle size is between 7 and 35 nanometers. It can be made into specific shapes and specific sizes at low cost by pure wet chemical method. A range of nano-particle cadmium sulfide materials.
  • an appropriate solution mixing volume ratio is one of the key factors for preparing cadmium sulfide spherical nanoparticles.
  • the present invention can be further configured as: the average particle size of the nano-particle cadmium sulfide material is between 10 and 20 nanometers.
  • the average particle size range of the nano-particle cadmium sulfide material can be further limited, so as to prepare the nano-particle cadmium sulfide material more in line with the needs of the photoelectric conversion field.
  • the present invention can be further configured as follows: the soluble sulfur source has a first concentration in the polar sulfur source solution, and the organic cadmium salt has a second concentration in the non-polar cadmium source solution.
  • the first concentration is greater than the second concentration; the volume of the polar sulfur source solution is greater than the volume of the non-polar cadmium source solution during mixing and stirring, so that the non-polar cadmium is dispersed
  • the source solution is coated in the polar sulfur source solution.
  • the first concentration is greater than the second concentration and the polar sulfur source solution is greater than the non-polar cadmium source solution in terms of volume to provide a structure that looks like oil-in-water during mixing and stirring.
  • the sulfur source in the polar sulfur source solution is more than the amount of sulfur reaction required by the cadmium source in the non-polar cadmium source solution, that is, the molar ratio of sulfur in the resulting mixture is greater than the molar ratio of cadmium to ensure that the wet chemical reaction can occur at the fluctuating interface
  • the generated cadmium sulfide material is spherical nanoparticles, and the cadmium sulfide material is more likely to be disconnected from the organic carbon group of the non-polar cadmium source solution and form micro-particles that are insoluble in the polar sulfur source solution.
  • the present invention can be further configured as: the first concentration is 1-50 ⁇ 10 -6 kg/m 3 , and the second concentration is 3-40 ⁇ 10 -7 kg/m 3 .
  • the sulfur source in the polar sulfur source solution is more than the sulfur reaction amount required by the cadmium source in the non-polar cadmium source solution. It can further reduce the solubility of the cadmium sulfide material in the polar sulfur source solution, and is of great significance for regulating the morphology of the product.
  • the present invention can be further configured as: the organic cadmium salt of the non-polar cadmium source solution includes fatty acid cadmium salt, and the number of unsaturated bonds is 0-28.
  • the materials using organic cadmium salts include fatty acid cadmium salts with limited number of unsaturated bonds, so that the organic cadmium salt is attached to the two-phase wave interface during mixing and stirring, which not only makes the source of fatty acid cadmium more abundant It also makes the preparation process easier to implement and flexible.
  • the present invention can be further configured as: in the process of mixing and stirring the polar sulfur source solution and the non-polar cadmium source solution, the continuous stirring time is between 1 to 24 hours;
  • the solid-liquid separation method adopts one or more of centrifugal separation, filtration separation and suction filtration separation, and the washing method includes the use of water or/and alcohol after separation.
  • the obtained solid material is washed 2 to 5 times.
  • the present invention can be further configured as: the soluble sulfur source of the polar sulfur source solution includes sodium sulfide, potassium sulfide or/and ammonia sulfide; and the organic cadmium salt is selected from cadmium oleate and anti-oil One or more of the combination of cadmium acid, cadmium stearate, cadmium palmitoleate, cadmium arachidonic acid, cadmium eicosapentaenoate, cadmium docosapentaenoate, and cadmium laurate;
  • the non-polar solvent is selected from one or more of a combination of toluene and its homologues, acetone and its homologues, chloroform and its analogues, and n-hexane; the polar solvent is selected from water, One or more of the combination of amides.
  • the specific material selection types of soluble sulfur sources, organic cadmium salts, non-polar solvents, and polar solvents are used to realize the specific preparation of spherical nano-particle cadmium sulfide materials.
  • the present invention may be further configured as: the organic cadmium salt has a hydrophobic group, and is located inside the non-polar cadmium source solution near the wave interface during mixing and stirring; and, the organic cadmium salt has a hydrophobic group;
  • the cadmium salt also has a hydrophilic group, which is located at the wave interface during mixing and stirring.
  • the hydrophobic group and the hydrophilic group of the organic cadmium salt are used.
  • the organic cadmium salt can be attached to the fluctuating interface in a similar oil-in-water structure to facilitate the spherical nano Granular cadmium sulfide material is formed by wet chemical reaction.
  • a structure of a nano-particle cadmium sulfide material is proposed, which is prepared according to a method for preparing a nano-particle cadmium sulfide material according to any of the above-mentioned technical solutions.
  • Another objective of the present invention is to provide a photoelectric conversion device, including the structure of a nano-particle cadmium sulfide material of the above technical solution.
  • the present invention includes at least one of the following beneficial technical effects:
  • the target product can be made of cadmium sulfide material with a specific shape and a specific size range. Spherical nano-particle shape;
  • the prepared target products were characterized by ultraviolet-visible light spectrophotometer and photoluminescence.
  • the test results can prove that the characteristics of the target products conform to the optical band gap of 2.4eV, and the photoluminescence wavelength is about 520nm;
  • the preparation method is simple, fast and efficient. It not only produces spherical nano-particle cadmium sulfide; it also has the characteristics of time saving, energy saving, green environmental protection, low preparation cost and easy large-scale industrial production: all the required raw materials can be selected Ordinary industrial raw materials, such as cadmium fatty acid and soluble sulfur source as raw materials, are industrial grade, and the polar solvents and non-polar solvents used can also be industrial grade, and they are both easy to obtain and cheap, and the prepared target The product accidentally meets the electronic requirements;
  • non-polar solvents and polar solvents do not participate in the reaction, and can be recycled and used repeatedly to reduce manufacturing costs.
  • Figure 1 shows a schematic flow diagram of a method for preparing a nanoparticle cadmium sulfide material according to a preferred embodiment of the present invention
  • Figures 2A to 2G show schematic diagrams of components of each step in a preferred embodiment of the present invention
  • Figure 3 shows a partial enlarged schematic view of the organic cadmium salt of the non-polar solvent enriching the sulfide ions of the polar solvent to the wave interface during the mixing and stirring step in a preferred embodiment of the present invention
  • Figure 4 is one of the results of using X-ray diffraction (XRD) to characterize the target product;
  • XRD shows that the position of the diffraction peak of the target product corresponds to JCPDS 06-0314, indicating that the target product is pure cadmium sulfide;
  • Figure 5 is one of the results of using scanning electron microscopy (SEM) to characterize the prepared target product, which shows that the target product is a spherical nanostructure with an average diameter of 10-20nm;
  • SEM scanning electron microscopy
  • Figure 6 is one of the results of using X-ray photoelectron spectroscopy (XPS) to characterize the prepared target product; among them, Figure 6a and Figure 6b show the XPS results to be corrected according to the peak position of the adsorbed carbon on the sample surface (284.8eV) , Figure 6c and Figure 6d show that the target product is a sulfur-containing divalent cadmium compound;
  • XPS X-ray photoelectron spectroscopy
  • Figure 7 is one of the results of using an ultraviolet-visible spectrophotometer to characterize the prepared target product; among them, Figure 7a is the light absorption curve of the target product; Figure 7b shows the optical band of the target product obtained by calculation using the curve of Figure 7a The gap is 2.4eV;
  • Figure 8 is one of the results of characterizing the prepared target product using photoluminescence, indicating that the photoluminescence wavelength of the target product is 520 nm.
  • the directional indication is only used to explain that it is in a specific posture (as shown in the drawings). If the specific posture changes, the relative positional relationship, movement, etc. of the components below will also change the directional indication accordingly.
  • FIG. 1 is a schematic flow diagram of the preparation method of the nano-particle cadmium sulfide material according to the first preferred embodiment of the present invention
  • FIGS. 2A to 2H are schematic diagrams of the components of each step in the first preferred embodiment of the present invention.
  • Step S1 is about preparing a polar sulfur source solution.
  • a polar sulfur source solution 10 is prepared.
  • the polar sulfur source solution 10 contains a polar solvent. 11 and a soluble sulfur source 12 dissolved in the polar solvent 11.
  • Step S2 is about preparing a non-polar cadmium source solution.
  • a non-polar cadmium source solution 20 In another container, prepare a non-polar cadmium source solution 20.
  • the non-polar cadmium source solution 20 It includes a non-polar solvent 21 and an organic cadmium salt 22 dissolved in the non-polar solvent 21, and the organic cadmium salt 22 has a carbon chain length of 4-30.
  • Step S3 is about mixing and stirring the polar sulfur source solution and the non-polar cadmium source solution.
  • Step S3 is about mixing and stirring the polar sulfur source solution and the non-polar cadmium source solution.
  • the polar sulfur source solution 10 and the non-polar cadmium source solution 20 are immiscible.
  • the cadmium ions of the organic cadmium salt 22 of the source solution 20 are located at the wave interface between the non-polar solvent 21 and the polar solvent 11 to enrich the sulfide ions of the soluble sulfur source 12 and move to the wave interface , And generate nano-particle cadmium sulfide material 40.
