WO2021109628A1 - 一种低压直流配电快切装置 - Google Patents

一种低压直流配电快切装置 Download PDF

Info

Publication number
WO2021109628A1
WO2021109628A1 PCT/CN2020/111217 CN2020111217W WO2021109628A1 WO 2021109628 A1 WO2021109628 A1 WO 2021109628A1 CN 2020111217 W CN2020111217 W CN 2020111217W WO 2021109628 A1 WO2021109628 A1 WO 2021109628A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
electrically connected
voltage
low
output terminal
Prior art date
Application number
PCT/CN2020/111217
Other languages
English (en)
French (fr)
Inventor
袁宇波
孙天奎
杨景刚
袁晓冬
高磊
史明明
李鹏
苏伟
杨騉
司鑫尧
秦剑华
方鑫
肖小龙
刘瑞煌
王晨清
郭家豪
姜云龙
庄舒仪
李群
刘建
陈舒
Original Assignee
国网江苏省电力有限公司电力科学研究院
国家电网有限公司
国网江苏省电力有限公司
江苏省电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911218990.5A external-priority patent/CN111064458B/zh
Priority claimed from CN202010042109.7A external-priority patent/CN111181148B/zh
Application filed by 国网江苏省电力有限公司电力科学研究院, 国家电网有限公司, 国网江苏省电力有限公司, 江苏省电力试验研究院有限公司 filed Critical 国网江苏省电力有限公司电力科学研究院
Priority to US17/059,209 priority Critical patent/US11374404B2/en
Publication of WO2021109628A1 publication Critical patent/WO2021109628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes

