WO2021109781A1 - 一种投影光学系统 - Google Patents

一种投影光学系统 Download PDF

Info

Publication number
WO2021109781A1
WO2021109781A1 PCT/CN2020/126545 CN2020126545W WO2021109781A1 WO 2021109781 A1 WO2021109781 A1 WO 2021109781A1 CN 2020126545 W CN2020126545 W CN 2020126545W WO 2021109781 A1 WO2021109781 A1 WO 2021109781A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
prism
splitting
combining
Prior art date
Application number
PCT/CN2020/126545
Other languages
English (en)
French (fr)
Inventor
杜鹏
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021109781A1 publication Critical patent/WO2021109781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • This application relates to the field of optical technology, and in particular to a projection optical system.
  • the two-chip optical engine can achieve a 12-bit projection gray scale, and can reduce the cost; compared with the single-chip engineering projector, the two-chip optical engine can achieve Higher brightness and grayscale. Therefore, for the dual-chip optical engine system, only by achieving higher optical efficiency can its advantages be realized.
  • the inventor of the present application found that, in the prior art, the incident light in the two-chip optical engine has a spectrum loss during the light splitting and combining process, and the light energy utilization rate is low.
  • the main technical problem solved by the present application is to provide a projection optical system that can reduce the light loss during light splitting and combining, so as to improve the output brightness of the projection optical system.
  • the projection optical system includes: a light source, a light splitting and combining device, a first spatial light modulator, and a second spatial light modulator; the light source is used to emit an illumination beam , The illumination beam includes a plurality of sub-beams; the light splitting and combining device includes a light splitting surface and a light combining surface, the multiple sub-beams are incident on the light splitting surface at different angles of incidence, and the light splitting surface is used to connect each light splitting surface to the light splitting surface.
  • the sub-beam is divided into a first sub-beam and a second sub-beam
  • the first spatial light modulator is used for modulating the first sub-beam emitted from the light splitting surface
  • the second spatial light modulator is used for
  • the second sub-beam emitted from the light splitting surface is modulated
  • the light combining surface is used to modulate the first sub-beam and the second spatial light emitted after modulating the first spatial light modulator
  • the second sub-beam after being modulated by the device is combined into an outgoing beam, wherein the first sub-beam and the second sub-beam are both reflected from the beam splitting surface and then incident on the light combining surface after an odd number of reflections.
  • the difference between the angle of incidence of any one of the sub-beams to the beam splitting surface and the angle of incidence of the first sub-beam corresponding to the sub-beams to the light combining surface is less than a preset threshold ,
  • the difference between the incident angle of any one of the sub-beams to the light splitting surface and the incident angle of the second sub-beam corresponding to the sub-beams to the light combining surface is smaller than the preset The threshold.
  • the light splitting surface and the light combining surface are located on the same plane.
  • the first spatial light modulator and the second spatial light modulator are both reflective spatial light modulators.
  • the light splitting and combining device includes a first guiding component and a second guiding component;
  • the first guiding component is used to guide the first sub-beam emitted from the light splitting surface to the A first spatial light modulator, and guide the first sub-beam modulated by the first spatial light modulator to the light combining surface after N reflections, where M is a positive integer greater than or equal to 1 , N is a positive integer greater than or equal to 1, and the sum of M and N is an even number greater than or equal to 2;
  • the second guiding component is used to guide the second sub-beam emitted from the beam splitting surface after X times of reflection To the second spatial light modulator, and guide the second sub-beam emitted from the second spatial light modulator to the light combining surface after Y times of reflection, where X is greater than or equal to 1 Y is a positive integer greater than or equal to 1, and the sum of X and Y is an even number greater than or equal to 2.
  • first guide component and the second guide component are adjacent to each other, and the light splitting surface and the light combining surface are located on a plane where the first guide component and the second guide component are adjacent to each other.
  • the first guide component includes a first prism and a second prism that are adjacently arranged, and the second guide component includes a third prism and a fourth prism that are adjacently arranged; the first prism and the third prism are similar to each other.
  • the adjacent surface is the dichroic surface, the adjacent surface of the second prism and the fourth prism is the light combining surface; the adjacent surface of the first prism and the second prism is The first surface, the second prism further includes a second surface; the adjacent surface of the triangular prism and the fourth prism is the third surface, and the fourth prism further includes a fourth surface; from the dichroic surface
  • the outgoing first sub-beam is reflected by the first surface and then enters the first spatial light modulator, and the outgoing first sub-beam after being modulated by the first spatial light modulator passes through the second
  • the surface is reflected and then enters the light combining surface; the second sub-beam emitted from the light splitting surface is reflected by the third surface and then enters the second spatial light modulator, and the second spatial light modulates The second sub-beam emitted by the modulator is reflected by the fourth surface and then enters the light combining surface.
  • the light splitting and light combining device further includes a fifth prism, the fifth prism is arranged adjacent to the second prism, and the fifth prism is used to guide the emergent light beam to exit.
  • the light splitting and combining device further includes a light splitting member, the light splitting member includes the light splitting surface, the first guide assembly includes a sixth prism and a seventh prism arranged adjacently, and the second guide assembly includes a phase
  • the eighth prism and the ninth prism are arranged adjacently; the adjacent surface of the sixth prism and the eighth prism is the light combining surface; the adjacent surface of the sixth prism and the seventh prism Is the fifth surface, the seventh prism further includes a sixth surface, the adjacent surface of the eight prism and the ninth prism is the seventh surface, and the ninth prism further includes an eighth surface;
  • the first sub-beam emitted from the beam splitting surface is reflected by the fifth surface and then enters the first spatial light modulator, and the first sub-beam emitted by the first spatial light modulator is modulated by the first spatial light modulator.
  • the sixth surface is reflected and then enters the light combining surface; the second sub-beam emitted from the light splitting surface is reflected by the seventh surface and then enters the second spatial light modulator, and the second space The second sub-beam emitted by the light modulator is reflected by the eighth surface and then enters the light combining surface.
  • the light splitting and light combining device further includes a tenth prism, the tenth prism is arranged adjacent to the seventh prism, and the tenth prism is used to guide the outgoing light beam to exit.
  • the light splitting surface divides each of the sub-beams into the first sub-beam and the second sub-beam according to wavelength characteristics; the light combining surface modulates the first spatial light according to the wavelength characteristics
  • the first sub-beam modulated by the device and the second sub-beam modulated by the second spatial light modulator combine the outgoing beam, and the first sub-beam and the second sub-beam are The wavelength range is different.
  • the illumination beam emitted by the light source is polarized light.
  • the electric field direction of the illumination beam is perpendicular or parallel to the direction of the normal plane of the light splitting surface and the light combining surface.
  • the beneficial effects of the embodiments of the present application are: in the projection optical system, the light source emits an illuminating beam, the illuminating beam includes multiple sub-beams, the multiple sub-beams are incident on the beam splitting surface at different angles of incidence, and the beam splitting surface divides each sub beam into the first sub-beam
  • the light beam and the second sub-beam are used to split the illuminating light beam.
  • the first sub-beam and the second sub-beam are both reflected on the light combining surface after being emitted from the beam splitting surface.
  • the incident angle of the surface is equal to or substantially the same as the incident angle of the first sub-beam and the second sub-beam corresponding to the sub-beam to the light combining surface.
  • the transmittance of the illumination beam at the combining and splitting points is Same or approximately the same, thereby reducing the light energy loss of the illuminating beam at the light splitting and combining light.
  • the DCI-P3 color gamut standard is reached, more lasers can be added, which can increase the output brightness of the projection optical system.
  • Fig. 1 is a schematic structural diagram of a first embodiment of a projection optical system according to the present application
  • Figure 2 is a color gamut coordinate diagram of the projection optical system of the present application.
  • Fig. 3 is a schematic structural diagram of a second embodiment of the projection optical system of the present application.
  • FIG. 4 is a schematic structural diagram of a third embodiment of the projection optical system of the present application.
  • FIG. 5 is a graph of coating curves of an embodiment of the light splitting surface and the light combining surface in the projection optical system of the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a projection optical system according to the present application.