  • a form in which the organic cadmium salt 22 of the non-polar solvent enriches the sulfide ions of the polar solvent 11 moving to the wave interface 30 in the mixing and stirring step can be seen in FIG. 3.
  • the wave interface 30 is an interface that produces wave changes during the mixing and stirring step, and is used to inhibit the formation of cadmium sulfide in flakes, and to form cadmium sulfide particles that can leave the wave interface 30 more quickly.
  • the wave interface The shape of 30 is a curved surface, and the fluctuations referred to include any one or more of movement, vibration, and distortion.
  • a stirrer 50 in the container can maintain the non-polar cadmium source solution 20 to be dispersed in the polar sulfur source solution 10.
  • Step S4 is about performing solid-liquid separation and washing on the resulting mixture.
  • Step S4 please refer to FIG. 2G to perform solid-liquid separation and washing on the resulting mixture to prepare the nanoparticle cadmium sulfide material 40.
  • the shape of the particulate cadmium sulfide material 40 is spherical, and the average particle size of the nano-particle cadmium sulfide material 40 is between 7 and 35 nanometers.
  • the nano-particle cadmium sulfide material 40 can be located on the filter screen 60.
  • the implementation principle of this embodiment is: using a two-phase solution each dissolved in a sulfur source and a cadmium source for immiscible mixing and stirring, and cadmium ions are located at the wave interface 30 between the non-polar solvent 21 and the polar solvent 11 to enrich The sulfide ions of the soluble sulfur source 12 move to the wave interface 30.
  • the two-phase wave interface 30 is conducive to the reaction to produce nano-particle cadmium sulfide material 40.
  • the shape is spherical and the average particle size is between 7 and 35 nanometers. Low-cost production of nano-particle cadmium sulfide material 40 with a specific shape and a specific size range.
  • a suitable solution mixing volume ratio can establish a mixing and stirring structure like oil-in-water, which is one of the key factors for preparing cadmium sulfide spherical nanoparticles.
  • the average particle size of the nano-particle cadmium sulfide material 40 in step S4 is between 10 and 20 nanometers. Therefore, the average particle size range of the nano-particle cadmium sulfide material 40 is further limited to prepare the nano-particle cadmium sulfide material 40 that is more in line with the needs of the photoelectric conversion field.
  • the soluble sulfur source 12 has a first concentration in the polar sulfur source solution 10
  • the The organic cadmium salt 22 has a second concentration in the non-polar cadmium source solution 20, and the first concentration is greater than the second concentration; the volume of the polar sulfur source solution 10 is greater than the volume during mixing and stirring.
  • the volume of the non-polar cadmium source solution 20 is such that the dispersed non-polar cadmium source solution 20 is coated in the polar sulfur source solution 10.
  • the use of the first concentration greater than the second concentration and the polar sulfur source solution 10 greater than the non-polar cadmium source solution 20 in terms of volume provides a structure that is like oil-in-water during mixing and stirring, and the polar sulfur source solution 10 is greater than the non-polar cadmium source solution 20 in terms of volume.
  • the sulfur source in the sulfur source solution 10 is more than the amount of sulfur required for the cadmium source in the non-polar cadmium source solution 20, that is, the molar ratio of sulfur in the resulting mixture is greater than the molar ratio of cadmium to ensure that the wet chemical reaction can occur at the fluctuating interface 30
  • the generated cadmium sulfide material is spherical nanoparticles, and the cadmium sulfide material is more likely to be disconnected from the organic carbon group of the non-polar cadmium source solution 20 and form micro-particles that are insoluble in the polar sulfur source solution 10.
  • the first concentration is 1-50 ⁇ 10 -6 kg/m 3
  • the second concentration is 3-40 ⁇ 10 ⁇ 7 kg/m 3 . Therefore, using the range limitation of the first concentration and the second concentration to realize that the sulfur source in the polar sulfur source solution 10 is more than that in the non-polar cadmium source solution 20, the amount of sulfur reaction required by the cadmium source in the non-polar cadmium source solution 20 can be further reduced.
  • the solubility of the cadmium sulfide material in the polar sulfur source solution 10 is of great significance for controlling the morphology of the product.
  • the organic cadmium salt 22 of the non-polar cadmium source solution 20 in step S2 includes a fatty acid cadmium salt, which is unsaturated The number of keys is 0-28. Therefore, the material using the organic cadmium salt 22 includes fatty acid cadmium salt with a limited number of unsaturated bonds, so that the organic cadmium salt 22 is attached to the two-phase wave interface 30 during mixing and stirring, which not only makes the source of fatty acid cadmium more abundant, but also Make the preparation process easier to implement and flexible.
  • the stirring time is continued for a period of time.
  • the solid-liquid separation method adopts one or more of centrifugal separation, filtration separation and suction filtration separation, and the washing method includes Use water or/and alcohol to clean the solids obtained after separation for 2 to 5 times.
  • a high-purity spherical nano-particle cadmium sulfide material 40 is obtained, which is suitable for flexible selection of suitable methods in industrial scale production.
  • the soluble sulfur source 12 of the polar sulfur source solution 10 includes sodium sulfide, potassium sulfide or/and ammonia sulfide;
  • the organic cadmium salt 22 is selected from In the combination of cadmium oleate, cadmium oleate, cadmium stearate, cadmium palmitole, cadmium arachidonic acid, cadmium eicosapentaenoate, cadmium docosapentaenoate and cadmium laurate One or more of them;
  • the non-polar solvent 21 is selected from one or more of a combination of toluene and its homologues, acetone and its homologues, chloroform and its analogues, and n-hexane;
  • the polar solvent 11 is selected from one or more of the combination of water and amides.
  • the specific material selection types of the soluble sulfur source 12, the organic cadmium salt 22, the non-polar solvent 21, and the polar solvent 11 are used to realize the specific preparation of the spherical nano-particle cadmium sulfide material 40.
  • the organic cadmium salt 22 has a hydrophobic group 23, which is located in the non-polar cadmium source during mixing and stirring.
  • the solution 20 is close to the inner side of the wave interface 30; and, the organic cadmium salt 22 also has a hydrophilic group 24, which is located at the wave interface 30 during mixing and stirring.
  • the organic cadmium salt 22 can be attached to the wave interface 30 in a similar oil-in-water structure during the mixing and stirring process, so as to facilitate the spherical nanometer
  • the wet chemical reaction of the particulate cadmium sulfide material 40 is generated.
  • the second embodiment of the present invention discloses another structure of a nano-particle cadmium sulfide material, which is obtained by a method for preparing a nano-particle cadmium sulfide material according to any of the above technical solutions.
  • the third embodiment of the present invention discloses a photoelectric conversion device, including: a structure of a nano-particle cadmium sulfide material according to any of the above technical solutions.
  • the fourth embodiment of the present invention provides a test example of a preparation method of nano-particle cadmium sulfide material under various conditions.
  • the main steps are the same as the wet chemical method of the first embodiment.
  • the carbon chain length of the cadmium source is 4-30 , Fatty acid cadmium with the number of unsaturated bonds of 0-28; as a soluble sulfur source for the reactant; polar solvent and non-polar solvent for dissolving the reactant; alcohol for washing the product, the raw materials used can be Industrial grade and proceed to the following test examples.
  • the cadmium sulfide with spherical nano-particle structure as shown in Fig. 4, Fig. 5 and Fig. 6 and the curve in Fig. 7 and Fig. 8 was obtained.
  • the sexual solvent is toluene;
  • the solid-liquid separation is suction filtration separation, and the washing is the use of industrial alcohol to perform the separation of the solid product obtained after separation. 2 washes.
  • the polar solvent is toluene;
  • the solid-liquid separation is suction filtration separation, and the washing is the use of industrial alcohol to perform the separation of the solid product obtained after separation. 2 washes.
  • the sexual solvent is chloroform;
  • the solid-liquid separation is suction filtration separation, and the washing is the use of industrial alcohol to perform the separation of the solid product obtained after separation. 2 washes.
  • the polar solvent is acetone;
  • the solid-liquid separation is suction filtration separation, and the washing is the use of industrial alcohol to perform the separation of the solid product obtained after separation. 2 washes.
  • the non-polar solvent is n-hexane;
  • the solid-liquid separation is suction filtration separation, and the washing is the use of industrial alcohol to perform the separation of the solid product obtained after separation. 2 washes.
  • the fatty acid cadmium with a carbon chain length of 4-30 and a number of unsaturated bonds of 0-28 can be selected respectively, such as cadmium eicosapentaenoate, cadmium docosapentaenoate or Cadmium laurate is used as the source of cadmium.
  • the fatty acid cadmium concentration c1 is 18 ⁇ 10 -6 kg/m 3 , 21 ⁇ 10 -6 kg/m 3 or 35 ⁇ 10 -6 kg/m 3 , and formamide is selected as the polar solvent.
  • the non-polar solvent is n-hexane
  • the soluble sulfur source is sodium sulfide, potassium sulfide or ammonia sulfide, etc.
  • n and 1 to 24 hours take any value within the range of actual production and the present invention, and perform the steps in the above embodiment S1 to S4 also produced cadmium sulfide with spherical nano-particle structure as shown in Figure 4, Figure 5 and Figure 6 as or similar to that shown in Figure 4, Figure 5 and Figure 6, as well as the spherical nanoparticle structure shown in the curves in Figure 7 and Figure 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种纳米颗粒硫化镉材料的制备方法与结构,一示例方法包括:将可溶性硫源溶解于极性溶剂中,配制浓度例如为1~50×10 -6kg/m 3的极性硫源溶液。另将具体碳链长度为4~30的脂肪酸镉盐溶解于非极性溶剂中,配制浓度例如为3~40×10 -7kg/m 3的含镉的非极性溶液。将配制的极性硫源溶液与非极性镉盐溶液按照体积比(1~100)∶1混合,可具体搅拌1~24小时,并再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒。该方法具有简便、快速、高效、环保、制备成本低和易于大规模工业化生产的特点。