Definitions

  • the invention relates to a low-voltage direct current power distribution quick-cutting device, which belongs to the technical field of electrical switches.
  • the purpose of the present invention is to provide a low-voltage DC power distribution quick-cut device to solve the technical problem that the low-voltage power distribution quick-cut device in the prior art is not suitable for a DC power distribution system.
  • a low-voltage direct current power distribution quick-cutting device comprising a positive output terminal electrically connected to the positive electrode of a load, and no less than two switching circuits connected in parallel with each other.
  • the switching circuit includes a positive input electrically connected to the positive electrode of a common negative power supply A terminal, a supplementary diode cluster formed by connecting at least one diode in series, and a thyristor connected between the positive input terminal and the positive output terminal; the positive input terminal is electrically connected to the anode of the supplementary diode cluster, and the positive input terminal is connected to the thyristor
  • the anode of the thyristor is electrically connected, the positive output terminal is electrically connected to the cathode of the complementary diode cluster, and the positive output terminal is electrically connected to the cathode of the thyristor.
  • the switching circuit further includes a current sensor connected in series with the supplementary diode cluster.
  • it further comprises a common diode cluster formed by not less than one diode connected in series, the anode of the common diode cluster is electrically connected to the cathodes of all supplementary diode clusters of the switching circuit, and the cathode and anode of the common diode cluster are output The terminals are electrically connected.
  • a current sensor is connected in series with the common diode cluster.
  • it further includes a common negative terminal electrically connected to the negative electrode of the common negative power supply and the negative electrode of the load, and the common negative terminal is electrically connected to the positive output terminal through a delay circuit.
  • the delay circuit includes a delay capacitor, the negative electrode of the delay capacitor is electrically connected with the common negative terminal, and the positive electrode of the delay capacitor is electrically connected with the positive output terminal.
  • the delay circuit further includes a discharge diode electrically connected between the positive electrode of the delay capacitor and the positive output terminal, and a charging resistor and a charging diode connected in parallel with the charging resistor.
  • the charging resistor is connected in series with the charging diode.
  • the cathode and the anode of the discharge diode are electrically connected to the positive electrode of the delay capacitor, the anode of the charging diode is electrically connected to the positive output terminal through a charging resistor, and the cathode of the discharge diode is electrically connected to the positive output terminal.
  • the forward conduction voltage drop of the supplementary diode cluster is inversely proportional to the power supply priority of the common negative power supply connected to the switching circuit where it is located.
  • the common negative electrode power supply is a low voltage DC power supply with a common negative electrode.
  • the present invention achieves the beneficial effects: using the forward conduction voltage of the complementary diode cluster to clamp the load voltage, can realize uninterrupted automatic switching between power sources without the intervention of the control system, and provide reliable power supply for the load; After the power supply is switched automatically without control, the on-state loss of the supplementary diode cluster is reduced by controlling the thyristor conduction; the forward voltage of the supplementary diode cluster is adjusted by adjusting the number of diodes connected in series in the supplementary diode cluster of each switching circuit, thereby setting each Switch the power supply priority of the power supply connected to the circuit.
  • Figure 1 is a schematic diagram of the electrical topology of the device of the present invention.
  • FIG. 2 is a schematic diagram of the electrical topology of a low-voltage DC power distribution quick-cutting device that can be connected to three common negative power supplies in an embodiment of the present invention
  • FIG. 3 is a time-domain diagram of output current under scenario 1 according to an embodiment of the present invention.
  • FIG. 5 is a time-domain diagram of the output current of power supply B in scenario 1 according to an embodiment of the present invention.
  • FIG. 6 is a time-domain diagram of the output current of the power supply C in scenario 1 according to an embodiment of the present invention.
  • FIG. 7 is a time-domain diagram of output current in scenario 2 according to an embodiment of the present invention.
  • FIG. 8 is a time-domain diagram of the output current of the power supply A in scenario 2 according to an embodiment of the present invention.
  • FIG. 9 is a time-domain diagram of the output current of power supply B in scenario 2 according to an embodiment of the present invention.
  • FIG. 10 is a time-domain diagram of the output current of the power supply C in scenario 2 according to an embodiment of the present invention.
  • FIG. 11 is a time-domain diagram of output current under scenario 3 according to an embodiment of the present invention.
  • FIG. 12 is a time-domain diagram of the output current of the power supply A in scenario 3 according to an embodiment of the present invention.