  • the projection optical system of this embodiment includes: a light source 10, a light splitting and combining device 30, a first spatial light modulator 41, and a second spatial light modulator 42.
  • the light source 10 is used to emit an illuminating light beam, which includes a first light and a second light in time series.
  • the first light includes a first primary color light and a second primary color light, for example, the first light is yellow light, the first primary color light is red light, and the second primary color light is green light; and the second light includes third primary color light.
  • the third primary color light is blue light.
  • the combined light of the first light and the second light includes light of three primary colors.
  • the light source 10 may include an excitation light source and a wavelength conversion device.
  • the excitation light source emits excitation light.
  • the excitation light source may be a solid-state light source such as a laser diode or a light emitting diode.
  • the wavelength conversion device includes at least a first section and a second section.
  • the section is provided with a wavelength conversion material layer for converting the excitation light into a received laser
  • the second section is a reflection layer or a transmission layer for reflecting or transmitting the excitation light.
  • the first section and the second section of the wavelength conversion device are periodically arranged on the transmission path of the excitation light in sequence, so that the wavelength conversion device emits the excitation light and the received laser light in time series.
  • the received laser light is the first light, It is yellow fluorescence
  • the excitation light is the second light, and it is blue laser light.
  • the illumination beam includes a plurality of sub-beams. When the illuminating beam is incident on the light splitting and combining device 30, there are multiple incident angles. In the embodiment of the present invention, a small beam of light with the same incident angle is used as a sub-beam.
  • the light splitting and combining device 30 is used to compensate the optical path difference of the illumination beam, total reflection of the illumination beam, color separation, and synthesis of image light.
  • the light-splitting and combining device 30 includes a light-splitting surface S1 and a light-combining surface S2.
  • the multiple sub-beams have different incident angles to the light-splitting surface S1.
  • the light-splitting surface S1 is used to divide each sub-beam into a first sub-beam and a second sub-beam.
  • the first sub-beam includes light of the first primary color
  • the second sub-beam includes light of the second primary color.
  • the first sub-beam includes red light and the second sub-beam includes green light.
  • the first sub-beam emitted from the beam splitting surface S1 enters the first spatial light modulator 41, and the first spatial light modulator 41 is used to modulate the first sub-beam; the second sub-beam emitted from the beam splitting surface S1 enters the second space
  • the light modulator 42 and the second spatial light modulator 42 modulate the second sub-beam.
  • the S2 light combining surface is used to combine the first sub-beam modulated by the first spatial light modulator 41 and the second sub-beam modulated by the second spatial light modulator 42 to synthesize the outgoing beam, wherein the first sub-beam and the second sub-beam After the two sub-beams exit from the light splitting surface S1, they both undergo odd reflections and then enter the light combining surface S2.
  • the first spatial light modulator 41 and the second spatial light modulator 42 are mirror-symmetrical with respect to the light combining surface S2.
  • the light splitting surface S1 and the light combining surface S2 are located on the same plane.
  • the first spatial light modulator 41 and the second spatial light modulator 42 may be reflective spatial light modulators, for example, digital micromirror devices (Digtial Micromirror Devices, DMD).
  • the first spatial light modulator 41 and the second spatial light modulator 42 may also be reflective liquid crystal panels. The first sub-beam and the second sub-beam are respectively reflected by the first spatial light modulator 41 and the second spatial light modulator 42 and then exit.
  • the first sub-beam exits from the beam splitting surface S1 and then enters the first spatial light modulator 41 after at least one reflection
  • the second sub-beam exits the beam splitting surface S1 and enters the second spatial light modulator 41 after at least one reflection.
  • Spatial light modulator 42 Spatial light modulator 42.
  • the first sub-beam carrying image information that is modulated by the first spatial light modulator 41 is incident on the light combining surface S2 after at least one reflection, and the second spatial light modulator 42 is modulated and emitted.
  • the second sub-beam carrying image information is also incident on the light combining surface S2 after at least one reflection, and the light combining surface S2 combines the first sub-beam and the second sub-beam into an outgoing light beam.
  • the first sub-beam exits from the beam splitting surface S1 after being reflected at least once and then enters the first spatial light modulator 41, and the second sub-beam exits from the beam splitting surface S1 and then enters the first spatial light modulator 41 after at least one reflection.
  • Two spatial light modulator 42 Moreover, the first sub-beam carrying image information that is modulated by the first spatial light modulator 41 is incident on the light combining surface S2 after at least one reflection, and the second spatial light modulator 42 modulates and emits the first sub-beam that carries image information.
  • the two sub-beams are also incident on the light combining surface S2 after at least one reflection, and the light combining surface S2 combines the first sub-beam and the second sub-beam into an outgoing light beam.
  • the light splitting surface S1 and the light combining surface S2 are usually coated devices, their light transmittance characteristics are closely related to the angle of light incident on the light splitting surface S1 and the light combining surface S2. The difference in incident angle easily leads to inconsistent light transmittance characteristics, which results in more light loss.
  • the first sub-beam and the second sub-beam are emitted from the dichroic surface S1 and then enter the light-combining surface S2 after an odd number of reflections, and any one of the sub-beams in the illumination beam reaches the dichroic surface S1.
  • the difference between the incident angle of the sub-beam and the incident angle of the first sub-beam to the light combining surface S2 corresponding to the sub-beam is less than the preset threshold.
  • the incident angle of any one of the sub-beams in the illumination beam to the light-splitting surface S1 is the same as the second corresponding to the sub-beam.
  • the difference of the incident angles of the sub-beams to the light combining surface S2 is also smaller than the preset threshold.
  • the preset threshold can be 0 degree, 0.5 degree, 1 degree, 1.5 degree, 2 degree, etc., which can be specifically set according to actual needs.
  • the preset threshold value is 0 degrees, which can be understood as the incident angle of each sub-beam on the beam splitting surface S1 and the incident angle of the first sub-beam and the second sub-beam corresponding to the sub-beam on the light combining surface S2 Equal or substantially equal.
  • the multiple sub-beams include a first edge beam b1 and a second edge beam b2.
  • the incident angle of the first edge beam b1 on the beam splitting surface S1 is smaller than that of the second edge beam b2 on the beam splitting surface S1. That is, the first edge beam b1 corresponds to a small incident angle on the beam splitting surface S1, and the second edge beam b2 corresponds to a large incident angle on the beam splitting surface S1.
  • the incident angle of the first edge beam b1 to the light combining surface S2 still corresponds to a small incident angle.
  • the incident angle of the second edge beam b2 to the light combining surface S2 still corresponds to a large incident angle.
  • the transmittance characteristics of any sub beam at the beam splitting surface S1 and the light combining surface S2 can be kept consistent, thereby reducing light With the loss of energy, more lasers can be added to achieve higher output brightness of the system.
  • the light splitting and combining device 30 includes a first guide assembly and a second guide assembly.
  • the first guide component and the second guide component are adjacent to each other, and the light splitting surface S1 and the light combining surface S2 are located on the plane where the first guide component and the second guide component are adjacent to each other, namely Among the adjacent surfaces of the first guide assembly and the second guide assembly, one part is provided with a light splitting surface S1, and the other part is provided with a light combining surface S2.
  • the first guiding component is used to guide the first sub-beam emitted from the beam splitting surface S1 to the first spatial light modulator 41, and then reflect the first sub-beam modulated by the first spatial light modulator 41 to the light combining surface S2 .
  • the second guiding component is used to guide the second sub-beam emitted from the beam splitting surface S1 to the second spatial light modulator 42, and then to reflect the second sub-beam modulated by the second spatial light modulator 42 to the light combining surface S2 , And the optical path of each sub-beam from the light splitting surface S1 to the light combining surface S2 is equal or close.
  • the incident angle of the illuminating light beam to the light splitting surface S1 is related to the relative position of the light source 10 and the light splitting and combining device 30.
  • the size of the incident angle of any sub-beam in the illumination beam to the light splitting surface S1 can be controlled.
  • the light splitting surface S1 and the light combining surface S2 are on the same plane.
  • the first sub-beam and the second sub-beam corresponding to the sub-beam to the light combining surface S2 the first sub-beam and After exiting from the light splitting surface, the second sub-beams are incident on the light combining surface after an odd number of reflections.
