WO2021109797A1 - 一种多相流实验装置 - Google Patents

一种多相流实验装置 Download PDF

Info

Publication number
WO2021109797A1
WO2021109797A1 PCT/CN2020/127158 CN2020127158W WO2021109797A1 WO 2021109797 A1 WO2021109797 A1 WO 2021109797A1 CN 2020127158 W CN2020127158 W CN 2020127158W WO 2021109797 A1 WO2021109797 A1 WO 2021109797A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
oil
pipeline
valve
water
Prior art date
Application number
PCT/CN2020/127158
Other languages
English (en)
French (fr)
Inventor
王雷
贾欣鑫
张�浩
王鑫
段利亚
Original Assignee
山东省科学院海洋仪器仪表研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院海洋仪器仪表研究所 filed Critical 山东省科学院海洋仪器仪表研究所
Publication of WO2021109797A1 publication Critical patent/WO2021109797A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties

Definitions

  • the invention relates to a multiphase flow experimental device, in particular to an oil-water-gas three-phase flow experimental device, in the technical field of petroleum and natural gas engineering.
  • the technical problem to be solved by the present invention is: how to provide a multiphase flow experimental device that can conduct experimental research on undulating pipelines, and can obtain the influence of the main flow and secondary flow, temperature and flow rate on the experiment at the same time.
  • the technical solutions adopted are as follows:
  • a multiphase flow experiment device comprising an air compressor, an oil tank, a water tank, a mixing storage tank, and an experiment tube, characterized in that: the air compressor, oil tank, and water tank respectively pass through a gas pipeline and an oil flow tube
  • the flow pattern generator is connected to the flow pattern generator through a pipeline and a water flow pipeline.
  • the flow pattern generator is connected to the mixing storage tank through a mixing pipeline.
  • the gas pipeline is sequentially provided with a valve and a pressure regulator with a pressure gauge.
  • Gas storage tank, pressure gauge 1, flow meter 1, and valve 2 the oil flow pipeline is provided with valve 3, pump 1, thermometer 1, flow meter, and valve 4 in sequence, and the water flow pipeline is provided with valves in sequence 5. Pump two, thermometer two, flow meter three and valve six.
  • Valve seven, pressure gauge two, thermometer three, test tube and valve eight are arranged in sequence on the mixing pipeline, and the two ends of the test tube are connected through
  • the hose is connected to the mixing pipeline
  • the mixing storage tank is connected to the oil tank through the oil flow circuit, and is connected to the water tank through the water flow circuit.
  • the oil flow circuit is provided with valve nine and pump three in sequence.
  • a valve ten and a pump four are arranged in sequence.
  • the oil tank is provided with a heater one inside, a temperature indicator one outside, a heater two inside the water tank, and a temperature indicator two outside, the mixed storage tank An air outlet valve is provided on it.
  • the flow pattern generator and the experimental tube are both made of transparent materials.
  • an air outlet is provided on the upper part of the mixing storage tank, and the air outlet valve is arranged outside the air outlet.
  • the mixed storage tank separates gas, oil and water by gravity sedimentation, the separated gas is discharged from the gas outlet, the separated oil is reinjected into the oil tank under the action of pump three, and the separated water is reinjected into the oil tank under the action of pump four.
  • the gas pipeline, the oil flow pipeline, and the water flow pipeline are connected in parallel, and the oil flow circuit is connected in parallel with the water flow circuit.
  • the flow pattern generator includes a flow pattern generating tube and a flow pattern observation tube, and the flow pattern generating tube is connected by a flange and has the same inner diameter.
  • the flow pattern generating pipe includes an inlet straight pipe section, a tapered pipe diversion section, and a flow pattern generating section.
  • the inlet straight pipe section, the tapered pipe diversion section, and the flow pattern generating section are of integral structure and have the same wall thickness.
  • the pipe section is provided with a main flow inlet, and the flow pattern generating section is provided with a secondary inflow inlet and a gas inlet. There are two secondary inflow inlets and two gas inlets, and they are staggered around the rotation axis of the flow pattern generating tube.
  • the flow pattern is observed
  • the tube includes an observation section and a flow outlet set inside the observation section.
  • the multiphase flow experimental device also includes an experimental tube adjuster for placing the experimental tube
  • the experimental tube adjuster includes a bracket, and an angle adjusting rod is threadedly connected to the bracket, and the angle adjusting One end of the rod is fixedly connected with the vertical plate, the upper connecting plate and the lower positioning plate are respectively fixedly connected with the vertical plate, the upper connecting plate is threadedly connected with a height adjusting rod, and the lower end of the height adjusting rod is rotatably connected with the upper positioning plate.
  • a sliding groove is provided on one side of the vertical plate, and a sliding block adapted to the sliding groove is provided on the opposite side of the upper positioning plate and the vertical plate.
  • the upper surface of the lower positioning plate and the lower surface of the upper positioning plate are arc surfaces with the same radius of curvature, and the radius of curvature of the arc surface is greater than the radius of curvature of the clamped test tube.
  • the multi-phase flow experimental device mainly includes an air compressor, an oil tank, a water tank, a mixed storage tank, a flow pattern generator, and an experimental tube.
  • the compressor, oil tank, and water tank are connected to the flow pattern generator in parallel through the gas pipeline, oil flow pipeline, and water flow pipeline to generate two-phase flow or three-phase flow and different flow patterns.
  • the flow pattern generator passes through the mixing tube.
  • the pipeline is connected with the mixing storage tank.
  • the mixing pipeline is equipped with an experimental tube for experimental research.
  • the experimental tube is installed on the experimental tube regulator. The installation angle of the experimental tube is changed by the experimental tube regulator to simulate the undulating pipeline.
  • the mixing storage tank is connected in parallel.
  • the oil flow loop and the water flow loop are respectively connected to the oil tank and the water tank, so that the oil and water multiphase flow experiments are cyclically used, ensuring continuous experimentation and good economic efficiency.