  • FIG. 13 is a time-domain diagram of the output current of power supply B in scenario 3 according to an embodiment of the present invention.
  • FIG. 14 is a time-domain diagram of the output current of the power supply C in scenario 3 according to the embodiment of the present invention.
  • the specific embodiment of the present invention provides a low-voltage DC power distribution quick-cutting device, which is suitable for rapid switching between multiple low-voltage DC power sources with the same grounding method and a common negative electrode.
  • the electrical topology diagram of the device of the present invention includes a power connection terminal, an N-way switching circuit, a common diode cluster, a delay circuit, a current sensor and its auxiliary circuits.
  • the power connection terminal includes N positive input terminals (a positive input terminal 2111, a positive input terminal 2112, ..., a positive input terminal 211N), a positive output terminal 2210, and a common negative terminal 2310.
  • the N positive input terminals are correspondingly connected to N low-voltage DC power supplies, of which any positive input terminal 211K is connected to the K-th power supply; the positive output terminal 2210 is connected to the positive electrode of the load, and the common negative terminal 2310 is connected to the negative electrode of the N power supply and the negative electrode of the load.
  • the switching circuit is provided with N circuits in total, which is the same as the number of the aforementioned N circuits of low-voltage DC power supplies.
  • the N channel switching circuit of the device of the present invention is adapted to the application scenario, and provides a fast switching function of N channels of power for the load.
  • any K- th switching circuit it includes a thyristor 1K11 and a supplementary diode cluster formed by connecting X K diodes (diodes 1K21, 1K22, ..., 1K2X K) in series.
  • the anode of the thyristor 1K11 is connected to the positive input terminal 211K, and the cathode of the thyristor 1K11 is connected to the positive output terminal 2210; the anodes and cathodes of the X K diodes in the complementary diode cluster are connected in sequence, that is, the anode of the diode 1K21 is the anode of the complementary diode cluster.
  • the cathode of the diode 1K21 is connected to the anode of the diode 1K22, the cathode of the diode 1K22 is connected to the anode of the diode 1K23, and so on until the diode 112X K , and the cathode of the diode 1K2X K serves as the cathode of the complementary diode cluster.
  • the supplementary diode cluster anode (the anode of the diode 1K21) input terminal connected to the positive electrode 211K, the supplemental cathode of diode cluster (the cathode of the diode 1K2X K) and an anode connected to a common diode cluster (the anode of the diode 4111).
  • the common diode cluster is composed of Y diodes whose anodes and cathodes are connected in sequence, that is, the anode of the diode 4111 is the anode of the common diode cluster, the cathode of the diode 4111 is connected to the anode of the diode 4112, and the cathode of the diode 4112 is connected to the anode of the diode 4113. , And so on until the diode 411Y, the cathode of the diode 411Y serves as the cathode of the common diode cluster.
  • the anode of the common diode cluster (the anode of the diode 4111) is respectively connected to the cathode of the supplementary diode cluster in the N-way switching circuit (the cathode of the diode 112X 1 , the diode 112X 2 ,..., the diode 112X K ), and the cathode of the common diode cluster is connected to the The positive output terminal 2210 is connected.
  • the delay circuit is composed of a charging resistor 3140, a charging diode 3130, a discharging diode 3120, and a delay capacitor 3110.
  • One end of the charging resistor 3140 is connected to the positive output terminal 2210
  • the other end of the charging resistor 3140 is connected to the anode of the charging diode 3130
  • the cathode of the charging diode 3130 is connected to the anode of the delay capacitor 3110
  • the anode of the discharge diode 3120 is connected to the anode of the delay capacitor 3110
  • the cathode of the discharge diode 3120 is connected to the positive output terminal 2210
  • the negative electrode of the delay capacitor 3110 is connected to the common negative terminal 2310.
  • the current sensor includes an output current sensor, a common diode cluster current sensor 5211, and an output current sensor 5311.
  • Any Kth output current sensor 511K is installed between any positive input terminal 211K to the Kth switching circuit.
  • the common diode cluster current sensor 5211 is installed at the cathode of the common diode cluster (the cathode of the diode 411Y), and is used to measure the current flowing through the common diode cluster.
  • the output current sensor 5311 is installed in front of the positive output terminal 2210 of the device of the present invention, and is used to measure the output current of the device of the present invention.
  • the forward voltage drop of the Y series diodes in the common diode cluster is greater than the set value U1.
  • U1 is set in consideration of the voltage range under normal operation in the low-voltage DC power quality standard and the voltage variation range of the N-way power supply.