Description

纳米颗粒硫化镉材料的制备方法与结构 技术领域
本发明涉及硫化镉的制备技术领域,尤其是涉及一种纳米颗粒硫化镉材料的制备方法与结构,具体可应用于光电转换装置。
背景技术
硫化镉是一种直接带隙半导体材料,其禁带宽度约为2.4eV左右,能够很好地匹配太阳光的可见光区,具有优异的光电转换特性,在光解水制氢、光催化和光降解、太阳能电池等领域具有巨大的应用潜力。纳米尺度的硫化镉具有比表面积大的特点,效率高;纳米结构的尺寸效应可以使硫化镉的能级发生变化,带隙变宽,在光电转换领域具有巨大优势。目前,合成硫化镉纳米颗粒的方法主要有湿化学法和气相合成法,其中湿化学法具有产量大、成本低、环境污染较小等特点,特别适合工业化生产。
发明专利申请公布号CN103936058A公开了一种硫化镉量子点的制备方法,用羧酸镉作为镉源,用(TMS)2S作为硫源,合成CdS量子点,以十八烯为溶剂,在200℃~260℃温度下以热注入的方法反应1~10分钟,得到CdS量子点,但是CdS量子点粒径极小表面能过大,CdS 量子点的直径在2~5.3nm之间,极其不稳定,易发生团聚,影响催化效果。因此,需要寻找一种新的硫化镉球形纳米颗粒的低成本制备方法。
发明专利申请公开号CN1594674A公开了一种硫化镉半导体纳米晶的湿固相反应制备法,将巯基乙酸和氯化镉按摩尔比1.8~2.2∶1混合,研磨;加入去离子水洗去过量的巯基乙酸,过滤,滤饼用去离子水洗涤;将滤饼和硫化钠按摩尔比1~3.5∶2混合,研磨,得到淡黄色固体;将上一步骤得到的淡黄色固体溶于水,再加入丙酮或乙醚中,使CdS溶胶沉降;过滤,洗涤,干燥,得到纳米CdS晶体,其纳米粒子的粒径在3~5nm之间,但其表面修饰有巯基乙酸,具有水溶性及生物相溶性。
发明专利申请公布号CN107043124A公开了一种硫化镉纳米花及其制备方法,硫化镉纳米花由若干硫化镉纳米片相互聚集,自组装成花状球团。制备方法是将镉源与硫脲分散和/或溶解在二乙烯三胺/乙醇的混合溶液中,随后进行水热反应,固液分离、洗涤、冷冻干燥得所述的硫化镉纳米花,花状球团的尺寸为200nm~2μm。
技术问题
本发明的其中一主要发明目的是提供一种纳米颗粒硫化镉材料的制备方法,用以实现如何以纯湿化学法低成本制作特定形状与特定尺寸范围的纳米颗粒硫化镉材料的技术问题。
本发明的另一主要发明目的是提供一种纳米颗粒硫化镉材料的结构,具有适当大的表面积与相对较宽的带隙并且不易发生团聚,用以实现在光电转换的领域应用,并能在非高温条件下纯湿化学法低成本制得。
技术解决方案
本发明的其中一主要发明目的是通过以下技术方案得以实现的:
提出一种纳米颗粒硫化镉材料的制备方法,包括以下步骤:制备极性硫源溶液,所述极性硫源溶液包含极性溶剂与溶解于所述极性溶剂的可溶性硫源;制备非极性镉源溶液,所述非极性镉源溶液包含非极性溶剂与溶解于所述非极性溶剂的有机镉盐,所述有机镉盐具有4~30的碳链长度;混合并搅拌所述极性硫源溶液与所述非极性镉源溶液,其中所述极性硫源溶液与所述非极性镉源溶液的混合体积比为n:1,n=1~100,持续搅拌所得混合物使所述非极性镉源溶液维持分散于所述极性硫源溶液中,并且所述极性硫源溶液与所述非极性镉源溶液不互溶,所述非极性镉源溶液的有机镉盐的镉离子位于所述非极性溶剂与所述极性溶剂之间的波动界面,以富集所述可溶性硫源的硫离子往所述波动界面移动,而生成纳米颗粒硫化镉材料;对所得混合物进行固液分离和洗涤,以制得所述纳米颗粒硫化镉材料,所述纳米颗粒硫化镉材料的形状为球形,并且所述纳米颗粒硫化镉材料的平均粒径在7~35纳米之间。
通过采用上述基础技术方案,利用两相溶液各溶解有硫源与镉源进行不互溶混合与搅拌,镉离子位于非极性溶剂与极性溶剂之间的波动界面,以富集可溶性硫源的硫离子往波动界面移动,两相波动界面有利于反应生成纳米颗粒硫化镉材料,其形状为球形,平均粒径在7~35纳米之间,能够以纯湿化学法低成本制作特定形状与特定尺寸范围的纳米颗粒硫化镉材料。另外,合适的溶液混合体积比例,是制备硫化镉球形纳米颗粒的关键因素之一。
本发明在一较佳示例中可以进一步配置为:所述纳米颗粒硫化镉材料的平均粒径介于10~20纳米。
可以通过采用上述优选技术方案,利用纳米颗粒硫化镉材料的平均粒径范围再限定,制得更符合光电转换领域需要的纳米颗粒硫化镉材料。
本发明在一较佳示例中可以进一步配置为:所述可溶性硫源在所述极性硫源溶液中具有第一浓度,所述有机镉盐在所述非极性镉源溶液中具有第二浓度,所述第一浓度大于所述第二浓度;在混合并搅拌中所述极性硫源溶液的体积大于所述非极性镉源溶液的体积,以使分散的所述非极性镉源溶液被包覆在所述极性硫源溶液中。
通过采用上述优选技术方案,利用所述第一浓度大于所述第二浓度且在体积关系上极性硫源溶液大于非极性镉源溶液,提供在混合并搅拌中产生如同水包油的结构,极性硫源溶液内硫源多于非极性镉源溶液内镉源需要的硫反应量,即所得混合物中硫摩尔比大于镉摩尔比,以确保能在波动界面产生湿化学法生成反应并且生成的硫化镉材料是球状纳米颗粒,硫化镉材料更加容易由非极性镉源溶液的有机碳基断开且形成不溶于极性硫源溶液的微型颗粒。
本发明在一较佳示例中可以进一步配置为:所述第一浓度为1~50×10 -6 kg/m 3,所述第二浓度为3~40×10 -7kg/m 3
通过采用上述优选技术方案,利用所述第一浓度与所述第二浓度的范围限定,来实现极性硫源溶液内硫源多于非极性镉源溶液内镉源需要的硫反应量,能够进一步减少硫化镉材料在极性硫源溶液中溶解度,并对于调控产物形貌具有重要意义。
本发明在一较佳示例中可以进一步配置为:所述非极性镉源溶液的有机镉盐包括脂肪酸镉盐,其不饱和键的数量为0~28。