  • the first guiding component needs to guide the first sub-beam emitted from the light splitting surface S1 to the first spatial light modulator 41 after M reflections, and then modulate the first spatial light modulator 41 to emit the image carrying the image.
  • the first sub-beam of information is guided to the light combining surface S2 after being reflected N times.
  • M is a positive integer greater than or equal to 1
  • N is a positive integer greater than or equal to 1
  • the sum of M and N is an even number greater than or equal to 2, and so on.
  • the second guide component needs to guide the second sub-beam emitted from the beam splitting surface S1 to the second spatial light modulator 42 after X times of reflection, and modulate the second spatial light modulator 42 to emit the second sub-beam carrying image information.
  • the two sub-beams are guided to the light combining surface S2 after being reflected Y times.
  • X is a positive integer greater than or equal to 1
  • Y is a positive integer greater than or equal to 1
  • the sum of X and Y is an even number greater than or equal to 2.
  • the first guide assembly includes a first prism 31 and a second prism 32 that are arranged adjacent to each other.
  • the adjacent surface of the first prism 31 and the second prism 32 is the first surface f1, and the first surface f1 totally reflects the light whose incident angle is greater than the first threshold.
  • the second prism 32 further includes a second surface f2, and the second surface f2 totally reflects the light whose incident angle is greater than the second threshold.
  • an air gap can be provided between the surfaces adjacent to the first prism 31 and the second prism 32, so that the first surface f1 realizes the total reflection function, or on the surface adjacent to the first prism 31 and the second prism 32
  • the adhesive glue with a refractive index smaller than that of the prism is coated between, so that the first surface f1 realizes the function of total reflection.
  • the second guide assembly includes a third prism 33 and a fourth prism 34 arranged adjacently.
  • the adjacent surface of the third prism 33 and the fourth prism 34 is the third surface f3, and the third surface f3 is for light rays whose incident angle is greater than the third threshold. Total reflection.
  • the fourth prism 34 further includes a fourth surface f4, and the fourth surface f4 totally reflects the light whose incident angle is greater than the fourth threshold.
  • an air gap can be provided between the surfaces adjacent to the third prism 33 and the fourth prism 34, so that the third surface f3 realizes the total reflection function, or between the surfaces adjacent to the third prism 33 and the fourth prism 34 Coating adhesive with a refractive index smaller than that of the prism makes the third surface f3 realize the function of total reflection.
  • the adjacent surface of the first prism 31 and the third prism 33 is the light splitting surface S1
  • the adjacent surface of the second prism 32 and the fourth prism 34 is the light combining surface S2.
  • the first prism 31 guides the illuminating beam to the beam splitting surface S1, and the beam splitting surface S1 divides each sub-beam into a second sub-beam that is transmitted and a first sub-beam that is reflected.
  • the first sub-beam is reflected by the first surface f1 and then enters the first spatial light modulator 41.
  • the first sub-beam modulated by the first spatial light modulator 41 is guided to the first prism 31 and the second prism 32.
  • the second surface f2 is incident on the light combining surface S2 after being reflected by the second surface f2.
  • the second sub-beam is reflected by the third surface f3 and enters the second spatial light modulator 42, and the second sub-beam modulated by the second spatial light modulator 42 is guided to the fourth surface by the third prism 33 and the fourth prism 34 f4 is incident on the light combining surface S2 after being reflected by the fourth surface f4.
  • the light combining surface S2 combines the first sub-beam and the second sub-beam into an outgoing light beam, and the outgoing light beam is guided by the second prism 32 and then exits.
  • the incident angle of any one of the sub-beams of the illumination beam on the light splitting surface S1 is equal to or substantially equal to the incident angles of the first sub-beam and the second sub-beam corresponding to the sub-beam to the light combining surface S2.
  • the transmittance curves of the illumination beam at the light splitting and light combining points are basically the same, so that no loss of light energy can be achieved.
  • the beam splitting surface S1 is disposed on the adjacent surface of the first prism 31 and the third prism 33, and is used to divide the illumination beam into a first sub-beam and a second sub-beam according to wavelength characteristics, and the first sub-beam
  • the wavelength ranges of the light beam and the second sub-beam are different, for example, the first sub-beam is red light and the second sub-beam is green light.
  • the light splitting surface S1 can be a light splitting plate or other optical elements that can split any sub-beam into a first sub-beam and a second sub-beam, such as a light-splitting coating layer.
  • the light combining surface S2 is arranged on the adjacent surface of the second prism 32 and the fourth prism 34, and is used for combining the modulated first sub-beam and the second sub-beam into an outgoing light beam and then emitting it.
  • the light combining surface S2 may be a wavelength light combining plate or other optical elements that can combine the first sub-beam emitted by the first spatial light modulator 41 and the second sub-beam emitted by the second spatial light modulator 42 into the output beam. , Such as the combined light coating layer.
  • the first prism 31 may be a prism of any shape including the above-mentioned dichroic surface S1 and the first surface f1, such as a prism in a quadrangular prism shape, a prism in a pentagonal prism shape, and the like.
  • the first prism 31 is a special-shaped prism in the shape of a pentagonal prism.
  • the first prism includes a light-splitting surface S1, a first surface f1, and a beam parallel to the first spatial light modulator 41.
  • the first surface f1 and the third side surface are opposite to each other, and the included angle between the first side surface 311 and the second side surface 312 is an obtuse angle.
  • the second prism 32 may be a prism of any shape including the first surface f1, the second surface f2, and the light combining surface S2, such as a triangular prism shape prism, a quadrangular prism shape prism, and the like.
  • the third prism 33 may be a prism of any shape including the above-mentioned dichroic surface S1 and the third surface f3, such as a prism in the shape of a triangular prism.
  • the fourth prism 34 may be a prism of any shape including the fourth surface f4 and the light combining surface S2, such as a prism in the shape of a triangular prism.
  • the light splitting and light combining device 30 further includes a fifth prism 35, the fifth prism 35 is arranged adjacent to the second prism 32, and the fifth prism 35 is used to guide the emitted light beam to exit.
  • the fifth prism 35 includes a ninth surface adjacent to the second prism 32 and a tenth surface perpendicular to the main optical axis of the outgoing light beam.
  • the fifth prism 35 may be a prism of any shape including the ninth surface and the tenth surface, such as a prism in the shape of a triangular prism.
  • the second prism 32 and the fifth prism 35 can also be made into an integral prism.
  • the inventor of the present application discovered in the long-term research and development process that, in the prior art, the incident light in the two-chip optical engine has a spectrum loss during the light splitting and combining process, so the separated red fluorescence and green fluorescence are more colored Well, it is close to the standard color coordinates of DCI-P3, so the number of red and green lasers added is limited, so that although the whole machine can achieve the color gamut standard of the projector, the brightness that can be achieved is limited.
  • the colors of the separated red phosphor (RP) and green phosphor (GP) will be relatively poor.
  • the covered color gamut is relatively small, as shown in Figure 2, where x and y are chromaticity coordinates.
  • x and y are chromaticity coordinates.
  • RL red lasers
  • GL green lasers
  • the projection optical system of this embodiment can achieve higher output brightness when implementing the same standard color gamut.
  • the projection optical system further includes an optical relay system 20, which is located between the light source 10 and the light splitting and combining device 30, so that the illuminating light beam can be condensed to a predetermined range.
  • the optical relay system 20 is used for relaying the light emitted from the light source 10 to obtain an illuminating light beam for entering the light splitting and combining device 30.
  • the projection optical system further includes a projection objective lens 50, and the projection objective lens 50 is arranged opposite to the light combining surface S2.
  • the light combining surface S2 combines the modulated first sub-beam and the second sub-beam into an outgoing beam and then outgoing to the projection objective lens 50.
  • the light source in the projection optical system of the present application emits an illuminating beam.
  • the illuminating beam includes multiple sub-beams.
  • the multiple sub-beams have different incident angles to the beam splitting surface.
  • the beam splitting surface S1 divides each sub-beam into a first sub-beam.
  • the second sub-beam to split the illuminating beam wherein the first sub-beam and the second sub-beam are emitted from the beam splitting surface S1 after being reflected by an odd number of times before being incident on the light combining surface S2, so that any one of the sub-beams
  • the incident angle of the beam splitting surface S1 is equal to or substantially equal to the incident angle of the first sub-beam and the second sub-beam corresponding to the sub-beam to the light combining surface S2.
  • the transmittance is the same or approximately the same, thereby reducing the light energy loss of the illuminating beam at the light splitting and combining light.