  • the number of diodes X K in the supplementary diode cluster takes into consideration the power supply priority and voltage quality settings of the K-th power supply, and X K is at least one. Assuming that the power supply priority of the M-th and L-th switching circuits of the two switching circuits is only one priority higher than that of the L-th connected power supply, then the positive of the supplementary diode cluster in the L-th switching circuit is The conduction voltage drop (that is , the conduction voltage drop of X L diodes) needs to be higher than the forward conduction voltage drop of the complementary diode cluster in the M- th switching circuit (that is, the conduction voltage drop of X M diodes) higher by U2, the voltage difference U2 reference voltage wave setting.
  • the current measurement value of the output current sensor 511K is I 511K
  • the positive direction is that the power flows into the device of the present invention.
  • the current measurement value of the common diode cluster current sensor 5211 is I 5211
  • the forward direction is from the anode of the common diode cluster to the cathode of the common diode cluster.
  • the current measurement value of the output current sensor 5311 is I 5311 , and the positive direction is from the device of the present invention to the load.
  • the current of the thyristor 1K11 in the K-th switching circuit drops to 0 and is blocked. After the thyristor 1K11 is locked, the current flowing into each power supply is the current in each corresponding complementary diode cluster. Assuming that the power supply with the highest priority among the N power supplies except for the K power supply is the G power supply, since the forward voltage drop of the supplementary diode cluster in the G switching circuit is the lowest, it flows through the supplementary in the G switching circuit The current I 511G of the diode cluster is greater than that of other switching circuits to supplement the current in the diode cluster.
  • I 5211 When I 5211 is greater than the set value I 1 and I 511G is greater than any other power supply current, a turn-on signal is sent to the thyristor 1G11, the thyristor 1G11 is turned on, and the power source G supplies power to the load through the thyristor 1G11 to realize power switching.
  • the specific embodiment of the present invention also provides a low-voltage DC power distribution quick-cutting device that can be connected to three-way common negative power supply.
  • the rated voltages of the three power supplies A, B, and C are all 375V, the normal operating range is 350V to 375V, and constant voltage control is adopted, and the voltage ripple is within 1% of the rated voltage.
  • the power supply priorities of the three power supplies A, B, and C are arranged in order from high to low.
  • the impedance of the lines from the power supply A, B, and C to the device of the present invention are all 0.01 ohm.
  • the load is a resistive load, and the equivalent resistance is 0.24 ohm. It is required that the quick switch can avoid the voltage sag of 1ms without switching the power supply.
  • the diodes with a forward voltage drop of 1.4V and a rated current of 1500A are selected to form a common diode cluster and a complementary diode cluster for the three-way switching circuit.
  • the common diode cluster is composed of 18 diodes (diodes 4111 to 41118) in series
  • the supplementary diode cluster of the first switching circuit is composed of 1 diode (diode 1121)
  • the supplementary diode cluster of the second switching circuit is composed of 4 diodes
  • the diode 1221 to the diode 1224 are connected in series
  • the supplementary diode cluster of the third switching circuit is formed by 7 diodes (the diode 1321 to the diode 1327) in series.
  • the rated current of the thyristor (1111, 1211, 1311) in the 3-way switching circuit is 2000A.
  • the capacitance value of the delay capacitor 3110 is 0.1F.
  • the positive poles of the power supplies A, B, and C are respectively connected to the positive input terminals 2111, 2112, and 2113 of the three-way switching circuit of the device of the present invention.
  • Scenario 1 Power A loses power in 0.02s, and the load is powered by Power B.
  • the output current time domain diagram of the device of the present invention is shown in Fig. 3, and the output current time domain diagrams of power supplies A, B, and C are shown in Figs. 4, 5, and 6;
  • Scenario 2 Power supply A has a voltage sag of 1ms in 0.02s, and the load is still powered by power supply B.
  • the output current time domain diagram of the device of the present invention is shown in Fig. 7, and the output current time domain diagrams of power supplies A, B, and C are shown in Figs. 8, 9, and 10;
  • Scenario 3 Power A loses power in 0.02s, the control system loses its control ability due to a fault, and the load is powered by Power B and Power C.
  • the output current time domain diagram of the device of the present invention is shown in Fig. 11, and the output current time domain diagrams of power supplies A, B, and C are shown in Figs. 12, 13, and 14;
  • the device of the present invention can achieve the established design requirements and ensure the continuous and stable power supply of the load.
  • the device of the present invention can achieve the following technical effects:
  • the load voltage is clamped by the forward conduction voltage of the supplementary diode cluster and the common diode cluster, which is not dependent on the control system and can be implemented without the intervention of the control system, compared with the automatic switching device and the quick-cutting device that only uses controllable devices. Uninterrupted and automatic switching between power sources provides reliable power supply for the load;
  • Adopting the circuit design of supplementing the diode clusters in the switching circuit without relying on the control system, provides priority for the connected N-way power supply, and provides a reliable switching function with priority.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