  • the present invention can obtain different temperatures, different flow rates, and different The influence of flow patterns, different pipe diameters, main and secondary flows, and undulating pipelines (experimental tubes at different installation angles) on multiphase flow experiments.
  • Figure 1 Schematic diagram of the overall structure of the present invention
  • FIG. 1 Schematic diagram of the structure of the experimental tube regulator of the present invention
  • Figure 3 Schematic diagram of the flow pattern generator of the present invention.
  • the first embodiment of the present invention a multi-phase flow experimental device, which mainly includes an air compressor 1, an oil tank 2, a water tank 3, a mixing storage tank 4, and an experimental tube 6, in which the air compression
  • the engine 1, the oil tank 2, and the water tank 3 are connected in parallel to the flow pattern generator 5 through the gas pipeline 36, the oil flow pipeline 37, and the water flow pipeline 38 respectively, and the flow pattern generator 5 is connected to the mixing storage tank through the mixing pipeline 39 4 is connected, the mixing pipeline 39 is provided with an experiment tube 6, and the mixing storage tank 4 is connected to the oil tank 2 and the water tank 3 through the parallel oil flow circuit 41 and the water flow circuit 42 respectively.
  • the flow pattern generator 5 of the present invention is used to mix different phase flows to generate the flow pattern required for the experiment, and to perform observation experiments on the different flow patterns generated by the flow pattern generator through the experimental tube 6.
  • the gas pipeline 36 is provided with a valve 26 for opening and closing the gas pipeline 36, a stabilized gas tank 16 with a pressure gauge, a pressure gauge for measuring the pressure in the gas pipeline 36, a pressure gauge 8.
  • the flow meter 13 for measuring the flow in the gas pipeline 36 and the valve 2 27 for adjusting the gas flow are also known as the gas flow regulating valve.
  • the purpose of regulating the flow is achieved by adjusting the opening of the valve 2 27; in the oil flow pipeline 37 There are valves 28 for opening and closing the oil flow pipeline 37, a pump 17 for pumping oil to the flow pattern generator 5, and a thermometer 10 for measuring the temperature in the oil flow pipeline 37.
  • the flowmeter two 14 used to measure the flow in the oil flow pipeline 37 and the valve 29 29 for adjusting the oil flow flow are also the oil flow regulating valve.
  • the purpose of adjusting the flow is achieved by adjusting the opening of the valve 29;
  • the pipeline 38 is sequentially provided with a valve 530 for opening and closing the water flow pipeline 38, a pump 18 for pumping water to the flow pattern generator 5, and a thermometer 2 11 for measuring the temperature in the water flow pipeline 38.
  • valve six 31 that adjusts the flow of the water flow, that is, the water flow rate regulating valve. Specifically, the purpose of adjusting the flow is achieved by adjusting the opening of the valve six 31. What needs to be explained is , Valve two 27, valve four 29, valve six 31 of the present invention are flow regulating valves.
  • the mixing pipeline 39 of the present invention is provided with a valve 732 for controlling the opening and closing of the mixing pipeline 39, a pressure gauge 2 9 for measuring the pressure in the mixing pipeline 39, and a pressure gauge for measuring the mixing pipeline 39.
  • the temperature gauge 3 12 of the temperature within 39, and the experimental tube 6 and the experimental tube used to conduct experiments on different flow patterns and undulating pipelines (referring to the experimental tube 6 in different positions, including the horizontal position, the vertical position, and other arbitrary angle positions)
  • the valve eight 33 that adjusts the flow of the mixed flow is also the mixed flow flow control valve. Specifically, the purpose of adjusting the flow is achieved by adjusting the opening of the valve eight 33. It should be noted that the valve eight 33 of the present invention is also a flow control valve.
  • the present invention is provided with a valve 934 for controlling the opening and closing of the oil flow circuit 41 and a pump 319 for pumping oil to the oil tank 2 on the oil flow circuit 41 in sequence.
  • a valve 1035 for controlling the opening and closing of the water flow circuit 42 and a pump 2920 for pumping water to the water tank 3 are provided.
  • the upper part of the mixing storage tank 4 is provided with an air outlet, and the air outlet valve 25 is arranged outside the air outlet.
  • the mixing storage tank 4 separates gas, oil and water by gravity sedimentation.
  • the gas outlet valve 25 is opened, and the separated gas is discharged from the gas outlet.
  • the separated oil is reinjected into the oil tank 2 under the action of the pump III.
  • the separated water is in Under the action of pump four 20, it is injected back into the water tank 3.
  • a heater 21 is installed inside the oil tank 2 to heat the oil in the oil tank 2, and a temperature indicator 23 is installed outside the oil tank 2 to display the oil tank.
  • the temperature of the oil in 2 when the oil reaches the set temperature, stop heating for heat preservation.
  • the flow pattern generator 5 the flow pattern required for the experiment is obtained.
  • the experiment is performed on the multiphase flow of the flow pattern required for the experiment at different temperatures in the experiment tube 6 to obtain the influence of different temperatures on the multiphase flow experiment ,
  • the experimental temperature in the experimental tube 6 is read by the thermometer three 12.
  • a valve 27 for adjusting the gas flow and a flow meter 13 for measuring the gas flow in the gas pipeline 36 are set on the gas pipeline 36, and on the oil flow pipeline 37
  • a valve 29 for adjusting the oil flow and a flow meter 14 for measuring the oil flow in the oil flow pipeline 37 are set, and a valve 31 for adjusting the flow of water is set on the water flow pipeline 38 and a water flow pipeline 38 for measuring the water flow.
  • the internal water flow flow meter three 15 changes the flow of gas, oil and water flowing into the flow generator 5 by adjusting valve two 27, valve four 29 and valve six 31 respectively. It should be noted that the flow rate here is changed.
  • the flow pattern generator 5 and the experimental tube 6 of the present invention are both made of transparent materials, and the experimental tube 6 is preferably a glass fiber reinforced plastic transparent tube.
  • the present invention is provided with a flow pattern generator 5, through which the flow pattern required for the experiment is generated, and the gas and oil entering the flow pattern generator 5 are changed.