通过采用上述优选技术方案,利用有机镉盐的材料包括具有不饱和键数受到限制的脂肪酸镉盐,实现在混合并搅拌中有机镉盐附着于两相波动界面,不仅使得脂肪酸镉的来源较为丰富,还使制备工艺更易实施且灵活。
本发明在一较佳示例中可以进一步配置为:在混合并搅拌所述极性硫源溶液与所述非极性镉源溶液的过程中,持续搅拌时间介于1~24小时;在对所得混合物进行固液分离和洗涤的过程中,所述固液分离方式采用离心分离、过滤分离与抽滤分离中的其中一种或多种,所述洗涤方式包括使用水或/与酒精对分离后得到的固态物进行2~5次的清洗。
通过采用上述优选技术方案,利用持续搅拌时间范围、特定固液分离方式与特定洗涤方式的限定,得到高纯度的球形纳米颗粒硫化镉材料,适用于工业化规模生产时灵活选择合适的方式。
本发明在一较佳示例中可以进一步配置为:所述极性硫源溶液的可溶性硫源包括硫化钠、硫化钾或/与硫化氨;所述有机镉盐选自于油酸镉、反油酸镉、硬脂酸镉、棕榈油酸镉、花生四烯酸镉、二十碳五烯酸镉、二十二碳五烯酸镉与月桂酸镉的组合中的其中一种或多种;所述非极性溶剂选自于甲苯及其同系物、丙酮及其同系物、氯仿及其类似物、正己烷的组合中的其中一种或多种;所述极性溶剂选自于水、酰胺类的组合中的其中一种或多种。
通过采用上述优选技术方案,利用可溶性硫源、有机镉盐、非极性溶剂、极性溶剂的具体材料选用种类,实现球形纳米颗粒硫化镉材料的具体制备。
本发明在一较佳示例中可以进一步配置为:所述有机镉盐具有疏水基团,在混合并搅拌中位于所述非极性镉源溶液靠近所述波动界面的内侧;以及,所述有机镉盐还具有亲水基团,在混合并搅拌中位于所述波动界面。
通过采用上述优选技术方案,利用有机镉盐的疏水基团与亲水基团,在混合与搅拌过程中,所述有机镉盐能够附着于类似水包油结构中的波动界面,以利于球形纳米颗粒硫化镉材料的湿化学反应生成。
本发明的另一主要发明目的是通过以下技术方案得以实现的:
提出一种纳米颗粒硫化镉材料的结构,依照如上所述任一技术方案的一种纳米颗粒硫化镉材料的制备方法所制得者。
本发明的其它发明目的还提出一种光电转换装置,包括:如上所述技术方案的一种纳米颗粒硫化镉材料的结构。
有益效果
综上所述,本发明包括以下至少一种有益技术效果:
1.对制得的目标产物分别使用X射线衍射、扫描电子显微镜、X射线光电子能谱进行表征,由试验结果可证,能够制作出目标产物为硫化镉材料,具有特定形状与特定尺寸范围的球形纳米颗粒状;
2.对制得的目标产物分别使用紫外-可见光分光光度计和光致发光进行表征,由试验结果可证,目标产物的特性符合光学带隙为2.4eV,光致发光波长在520nm左右;
3.制备方法简便、快速、高效,不仅制得了球形纳米颗粒状的硫化镉;还有着省时、节能,绿色环保、制备成本低和易于大规模工业化生产的特点:所需原料可以选用均为普通的工业生产用原材料,例如作为原料的脂肪酸镉和可溶性硫源为工业级,所用极性溶剂和非极性溶剂也可为工业级,并均易于获得且价格便宜,而所制得的目标产物意外能够符合电子级要求;
4.在球形纳米颗粒硫化镉材料的制备工艺中,非极性溶剂与极性溶剂皆不参与反应,可重复回收使用,以降低制造成本。
附图说明
图1绘示本发明一较佳实施例的纳米颗粒硫化镉材料的制备方法的流程示意图;
图2A至图2G绘示本发明一较佳实施例中各步骤的构件示意图;
图3绘示本发明一较佳实施例中在混合并搅拌步骤中非极性溶剂的有机镉盐富集极性溶剂的硫离子往波动界面移动的局部放大示意图;
图4是对目标产物使用X射线衍射(XRD)进行表征的结果之一;XRD显示目标产物的衍射峰的位置与JCPDS 06-0314相对应一致,表明了目标产物为纯硫化镉;
图5是对制得的目标产物使用扫描电镜(SEM)进行表征的结果之一,表明了目标产物为球状纳米结构,平均直径为10~20nm;
图6是对制得的目标产物使用X射线光电子能谱(XPS)进行表征的结果之一;其中,图6a和图6b显示XPS结果以根据样品表面吸附碳峰位进行了修正(284.8eV),图6c和图6d显示目标产物为含硫的二价镉化合物;
图7是对制得的目标产物使用紫外-可见光分光光度计进行表征的结果之一;其中,图7a为目标产物的光吸收曲线;图7b显示利用图7a的曲线进行计算得到目标产物光学带隙为2.4eV;
图8是对制得的目标产物使用光致发光进行表征的结果之一,表明了目标产物的光致发光波长为520nm。
附图标记:| 10、极性硫源溶液; 11、极性溶剂; 12、可溶性硫源; 20、非极性镉源溶液; 21、非极性溶剂; 22、有机镉盐; 23、疏水基团; 24、亲水基团; 30、波动界面;40、纳米颗粒硫化镉材料;50、搅拌器;60、滤网。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在理解本发明的发明构思前提下所获得的其他实施例,都属于本发明保护的范围内。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
为了更方便理解本发明的技术方案,以下将本发明的纳米颗粒硫化镉材料的制备方法与结构做进一步详细描述,但不作为本发明限定的保护范围。
以下将本发明的纳米颗粒硫化镉材料的制备方法与结构做进一步详细描述,但不应该限定本发明的保护范围。图1绘示本发明第一较佳实施例的纳米颗粒硫化镉材料的制备方法的流程示意图;图2A至图2H绘示本发明第一较佳实施例中各步骤的构件示意图。
参照图1,为本发明一实施例公开的一种纳米颗粒硫化镉材料的制备方法,包括以下步骤:
步骤S1是关于制备极性硫源溶液,在一示例中,请配合参照图2A与图2B,在一容器中,制备极性硫源溶液10,所述极性硫源溶液10包含极性溶剂11与溶解于所述极性溶剂11的可溶性硫源12。