电气开关技术领域的一种低压直流配电快切装置,旨在解决现有技术中的低压配电快切装置不适用于直流配电系统的技术问题。所述装置包括与负载正极电性连接的正极输出端子(2210)、不少于两路且彼此并联的切换电路,所述切换电路包括与共负极电源的正极电性连接的正极输入端子(2111、……、211K、……、211N)、由不少于一个二极管串联而成的补充二极管簇、连接于正极输入端子(2111、……、211K、……、211N)与正极输出端子(2210)之间的晶闸管(1111、……、1K11、……、1N11);所述正极输入端子(2111、……、211K、……、211N)与补充二极管簇和晶闸管(1111、……、1K11、……、1N11)的阳极电性连接,所述正极输出端子(2210)与补充二极管簇和晶闸管(1111、……、1K11、……、1N11)的阴极电性连接。

Description

一种低压直流配电快切装置 技术领域
本发明涉及一种低压直流配电快切装置,属于电气开关技术领域。
背景技术
随着分布式新能源的大规模接入,传统配电系统的特性被逐步改变。分布式新能源由于需经过AC/DC变换接入交流配电网,因而极大地影响了分布式能源在传统交流配电网中的本地综合消纳效率。使用直流配电系统不但可以解决分布式能源的高效率接入,而且可以提升直流负荷的用电效率,进而提升配电系统的综合效率。为部分重要的直流负荷提供可靠的多路供电以保障其高供电可靠性,通常需要一种低压配电快切装置。由于现有的低压配电快切装置多为交流配电系统设计,因而不适用于直流配电系统。
发明内容
针对现有技术的不足,本发明的目的在于提供一种低压直流配电快切装置,以解决现有技术中的低压配电快切装置不适用于直流配电系统的技术问题。
为解决上述技术问题,本发明所采用的技术方案是:
一种低压直流配电快切装置,包括与负载正极电性连接的正极输出端子、不少于两路且彼此并联的切换电路,所述切换电路包括与共负极电源的正极电性连接的正极输入端子、由不少于一个二极管串联而成的补充二极管簇、连接于正极输入端子与正极输出端子之间的晶闸管;所述正极输入端子与补充二极管簇的阳极电性连接,正极输入端子与晶闸管的阳极电性连接,所述正极输出端子与补充二极管簇的阴极电性连接,正极输出端子与晶闸管的阴极电性连接。
优选地,所述切换电路还包括与补充二极管簇串联的电流传感器。
优选地,还包括由不少于一个二极管串联而成的公共二极管簇,所述公共二极管簇的阳极与所有所述切换电路的补充二极管簇的阴极电性连接,公共二极管簇的阴极与正极输出端子电性连接。
优选地,所述公共二极管簇串联有电流传感器。
优选地,还包括与共负极电源的负极和负载负极电性连接的共负极端子,所述共负极端子通过延时电路与正极输出端子电性连接。
优选地,所述延时电路包括延时电容,所述延时电容的负极与共负极端子电性连接,延时电容的正极与正极输出端子电性连接。
优选地,所述延时电路还包括电性连接于延时电容的正极与正极输出端子之间的放电二极管以及与其并联的充电电阻和充电二极管,所述充电电阻与充电二极管串联,充电二极管的阴极和放电二极管的阳极与延时电容的正极电性连接,充电二极管的阳极通过充电电阻与正极输出端子电性连接,放电二极管的阴极与正极输出端子电性连接。
优选地,所述补充二极管簇的正向导通压降与其所处切换电路所接入共负极电源的供电优先级成反比。
优选地,所述共负极电源为共负极的低压直流电源。
与现有技术相比,本发明所达到的有益效果:利用补充二极管簇的正向导通电压钳位负载电压,能够在无控制系统干预下实现电源间不间断自动切换,为负荷可靠供电;在不依赖控制自动切换电源后,通过控制晶闸管导通降低补充二极管簇的通态损耗;通过调整各切换电路补充二极管簇中所串联二极管数量来调整补充二极管簇的正向导通电压,从而设定各切换电路所接入电源的供电优先级。
附图说明
图1是本发明装置的电气拓扑示意图;
图2是本发明实施例中可接入三路共负极电源的低压直流配电快切装置的电气拓扑示意图;
图3是本发明实施例在场景1下的输出电流时域图;
图4是本发明实施例在场景1下电源A的输出电流时域图;
图5是本发明实施例在场景1下电源B的输出电流时域图;
图6是本发明实施例在场景1下电源C的输出电流时域图;
图7是本发明实施例在场景2下的输出电流时域图;
图8是本发明实施例在场景2下电源A的输出电流时域图;
图9是本发明实施例在场景2下电源B的输出电流时域图;
图10是本发明实施例在场景2下电源C的输出电流时域图;
图11是本发明实施例在场景3下的输出电流时域图;
图12是本发明实施例在场景3下电源A的输出电流时域图;
图13是本发明实施例在场景3下电源B的输出电流时域图;
图14是本发明实施例在场景3下电源C的输出电流时域图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施方式提供了一种低压直流配电快切装置,该装置适用于多路接地方式相同、共负极低压直流电源间快速切换。如图1所示,本发明装置的电气拓扑示意图,所述装置包括电源连接端子、N路切换电路、公共二极管簇、延时电路和电流传感器及其辅助电路。
所述电源连接端子包括N个正极输入端子(正极输入端子2111、正极输入端子2112、……、正极输入端子211N)、一个正极输出端子2210、一个共负极端子2310。N个正极输入端子对应连接N路低压直流电源,其中任意正极输入端子211K与第K路电源相连;正极输出端子2210与负荷正极相连,共负极端子2310与N路电源的负极和负荷负极相连。
所述切换电路共设有N路,与前述N路低压直流电源的数量相同。对于由N路独立电源为一个负荷供电的场景,本发明装置的N路切换电路适配于该应用场景,为该负荷提供N路电源的快速切换功能。对任意第K路切换电路,包括晶闸管1K11以及由X K个二极管(二极管1K21、1K22、……、1K2X K)串联而成的补充二极管簇。晶闸管1K11的阳极与正极输入端子211K相连,晶闸管1K11的阴极与正极输出端子2210相连;补充二极管簇中的X K个二极管的阳极、阴极依次相连,即二极管1K21的阳极为补充二极管簇的阳极,二极管1K21的阴极与二极管1K22的阳极相连,二极管1K22的阴极与二极管1K23的阳极相连,以此类推直至二极管112X K,二极管1K2X K的阴极作为补充二极管簇的阴极。该补充二极管簇的阳极(二极管1K21的阳极)与正极输入端子211K相连,该补充 二极管簇的阴极(二极管1K2X K的阴极)与公共二极管簇的阳极相连(二极管4111的阳极)。