  • FIG. 3 is a schematic structural diagram of a second embodiment of the projection optical system of the present application.
  • the light splitting and combining device 30 in this embodiment further includes a light splitting member, and the light splitting member includes a light splitting surface S1.
  • the adjacent surface of the first guide assembly and the second guide assembly is the light combining surface S2, wherein the light splitting member and the light combining surface are on the same plane.
  • the light splitting element may be a dichroic plate.
  • the beam splitter is used for dividing the illumination beam into a first sub-beam and a second sub-beam according to the wavelength characteristics.
  • the adjacent surface of the first guide component and the second guide component is the light combining surface S2.
  • the first guiding component is used to guide the first sub-beam emitted from the beam splitting surface S1 to the first spatial light modulator 41, and then to guide the first sub-beam modulated by the first spatial light modulator 41 to the light combining surface S2 .
  • the second guiding component is used to guide the second sub-beam emitted from the beam splitting surface S1 to the second spatial light modulator 42, and then to guide the second sub-beam modulated by the second spatial light modulator 42 to the light combining surface S2 .
  • the incident angle of the illuminating light beam to the beam splitter is related to the relative position of the light source 10 and the beam splitter.
  • the incident angle of any sub-beam in the illumination beam to the beam splitting surface S1 can be controlled.
  • the first guide assembly includes a sixth prism 36 and a seventh prism 37 that are adjacently arranged.
  • the adjacent surface of the sixth prism 36 and the seventh prism 37 is the fifth surface f5.
  • f5 totally reflects the light whose incident angle is greater than the fifth threshold.
  • the seventh prism 37 further includes a sixth surface f6, and the sixth surface f6 totally reflects the light whose incident angle is greater than the sixth threshold.
  • an air gap can be provided between the surfaces adjacent to the sixth prism 36 and the seventh prism 37, so that the fifth surface f5 realizes the total reflection function, or on the surface adjacent to the sixth prism 36 and the seventh prism 37
  • An air gap is arranged between them to coat adhesive glue with a refractive index smaller than that of the prism, so that the fifth surface f5 realizes the total reflection function.
  • the second guide assembly includes an eighth prism 38 and a ninth prism 39 arranged adjacently.
  • the adjacent surface of the eighth prism 38 and the ninth prism 39 is the seventh surface f7, and the incident angle of the seventh surface f7 is greater than the seventh threshold.
  • the light is totally reflected.
  • the ninth prism 39 also includes an eighth surface f8, and the eighth surface f8 totally reflects light whose incident angle is greater than the eighth threshold.
  • an air gap can be provided between the surfaces adjacent to the eighth prism 38 and the ninth prism 39 to enable the seventh surface f7 to achieve the total reflection function, or it can be on the surface adjacent to the eighth prism 38 and the ninth prism 39
  • the adhesive glue with a refractive index smaller than that of the prism is coated between, so that the seventh surface f7 realizes the function of total reflection.
  • the adjacent surface of the sixth prism 36 and the eighth prism 38 is the light combining surface.
  • the beam splitter divides each sub-beam into a transmitted second sub-beam and a reflected first sub-beam.
  • the first sub-beam emitted from the beam splitting surface S1 is reflected by the fifth surface f5 and then enters the first spatial light modulator 41.
  • the first sub-beam emitted by the first spatial light modulator 41 is modulated by the sixth prism 36 and
  • the seventh prism 37 is guided to the sixth surface f6, reflected by the sixth surface f6, and then incident on the light combining surface S2.
  • the second sub-beam emitted from the dichroic surface S1 is reflected by the seventh surface f7 and then enters the second spatial light modulator 42.
  • the second sub-beam emitted by the second spatial light modulator 42 is modulated by the eighth prism 38 and the ninth prism 38.
  • the prism 39 is guided to the eighth surface f8, reflected by the eighth surface f8, and incident on the light combining surface S2.
  • the light combining surface S2 combines the first sub-beam and the second sub-beam into an outgoing light beam, and the outgoing light beam is guided by the seventh prism 37 and then exits.
  • both the first sub-beam and the second sub-beam are incident on the light combining surface S2 after being reflected three times.
  • the incident angle of any one of the sub-beams of the illumination beam on the light splitting surface S1 is equal to or substantially the same as the incident angles of the first sub-beam and the second sub-beam corresponding to the sub-beam to the light combining surface S2.
  • the coating characteristics of the light splitting surface S1 and the light combining surface S2 can be consistent during coating, so that the transmittance curves of the illuminating beam during light splitting and light combining are basically the same, so that no loss of light energy can be achieved.
  • the light combining surface S2 is disposed on the adjacent surface of the seventh prism 37 and the eighth prism 38, and is used to combine the modulated first sub-beam and the second sub-beam into an outgoing beam and then outgoing.
  • the light combining surface S2 may be a wavelength light combining plate or other optical elements that can combine the first sub-beam emitted by the first spatial light modulator 41 and the second sub-beam emitted by the second spatial light modulator 42 into the output beam. , Such as the combined light coating layer.
  • the sixth prism 36 may be a prism of any shape including the fifth surface f5, such as a prism in the shape of a triangular prism.
  • the seventh prism 37 may be a prism of any shape including the fifth surface f5, the sixth surface f6 and the light combining surface S2, such as a triangular prism shape prism, a quadrangular prism shape prism, and the like.
  • the eighth prism 38 may be a prism of any shape including the seventh surface f7, such as a prism in the shape of a triangular prism.
  • the ninth prism 39 may be a prism of any shape including the eighth surface f8 and the light combining surface S2, such as a prism in the shape of a triangular prism.
  • the light splitting and combining device 30 further includes a tenth prism 310, the tenth prism 310 is arranged adjacent to the seventh prism 37, and the tenth prism 310 is used to guide the outgoing light beam to exit.
  • the tenth prism 310 includes an eleventh surface adjacent to the seventh prism 37 and a twelfth surface perpendicular to the main optical axis of the outgoing light beam.
  • the fifth prism 35 may be a prism of any shape including the eleventh surface and the twelfth surface, such as a prism in the shape of a triangular prism.
  • the seventh prism 37 and the tenth prism 310 can also be made into an integral prism.
  • the beam splitting surface S1 in the beam splitter is used to split the illumination beam, and in this embodiment, the incident angle of any sub-beam to the beam splitting surface S1 and the first sub-beam and second sub-beam corresponding to the sub-beam are also used in this embodiment.
  • the incident angles of the sub-beams to the light combining surface S2 are equal or substantially equal. Therefore, the transmittance curves of the illuminating beam at the light splitting and light combining points can be basically the same, thereby reducing the light energy loss after light splitting and combining light.
  • FIG. 4 is a schematic structural diagram of a third embodiment of the projection optical system of the present application.
  • the light source 10 in this embodiment can be set as a polarized illumination light source, and the illumination beam emitted by the light source 10 For polarized light.
  • the illumination beam is linearly polarized light.
  • the projection optical system of this embodiment can also achieve non-destructive light effects when splitting and combining polarized illumination light.
  • the transmittance curve of the dielectric film for S light and P light is different. Even if the incident angle remains the same, the transmittance The curves are also separated from each other. For example, as shown in Figure 5, P25 is the transmittance curve when the P light incident angle is 25 degrees, S25 is the transmittance curve when the S light incident angle is 25 degrees; P13 is the transmittance curve when the P light incident angle is 13 degrees.
  • Transmittance curve S13 is the transmittance curve when the incident angle of S light is 13 degrees; P1 is the transmittance curve when the incident angle of P light is 1 degree, and S1 is the transmittance when the incident angle of S light is 1 degree. curve. It can be seen from the figure that when the incident angle is the same, the transmittance curves of P light and S light are still separated, but as the incident angle decreases, the degree of separation of the transmittance curves of P light and S light decreases.
  • the polarized illumination light beam emitted by it is transmitted, split, and fully distributed in the same plane (vertical or parallel to the direction of the electric field) in the light splitting and combining device 30.
  • the electric field direction of the illumination beam emitted by the polarized illumination light source is perpendicular or parallel to the direction of the normal plane of the light splitting surface S1 and the light combining surface S2, so the polarization state does not change during light splitting and combining.
  • the light splitting and combining device 30 is used for light splitting and light combining, the polarization state and the incident angle can be kept consistent, so that the lossless light splitting and combining of the polarized illumination light can be realized.
  • a polarized illumination light source is used, which can achieve non-destructive light splitting and light combining and high 3D efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影光学系统,包括:光源(10),用于出射照明光束,照明光束包括多个子光束;分光合光装置(30),包括分光面(S1)和合光面(S2),分光面(S1)用于将每个子光束分成第一子光束和第二子光束,第一子光束和第二子光束自分光面(S1)出射后均经过奇数次反射后入射至合光面(S2),其中,照明光束中任意一个子光束到分光面(S1)的入射角和该子光束对应的第一子光束和第二子光束到合光面(S2)的入射角相等或者基本相等。由此减少照明光束在分光合光时的光能损失。