  • the three-phase proportions of water and water can be used to obtain different flow patterns.
  • the proportions of gas, oil, and water can be achieved by adjusting valve two 27, valve four 29, and valve six 31 respectively. It should be noted that the flow rate here is changed. It should be understood that the proportion of each phase changes, while the total amount of mixed fluid remains unchanged.
  • the flow pattern generator 5 of the present invention is set to include a flow pattern generating tube and a flow pattern observation tube.
  • the flow pattern generating tube is connected by a flange and has an inner diameter.
  • the flow pattern generating pipe includes the inlet straight pipe section 54, the tapered pipe diversion section 55, and the flow pattern generating section 56.
  • the inlet straight pipe section, the tapered pipe diversion section 55 and the flow pattern generating section 56 are of integral structure and have the same wall thickness.
  • the inlet straight pipe section 54 is provided with a main flow inlet 51
  • the flow pattern generating section 56 is provided with a secondary flow inlet 52 and a gas inlet 53.
  • Each of the secondary flow inlet 52 and the gas inlet 53 has two mechanisms of the same size, and the bypass flow generating tube
  • the axis of rotation of is staggered and located at the same height.
  • the flow pattern observation tube includes an observation section 57 and a flow pattern outlet 58 arranged inside the observation section 57.
  • the components on the gas pipeline 36 are not working, that is, they are in a closed state.
  • the components on the oil flow pipeline 37 are in the open state when they work: heater one 21 and temperature indicator one 23 open for heating and temperature display, valve three 28 and valve four 29 open, pump one 17 starts, and temperature gauge one 10
  • flow meter two 14 measures the flow; each component on the water flow pipe 38 is in the open state when working: heater two 22 and temperature indicator two 24 are turned on to perform heating and temperature display respectively, valve five 30 and valve six 31 Turn on, pump two 18 starts, thermometer two 11 measures temperature, flow meter three 15 measures flow; the oil flow in the oil flow pipeline 37 flows from the main flow inlet 51 into the flow pattern generation section 56 of the flow pattern generator 5, and the water flow pipeline The water flow in 38 flows into the flow pattern generation section 56 from the secondary inlet 52 and the gas inlet 53.
  • the flow pattern enters the mixing pipeline after being stabilized in the flow pattern observation tube. 39;
  • the components on the mixing pipeline 39 are in an open state when they work: valve 7 32 and valve 8 33 are open, pressure gauge 2 9 measures pressure, temperature gauge 3 12 measures temperature, and the oil-water mixture flows through experiment tube 6 and enters Mixing storage tank 4; the outlet valve 25 is closed, and the components on the oil flow circuit 41 and the water flow circuit 42 are not working, that is, they are in a closed state.
  • the components on the gas pipeline 36 are not working, that is, they are in a closed state.
  • the components on the oil flow pipeline 37 are in the open state when they work: heater one 21 and temperature indicator one 23 open for heating and temperature display, valve three 28 and valve four 29 open, pump one 17 starts, and temperature gauge one 10
  • flow meter two 14 measures the flow; each component on the water flow pipe 38 is in the open state when working: heater two 22 and temperature indicator two 24 are turned on to perform heating and temperature display respectively, valve five 30 and valve six 31 Turn on, pump two 18 starts, thermometer two 11 measures temperature, flow meter three 15 measures flow; the water flow in the water flow pipe 38 flows into the flow pattern generation section 56 from the main flow inlet 51, and the oil flow in the oil flow pipe 37 starts from the second The inlet 52 and the gas inlet 53 flow into the flow pattern generation section 56, and the oil flow flows through the four inlets to obtain a uniform and stable flow pattern.
  • the flow pattern enters the mixing pipeline 39 after being stabilized in the flow pattern observation tube;
  • the parts on 39 are in the open state when they work: valve 7 32 and valve 8 33 are open, pressure gauge 2 9 measures pressure, thermometer 3 12 measures temperature, and the oil-water mixture flows through the experiment tube 6 and enters the mixing storage tank 4;
  • the air outlet valve 25 is closed, and the components on the oil flow circuit 41 and the water flow circuit 42 are not working, that is, they are in a closed state.
  • All components on the gas pipeline 36 are in an open state when working: the air compressor 1 is started, the valve one 26 and the valve two 27 are opened, and the gas from the air compressor 1 enters the stabilized gas storage tank 16 with a pressure gauge.
  • the pressure of the gas in the tank is measured at the same time, the pressure gauge 8 measures the pressure, the flow meter 13 measures the air flow, and the flow meter 13 is an air flow meter.
  • the components on the oil flow pipeline 37 are in the open state when they work: heater one 21 and temperature indicator one 23 open for heating and temperature display, valve three 28 and valve four 29 open, pump one 17 starts, and temperature gauge one 10
  • flow meter two 14 measures the flow; each component on the water flow pipe 38 is in the open state when working: heater two 22 and temperature indicator two 24 are turned on to perform heating and temperature display respectively, valve five 30 and valve six 31 Turn on, pump two 18 starts, thermometer two 11 measures temperature, flow meter three 15 measures flow; the oil flow in the oil flow pipeline 37 flows into the flow pattern generation section 56 from the main flow inlet 51, and the water flow and gas in the water flow pipeline 38 The gas in the pipeline 36 flows into the flow pattern generation section 56 from the secondary inlet 52 and the gas inlet 53 respectively.
  • the flow pattern is in the flow pattern observation tube. Enter the mixing pipeline 39 after being stabilized in the process; all parts on the mixing pipeline 39 are in an open state when working: valve 7 32 and valve 8 33 are open, pressure gauge 2 9 measures pressure, temperature gauge 3 12 measures temperature, oil and water are mixed
  • All components on the gas pipeline 36 are in an open state when working: the air compressor 1 is started, the valve one 26 and the valve two 27 are opened, and the gas from the air compressor 1 enters the stabilized gas storage tank 16 with a pressure gauge.