所述公共二极管簇由Y个二极管的阳极、阴极依次相连构成,即二极管4111的阳极为公共二极管簇的阳极,二极管4111的阴极与二极管4112的阳极相连,二极管4112的阴极与二极管4113的阳极相连,以此类推直至二极管411Y,二极管411Y的阴极作为公共二极管簇的阴极。公共二极管簇的阳极(二极管4111的阳极)分别与N路切换电路中的补充二极管簇的阴极(二极管112X 1、二极管112X 2、……、二极管112X K的阴极)相连,公共二极管簇的阴极与正极输出端子2210相连。
所述延时电路由充电电阻3140、充电二极管3130、放电二极管3120和延时电容3110构成。充电电阻3140一端与正极输出端子2210相连,充电电阻3140另一端与充电二极管3130的阳极连接,充电二极管3130的阴极与延时电容3110的正极相连,放电二极管3120的阳极与延时电容3110的正极相连,放电二极管3120的阴极与正极输出端子2210相连,延时电容3110的负极与共负极端子2310相连。
所述电流传感器包括输出电流传感器、公共二极管簇电流传感器5211、输出电流传感器5311。输出电流传感器共设有N个(电流传感器5111、电流传感器5112、……、电流传感器511N),任意第K个输出电流传感器511K安装在任意正极输入端子211K至第K路切换电路之间,用于测量第K路电源流入本发明装置的电流。公共二极管簇电流传感器5211安装于公共二极管簇的阴极(二极管411Y阴极),用于测量流经公共二极管簇的电流。输出电流传感器5311安装于本发明装置的正极输出端子2210前,用于测量本发明装置的输出电流。
公共二极管簇中Y个串联二极管的正向导通压降和大于设定值U1,U1考虑低压直流电能质量标准中正常运行下的电压范围以及N路电源的电压变化范围进行设定。
任意第K路切换电路中,补充二极管簇中二极管数量X K考虑第K路电源的供电优先级及电压质量设定,X K最少为1个。假设两个切换电路第M路和第L路,第M路相较于第L路所接入电源的供电优先级仅大1个优先级,那么第L 路切换电路中的补充二极管簇的正向导通压降(即X L个二极管的导通压降)需要比第M路切换电路中补充二极管簇的正向导通压降(即X M个二极管的导通压降)高U2,电压差U2参考电压文波设定。
控制方法:
假设输出电流传感器511K的电流测量值为I 511K,正方向为由电源流入本发明装置。公共二极管簇电流传感器5211的电流测量值为I 5211,正方向为由公共二极管簇阳极向公共二极管簇阴极。输出电流传感器5311的电流测量值为I 5311,正方向为由本发明装置流向负荷。
当任意第K路电源失电后,第K路切换电路中的晶闸管1K11电流降至0后闭锁。在晶闸管1K11闭锁后,各电源流入电流即为各对应补充二极管簇中的电流。假设N路电源中除第K路电源外优先级最高的电源为第G路,由于第G路切换电路中的补充二极管簇的正向导通压降最低,流过第G路切换电路中的补充二极管簇的电流I 511G大于其他路切换电路补充二极管簇中电流。当I 5211大于设定值I 1,且I 511G大于其它任意电源电流,则向晶闸管1G11发出导通信号,晶闸管1G11导通,电源G通过晶闸管1G11向负荷供电,实现电源切换。
为更加详细地描述本发明技术方案,本发明具体实施方式还提供了一种可接入三路共负极电源的低压直流配电快切装置,如图2所示,是本发明实施例中可接入三路共负极电源的低压直流配电快切装置的电气拓扑示意图。本实施例中,三路电源A、B、C的额定电压均为375V,正常运行范围为350V至375V,采用恒压控制,电压纹波为额定电压的1%以内。三路电源A、B、C的供电优先级由高到低依次排列。电源A、B、C至本发明装置的线路阻抗均为0.01ohm。负载为阻抗性负载,等效阻值为0.24ohm。要求快切能够躲避1ms的电压暂降,不切换电源。
设定U1=25V,U2=4V,I 1=50A,设计本发明装置如下:
选定正向导通压降为1.4V、额定电流为1500A的二极管组成公共二极管簇及三路切换电路的补充二极管簇。公共二极管簇由18个二极管(二极管4111至41118)串联而成,第1路切换电路的补充二极管簇由1个二极管(二极管1121)构成,第2路切换电路的补充二极管簇由4个二极管(二极管1221至二 极管1224)串联构成,第3路切换电路的补充二极管簇由7个二极管(二极管1321至二极管1327)串联构成。3路切换电路中的晶闸管(1111,1211,1311)的额定电流为2000A。延时电容3110的容值为0.1F。电源A、B、C的正极分别与本发明装置三路切换电路的正极输入端子2111、2112和2113对应连接。
场景1:电源A在0.02s失电,负荷由电源B供电。本发明装置的输出电流时域图如图3所示,电源A、B、C的输出电流时域图如图4、图5、图6所示;
场景2:电源A在0.02s发生1ms的电压暂降,负荷仍由电源B供电。本发明装置的输出电流时域图如图7所示,电源A、B、C的输出电流时域图如图8、图9、图10所示;
场景3:电源A在0.02s失电,控制系统因故障失去控制能力,负荷由电源B及电源C供电。本发明装置的输出电流时域图如图11所示,电源A、B、C的输出电流时域图如图12、图13、图14所示;
可以看出,本发明装置能够实现既定设计要求,保证负载的持续稳定供电。
综上所述,本发明装置能够实现如下技术效果:
1)利用补充二极管簇和公共二极管簇的正向导通电压钳位负载电压,相比于备自投及仅采用可控器件的快切装置,不依赖控制系统,能够在无控制系统干预下实现电源间不间断自动切换,为负荷可靠供电;
2)通过公共二极管簇导通电压限定,能够防止因电压工作点变化而导致的误切换;
3)采用补充二极管簇并联晶闸管的电路设计,在不依赖控制自动切换电源后,能够通过控制晶闸管导通降低装置的通态损耗,使设备保持较高的效率;
4)采用共用公共二极管簇的电路设计,相比于为N路切换电路单独配置的方案,节约了(N-1)×Y个功率二极管,在实现同样功能的前提下,大幅度地降低了装置成本。
5)采用切换电路内补充二极管簇的电路设计,在不依赖控制系统下,为接入的N路电源提供了优先级,提供可靠的带有优先级的切换功能。
6)采用在切换电路的输出端与共负极端子之间接入延时电容的电路设计,使装置在无控制系统干预下,具有抗电压大幅暂降下误动作的能力,增强装置 的可靠性。
7)在切换电路的输出端与延时电容之间采用充电二极管串联电阻并反并联二极管的电路设计,在抑制在电源切换过程中晶闸管导通瞬间的延时电容充电电流的同时,并不影响延时电容的延时功能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