Description

一种投影光学系统 技术领域
本申请涉及光学技术领域,特别是涉及一种投影光学系统。
背景技术
在中低端影院放映机和高端工程投影机领域,用户对双片式光学引擎有很大的需求。与三片式的高端放映机相比较,双片式光学引擎在能够实现维持12bit的放映灰阶基础上,又可以减少成本;与单片式的工程投影机相比较,双片式光学引擎能够实现更高的亮度和灰阶。因此对于双片式光学引擎系统而言,只有实现较高的光学效率,才能体现出其优势。
本申请的发明人在长期的研发过程中发现,现有的技术中,双片式光学引擎中的入射光在分光合光过程有光谱的损失,光能量利用率较低。
发明内容
本申请主要解决的技术问题是提供一种投影光学系统,能够减少分光合光时的光损失,从而能够提高投影光学系统的输出亮度。
为解决上述技术问题,本申请采用的一个技术方案是:该投影光学系统包括:光源、分光合光装置、第一空间光调制器、第二空间光调制器;所述光源用于出射照明光束,所述照明光束包括多个子光束;所述分光合光装置包括分光面和合光面,多个所述子光束入射到所述分光面的入射角不同,所述分光面用于将每个所述子光束分成第一子光束和第二子光束,所述第一空间光调制器用于对自所述分光面出射的所述第一子光束进行调制,所述第二空间光调制器用于对自所述分光面出射的所述第二子光束进行调制,所述合光面用于将所述第一空间光调制器调制后出射的所述第一子光束和所述第二空间光调制器调制后出射的所述 第二子光束合成出射光束,其中,所述第一子光束和所述第二子光束自所述分光面出射后均经过奇数次反射后入射至所述合光面;所述照明光束中任意一个所述子光束到所述分光面的入射角和所述子光束对应的所述第一子光束到所述合光面的入射角的差值小于预设的阈值,所述照明光束中任意一个所述子光束到所述分光面的入射角和所述子光束对应的所述第二子光束到所述合光面的入射角的差值小于所述预设的阈值。
其中,所述分光面和所述合光面位于同一平面上。
其中,所述第一空间光调制和所述第二空间光调制器均为反射型空间光调制器。
其中,所述分光合光装置包括第一引导组件和第二引导组件;所述第一引导组件用于将自所述分光面出射的所述第一子光束经M次反射后引导至所述第一空间光调制器,并将所述第一空间光调制器调制后出射的所述第一子光束经N次反射后引导至所述合光面,其中,M为大于等于1的正整数,N为大于等于1的正整数,M与N的和为大于等于2的偶数;所述第二引导组件用于将自所述分光面出射的所述第二子光束经X次反射后引导至所述第二空间光调制器,并将所述第二空间光调制器调制后出射的所述第二子光束经Y次反射后引导至所述合光面,其中,X为大于等于1的正整数,Y为大于等于1的正整数,X与Y的和为大于等于2的偶数。
其中,所述第一引导组件和第二引导组件相邻接,所述分光面和所述合光面位于所述第一引导组件和第二引导组件相邻接的平面上。
其中,所述第一引导组件包括相邻设置的第一棱镜和第二棱镜,所述第二引导组件包括相邻设置的第三棱镜和第四棱镜;所述第一棱镜和所述第三棱镜相邻接的表面为所述分光面,所述第二棱镜和所述第四棱镜相邻接的表面为所述合光面;所述第一棱镜和所述第二棱镜相邻接的表面为第一表面,所述第二棱镜还包括第二表面;所述三棱镜和所述第四棱镜相邻接的表面为第三表面,所述第四棱镜还包括第四表面;自所述分光面出射的所述第一子光束经所述第一表面反射后入射至所述第 一空间光调制器,所述第一空间光调制器调制后出射的所述第一子光束经所述第二表面反射后入射至所述合光面;自所述分光面出射的所述第二子光束经所述第三表面反射后入射至所述第二空间光调制器,所述第二空间光调制器调制后出射的所述第二子光束经所述第四表面反射后入射至所述合光面。
其中,所述分光合光装置还包括第五棱镜,所述第五棱镜与所述第二棱镜相邻设置,所述第五棱镜用于引导所述出射光束出射。
其中,所述分光合光装置还包括分光件,所述分光件包括所述分光面,所述第一引导组件包括相邻设置的第六棱镜和第七棱镜,所述第二引导组件包括相邻设置的第八棱镜和第九棱镜;所述第六棱镜和所述第八棱镜相邻接的表面为所述合光面;所述第六棱镜和所述第七棱镜相邻接的表面为第五表面,所述第七棱镜还包括第六表面,所述八棱镜和所述第九棱镜相邻接的表面为第七表面,所述第九棱镜还包括第八表面;自所述分光面出射的所述第一子光束经所述第五表面反射后入射至所述第一空间光调制器,所述第一空间光调制器调制后出射的所述第一子光束经所述第六表面反射后入射至所述合光面;自所述分光面出射的所述第二子光束经所述第七表面反射后入射至所述第二空间光调制器,所述第二空间光调制器调制后出射的所述第二子光束经所述第八表面反射后入射至所述合光面。
其中,所述分光合光装置还包括第十棱镜,所述第十棱镜与所述第七棱镜相邻设置,所述第十棱镜用于引导出射光束出射。
其中,所述分光面根据波长特性将每个所述子光束分为所述第一子光束和所述第二子光束;所述合光面根据所述波长特性将所述第一空间光调制器调制后出射的所述第一子光束和所述第二空间光调制器调制后出射的所述第二子光束合成所述出射光束,所述第一子光束和所述第二子光束的波长范围不同。
其中,所述光源出射的照明光束为偏振光。
其中,所述照明光束的电场方向垂直于或者平行于所述分光面和所述合光面的法平面的方向。
本申请实施例的有益效果是:本投影光学系统中,光源发出照明光束,照明光束包括多个子光束,多个子光束入射到分光面的入射角不同,分光面将每个子光束分为第一子光束和第二子光束,以对照明光束进行分光,其中,第一子光束和第二子光束自分光面出射后均经过奇数次反射后入射至合光面,以使任意一个子光束在分光面的入射角与该子光束对应的第一子光束和第二子光束入射至合光面的入射角相等或者基本相等,通过此种方式,使得照明光束在合光和分光处的透过率相同或者大致相同,从而降低照明光束在分光、合光处的光能损失,在达到DCI-P3色域标准的情况下,可以加入更多的激光,从而可以提高本投影光学系统的输出亮度。
附图说明
图1是本申请投影光学系统第一实施例的结构示意图;
图2是本申请投影光学系统的色域坐标图;
图3是本申请投影光学系统第二实施例的结构示意图
图4是本申请投影光学系统第三实施例的结构示意图;
图5是本申请投影光学系统中分光面和合光面一实施例的镀膜曲线图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
请参阅图1,图1是本申请投影光学系统第一实施方式的结构示意图。本实施例的投影光学系统包括:光源10、分光合光装置30、第一空间光调制器41、第二空间光调制器42。
光源10用于发射照明光束,该照明光束包含时序的第一光和第二 光。可选地,第一光包括第一基色光和第二基色光,例如第一光为黄光,第一基色光为红光、第二基色光为绿光;第二光包括第三基色光,例如,第三基色光为蓝光。第一光和第二光的合光包含三基色光。其中,光源10可以包括激发光源和波长转换装置,激发光源出射激发光,激发光源可以是激光二极管、发光二极管等固体光源,波长转换装置至少包括第一区段和第二区段,第一区段上设置有波长转换材料层,用于将激发光转换为受激光,第二区段为反射层或者透射层,用于反射或透射激发光。波长转换装置的第一区段和第二区段周期性地依次设置于激发光的传输路径上,从而波长转换装置时序地出射激发光和受激光,可选地,受激光为第一光,其为黄色荧光,激发光为第二光,其为蓝色激光。照明光束包括多个子光束。照明光束入射到分光合光装置30上时,有多个入射角,在本发明实施例中,将入射角相同的一小束光作为一个子光束。
分光合光装置30用于补偿照明光束的光程差、照明光束的全反射、分色以及图像光的合成。分光合光装置30包括分光面S1和合光面S2,多个子光束入射到分光面S1的入射角不同,分光面S1用于将每个子光束分成第一子光束和第二子光束。可选地,第一子光束包括第一基色光,第二子光束包括第二基色光,例如,第一子光束包括红光,第二子光束包括绿光。自分光面S1出射的第一子光束进入第一空间光调制器41,第一空间光调制器41用于对第一子光束进行调制;自分光面S1出射的第二子光束进入第二空间光调制器42,第二空间光调制器42对第二子光束进行调制。S2合光面用于将第一空间光调制器41调制后出射的第一子光束和第二空间光调制器42调制后出射的第二子光束合成出射光束,其中,第一子光束和第二子光束自分光面S1出射后均经过奇数次反射后入射至合光面S2。第一空间光调制器41和第二空间光调制器42相对合光面S2镜像对称。优选地,分光面S1和合光面S2位于同一平面上。
可选地,第一空间光调制器41和第二空间光调制器42可以为反射型空间光调制器,例如,数字微镜器件(Digtial Micromirror Devices,DMD)。在其他可替代的实施例中,第一空间光调制器41和第二空间光 调制器42还可以是反射型的液晶面板。第一子光束和第二子光束分别经第一空间光调制器41和第二空间光调制器42反射后出射。