  • the pressure of the gas in the tank is measured at the same time, the pressure gauge 8 measures the pressure, the flow meter 13 measures the air flow;
  • all parts on the oil flow pipeline 37 are in the open state when working: heater 21 and temperature indicator One 23 is open for heating and temperature display, valve three 28 and valve four 29 are open, pump one 17 starts, thermometer one 10 measures temperature, flow meter two 14 measures flow; all components on the water flow pipe 38 are open when they work Status: Heater 2 22 and temperature indicator 2 24 are turned on, respectively for heating and temperature display, valve 5 30 and valve 6 31 are opened, pump 2 18 starts, thermometer 2 11 measures temperature, flow meter 3 15 measures flow; water flow pipe The water flow in the path 38 flows into the flow pattern generating section 56 from the main flow inlet 51, and the oil flow in the oil
  • the flow pattern enters the mixing pipeline 39 after being stabilized in the flow pattern observation tube; the components on the mixing pipeline 39 are also in operation.
  • the components on the water flow circuit 42 are not working, that is, they are in a closed state.
  • the components on the gas pipeline 36 are in an open state when working: the air compressor 1 is started, the valve one 26 and the valve two 27 are opened, and the gas from the air compressor 1 enters the stabilized gas storage tank 16 with a pressure gauge.
  • the pressure of the gas in the tank is measured at the same time, the pressure gauge 8 measures the pressure, and the flow meter 13 measures the air flow;
  • all components on the oil flow pipeline 37 work are also in the open state: heater 21 and temperature indicator One 23 is open for heating and temperature display, valve three 28 and valve four 29 are open, pump one 17 starts, thermometer one 10 measures temperature, flow meter two 14 measures flow; all components on the water flow pipe 38 are not working, that is, they are in Closed state; the oil flow in the oil flow pipeline 37 flows into the flow pattern generation section 56 from the main flow inlet 51, and the gas in the gas pipeline 36 flows into the flow pattern generation section 56 from the secondary flow inlet 52 and the gas inlet 53, and the gas passes through four
  • the inlet flow makes it easier to obtain a uniform and
  • valve 7 32 and valve 8 33 Open, pressure gauge 2 9 measures pressure, temperature gauge 3 12 measures temperature, the oil-water mixture flows through the experiment tube 6 and enters the mixing storage tank 4; the gas outlet valve 25 is closed, and the components on the oil flow circuit 41 and the water flow circuit 42 do not work That is, it is closed.
  • the components on the gas pipeline 36 are in an open state when working: the air compressor 1 is started, the valve one 26 and the valve two 27 are opened, and the gas from the air compressor 1 enters the stabilized gas storage tank 16 with a pressure gauge.
  • the pressure of the gas in the tank is measured at the same time, the pressure gauge 8 measures the pressure, and the flow meter 13 measures the air flow; all components on the oil flow pipeline 37 are not working and are in a closed state; the pressure on the water flow pipeline 38
  • Each component is in the open state when working: heater 2 22 and temperature indicator 2 24 are turned on for heating and temperature display respectively, valve 5 30 and valve 6 31 are opened, pump 2 18 starts, thermometer 2 11 measures temperature, flow meter Three: 15 measure the flow rate; the water flow in the water flow pipe 38 flows from the main flow inlet 51 into the flow pattern generating section 56, and the gas in the gas pipe 36 flows into the flow pattern generating section 56 from the secondary flow inlet 52 and the gas inlet 53, and the gas passes through four
  • the inlet flow makes it
  • valve 7 32 and valve 8 33 Open, pressure gauge 2 9 measures pressure, temperature gauge 3 12 measures temperature, the oil-water mixture flows through the experiment tube 6 and enters the mixing storage tank 4; the gas outlet valve 25 is closed, and the components on the oil flow circuit 41 and the water flow circuit 42 do not work That is, it is closed.
  • the multiphase flow experimental device of the present invention is also provided with a device for installing the experimental tube 6
  • the experiment The tube 6 is at 0°, 30°, 45°, 60°, 90° or any other angle with the horizontal plane.
  • the movement situation that is, the influence of the undulating pipeline on the multiphase flow experiment is obtained.
  • one end of the angle adjusting rod 72 is fixedly connected to the vertical plate 73
  • the upper connecting plate 74 and the lower positioning plate 75 are respectively fixedly connected to the vertical plate 73
  • the upper connecting plate 74 is threadedly connected with a height adjusting rod 76
  • the lower end of the height adjusting rod 76 It is connected to the upper positioning plate 77 in rotation.
  • the angle adjustment rod 72 and the height adjustment rod 76 are provided with threads, which are respectively connected with the threaded holes on the bracket 71 and the upper connecting plate 74.
  • the lower end of the height adjustment rod 76 and the upper positioning plate 77 are not provided. Thread.
  • the upper positioning plate 77 is moved up and down along the vertical plate 73 by rotating the height adjustment rod 76 to realize the clamping of the experimental tubes 6 of different pipe diameters, so as to realize the experimental research on the multiphase flow of different pipe diameters, and obtain the multiphase flow of different pipe diameters.
  • a sliding groove is provided on one side of the vertical plate 73, and a sliding block adapted to the sliding groove is provided on the opposite side of the upper positioning plate 77 and the vertical plate 73.
  • the sliding block and the sliding groove constitute a sliding mechanism through which The sliding mechanism realizes the up and down sliding of the upper positioning plate 77 relative to the vertical plate 73.
  • the upper surface of the lower positioning plate 75 and the lower surface of the upper positioning plate 77 are arc surfaces with equal curvature radii. Reliable blessing.
  • a protective soft pad can be provided on the upper surface of the lower positioning plate 75 and the lower surface of the upper positioning plate 77, which can be rubber Pads, silicone pads or other soft pads with a certain degree of flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种多相流实验装置,主要包括空气压缩机(1)、油罐(2)、水罐(3)、混合存储罐(4)、流型发生器(5)和实验管(6),空气压缩机(1)、油罐(2)、水罐(3)分别通过气体管路(36)、油流管路(37)、水流管路(38)并联接入流型发生器(5)以产生两相流或三相流以及不同流型,流型发生器(5)通过混合管路(39)与混合存储罐(4)连接,在混合管路(39)上设置有实验管(6)用于实验研究,实验管(6)安装在实验管调节器(7)上,通过实验管调节器(7)改变实验管(6)安装角度模拟起伏管路,混合存储罐(4)通过并联的油流回路(41)与水流回路(42)分别与油罐(2)、水罐(3)连接,使得油和水在多相流实验中循环使用,同时能够得到不同温度、不同流量、不同流型、不同管径、主流与次流、起伏管路对多相流实验的影响。