步骤S2是关于制备非极性镉源溶液,在一示例中,请配合参照图2C与图2D,在另一容器中,制备非极性镉源溶液20,所述非极性镉源溶液20包含非极性溶剂21与溶解于所述非极性溶剂21的有机镉盐22,所述有机镉盐22具有4~30的碳链长度。
步骤S3是关于混合并搅拌极性硫源溶液与非极性镉源溶液,在一示例中,请配合参照图2E与图2F,在同一容器中,混合并搅拌所述极性硫源溶液10与所述非极性镉源溶液20,其中所述极性硫源溶液10与所述非极性镉源溶液20的混合体积比为n:1,n=1~100,持续搅拌所得混合物使所述非极性镉源溶液20维持分散于所述极性硫源溶液10中,并且所述极性硫源溶液10与所述非极性镉源溶液20不互溶,所述非极性镉源溶液20的有机镉盐22的镉离子位于所述非极性溶剂21与所述极性溶剂11之间的波动界面,以富集所述可溶性硫源12的硫离子往所述波动界面移动,而生成纳米颗粒硫化镉材料40。一种在混合并搅拌步骤中非极性溶剂的有机镉盐22富集极性溶剂11的硫离子往波动界面30移动的形态可见于图3。所述波动界面30是在混合并搅拌步骤中产生波动变化的界面,用于抑制硫化镉的片状生成,更快速地形成能够离开所述波动界面30的硫化镉颗粒,基本上所述波动界面30的形状是弧面,所指的波动包括移动、震动、扭曲变动的任意一种或多种。如图2F所示,例如容器内的搅拌器50可维持所述非极性镉源溶液20分散于所述极性硫源溶液10中。
步骤S4是关于对所得混合物进行固液分离和洗涤,在一示例中,请配合参照图2G,对所得混合物进行固液分离和洗涤,以制得所述纳米颗粒硫化镉材料40,所述纳米颗粒硫化镉材料40的形状为球形,并且所述纳米颗粒硫化镉材料40的平均粒径在7~35纳米之间。如图2G所示,所述纳米颗粒硫化镉材料40可位于滤网60上。
本实施例的实施原理为:利用两相溶液各溶解有硫源与镉源进行不互溶混合与搅拌,镉离子位于非极性溶剂21与极性溶剂11之间的波动界面30,以富集可溶性硫源12的硫离子往波动界面30移动,两相波动界面30有利于反应生成纳米颗粒硫化镉材料40,其形状为球形,平均粒径在7~35纳米之间,能够以纯湿化学法低成本制作特定形状与特定尺寸范围的纳米颗粒硫化镉材料40。另外,合适的溶液混合体积比例能建立如同水包油的混合搅拌结构,是制备硫化镉球形纳米颗粒的关键因素之一。
关于步骤S4中纳米颗粒硫化镉材料40的可能粒径,在一较佳示例中,所述纳米颗粒硫化镉材料40的平均粒径介于10~20纳米。因此,利用纳米颗粒硫化镉材料40的平均粒径范围再限定,制得更符合光电转换领域需要的纳米颗粒硫化镉材料40。
关于步骤S1与步骤S2中可溶性硫源与有机镉盐的较佳浓度关系,在一较佳示例中,所述可溶性硫源12在所述极性硫源溶液10中具有第一浓度,所述有机镉盐22在所述非极性镉源溶液20中具有第二浓度,所述第一浓度大于所述第二浓度;在混合并搅拌中所述极性硫源溶液10的体积大于所述非极性镉源溶液20的体积,以使分散的所述非极性镉源溶液20被包覆在所述极性硫源溶液10中。因此,利用所述第一浓度大于所述第二浓度且在体积关系上极性硫源溶液10大于非极性镉源溶液20,提供在混合并搅拌中产生如同水包油的结构,极性硫源溶液10内硫源多于非极性镉源溶液20内镉源需要的硫反应量,即所得混合物中硫摩尔比大于镉摩尔比,以确保能在波动界面30产生湿化学法生成反应并且生成的硫化镉材料是球状纳米颗粒,硫化镉材料更加容易由非极性镉源溶液20的有机碳基断开且形成不溶于极性硫源溶液10的微型颗粒。
关于第一浓度与第二浓度的可能数值范围,在一较佳示例中,所述第一浓度为1~50×10 -6 kg/m 3,所述第二浓度为3~40×10 -7kg/m 3。因此,利用所述第一浓度与所述第二浓度的范围限定,来实现极性硫源溶液10内硫源多于非极性镉源溶液20内镉源需要的硫反应量,能够进一步减少硫化镉材料在极性硫源溶液10中溶解度,并对于调控产物形貌具有重要意义。
关于步骤S2中非极性镉源溶液20的有机镉盐22的较佳组成,在一较佳示例中,所述非极性镉源溶液20的有机镉盐22包括脂肪酸镉盐,其不饱和键的数量为0~28。因此,利用有机镉盐22的材料包括具有不饱和键数受到限制的脂肪酸镉盐,实现在混合并搅拌中有机镉盐22附着于两相波动界面30,不仅使得脂肪酸镉的来源较为丰富,还使制备工艺更易实施且灵活。
关于步骤S3中混合并搅拌的一种具体限定,在一较佳示例中,在混合并搅拌所述极性硫源溶液10与所述非极性镉源溶液20的过程中,持续搅拌时间介于1~24小时;在对所得混合物进行固液分离和洗涤的过程中,所述固液分离方式采用离心分离、过滤分离与抽滤分离中的其中一种或多种,所述洗涤方式包括使用水或/与酒精对分离后得到的固态物进行2~5次的清洗。因此,利用持续搅拌时间范围、特定固液分离方式与特定洗涤方式的限定,得到高纯度的球形纳米颗粒硫化镉材料40,适用于工业化规模生产时灵活选择合适的方式。
关于各步骤中使用材料的可能选择,在一较佳示例中,所述极性硫源溶液10的可溶性硫源12包括硫化钠、硫化钾或/与硫化氨;所述有机镉盐22选自于油酸镉、反油酸镉、硬脂酸镉、棕榈油酸镉、花生四烯酸镉、二十碳五烯酸镉、二十二碳五烯酸镉与月桂酸镉的组合中的其中一种或多种;所述非极性溶剂21选自于甲苯及其同系物、丙酮及其同系物、氯仿及其类似物、正己烷的组合中的其中一种或多种;所述极性溶剂11选自于水、酰胺类的组合中的其中一种或多种。因此,利用可溶性硫源12、有机镉盐22、非极性溶剂21、极性溶剂11的具体材料选用种类,实现球形纳米颗粒硫化镉材料40的具体制备。