在一个实施例中,第一子光束从分光面S1出射后至少经过一次反射后入射至第一空间光调制器41,第二子光束从分光面S1出射后至少经过一次反射后入射至第二空间光调制器42。
在另一个实施例中,第一空间光调制器41调制后出射的携带有图像信息的第一子光束经过至少一次反射后入射至合光面S2,第二空间光调制器42调制后出射的携带有图像信息的第二子光束也经过至少一次反射后入射至合光面S2,合光面S2再将第一子光束和第二子光束合成出射光束。
在又一个实施例中,第一子光束从分光面S1出射后至少经过一次反射后入射至第一空间光调制器41,第二子光束从分光面S1出射后入射至少经过一次反射后至第二空间光调制器42。且第一空间光调制器41调制后出射的携带有图像信息的第一子光束经过至少一次反射后入射至合光面S2,第二空间光调制器42调制后出射的携带有图像信息的第二子光束也经过至少一次反射后入射至合光面S2,合光面S2再将第一子光束和第二子光束合成出射光束。
由于分光面S1和合光面S2通常为镀膜器件,其光线透过率特性与光线入射至分光面S1和合光面S2的角度紧密相关。入射角的差异容易导致光线的透过率特性不一致,从而损失较多的光。为了能够减少光损失,本实施例中,第一子光束和第二子光束自分光面S1出射后均经过奇数次反射后入射至合光面S2,照明光束中任意一个子光束到分光面S1的入射角和该子光束对应的第一子光束到合光面S2的入射角的差值小于预设的阈值,照明光束中任意一个子光束到分光面S1的入射角和子光束对应的第二子光束到合光面S2的入射角的差值也小于该预设的阈值。该预设的阈值可为0度,0.5度、1度、1.5度、2度等,具体可根据实际需求进行设置。选优地,该预设的阈值为0度,可以理解为,每个子光束在分光面S1的入射角与该子光束对应的第一子光束和第二子光束到合光面S2的入射角相等或者基本相等。
可以理解的是,本实施例中,多个子光束中包括有第一边缘光束b1和第二边缘光束b2,第一边缘光束b1在分光面S1的入射角小于第二边缘光束b2在分光面S1的入射角,即第一边缘光束b1在分光面S1对应小入射角,第二边缘光束b2在分光面S1对应大入射角。第一边缘光束b1在经过分光、调制、反射后,入射至合光面S2的入射角仍然对应为小入射角。第二边缘光束b2在经过分光、调制、反射后,入射至合光面S2的入射角仍然对应为大入射角。
通过使照明光束中每个子光束在分光面S1和合光面S2的入射角相等或者基本相等,能够使得任意子光束在分光面S1处和合光面S2处的透过率特性保持一致,从而减少光能量的损失,进而可以加入更多的激光,可以实现系统更高的输出亮度。
具体地,分光合光装置30包括第一引导组件和第二引导组件。在本实施例中,如图1所示,第一引导组件和第二引导组件相邻接,分光面S1和合光面S2位于第一引导组件和第二引导组件相邻接的平面上,即第一引导组件和第二引导组件相邻接的表面中,一部分设置有分光面S1,另一部分设置有合光面S2。
第一引导组件用于将自分光面S1出射的第一子光束引导至第一空间光调制器41,再将第一空间光调制器41调制后出射的第一子光束反射至合光面S2。第二引导组件用于将自分光面S1出射的第二子光束引导至第二空间光调制器42,再将第二空间光调制器42调制后出射的第二子光束反射至合光面S2,且各子光束从分光面S1到合光面S2的光程相等或相近。
其中,照明光束入射至分光面S1的入射角与光源10和分光合光装置30的相对位置有关。通过设置光源10和分光合光装置30之间的位置关系可以控制照明光束中任意子光束到分光面S1的入射角的大小。
本实施例中,分光面S1和合光面S2在同一平面上。为了能够使照明光束中任意一个子光束在分光面S1的入射角与该子光束对应的第一子光束和第二子光束到合光面S2的入射角相等或者基本相等,第一子光束和第二子光束自分光面出射后都经过奇数次反射后入射至合光面。
具体地,第一引导组件需将自分光面S1出射的第一子光束经M次反射后引导至第一空间光调制器41,再将第一空间光调制器41调制后出射的携带有图像信息的第一子光束经N次反射后引导至合光面S2。其中,M为大于等于1的正整数,N为大于等于1的正整数,M与N的和为大于等于2的偶数等。
第二引导组件需将自分光面S1出射的第二子光束经X次反射后引导至第二空间光调制器42,并将第二空间光调制器42调制后出射的携带有图像信息的第二子光束经Y次反射后引导至合光面S2。其中,X为大于等于1的正整数,Y为大于等于1的正整数,X与Y的和为大于等于2的偶数。
在一个具体的实施例中,第一引导组件包括相邻设置的第一棱镜31和第二棱镜32,第一棱镜31和第二棱镜32相邻接的表面为第一表面f1,第一表面f1对入射角大于第一阈值的光线全反射。第二棱镜32还包括第二表面f2,第二表面f2对入射角大于第二阈值的光线全反射。可选地,可以通过在第一棱镜31与第二棱镜32邻接的表面之间设置空气隙,使第一表面f1实现全反射功能,也可以在第一棱镜31与第二棱镜32邻接的表面之间涂覆折射率小于棱镜的粘合胶,使第一表面f1实现全反射功能。
第二引导组件包括相邻设置的第三棱镜33和第四棱镜34,第三棱镜33和第四棱镜34相邻接的表面为第三表面f3,第三表面f3对入射角大于第三阈值的光线全反射。第四棱镜34还包括第四表面f4,第四表面f4对入射角大于第四阈值的光线全反射。可选地,可以通过在第三棱镜33与第四棱镜34邻接的表面之间设置空气隙,使第三表面f3实现全反射功能,也可以在第三棱镜33与第四棱镜34邻接的表面之间涂覆折射率小于棱镜的粘合胶,使第三表面f3实现全反射功能。
第一棱镜31和第三棱镜33相邻接的表面为分光面S1,第二棱镜32和第四棱镜34相邻接的表面为合光面S2。
第一棱镜31将照明光束引导至分光面S1,分光面S1将每个子光束分为透射的第二子光束和反射的第一子光束。其中,第一子光束经第一 表面f1反射后入射至第一空间光调制器41,第一空间光调制器41调制后出射的第一子光束被第一棱镜31和第二棱镜32引导至第二表面f2,并经第二表面f2反射后入射至合光面S2。第二子光束经第三表面f3反射后入射至第二空间光调制器42,第二空间光调制器42调制后出射的第二子光束被第三棱镜33和第四棱镜34引导至第四表面f4,并经第四表面f4反射后入射至合光面S2。合光面S2将第一子光束和第二子光束合成出射光束,出射光束经第二棱镜32引导后出射。
在本实施例中,第一子光束和第二子光束从分光面S1出射后,均经过了3次反射后入射至合光面S2。其中,照明光束中的任意一个子光束在分光面S1的入射角与该子光束对应的第一子光束和第二子光束到合光面S2的入射角相等或者基本相等。通过这种方式,使得照明光束在分光和合光处的透过率曲线基本一致,因此能够实现光能无损失。
进一步地,本实施例中,分光面S1设置于第一棱镜31和第三棱镜33相邻接的表面,用于根据波长特性将照明光束分为第一子光束和第二子光束,第一子光束和第二子光束的波长范围不同,如第一子光束为红光,第二子光束为绿光。该分光面S1可为分光片或者可将任意子光束分成第一子光束和第二子光束的其他光学元件,比如分光镀膜层。
合光面S2设置在第二棱镜32和第四棱镜34相邻接的表面,用于将调制后的第一子光束和第二子光束合成出射光束后出射。该合光面S2可以为波长合光片或者可将第一空间光调制器41出射的第一子光束和第二空间光调制器42出射的第二子光束合成出射光束后出射的其他光学元件,比如合光镀膜层。
第一棱镜31可以为包含上述分光面S1和第一表面f1的任意形状的棱镜,如四棱柱形状的棱镜、五棱柱形状的棱镜等。在一个具体的实施例中,第一棱镜31为形状为五棱柱的异形棱镜,具体地,第一棱镜包括依次连接的分光面S1、第一表面f1、与第一空间光调制器41平行的第二侧面312、与主光轴c垂直的第一侧面311、以及连接第一侧面311和分光面S1的第三侧面(图中未标示),其中,第一侧面311和分光面S1相对设置,第一表面f1和第三侧面相对设置,第一侧面311和第二 侧面312之间的夹角为钝角。
第二棱镜32可以为包含有第一表面f1、第二表面f2和合光面S2的任意形状的棱镜,比如三棱柱形状的棱镜、四棱柱形状的棱镜等。
第三棱镜33可以为包含上述分光面S1、第三表面f3的任意形状的棱镜,如三棱柱形状的棱镜等。
第四棱镜34可以为包含第四表面f4、合光面S2的任意形状的棱镜,比如三棱柱形状的棱镜等。
进一步地,分光合光装置30还包括第五棱镜35,第五棱镜35与第二棱镜32相邻设置,第五棱镜35用于引导出射光束出射。第五棱镜35包括与第二棱镜32相邻接的第九表面,和与出射光束主光轴垂直的第十表面。该第五棱镜35可以为包含上述第九表面和第十表面的任意形状的棱镜,如三棱柱形状的棱镜等。在本申请另一实施例中,也可以将第二棱镜32与第五棱镜35做成一体棱镜。