Description

一种多相流实验装置 技术领域
本发明涉及一种多相流实验装置,尤其是一种油水气三相流实验装置,石油与天然气工程技术领域。
背景技术
近些年来,在国内和国外对多相流的研究越来越多,其主要是因为多相流不仅对很多的工业过程具有重要影响,而且对工业机器的更新换代也有影响。涉及多相流的工业过程比较广泛,包括能源、动力、石油、化工、冶金等。在石油、天然气开采及运输过程中,对多相流的检测问题至关重要,多相流检测技术是解决该问题最有效、最直接的方法。目前虽然已经研制出可以在工业现场应用的流量计,但是还不具备对任意流型、任意相的检测功能。多相流实验装置是研究油水气多相流问题的重要手段,无论是对理论问题的研究,还是对实际操作数据的验证,都占有着重要的地位。国内外许多实验室和高校都已经建立了自己的多相流实验装置,但研制出的实验装备在油水两相流实验和油水气三相流实验中没有区分主流和次流对实验的影响,不能很好地模拟多相流的实际运动形态;也没有对起伏管路进行实验,不能得到多相流的在起伏管路的实际运动情况;并且也未涉及温度、流量对实验的影响,不能得到在不同温度、流量作用下对多相流造成的影响。因此,如何提供一种能对起伏管路进行实验研究,同时能够得到主流和次流、温度、流量对实验影响的多相流实验装置是本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明所要解决的技术问题是:如何提供一种能对起伏管路进行实验研究,同时能够得到主流和次流、温度、流量对实验影响的多相流实验装置。其采用的技术方案如下:
一种多相流实验装置,包括空气压缩机、油罐、水罐、混合存储罐和实验管,其特征在于:所述空气压缩机、油罐、水罐分别通过气体管路、油流管路、 水流管路与所述流型发生器连接,所述流型发生器通过混合管路与所述混合存储罐连接,所述气体管路上依次设置有阀门一、带有压力表的稳压储气罐、压力表一、流量计一和阀门二,所述油流管路上依次设置有阀门三、泵一、温度表一、流量计二和阀门四,所述水流管路上依次设置有阀门五、泵二、温度表二、流量计三和阀门六,在所述混合管路上依次设置有阀门七、压力表二、温度表三、实验管和阀门八,所述实验管两端通过连接软管接入混合管路,所述混合存储罐通过油流回路与油罐连接,通过水流回路与水罐连接,所述油流回路上依次设置有阀门九和泵三,所述水流回路上依次设置有阀门十和泵四,所述油罐内部设置有加热器一、外部设置有温度显示器一,所述水罐内部设置有加热器二、外部设置有温度显示器二,所述混合存储罐上设置有出气阀。
作为本技术方案的进一步改进,所述流型发生器与实验管均由透明材料制成。
作为本技术方案的进一步改进,所述混合存储罐上部设有出气口,所述出气阀设置在出气口外侧。所述混合存储罐通过重力沉降对气油水进行分离,分离出的气体从出气口排出,分离出的油在泵三作用下回注到油罐,分离出的水在泵四作用下回注到水罐。
作为本技术方案的进一步改进,所述气体管路、油流管路、水流管路并联,所述油流回路与水流回路并联。
作为本技术方案的进一步改进,所述流型发生器包括流型发生管与流型观察管,所述流型发生管通过法兰连接且内径相等。所述流型发生管包括进口直管段、锥管导流段、流型发生段,所述进口直管段、锥管导流段、流型发生段为一体式结构且壁厚相等,在进口直管段设置有主流入口,在流型发生段设置有次流入口和气体入口,所述次流入口和气体入口各有两个,且绕流型发生管的回转轴线交错分布,所述流型观察管包括观察段与设置于观察段内部的流型出口。
作为本技术方案的进一步改进,多相流实验装置还包括用于放置实验管的 实验管调节器,所述实验管调节器包括支架,所述支架上螺纹连接有角度调节杆,所述角度调节杆一端与立板固连,所述上连板、下定位板分别与立板固连,所述上连板上螺纹连接有高度调节杆,所述高度调节杆下端与上定位板转动连接。
作为本技术方案的进一步改进,所述立板的一侧面开设有滑槽,所述上定位板与立板相对一侧设置有与所述滑槽相适配的滑块。所述下定位板上表面与上定位板下表面为曲率半径相等圆弧面,所述圆弧面的曲率半径大于被夹持实验管的曲率半径。
本发明与现有技术相比具有如下有益效果:本发明提供的多相流实验装置,主要包括空气压缩机、油罐、水罐、混合存储罐、流型发生器和实验管,其中,空气压缩机、油罐、水罐分别通过气体管路、油流管路、水流管路并联接入流型发生器以产生两相流或三相流以及不同流型,流型发生器通过混合管路与混合存储罐连接,在混合管路上设置有实验管用于实验研究,实验管安装在实验管调节器上,通过实验管调节器改变实验管安装角度模拟起伏管路,混合存储罐通过并联的油流回路与水流回路分别与油罐、水罐连接,使得油和水多相流实验中循环使用,保证实验的连续进行同时具有良好的经济性,本发明能够得到不同温度、不同流量、不同流型、不同管径、主流与次流、起伏管路(实验管处于不同安装角度)对多相流实验的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1:本发明的整体结构示意图;
图2:本发明的实验管调节器的结构示意图;
图3:本发明的流型发生器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
参考图1所示,本发明的第一实施例:一种多相流实验装置,主要包括空气压缩机1、油罐2、水罐3、混合存储罐4和实验管6,其中,空气压缩机1、油罐2、水罐3分别通过气体管路36、油流管路37、水流管路38并联接入流型发生器5,流型发生器5通过混合管路39与混合存储罐4连接,混合管路39上设置有实验管6,混合存储罐4通过并联的油流回路41与水流回路42分别与油罐2、水罐3连接。本发明的流型发生器5用于将不同相流混合来产生实验所需流型,并通过实验管6对流型发生器产生的不同流型进行观察实验。在气体管路36上依次设置有用于开启与关闭气体管路36的阀门一26、带有压力表的稳压储气罐16、用于测量气体管路36内压力的压力表一8、用于测量气体管路36内流量的流量计一13和调节气体流量的阀门二27也即气体流量调节阀,具体是通过调节阀门二27的开度实现调节流量的目的;在油流管路37上依次设置有用于开启与关闭油流管路37的阀门三28、用于将油抽取到流型发生器5的泵一17、用于测量油流管路37内温度的温度表一10、用于测量油流管路37内流量的流量计二14和调节油流流量的阀门四29也即油流流量调节阀,具体是通过调节阀门四29的开度实现调节流量的目的;在水流管路38上依次设置有用于开启与关闭水流管路38的阀门五30、用于将水抽取到流型发生器5的泵二18、用于测量水流管路38内温度的温度表二11、用于测量水流管路38内流量 的流量计三15和调节水流流量的阀门六31也即水流流量调节阀,具体是通过调节阀门六31的开度实现调节流量的目的,需要说明的是,本发明的阀门二27、阀门四29、阀门六31为流量调节阀。
参考图1所示,本发明在混合管路39上依次设置有控制混合管路39启闭的阀门七32、用于测量混合管路39内压力的压力表二9、用于测量混合管路39内温度的温度表三12、以及用于对不同流型、起伏管路(指实验管6处于不同位置,包括水平位置、竖直位置、以及其他任意角度位置)进行实验的实验管6和调节混合流流量的阀门八33也即混合流流量调节阀,具体是通过调节阀门八33的开度实现调节流量的目的,需要说明的是,本发明的阀门八33也为流量调节阀。