  1. 一种低压直流配电快切装置,其特征是,包括与负载正极电性连接的正极输出端子、不少于两路且彼此并联的切换电路,所述切换电路包括与共负极电源的正极电性连接的正极输入端子、由不少于一个二极管串联而成的补充二极管簇、连接于正极输入端子与正极输出端子之间的晶闸管;所述正极输入端子与补充二极管簇的阳极电性连接,正极输入端子与晶闸管的阳极电性连接,所述正极输出端子与补充二极管簇的阴极电性连接,正极输出端子与晶闸管的阴极电性连接。
  2. 根据权利要求1所述的低压直流配电快切装置,其特征是,所述切换电路还包括与补充二极管簇串联的电流传感器。
  3. 根据权利要求1所述的低压直流配电快切装置,其特征是,还包括由不少于一个二极管串联而成的公共二极管簇,所述公共二极管簇的阳极与所有所述切换电路的补充二极管簇的阴极电性连接,公共二极管簇的阴极与正极输出端子电性连接。
  4. 根据权利要求3所述的低压直流配电快切装置,其特征是,所述公共二极管簇串联有电流传感器。
  5. 根据权利要求1所述的低压直流配电快切装置,其特征是,还包括与共负极电源的负极和负载负极电性连接的共负极端子,所述共负极端子通过延时电路与正极输出端子电性连接。
  6. 根据权利要求5所述的低压直流配电快切装置,其特征是,所述延时电路包括延时电容,所述延时电容的负极与共负极端子电性连接,延时电容的正极与正极输出端子电性连接。
  7. 根据权利要求6所述的低压直流配电快切装置,其特征是,所述延时电路还包括电性连接于延时电容的正极与正极输出端子之间的放电二极管以及与其并联的充电电阻和充电二极管,所述充电电阻与充电二极管串联,充电二极管的阴极和放电二极管的阳极与延时电容的正极电性连接,充电二极管的阳极通过充电电阻与正极输出端子电性连接,放电二极管的阴极与正极输出端子电 性连接。
  8. 根据权利要求1所述的低压直流配电快切装置,其特征是,所述补充二极管簇的正向导通压降与其所处切换电路所接入共负极电源的供电优先级成反比。
  9. 根据权利要求1所述的低压直流配电快切装置,其特征是,所述共负极电源为共负极的低压直流电源。
PCT/CN2020/111217 2019-12-03 2020-08-26 一种低压直流配电快切装置 WO2021109628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/059,209 US11374404B2 (en) 2019-12-03 2020-08-26 Low-voltage DC power distribution fast switching device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911218990.5A CN111064458B (zh) 2019-12-03 2019-12-03 一种直流快切装置
CN201911218990.5 2019-12-03
CN202010042109.7 2020-01-15
CN202010042109.7A CN111181148B (zh) 2020-01-15 2020-01-15 一种低压直流配电快切装置