本申请的发明人在长期的研发过程中发现,现有的技术中,双片式光学引擎中的入射光在分光合光过程有光谱的损失,因此分出来的红荧光和绿荧光的颜色较好,与DCI-P3的标准的色坐标相接近,因此限制了红、绿激光加入的数量,使得整机虽然能够实现放映机的色域标准,但能够达到的亮度受到限制。在一个具体的实施例中,光源10发出的照明光束经过分光、合光实现光谱无损后,分出来的红荧光(red phosphor,RP)和绿荧光(green phosphor,GP)的颜色会比较差,覆盖的色域范围较小,如图2所示,图中x和y是色度坐标。为了达到电影放映机的DCI-P3色域标准,就需要加入较多的红激光(red laser,RL)和绿激光(green laser,GL)才能满足,而激光特别是绿激光对流明的贡献较大。因此,本实施例的投影光学系统在实现相同的标准色域时,可以实现更高的输出亮度。
进一步地,投影光学系统还包括光学中继系统20,光学中继系统20位于光源10与分光合光装置30之间,可使照明光束聚集至预定的范围内。光学中继系统20用于对光源10出射的光线进行中继,得到用于入射至分光合光装置30的照明光束。
可选地,投影光学系统还包括投影物镜50,投影物镜50与合光面S2相对设置。合光面S2将调制后的第一子光束和第二子光束合成为出射光束后出射至投影物镜50。
区别于现有技术,本申请的投影光学系统中光源发出照明光束,照明光束包括多个子光束,多个子光束入射到分光面的入射角不同,分光面S1将每个子光束分为第一子光束和第二子光束,以对照明光束进行分光,其中,第一子光束和第二子光束自分光面S1出射后均经过奇数次反射后入射至合光面S2,以使任意一个子光束在分光面S1的入射角与该子光束对应的第一子光束和第二子光束入射至合光面S2的入射角相等或者基本相等,通过此种方式,使得照明光束在合光和分光处的透过率相同或者大致相同,从而降低照明光束在分光、合光处的光能损失,在达到DCI-P3色域标准的情况下,可以加入更多的激光,从而可以提高本投影光学系统的输出亮度。
实施例二
请参阅图3,图3是本申请投影光学系统第二实施例的结构示意图,区别于实施例一,本实施例中的分光合光装置30还包括分光件,分光件包括分光面S1,第一引导组件和第二引导组件相邻接的表面为合光面S2,其中,分光件和合光面在同一平面上。
本实施例中,分光件可为二向色片。分光件用于根据波长特性将照明光束分为第一子光束和第二子光束。第一引导组件和第二引导组件相邻接的表面为合光面S2。
第一引导组件用于将自分光面S1出射的第一子光束引导至第一空间光调制器41,再将第一空间光调制器41调制后出射的第一子光束引导至合光面S2。第二引导组件用于将自分光面S1出射的第二子光束引导至第二空间光调制器42,再将第二空间光调制器42调制后出射的第二子光束引导至合光面S2。
其中,照明光束入射至分光件的入射角与光源10和分光件的相对位置有关。通过设置光源10和分光件之间的位置关系可以控制照明光束中任意子光束到分光面S1的入射角的大小。
具体地,本实施例中,第一引导组件包括相邻设置的第六棱镜36和第七棱镜37,第六棱镜36和第七棱镜37相邻接的表面为第五表面f5,第五表面f5对入射角大于第五阈值的光线全反射。第七棱镜37还包括第六表面f6,第六表面f6对入射角大于第六阈值的光线全反射。可选地,可以通过在第六棱镜36与第七棱镜37邻接的表面之间设置空气隙,使第五表面f5实现全反射功能,也可以在第六棱镜36与第七棱镜37邻接的表面之间设置空气隙涂覆折射率小于棱镜的粘合胶,使第五表面f5实现全反射功能。
第二引导组件包括相邻设置的第八棱镜38和第九棱镜39,第八棱镜38和第九棱镜39相邻接的表面为第七表面f7,第七表面f7对入射角大于第七阈值的光线全反射。第九棱镜39还包括第八表面f8,第八表面f8对入射角大于第八阈值的光线全反射。可选地,可以通过在第八棱镜38与第九棱镜39邻接的表面之间设置空气隙,使第七表面f7实现全反射功能,也可以在第八棱镜38与第九棱镜39邻接的表面之间涂覆折射率小于棱镜的粘合胶,使第七表面f7实现全反射功能。
第六棱镜36和第八棱镜38相邻接的表面为所述合光面。
分光件将每个子光束分为透射的第二子光束和反射的第一子光束。其中,自分光面S1出射的第一子光束经第五表面f5反射后入射至第一空间光调制器41,第一空间光调制器41调制后出射的第一子光束被第六棱镜36和第七棱镜37引导至第六表面f6,并经第六表面f6反射后入射至合光面S2。自分光面S1出射的第二子光束经第七表面f7反射后入射至第二空间光调制器42,第二空间光调制器42调制后出射的第二子光束被第八棱镜38和第九棱镜39引导至第八表面f8,并经第八表面f8反射后入射至合光面S2。合光面S2将第一子光束和第二子光束合成出射光束,出射光束经第七棱镜37引导后出射。
在本实施例中,第一子光束和第二子光束均经过了3次反射后入射至合光面S2。其中,照明光束中的任意一个子光束在分光面S1的入射角与该子光束对应的第一子光束和第二子光束到合光面S2的入射角相等或者基本相等。通过这种方式,在镀膜时才能使分光面S1和合光面 S2的镀膜特性一致,从而使得照明光束在分光和合光时的透过率曲线基本一致,因此能够实现光能无损失。
进一步地,本实施例中,合光面S2设置在第七棱镜37和第八棱镜38相邻接的表面,用于将调制后的第一子光束和第二子光束合成出射光束后出射。该合光面S2可以为波长合光片或者可将第一空间光调制器41出射的第一子光束和第二空间光调制器42出射的第二子光束合成出射光束后出射的其他光学元件,比如合光镀膜层。
第六棱镜36可以为包括第五表面f5的任意形状的棱镜,如三棱柱形状的棱镜等。
第七棱镜37可以为包含有第五表面f5、第六表面f6和合光面S2的任意形状的棱镜,比如三棱柱形状的棱镜、四棱柱形状的棱镜等。
第八棱镜38可以为包含第七表面f7的任意形状的棱镜,如三棱柱形状的棱镜等。
第九棱镜39可以为包含第八表面f8、合光面S2的任意形状的棱镜,比如三棱柱形状的棱镜等。
进一步地,本实施例中,分光合光装置30还包括第十棱镜310,第十棱镜310与第七棱镜37相邻设置,第十棱镜310用于引导出射光束出射。第十棱镜310包括与第七棱镜37相邻接的第十一表面,和与出射光束主光轴垂直的第十二表面。该第五棱镜35可以为包含上述第十一表面和第十二表面的任意形状的棱镜,如三棱柱形状的棱镜等。在本申请另一实施例中,也可以将第七棱镜37与第十棱镜310做成一体棱镜。
对于本实施例的投影光学系统中的其他结构参阅上述实施例一中的附图及文字说明,在此不再赘述。
本实施例中,采用分光件中的分光面S1来对照明光束进行分光,且本实施例中也使任意子光束到分光面S1的入射角和该子光束对应的第一子光束和第二子光束到合光面S2的入射角相等或者基本相等。因此能够使得照明光束在分光和合光处的透过率曲线基本一致,进而减小了分光合光后的光能损失。
实施例三
请参阅图4,图4是本申请投影光学系统第三实施例的结构示意图,在第一实施例的基础上,本实施例中的光源10可以设置为偏振照明光源,光源10出射的照明光束为偏振光。优选地,照明光束为线偏振光。本实施例的投影光学系统对偏振照明光的分光、合光时,也能够实现光效的无损化。
在介质材料中,由于S光和P光两种偏振态的透过率不同,因此介质膜层对于S光和P光的透过率曲线有所差异,即使入射角度保持一致,但透过率曲线也是彼此分离的。比如图5所示,P25为P光入射角为25度时的透过率曲线,S25为S光入射角为25度时的透过率曲线;P13为P光入射角为13度时的透过率曲线,S13为S光入射角为13度时的透过率曲线;P1为P光入射角为1度时的透过率曲线,S1为S光入射角为1度时的透过率曲线。从图中可以看出当入射角相同时P光和S光的透过率曲线仍然存在分离,但是随着入射角的减小,P光和S光的透过率曲线的分离度降低。
本实施例中,在光源10采用偏振照明光源10的条件下,其发射的偏振的照明光束在分光合光装置30中在同一个平面内(垂直或平行于电场方向)进行透射、分光、全反射和合光,偏振照明光源发出的照明光束的电场方向垂直于或者平行于分光面S1和合光面S2的法平面的方向,因此分光、合光时其偏振态不发生变化。在利用分光合光装置30进行分光和合光时,其偏振态、入射角都能够保持一致,因此能够实现偏振照明光的无损分光合光。
对于投影光学系统中的其他具体结构请参阅上述实施例一中的附图及文字说明,在此不再赘述。
本实施例中采用偏振照明光源,能够实现分光与合光的无损化以及较高的3D效率。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的 专利保护范围内。