关于步骤S3中混合并搅拌时有机镉盐22的一种可能表现,在一较佳示例中,所述有机镉盐22具有疏水基团23,在混合并搅拌中位于所述非极性镉源溶液20靠近所述波动界面30的内侧;以及,所述有机镉盐22还具有亲水基团24,在混合并搅拌中位于所述波动界面30。因此,利用有机镉盐22的疏水基团23与亲水基团24,在混合与搅拌过程中,所述有机镉盐22能够附着于类似水包油结构中的波动界面30,以利于球形纳米颗粒硫化镉材料40的湿化学反应生成。
此外,本发明第二实施例公开另提出一种纳米颗粒硫化镉材料的结构,依照如上所述任一技术方案的一种纳米颗粒硫化镉材料的制备方法所制得者。本发明第三实施例公开提出一种光电转换装置,包括:如上所述任一技术方案的一种纳米颗粒硫化镉材料的结构。
本发明第四实施例提出一种纳米颗粒硫化镉材料的制备方法在多种条件下的试验实施例,主要步骤同第一实施例的湿化学法,作为镉源的碳链长度为4~30,不饱和键的数量为0~28的脂肪酸镉;作为反应物的可溶性硫源;用于溶解反应物的极性溶剂以及非极性溶剂;用于洗涤产物的酒精,使用的原料均可为工业级并继续进行以下的试验实施例。制得如同于图4、图5和图6所示的特性表现、以及如图7和图8中的曲线所示的球状纳米颗粒结构硫化镉。
试验实施例1:
步骤1,将可溶性硫源溶解于极性溶剂中,配制浓度为c1的极性硫源溶液,其中c1=15×10 -6kg/m 3,极性溶剂为水,可溶性硫源为硫化钠;
步骤2,将脂肪酸镉盐溶解于非极性溶剂中,配制浓度为c2的含镉的非极性溶液,其中c2=10×10 -7kg/m 3,脂肪酸镉为油酸镉,非极性溶剂为甲苯;
步骤3,取配制的极性硫源溶液与配制的非极性镉盐溶液,按照体积比n:1混合,其中n=10,搅拌2小时。再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒,其中固液分离为抽滤分离,洗涤为使用工业酒精对分离后得到的固态产物进行2次清洗。
试验实施例2:
步骤1,将可溶性硫源溶解于极性溶剂中,配制浓度为c1的极性硫源溶液,其中c1=5×10 -6kg/m 3,极性溶剂为水,可溶性硫源为硫化钾;
步骤2,将脂肪酸镉盐溶解于非极性溶剂中,配制浓度为c2的含镉的非极性溶液,其中c2=12×10 -7kg/m 3,脂肪酸镉为硬脂酸镉,非极性溶剂为甲苯;
步骤3,取配制的极性硫源溶液与配制的非极性镉盐溶液,按照体积比n:1混合,其中n=5,搅拌2小时。再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒,其中固液分离为抽滤分离,洗涤为使用工业酒精对分离后得到的固态产物进行2次清洗。
试验实施例3:
步骤1,将可溶性硫源溶解于极性溶剂中,配制浓度为c1的极性硫源溶液,其中c1=18×10 -6kg/m 3,极性溶剂为水,可溶性硫源为硫化钠;
步骤2,将脂肪酸镉盐溶解于非极性溶剂中,配制浓度为c2的含镉的非极性溶液,其中c2=30×10 -7kg/m 3,脂肪酸镉为油酸镉,非极性溶剂为氯仿;
步骤3,取配制的极性硫源溶液与配制的非极性镉盐溶液,按照体积比n:1混合,其中n=10,搅拌1小时。再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒,其中固液分离为抽滤分离,洗涤为使用工业酒精对分离后得到的固态产物进行2次清洗。
试验实施例4:
步骤1,将可溶性硫源溶解于极性溶剂中,配制浓度为c1的极性硫源溶液,其中c1=20×10 -6kg/m 3,极性溶剂为水,可溶性硫源为硫化氨;
步骤2,将脂肪酸镉盐溶解于非极性溶剂中,配制浓度为c2的含镉的非极性溶液,其中c2=10×10 -7kg/m 3,脂肪酸镉为棕榈油酸镉,非极性溶剂为丙酮;
步骤3,取配制的极性硫源溶液与配制的非极性镉盐溶液,按照体积比n:1混合,其中n=5,搅拌3小时。再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒,其中固液分离为抽滤分离,洗涤为使用工业酒精对分离后得到的固态产物进行2次清洗。
试验实施例5:
步骤1,将可溶性硫源溶解于极性溶剂中,配制浓度为c1的极性硫源溶液,其中c1=30×10 -6kg/m 3,极性溶剂为甲酰胺水,可溶性硫源为硫化氨;
步骤2,将脂肪酸镉盐溶解于非极性溶剂中,配制浓度为c2的含镉的非极性溶液,其中c2=25×10 -7kg/m 3,脂肪酸镉为花生四烯酸镉,非极性溶剂为正己烷;
步骤3,取配制的极性硫源溶液与配制的非极性镉盐溶液,按照体积比n:1混合,其中n=8,搅拌20小时。再对得到的含有沉淀物的反应液进行固液分离和洗涤的处理,即可得到硫化镉球形纳米颗粒,其中固液分离为抽滤分离,洗涤为使用工业酒精对分离后得到的固态产物进行2次清洗。
在其他试验实施例中,可分别选用作为碳链长度为4~30,不饱和键的数量为0~28的脂肪酸镉,如二十碳五烯酸镉、二十二碳五烯酸镉或月桂酸镉等作为镉源,脂肪酸镉浓度c1分别选取18×10 -6kg/m 3、21×10 -6kg/m 3或35×10 -6kg/m 3,极性溶剂选甲酰胺,非极性溶剂选正己烷,可溶性硫源选硫化钠、硫化化钾或硫化氨等,n以及1~24小时取符合实际生产和本发明的范围值内任意值,执行上述实施例的步骤S1~S4,同样制得了如同或近似于图4、图5和图6所示的特性表现、以及如图7和图8中的曲线所示的球状纳米颗粒结构硫化镉。
本具体实施方式的实施例均作为方便理解或实施本发明技术方案的较佳实施例,并非依此限制本发明的保护范围,凡依本发明的结构、形状、原理所做的等效变化,均应被涵盖于本发明的请求保护范围内。