参考图1所示,本发明在油流回路41上依次设置有用于控制油流回路41启闭的阀门九34和用于将油抽取到油罐2的泵三19,在水流回路42上依次设置有用于控制水流回路42启闭的阀门十35和用于将水抽取到水罐3的泵四20,其中,混合存储罐4上部设有出气口,出气阀25设置在出气口外侧,在混合存储罐4通过重力沉降对气油水进行分离,打开出气阀25,分离出的气体从出气口的排出,分离出的油在泵三19作用下回注到油罐2,分离出的水在泵四20作用下回注到水罐3。
为研究不同温度对多相流实验的影响,在油罐2内部设置有加热器一21用于对油罐2内的油进行加热、油罐2外部设置有温度显示器一23用于显示油罐2内的油的温度,当油达到设定温度后停止加热进行保温,在水罐3内部设置有加热器二22用于对水罐3内的水进行加热,外部设置有温度显示器二24用于显示水罐3内水的温度,当水达到设定温度后停止加热进行保温。多相流经流型发生器5后得到实验所需流型,通过在不同温度下对实验所需流型的多相流在实验管6内进行实验,得到不同温度对多相流实验的影响,实验管6内的实验温度通过温度表三12读出。
为研究不同流量对多相流实验的影响,在气体管路36上设置调节气体流量 的阀门二27和用于测量气体管路36内气体流量的流量计一13,在油流管路37上设置调节油流流量的阀门四29和用于测量油流管路37内油流流量的流量计二14,在水流管路38上设置调节水流流量的阀门六31和用于测量水流管路38内水流流量的流量计三15,通过调节阀门二27、阀门四29与阀门六31分别改变流入流型发生器5的气体、油流、水流的流量,需要说明的是,此处的流量改变应理解为各相占比不变,只是总量的增减,通过不同流量的多相流在实验管6内进行实验,得到不同流量对多相流实验的影响,实验管6内的实验流量通过流量计四16读出。
为便于观察实验,本发明的流型发生器5与实验管6均由透明材料制成,其中,实验管6优选为玻璃钢透明管。
为研究不同流型对多相流实验的影响,本发明设置有流型发生器5,通过流型发生器5产生实验所需的流型,通过改变进入流型发生器5内的气、油、水三相占比得到不同流型,其中,气、油、水三相的比例可以通过分别调节阀门二27、阀门四29、阀门六31来实现,需要说明的是,此处的流量改变应理解为各相占比改变,而混合流体的总量不变。通过不同流型的多相流在实验管6内进行实验,得到不同流型对多相流实验的影响。
为研究主流与次流对多相流实验的影响,如图3所示,本发明流型发生器5设置为包括流型发生管与流型观察管,流型发生管通过法兰连接且内径相等,流型发生管包括进口直管段54、锥管导流段55、流型发生段56,进口直管段、锥管导流段55、流型发生段56为一体式结构且壁厚相等,在进口直管段54设置有主流入口51,在流型发生段56设置有次流入口52和气体入口53,次流入口52和气体入口53各有两个机构尺寸相同,且绕流型发生管的回转轴线交错分布并位于同一高度,流型观察管包括观察段57与设置于观察段57内部的流型出口58。
(1)油为主流的油、水两相流实验:
气体管路36上的各部件不工作也即处于关闭状态。油流管路37上的各部 件工作也即处于打开状态:加热器一21与温度显示器一23打开进行加热与温度显示,阀门三28与阀门四29打开,泵一17启动,温度表一10测量温度,流量计二14测量流量;水流管路38上的各部件工作也即处于打开状态:加热器二22与温度显示器二24打开,分别进行加热与温度显示,阀门五30与阀门六31打开,泵二18启动,温度表二11测量温度,流量计三15测量流量;油流管路37中的油流从主流入口51流入流型发生器5的流型发生段56,水流管路38中的水流从次流入口52和气体入口53流入流型发生段56,水流通过四个入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(2)水为主流的油、水两相流实验:
气体管路36上的各部件不工作也即处于关闭状态。油流管路37上的各部件工作也即处于打开状态:加热器一21与温度显示器一23打开进行加热与温度显示,阀门三28与阀门四29打开,泵一17启动,温度表一10测量温度,流量计二14测量流量;水流管路38上的各部件工作也即处于打开状态:加热器二22与温度显示器二24打开,分别进行加热与温度显示,阀门五30与阀门六31打开,泵二18启动,温度表二11测量温度,流量计三15测量流量;水流管路38中的水流从主流入口51流入流型发生段56,油流管路37中的油流从次流入口52和气体入口53流入流型发生段56,油流通过四个入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(3)油为主流的油、水、气三相流实验:
气体管路36上的各部件工作也即处于打开状态:空气压缩机1启动,阀门一26与阀门二27打开,空气压缩机1的气体进入带有压力表的稳压储气罐16,对罐内气体稳压同时测量出稳压值,压力表一8测量压力,流量计一13测量空气流量,其中,流量计一13为空气流量计。油流管路37上的各部件工作也即处于打开状态:加热器一21与温度显示器一23打开进行加热与温度显示,阀门三28与阀门四29打开,泵一17启动,温度表一10测量温度,流量计二14测量流量;水流管路38上的各部件工作也即处于打开状态:加热器二22与温度显示器二24打开,分别进行加热与温度显示,阀门五30与阀门六31打开,泵二18启动,温度表二11测量温度,流量计三15测量流量;油流管路37中的油流从主流入口51流入流型发生段56,水流管路38中的水流和气体管路36中的气体分别从次流入口52和气体入口53流入流型发生段56,水流与气体分别通过两个对称的入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(4)水为主流的油、水、气三相流实验:
气体管路36上的各部件工作也即处于打开状态:空气压缩机1启动,阀门一26与阀门二27打开,空气压缩机1的气体进入带有压力表的稳压储气罐16,对罐内气体稳压同时测量出稳压值,压力表一8测量压力,流量计一13测量空气流量;油流管路37上的各部件工作也即处于打开状态:加热器一21与温度显示器一23打开进行加热与温度显示,阀门三28与阀门四29打开,泵一17启动,温度表一10测量温度,流量计二14测量流量;水流管路38上的各部件工作也即处于打开状态:加热器二22与温度显示器二24打开,分别进行加热与温度显示,阀门五30与阀门六31打开,泵二18启动,温度表二11测量温 度,流量计三15测量流量;水流管路38中的水流从主流入口51流入流型发生段56,油流管路37中的油流和气体管路36中的气体分别从次流入口52和气体入口53流入流型发生段56,油流与气体分别通过两个对称的入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(5)油为主流的油、气两相流实验:
气体管路36上的各部件工作也即处于打开状态:空气压缩机1启动,阀门一26与阀门二27打开,空气压缩机1的气体进入带有压力表的稳压储气罐16,对罐内气体稳压同时测量出稳压值,压力表一8测量压力,流量计一13测量空气流量;油流管路37上的各部件工作也即处于打开状态:加热器一21与温度显示器一23打开进行加热与温度显示,阀门三28与阀门四29打开,泵一17启动,温度表一10测量温度,流量计二14测量流量;水流管路38上的各部件不工作也即处于关闭状态;油流管路37中的油流从主流入口51流入流型发生段56,气体管路36中的气体从次流入口52和气体入口53流入流型发生段56,气体通过四个入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(6)水为主流的水、气两相流实验:
气体管路36上的各部件工作也即处于打开状态:空气压缩机1启动,阀门一26与阀门二27打开,空气压缩机1的气体进入带有压力表的稳压储气罐16,对罐内气体稳压同时测量出稳压值,压力表一8测量压力,流量计一13测量空 气流量;油流管路37上的各部件不工作也即处于关闭状态;水流管路38上的各部件工作也即处于打开状态:加热器二22与温度显示器二24打开,分别进行加热与温度显示,阀门五30与阀门六31打开,泵二18启动,温度表二11测量温度,流量计三15测量流量;水流管路38中的水流从主流入口51流入流型发生段56,气体管路36中的气体从次流入口52和气体入口53流入流型发生段56,气体通过四个入口流入更容易获得均匀稳定的流型,流型在流型观察管中进行稳定后进入混合管路39;混合管路39上的各部件工作也即处于打开状态:阀门七32与阀门八33打开,压力表二9测量压力、温度表三12测量温度,油水混合液流经实验管6后进入混合存储罐4;出气阀25关闭,油流回路41与水流回路42上的各部件不工作也即处于关闭状态。
(7)油、水、气三相流分离实验:
气体管路36、油流管路37、水流管路38上的各部件均不工作也即处于关闭状态,此时混合存储罐4中不在流入多相流(两相或三相流体);先将出气阀25打开排出气体;排完空气后将油流回路41的各部件工作也即处于打开状态,此时阀门九34打开,泵三19启动,经重力沉降分离出的油在泵三19作用下回注到油罐2,油抽取完毕后将水流回路42上的各部件工作也即处于打开状态,此时阀门十35打开,泵四20启动,经重力沉降分离出的水在泵四20作用下回注到水罐3,进而完成油、水、气三相流分离与回注。
本发明的第二实施例:为完成对起伏管路进行实验研究,从而得到多相流的在起伏管路的实际运动情况,本发明的多相流实验装置还设有用于安装实验管6的实验管调节器7,如图2所示,实验管调节器7包括支架71,支架71上螺纹连接有角度调节杆72,通过转动角度调节杆72改变实验管6的安装角度,示例的,实验管6与水平面呈0°、30°、45°、60°、90°或者其他任意角度,通过对不同角度下多相流的流动状态进行实验研究,得到多相流的在起伏管路的实际运动情况,也即得到起伏管路对多相流实验的影响。具体的,角度调节杆72一端与立板73固连,上连板74、下定位板75分别与立板73固连,上连板 74上螺纹连接有高度调节杆76,高度调节杆76下端与上定位板77转动连接。需要说明的是:角度调节杆72与高度调节杆76上设有螺纹,分别与支架71、上连板74上的螺纹孔螺纹连接,高度调节杆76下端与上定位板77连接的部分未设置螺纹。通过转动高度调节杆76带动上定位板77沿立板73上下运动实现对不同管径实验管6的夹持,从而实现对不同管径多相流的实验研究,得到不同管径对多相流实验的影响。具体的,立板73的一侧面开设有滑槽,上定位板77与立板73相对一侧设置有与所述滑槽相适配的滑块,滑块与滑槽构成滑动机构,通过该滑动机构实现上定位板77相对于立板73的上下滑动。此外,下定位板75上表面与上定位板77下表面为曲率半径相等圆弧面,圆弧面的曲率半径大于被夹持实验管6的曲率半径,便于实现对不通管径实验管6的可靠加持。为防止下定位板75与上定位板77对实验管6的加持力大导致实验管6损坏,可在下定位板75上表面与上定位板77下表面设置防护软垫,防护软垫可以为橡胶垫、硅胶垫或者其他有一定弹性的软垫。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种多相流实验装置,包括空气压缩机、油罐、水罐、混合存储罐和实验管,其特征在于:所述空气压缩机、油罐、水罐分别通过气体管路、油流管路、水流管路与所述流型发生器连接,所述流型发生器通过混合管路与所述混合存储罐连接。所述气体管路上依次设置有阀门一、带有压力表的稳压储气罐、压力表一、流量计一和阀门二,所述油流管路上依次设置有阀门三、泵一、温度表一、流量计二和阀门四,所述水流管路上依次设置有阀门五、泵二、温度表二、流量计三和阀门六,在所述混合管路上依次设置有阀门七、压力表二、温度表三、实验管和阀门八,所述实验管两端通过连接软管接入混合管路,所述混合存储罐通过油流回路与油罐连接,通过水流回路与水罐连接,所述油流回路上依次设置有阀门九和泵三,所述水流回路上依次设置有阀门十和泵四。所述油罐内部设置有加热器一、外部设置有温度显示器一,所述水罐内部设置有加热器二、外部设置有温度显示器二,所述混合存储罐上设置有出气阀。
  2. 根据权利要求1所述的多相流实验装置,其特征在于:所述流型发生器与实验管均由透明材料制成。
  3. 根据权利要求1所述的多相流实验装置,其特征在于:所述混合存储罐上部设有出气口,所述出气阀设置在出气口外侧。
  4. 根据权利要求1所述的多相流实验装置,其特征在于:所述混合存储罐通过重力沉降对气油水进行分离,分离出的气体从出气口排出,分离出的油在泵三作用下回注到油罐,分离出的水在泵四作用下回注到水罐。
  5. 根据权利要求1所述的多相流实验装置,其特征在于:所述气体管路、油流管路、水流管路并联,所述油流回路与水流回路并联。
  6. 根据权利要求1所述的多相流实验装置,其特征在于:所述流型发生器包括流型发生管与流型观察管,所述流型发生管通过法兰连接且内径相等。
  7. 根据权利要求6所述的多相流实验装置,其特征在于:所述流型发生管包括进口直管段、锥管导流段、流型发生段,所述进口直管段、锥管导流段、流型发生段为一体式结构且壁厚相等,在进口直管段设置有主流入口,在流型 发生段设置有次流入口和气体入口,所述次流入口和气体入口各有两个,且绕流型发生管的回转轴线交错分布,所述流型观察管包括观察段与设置于观察段内部的流型出口。
  8. 根据权利要求1所述的多相流实验装置,其特征在于:还包括用于放置实验管的实验管调节器,所述实验管调节器包括支架,所述支架上螺纹连接有角度调节杆,所述角度调节杆一端与立板固连。所述上连板、下定位板分别与立板固连,所述上连板上螺纹连接有高度调节杆,所述高度调节杆下端与上定位板转动连接。
  9. 根据权利要求8所述的多相流实验装置,其特征在于:所述立板的一侧面开设有滑槽,所述上定位板与立板相对一侧设置有与所述滑槽相适配的滑块。
  10. 根据权利要求8和9所述的多相流实验装置,其特征在于:所述下定位板上表面与上定位板下表面为曲率半径相等圆弧面,所述圆弧面的曲率半径大于被夹持实验管的曲率半径。
PCT/CN2020/127158 2019-12-04 2020-11-06 一种多相流实验装置 WO2021109797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911229594.2 2019-12-04
CN201911229594.2A CN110849582A (zh) 2019-12-04 2019-12-04 一种多相流实验装置