Claims (12)

  1. 一种投影光学系统,其特征在于,所述投影光学系统包括:光源、分光合光装置、第一空间光调制器、第二空间光调制器;
    所述光源用于出射照明光束,所述照明光束包括多个子光束;
    所述分光合光装置包括分光面和合光面,多个所述子光束入射到所述分光面的入射角不同,所述分光面用于将每个所述子光束分成第一子光束和第二子光束,所述第一空间光调制器用于对自所述分光面出射的所述第一子光束进行调制,所述第二空间光调制器用于对自所述分光面出射的所述第二子光束进行调制,所述合光面用于将所述第一空间光调制器调制后出射的所述第一子光束和所述第二空间光调制器调制后出射的所述第二子光束合成出射光束,其中,所述第一子光束和所述第二子光束自所述分光面出射后均经过奇数次反射后入射至所述合光面;
    所述照明光束中任意一个所述子光束到所述分光面的入射角和所述子光束对应的所述第一子光束到所述合光面的入射角的差值小于预设的阈值,所述照明光束中任意一个所述子光束到所述分光面的入射角和所述子光束对应的所述第二子光束到所述合光面的入射角的差值小于所述预设的阈值。
  2. 根据权利要求1所述的投影光学系统,其特征在于,所述分光面和所述合光面位于同一平面上。
  3. 根据权利要求1所述的投影光学系统,其特征在于,所述第一空间光调制和所述第二空间光调制器均为反射型空间光调制器。
  4. 根据权利要求3所述的投影光学系统,其特征在于,所述分光合光装置包括第一引导组件和第二引导组件;
    所述第一引导组件用于将自所述分光面出射的所述第一子光束经M次反射后引导至所述第一空间光调制器,并将所述第一空间光调制器调制后出射的所述第一子光束经N次反射后引导至所述合光面,其中,M为大于等于1的正整数,N为大于等于1的正整数,M与N的和为大于等于2的偶数;
    所述第二引导组件用于将自所述分光面出射的所述第二子光束经X次反射后引导至所述第二空间光调制器,并将所述第二空间光调制器调制后出射的所述第二子光束经Y次反射后引导至所述合光面,其中,X为大于等于1的正整数,Y为大于等于1的正整数,X与Y的和为大于等于2的偶数。
  5. 根据权利要求4所述的投影光学系统,其特征在于,所述第一引导组件和所述第二引导组件相邻接,所述分光面和所述合光面位于所述第一引导组件和第二引导组件相邻接的平面上。
  6. 根据权利要求5所述的投影光学系统,其特征在于,所述第一引导组件包括相邻设置的第一棱镜和第二棱镜,所述第二引导组件包括相邻设置的第三棱镜和第四棱镜;所述第一棱镜和所述第三棱镜相邻接的表面为所述分光面,所述第二棱镜和所述第四棱镜相邻接的表面为所述合光面;
    所述第一棱镜和所述第二棱镜相邻接的表面为第一表面,所述第二棱镜还包括第二表面;所述三棱镜和所述第四棱镜相邻接的表面为第三表面,所述第四棱镜还包括第四表面;
    自所述分光面出射的所述第一子光束经所述第一表面反射后入射至所述第一空间光调制器,所述第一空间光调制器调制后出射的所述第一子光束经所述第二表面反射后入射至所述合光面;自所述分光面出射的所述第二子光束经所述第三表面反射后入射至所述第二空间光调制器,所述第二空间光调制器调制后出射的所述第二子光束经所述第四表面反射后入射至所述合光面。
  7. 根据权利要求6所述的投影光学系统,其特征在于,所述分光合光装置还包括第五棱镜,所述第五棱镜与所述第二棱镜相邻设置,所述第五棱镜用于引导所述出射光束出射。
  8. 根据权利要求5所述的投影光学系统,其特征在于,所述分光合光装置还包括分光件,所述分光件包括所述分光面,所述第一引导组件包括相邻设置的第六棱镜和第七棱镜,所述第二引导组件包括相邻设置的第八棱镜和第九棱镜;所述第六棱镜和所述第八棱镜相邻接的表面为 所述合光面;
    所述第六棱镜和所述第七棱镜相邻接的表面为第五表面,所述第七棱镜还包括第六表面,所述八棱镜和所述第九棱镜相邻接的表面为第七表面,所述第九棱镜还包括第八表面;
    自所述分光面出射的所述第一子光束经所述第五表面反射后入射至所述第一空间光调制器,所述第一空间光调制器调制后出射的所述第一子光束经所述第六表面反射后入射至所述合光面;自所述分光面出射的所述第二子光束经所述第七表面反射后入射至所述第二空间光调制器,所述第二空间光调制器调制后出射的所述第二子光束经所述第八表面反射后入射至所述合光面。
  9. 根据权利要求8所述的投影光学系统,其特征在于,所述分光合光装置还包括第十棱镜,所述第十棱镜与所述第七棱镜相邻设置,所述第十棱镜用于引导出射光束出射。
  10. 根据权利要求1所述的投影光学系统,其特征在于,所述分光面根据波长特性将每个所述子光束分为所述第一子光束和所述第二子光束;所述合光面根据所述波长特性将所述第一空间光调制器调制后出射的所述第一子光束和所述第二空间光调制器调制后出射的所述第二子光束合成所述出射光束,所述第一子光束和所述第二子光束的波长范围不同。
  11. 根据权利要求1所述的投影光学系统,其特征在于,所述光源出射的照明光束为偏振光。
  12. 根据权利要求11所述的投影光学系统,其特征在于,所述照明光束的电场方向垂直于或者平行于所述分光面和所述合光面的法平面的方向。
PCT/CN2020/126545 2019-12-03 2020-11-04 一种投影光学系统 WO2021109781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911220719.5A CN112904656A (zh) 2019-12-03 2019-12-03 一种投影光学系统
CN201911220719.5 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021109781A1 true WO2021109781A1 (zh) 2021-06-10

Family

ID=76103974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126545 WO2021109781A1 (zh) 2019-12-03 2020-11-04 一种投影光学系统

Country Status (2)

Country Link
CN (1) CN112904656A (zh)
WO (1) WO2021109781A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147656A (ja) * 1998-11-13 2000-05-26 Ind Technol Res Inst 2板式液晶プロジェクタ
CN1362633A (zh) * 2000-12-28 2002-08-07 Lg电子株式会社 投影仪
CN203930219U (zh) * 2014-06-13 2014-11-05 深圳市绎立锐光科技开发有限公司 分光合光装置及投影光学系统
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN105204171A (zh) * 2014-06-13 2015-12-30 深圳市绎立锐光科技开发有限公司 分光合光装置及投影光学系统
CN108572502A (zh) * 2017-03-08 2018-09-25 松下知识产权经营株式会社 投影型影像显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147656A (ja) * 1998-11-13 2000-05-26 Ind Technol Res Inst 2板式液晶プロジェクタ
CN1362633A (zh) * 2000-12-28 2002-08-07 Lg电子株式会社 投影仪
CN104216209A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN203930219U (zh) * 2014-06-13 2014-11-05 深圳市绎立锐光科技开发有限公司 分光合光装置及投影光学系统
CN105204171A (zh) * 2014-06-13 2015-12-30 深圳市绎立锐光科技开发有限公司 分光合光装置及投影光学系统
CN108572502A (zh) * 2017-03-08 2018-09-25 松下知识产权经营株式会社 投影型影像显示装置

Also Published As

Publication number Publication date
CN112904656A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US11243460B2 (en) Light source device and projection system
JP6215989B2 (ja) 照明システム及び投影装置
WO2009070918A1 (fr) Source lumineuse pour système de projection et appareil d'affichage par projection
CN102193294A (zh) 照明系统
CN110361917A (zh) 光源装置和图像投影装置
US9638988B2 (en) Light multiplexer with color combining element
WO2020216263A1 (zh) 光源系统和显示设备
TWI778680B (zh) 混合光源系統以及投影顯示設備
US20180259840A1 (en) Projection system
CN113296341B (zh) 照明系统
US11402735B2 (en) Projection system for projection display
CN113406850B (zh) 一种投影系统
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
CN105022210A (zh) 光学系统、发光装置及投影系统
US11415872B2 (en) Wavelength conversion device, light-emitting device and projection device
WO2021109781A1 (zh) 一种投影光学系统
WO2020259619A1 (zh) 光学引擎系统及显示设备
WO2021037239A1 (zh) 一种投影光学系统
TWI809249B (zh) 照明系統及其製造方法及投影機
CN112578617B (zh) 一种光学引擎系统及投影系统
CN105446065A (zh) 一种激光投影系统
CN111781791A (zh) 光源系统及投影设备
CN216696973U (zh) 一种分合光器件及投影装置
CN219039558U (zh) 一种光源装置及投影设备
CN113885282B (zh) 投影机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897186

Country of ref document: EP

Kind code of ref document: A1