Claims (10)

  1. 一种纳米颗粒硫化镉材料的制备方法,其特征在于,包括:
    制备极性硫源溶液(10),所述极性硫源溶液(10)包含极性溶剂(11)与溶解于所述极性溶剂(11)的可溶性硫源(12);
    制备非极性镉源溶液(20),所述非极性镉源溶液(20)包含非极性溶剂(21)与溶解于所述非极性溶剂(21)的有机镉盐(22),所述有机镉盐(22)具有4~30的碳链长度;
    混合并搅拌所述极性硫源溶液(10)与所述非极性镉源溶液(20),其中所述极性硫源溶液(10)与所述非极性镉源溶液(20)的混合体积比为n:1,n=1~100,持续搅拌所得混合物使所述非极性镉源溶液(20)维持分散于所述极性硫源溶液(10)中,并且所述极性硫源溶液(10)与所述非极性镉源溶液(20)不互溶,所述非极性镉源溶液(20)的有机镉盐(22)的镉离子位于所述非极性溶剂(21)与所述极性溶剂(11)之间的波动界面(30),以富集所述可溶性硫源(12)的硫离子往所述波动界面(30)移动,而生成纳米颗粒硫化镉材料(40);
    对所得混合物进行固液分离和洗涤,以制得所述纳米颗粒硫化镉材料(40),所述纳米颗粒硫化镉材料(40)的形状为球形,并且所述纳米颗粒硫化镉材料(40)的平均粒径在7~35纳米之间。
  2. 根据权利要求1所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述纳米颗粒硫化镉材料(40)的平均粒径介于10~20纳米。
  3. 根据权利要求1所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述可溶性硫源(12)在所述极性硫源溶液(10)中具有第一浓度,所述有机镉盐(22)在所述非极性镉源溶液(20)中具有第二浓度,所述第一浓度大于所述第二浓度;在混合并搅拌中所述极性硫源溶液(10)的体积大于所述非极性镉源溶液(20)的体积,以使分散的所述非极性镉源溶液(20)被包覆在所述极性硫源溶液(10)中。
  4. 根据权利要求3所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述第一浓度为1~50×10 -6kg/m 3,所述第二浓度为3~40×10 -7kg/m 3
  5. 根据权利要求1所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述非极性镉源溶液(20)的有机镉盐(22)包括脂肪酸镉盐,其不饱和键的数量为0~28。
  6. 根据权利要求1所述的纳米颗粒硫化镉材料的制备方法,其特征在于,在混合并搅拌所述极性硫源溶液(10)与所述非极性镉源溶液(20)的过程中,持续搅拌时间介于1~24小时;在对所得混合物进行固液分离和洗涤的过程中,所述固液分离方式采用离心分离、过滤分离与抽滤分离中的其中一种或多种,所述洗涤方式包括使用水或/与酒精对分离后得到的固态物进行2~5次的清洗。
  7. 根据权利要求1所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述极性硫源溶液(10)的可溶性硫源(12)包括硫化钠、硫化钾或/与硫化氨;所述有机镉盐(22)选自于油酸镉、反油酸镉、硬脂酸镉、棕榈油酸镉、花生四烯酸镉、二十碳五烯酸镉、二十二碳五烯酸镉与月桂酸镉的组合中的其中一种或多种;所述非极性溶剂(21)选自于甲苯及其同系物、丙酮及其同系物、氯仿及其类似物、正己烷的组合中的其中一种或多种;所述极性溶剂(11)选自于水、酰胺类的组合中的其中一种或多种。
  8. 根据权利要求1-7中任一项所述的纳米颗粒硫化镉材料的制备方法,其特征在于,所述有机镉盐(22)具有疏水基团(23),在混合并搅拌中位于所述非极性镉源溶液(20)靠近所述波动界面(30)的内侧;以及,所述有机镉盐(22)还具有亲水基团(24),在混合并搅拌中位于所述波动界面(30)。
  9. 一种纳米颗粒硫化镉材料的结构,其特征在于,依照如权利要求1-8中任一项所述的一种纳米颗粒硫化镉材料的制备方法所制得者。
  10. 一种光电转换装置,其特征在于,包括:如权利要求9所述的一种纳米颗粒硫化镉材料的结构。
PCT/CN2020/128450 2019-12-03 2020-11-12 纳米颗粒硫化镉材料的制备方法与结构 WO2021109829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911220969.9 2019-12-03
CN201911220969.9A CN112897574A (zh) 2019-12-03 2019-12-03 纳米颗粒硫化镉材料的制备方法与结构