Publications (1)

Publication Number Publication Date
WO2021109797A1 true WO2021109797A1 (zh) 2021-06-10

Family

ID=69607602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127158 WO2021109797A1 (zh) 2019-12-04 2020-11-06 一种多相流实验装置

Country Status (2)

Country Link
CN (1) CN110849582A (zh)
WO (1) WO2021109797A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849582A (zh) * 2019-12-04 2020-02-28 山东省科学院海洋仪器仪表研究所 一种多相流实验装置
CN114544139B (zh) * 2022-02-14 2023-08-18 中国科学院力学研究所 一种模拟深水环境的循环式油气水多相流动测试装置
CN117309653A (zh) * 2023-09-14 2023-12-29 北京科技大学 一种阵列可视多相流环路管路试验装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193185A (ja) * 1998-12-28 2000-07-14 Non-Destructive Inspection Co Ltd 音響センサ取付装置
CN201859589U (zh) * 2010-10-28 2011-06-08 东北石油大学 一种高温高压油水多相流流型观测实验装置
US7997156B1 (en) * 2007-05-15 2011-08-16 Thermaco, Inc. F.O.G. sample port
CN106352239A (zh) * 2016-10-20 2017-01-25 江苏大学 一种泵气液两相混输状态下性能测试装置
CN206787518U (zh) * 2017-05-23 2017-12-22 广州嘉诺工业技术有限公司 一种用于硬管测量的可调节定位工装
CN107727360A (zh) * 2017-11-03 2018-02-23 山东省科学院海洋仪器仪表研究所 一种流型发生器
CN108051180A (zh) * 2017-11-17 2018-05-18 中国石油大学(华东) 一种循环多相流起伏管路试验装置、应用及方法
CN109470600A (zh) * 2018-12-27 2019-03-15 西南石油大学 一种多相流测量角度可调节的实验装置
CN208818608U (zh) * 2018-09-12 2019-05-03 丁琳 一种油气水三相流流动特性测试装置
CN110849582A (zh) * 2019-12-04 2020-02-28 山东省科学院海洋仪器仪表研究所 一种多相流实验装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193185A (ja) * 1998-12-28 2000-07-14 Non-Destructive Inspection Co Ltd 音響センサ取付装置
US7997156B1 (en) * 2007-05-15 2011-08-16 Thermaco, Inc. F.O.G. sample port
CN201859589U (zh) * 2010-10-28 2011-06-08 东北石油大学 一种高温高压油水多相流流型观测实验装置
CN106352239A (zh) * 2016-10-20 2017-01-25 江苏大学 一种泵气液两相混输状态下性能测试装置
CN206787518U (zh) * 2017-05-23 2017-12-22 广州嘉诺工业技术有限公司 一种用于硬管测量的可调节定位工装
CN107727360A (zh) * 2017-11-03 2018-02-23 山东省科学院海洋仪器仪表研究所 一种流型发生器
CN108051180A (zh) * 2017-11-17 2018-05-18 中国石油大学(华东) 一种循环多相流起伏管路试验装置、应用及方法
CN208818608U (zh) * 2018-09-12 2019-05-03 丁琳 一种油气水三相流流动特性测试装置
CN109470600A (zh) * 2018-12-27 2019-03-15 西南石油大学 一种多相流测量角度可调节的实验装置
CN110849582A (zh) * 2019-12-04 2020-02-28 山东省科学院海洋仪器仪表研究所 一种多相流实验装置

Also Published As

Publication number Publication date
CN110849582A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021109797A1 (zh) 一种多相流实验装置
CN102590028B (zh) 一种多功能实验流体环道实验装置
CN104234708B (zh) 一种多功能井筒油气水多相流模拟实验装置
CN110160902B (zh) 可拆卸式环道式气液固冲蚀磨损联合试验装置
CN210639042U (zh) 一种可拆卸式环道式气液固冲蚀磨损联合试验装置
RU2641337C1 (ru) Стенд для моделирования процессов течения наклонно-направленных газожидкостных потоков
CN109403894A (zh) 一种钻井用早期溢流和漏失监测系统
CN108917861A (zh) 大口径调速运行泵的旁路管流量测量装置及测量方法
CN113218801A (zh) 用于充填料浆输送管道磨损测试的试验装置及其试验方法
CN110553958B (zh) 海底混输管道蜡沉积模拟实验装置及其操作方法
Arabi et al. Experimental investigation of sudden expansion's influence on the hydrodynamic behavior of different sub-regimes of intermittent flow
CN205138983U (zh) 一种油井管屈曲管柱的高温腐蚀和冲蚀试验装置
Viana et al. Liquid entrainment in gas at high pressure-Part 1: Experimental approach and initial testing
CN109030300B (zh) 一种井筒与管道小粒径砂沉积实验装置及方法
CN111322036B (zh) 气井自适应调流控水装置及其设计方法
CN203908642U (zh) 用于科式质量流量计油水两相流和油气水三相流的实验装置
Riglin Performance characteristics of airlift pumps with vortex induced by tangential fluid injection
Mohamed et al. Experimental investigation of gas-liquid separation with a new combined impacting junction
CN106289719B (zh) 一种闭环式多相混合流体模拟测试装置
CN110805423A (zh) 一种全程可视化自支撑压裂工艺研究装置
US11225979B2 (en) Multiphase flow loop for pump performance evaluation
CN105318924B (zh) 气液/汽液两相流流量测量系统和测量方法
CN105444846B (zh) 一种测量文丘里溢流量的实验装置
CN209745461U (zh) 一种一体式双差压取压的偏心孔板气液两相流量测量装置
CN109138979A (zh) 等流量分支路计量油气水井产量的方法和计量设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895672

Country of ref document: EP

Kind code of ref document: A1