Publications (1)

Publication Number Publication Date
WO2021109628A1 true WO2021109628A1 (zh) 2021-06-10

Family

ID=76221401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111217 WO2021109628A1 (zh) 2019-12-03 2020-08-26 一种低压直流配电快切装置

Country Status (2)

Country Link
US (1) US11374404B2 (zh)
WO (1) WO2021109628A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490752U (zh) * 2009-08-03 2010-05-26 深圳市瑞必达电源有限公司 一种不间断交/直流供电电源
CN102104274A (zh) * 2009-12-02 2011-06-22 技嘉科技股份有限公司 具有电池并联电路的电子装置
WO2014053464A1 (en) * 2012-10-04 2014-04-10 Borri S.P.A. High-efficiency electric conversion and continuity management system for uninterruptible power supplies (ups) and derived apparatuses
CN203632284U (zh) * 2013-11-18 2014-06-04 常州永安公共自行车系统股份有限公司 站点电源管理模块
JP2016201867A (ja) * 2015-04-07 2016-12-01 三菱電機株式会社 電力供給システム
CN111064458A (zh) * 2019-12-03 2020-04-24 国网江苏省电力有限公司电力科学研究院 一种直流快切装置
CN111181148A (zh) * 2020-01-15 2020-05-19 国网江苏省电力有限公司电力科学研究院 一种低压直流配电快切装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808452A (en) * 1973-06-04 1974-04-30 Gte Automatic Electric Lab Inc Power supply system having redundant d. c. power supplies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201490752U (zh) * 2009-08-03 2010-05-26 深圳市瑞必达电源有限公司 一种不间断交/直流供电电源
CN102104274A (zh) * 2009-12-02 2011-06-22 技嘉科技股份有限公司 具有电池并联电路的电子装置
WO2014053464A1 (en) * 2012-10-04 2014-04-10 Borri S.P.A. High-efficiency electric conversion and continuity management system for uninterruptible power supplies (ups) and derived apparatuses
CN203632284U (zh) * 2013-11-18 2014-06-04 常州永安公共自行车系统股份有限公司 站点电源管理模块
JP2016201867A (ja) * 2015-04-07 2016-12-01 三菱電機株式会社 電力供給システム
CN111064458A (zh) * 2019-12-03 2020-04-24 国网江苏省电力有限公司电力科学研究院 一种直流快切装置
CN111181148A (zh) * 2020-01-15 2020-05-19 国网江苏省电力有限公司电力科学研究院 一种低压直流配电快切装置

Also Published As

Publication number Publication date
US11374404B2 (en) 2022-06-28
US20210376603A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CN111181148B (zh) 一种低压直流配电快切装置
CN108336750B (zh) 换流器、基于半vsc三极直流系统及其故障转移控制方法
CN109274269B (zh) 一种直流斩波装置及控制方法
WO2011120311A1 (zh) 太阳能光发电系统、控制装置及控制方法
CN111064458B (zh) 一种直流快切装置
CN109245506B (zh) 一种耗能装置及控制方法
CN109494752B (zh) 一种集中式电阻耗能装置及其控制方法
CN101984546A (zh) 功率开关器件串联限压电路
CN101645610A (zh) 一种电池均衡充电装置及方法
CN202749820U (zh) 基于h桥级联型svg功率单元电路
CN109842108B (zh) 一种多路大电流电源并网防反灌配电装置
CN109327016B (zh) 一种直流极间分断装置及控制方法
CN104660038A (zh) 一种智能太阳能光伏组件电路及其控制/保护方法
CN208125779U (zh) 一种可高低压切换保证负载电阻承受功率不变的负载电路
WO2021109628A1 (zh) 一种低压直流配电快切装置
WO2021208141A1 (zh) 一种电源系统
WO2022088739A1 (zh) 用于低压双极供电系统的切换电路、换路装置及控制方法
CN106655774B (zh) 一种多输入高增益dc/dc变换器
CN108242896B (zh) 换流器、直流侧接地三级结构柔性直流系统及控制方法
WO2022088738A1 (zh) 隔离低压直流切换电路、换路装置及控制方法
US20220200290A1 (en) Power System
CN206293950U (zh) 线损补偿的同步整流电路
US11217993B2 (en) Conversion system with high voltage side and low voltage side
CN110601160B (zh) 一种高能回馈型负载能量回流泄放电路及其能量泄放方法
CN110504670B (zh) 直流配电网的供电系统及供电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896309

Country of ref document: EP

Kind code of ref document: A1