Publications (1)

Publication Number Publication Date
WO2021109829A1 true WO2021109829A1 (zh) 2021-06-10

Family

ID=76103953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128450 WO2021109829A1 (zh) 2019-12-03 2020-11-12 纳米颗粒硫化镉材料的制备方法与结构

Country Status (2)

Country Link
CN (1) CN112897574A (zh)
WO (1) WO2021109829A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563265A (zh) * 2004-04-06 2005-01-12 中国科学院长春应用化学研究所 在液-液界面上纳米半导体发光材料的合成方法
CN1645559A (zh) * 2004-12-03 2005-07-27 中国科学院长春应用化学研究所 合成硒化镉和硒化镉硫化镉核壳结构量子点的方法
US20060062720A1 (en) * 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
CN101343540A (zh) * 2008-08-28 2009-01-14 上海交通大学 利用超支化聚合物超分子纳米反应器制备量子点的方法
CN101767816A (zh) * 2010-01-12 2010-07-07 浙江大学 一种制备单分散硫化镉纳米晶的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920766B2 (en) * 2012-08-21 2014-12-30 University Of Rochester Quantum nanostructures, compositions thereof, and methods of making and using same
CN103936058B (zh) * 2014-05-07 2016-02-17 吉林大学 一种硫化镉量子点的制备方法
CN106365128A (zh) * 2015-07-25 2017-02-01 四川大学 魔尺寸纳米晶类物质的制备方法
CN106221699B (zh) * 2016-07-29 2020-03-31 Tcl集团股份有限公司 一种提纯量子点的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1563265A (zh) * 2004-04-06 2005-01-12 中国科学院长春应用化学研究所 在液-液界面上纳米半导体发光材料的合成方法
US20060062720A1 (en) * 2004-05-28 2006-03-23 Samsung Electronics Co., Ltd. Method of preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths, and cadmium sulfide nanocrystals prepared by the method
CN1645559A (zh) * 2004-12-03 2005-07-27 中国科学院长春应用化学研究所 合成硒化镉和硒化镉硫化镉核壳结构量子点的方法
CN101343540A (zh) * 2008-08-28 2009-01-14 上海交通大学 利用超支化聚合物超分子纳米反应器制备量子点的方法
CN101767816A (zh) * 2010-01-12 2010-07-07 浙江大学 一种制备单分散硫化镉纳米晶的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AN XUEQIN, ZHOU XING-PING, NI SI-YU, WANG PENG: "Preparation of CdS Quantum Dots by a Novel Oi-l Water Interphase Method at Room Temperature", JOURNAL OF DONG HUA UNIVERSITY, vol. 35, no. 4, 1 August 2009 (2009-08-01), pages 441 - 471, XP055818409, ISSN: 1671-0444 *
DI YA; LU KUNLING; TIAN YALING; LIU YAN; ZHAO YUNWANG; ZHENG YUE: "Preparation and growth mechanism of CdS quantum dots in octadecene/glycerol two-phase systems", COLLOIDS AND SURFACES A: PHYSIOCHEMICAL AND ENGINEERING ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 581, 16 August 2019 (2019-08-16), AMSTERDAM, NL, XP085833186, ISSN: 0927-7757, DOI: 10.1016/j.colsurfa.2019.123812 *
KUDLASH, A.N. VOROBYOVA, S.A. LESNIKOVICH, A.I. KUKHTA, A.V. KOLESNIK, E.E.: "Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis", OPTICAL MATERIALS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM., NL, vol. 30, no. 8, 20 March 2008 (2008-03-20), NL, pages 1304 - 1309, XP022550361, ISSN: 0925-3467 *

Also Published As

Publication number Publication date
CN112897574A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Lin et al. Graphitic carbon nitride quantum dots and nitrogen-doped carbon quantum dots co-decorated with BiVO4 microspheres: a ternary heterostructure photocatalyst for water purification
Ingole et al. Green synthesis of selenium nanoparticles under ambient condition
Xu et al. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication
Fang et al. Fabrication and characterization of CdS/BiVO4 nanocomposites with efficient visible light driven photocatalytic activities
CN105731535B (zh) 一种氧化锌/二氧化钛复合纳米材料的制备方法
CN101654277B (zh) 梭形或棒状硫化银纳米颗粒制备方法
Kundu A facile route for the formation of shape-selective ZnO nanoarchitectures with superior photo-catalytic activity
CN108675339B (zh) 一种棒状自组装成球状的锌镉硫固溶体材料的制备方法
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
CN113087016A (zh) 一种棒状硫化铋/还原氧化石墨烯复合材料的制备方法
Yadav et al. Preparation of controlled lotus like structured ZnO decorated reduced graphene oxide nanocomposites to obtain enhanced photocatalytic properties
Zhang et al. Solvothermal synthesis of manganese sulfides and control of their phase and morphology
Chang et al. Rapid preparation and photocatalytic properties of octahedral Cu2O@ Cu powders
Ismael et al. Concise Review of Nanomaterial Synthesis and Applications in Metal Sulphides
CN101077791A (zh) 一种单分散硫化铜半导体纳米颗粒的制备方法
CN106995218B (zh) 一种砖块状单斜相wo3的制备方法
Khokhra et al. Effect of synthesis medium on aggregation tendencies of ZnO nanosheets and their superior photocatalytic performance
WO2021109829A1 (zh) 纳米颗粒硫化镉材料的制备方法与结构
CN107651704B (zh) 一种由暴露(001)晶面超薄纳米页构筑的分级结构硫化镉纳米花及其制备方法
CN109338466B (zh) 一种制备单晶Fe2O3纳米颗粒自组装椭圆球微纳米结构的方法
CN108502910B (zh) 不溶性无机盐微纳米材料及其制备方法和应用
CN107697944B (zh) 一种颗粒自组装球状锌镉硫固溶体材料的制备方法
CN105819496B (zh) 一种中空纳米硫化银微球的制备方法
Adekoya et al. Heterostructures of Ag2FeSnS4 chalcogenide nanoparticles as potential photocatalysts
CN110911469B (zh) 一种能够可控的制备MoS2-Cu2WS4二维异质结材料的微波水相合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896219

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20896219

Country of ref document: EP

Kind code of ref document: A1